forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			843 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This tool implements a just-in-time compiler for LLVM, allowing direct
 | 
						|
// execution of LLVM bitcode in an efficient manner.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "JIT.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/CodeGen/JITCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeInfo.h"
 | 
						|
#include "llvm/ExecutionEngine/GenericValue.h"
 | 
						|
#include "llvm/ExecutionEngine/JITEventListener.h"
 | 
						|
#include "llvm/ExecutionEngine/JITMemoryManager.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetJITInfo.h"
 | 
						|
#include "llvm/Support/Dwarf.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MutexGuard.h"
 | 
						|
#include "llvm/Support/DynamicLibrary.h"
 | 
						|
#include "llvm/Config/config.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#ifdef __APPLE__
 | 
						|
// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
 | 
						|
// of atexit). It passes the address of linker generated symbol __dso_handle
 | 
						|
// to the function.
 | 
						|
// This configuration change happened at version 5330.
 | 
						|
# include <AvailabilityMacros.h>
 | 
						|
# if defined(MAC_OS_X_VERSION_10_4) && \
 | 
						|
     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
 | 
						|
      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
 | 
						|
       __APPLE_CC__ >= 5330))
 | 
						|
#  ifndef HAVE___DSO_HANDLE
 | 
						|
#   define HAVE___DSO_HANDLE 1
 | 
						|
#  endif
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if HAVE___DSO_HANDLE
 | 
						|
extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static struct RegisterJIT {
 | 
						|
  RegisterJIT() { JIT::Register(); }
 | 
						|
} JITRegistrator;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
extern "C" void LLVMLinkInJIT() {
 | 
						|
}
 | 
						|
 | 
						|
// Determine whether we can register EH tables.
 | 
						|
#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
 | 
						|
     !defined(__USING_SJLJ_EXCEPTIONS__))
 | 
						|
#define HAVE_EHTABLE_SUPPORT 1
 | 
						|
#else
 | 
						|
#define HAVE_EHTABLE_SUPPORT 0
 | 
						|
#endif
 | 
						|
 | 
						|
#if HAVE_EHTABLE_SUPPORT
 | 
						|
 | 
						|
// libgcc defines the __register_frame function to dynamically register new
 | 
						|
// dwarf frames for exception handling. This functionality is not portable
 | 
						|
// across compilers and is only provided by GCC. We use the __register_frame
 | 
						|
// function here so that code generated by the JIT cooperates with the unwinding
 | 
						|
// runtime of libgcc. When JITting with exception handling enable, LLVM
 | 
						|
// generates dwarf frames and registers it to libgcc with __register_frame.
 | 
						|
//
 | 
						|
// The __register_frame function works with Linux.
 | 
						|
//
 | 
						|
// Unfortunately, this functionality seems to be in libgcc after the unwinding
 | 
						|
// library of libgcc for darwin was written. The code for darwin overwrites the
 | 
						|
// value updated by __register_frame with a value fetched with "keymgr".
 | 
						|
// "keymgr" is an obsolete functionality, which should be rewritten some day.
 | 
						|
// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
 | 
						|
// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
 | 
						|
// values of an opaque key, used by libgcc to find dwarf tables.
 | 
						|
 | 
						|
extern "C" void __register_frame(void*);
 | 
						|
extern "C" void __deregister_frame(void*);
 | 
						|
 | 
						|
#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
 | 
						|
# define USE_KEYMGR 1
 | 
						|
#else
 | 
						|
# define USE_KEYMGR 0
 | 
						|
#endif
 | 
						|
 | 
						|
#if USE_KEYMGR
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// LibgccObject - This is the structure defined in libgcc. There is no #include
 | 
						|
// provided for this structure, so we also define it here. libgcc calls it
 | 
						|
// "struct object". The structure is undocumented in libgcc.
 | 
						|
struct LibgccObject {
 | 
						|
  void *unused1;
 | 
						|
  void *unused2;
 | 
						|
  void *unused3;
 | 
						|
 | 
						|
  /// frame - Pointer to the exception table.
 | 
						|
  void *frame;
 | 
						|
 | 
						|
  /// encoding -  The encoding of the object?
 | 
						|
  union {
 | 
						|
    struct {
 | 
						|
      unsigned long sorted : 1;
 | 
						|
      unsigned long from_array : 1;
 | 
						|
      unsigned long mixed_encoding : 1;
 | 
						|
      unsigned long encoding : 8;
 | 
						|
      unsigned long count : 21;
 | 
						|
    } b;
 | 
						|
    size_t i;
 | 
						|
  } encoding;
 | 
						|
 | 
						|
  /// fde_end - libgcc defines this field only if some macro is defined. We
 | 
						|
  /// include this field even if it may not there, to make libgcc happy.
 | 
						|
  char *fde_end;
 | 
						|
 | 
						|
  /// next - At least we know it's a chained list!
 | 
						|
  struct LibgccObject *next;
 | 
						|
};
 | 
						|
 | 
						|
// "kemgr" stuff. Apparently, all frame tables are stored there.
 | 
						|
extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
 | 
						|
extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
 | 
						|
#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
 | 
						|
 | 
						|
/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
 | 
						|
/// probably contains all dwarf tables that are loaded.
 | 
						|
struct LibgccObjectInfo {
 | 
						|
 | 
						|
  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
 | 
						|
  ///
 | 
						|
  struct LibgccObject* seenObjects;
 | 
						|
 | 
						|
  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
 | 
						|
  ///
 | 
						|
  struct LibgccObject* unseenObjects;
 | 
						|
 | 
						|
  unsigned unused[2];
 | 
						|
};
 | 
						|
 | 
						|
/// darwin_register_frame - Since __register_frame does not work with darwin's
 | 
						|
/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
 | 
						|
/// "Dwarf2 object list" key.
 | 
						|
void DarwinRegisterFrame(void* FrameBegin) {
 | 
						|
  // Get the key.
 | 
						|
  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
 | 
						|
    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
 | 
						|
  assert(LOI && "This should be preallocated by the runtime");
 | 
						|
 | 
						|
  // Allocate a new LibgccObject to represent this frame. Deallocation of this
 | 
						|
  // object may be impossible: since darwin code in libgcc was written after
 | 
						|
  // the ability to dynamically register frames, things may crash if we
 | 
						|
  // deallocate it.
 | 
						|
  struct LibgccObject* ob = (struct LibgccObject*)
 | 
						|
    malloc(sizeof(struct LibgccObject));
 | 
						|
 | 
						|
  // Do like libgcc for the values of the field.
 | 
						|
  ob->unused1 = (void *)-1;
 | 
						|
  ob->unused2 = 0;
 | 
						|
  ob->unused3 = 0;
 | 
						|
  ob->frame = FrameBegin;
 | 
						|
  ob->encoding.i = 0;
 | 
						|
  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
 | 
						|
 | 
						|
  // Put the info on both places, as libgcc uses the first or the second
 | 
						|
  // field. Note that we rely on having two pointers here. If fde_end was a
 | 
						|
  // char, things would get complicated.
 | 
						|
  ob->fde_end = (char*)LOI->unseenObjects;
 | 
						|
  ob->next = LOI->unseenObjects;
 | 
						|
 | 
						|
  // Update the key's unseenObjects list.
 | 
						|
  LOI->unseenObjects = ob;
 | 
						|
 | 
						|
  // Finally update the "key". Apparently, libgcc requires it.
 | 
						|
  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
 | 
						|
                                         LOI);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
#endif // __APPLE__
 | 
						|
#endif // HAVE_EHTABLE_SUPPORT
 | 
						|
 | 
						|
/// createJIT - This is the factory method for creating a JIT for the current
 | 
						|
/// machine, it does not fall back to the interpreter.  This takes ownership
 | 
						|
/// of the module.
 | 
						|
ExecutionEngine *JIT::createJIT(Module *M,
 | 
						|
                                std::string *ErrorStr,
 | 
						|
                                JITMemoryManager *JMM,
 | 
						|
                                bool GVsWithCode,
 | 
						|
                                TargetMachine *TM) {
 | 
						|
  // Try to register the program as a source of symbols to resolve against.
 | 
						|
  //
 | 
						|
  // FIXME: Don't do this here.
 | 
						|
  sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
 | 
						|
 | 
						|
  // If the target supports JIT code generation, create the JIT.
 | 
						|
  if (TargetJITInfo *TJ = TM->getJITInfo()) {
 | 
						|
    return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
 | 
						|
  } else {
 | 
						|
    if (ErrorStr)
 | 
						|
      *ErrorStr = "target does not support JIT code generation";
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// This class supports the global getPointerToNamedFunction(), which allows
 | 
						|
/// bugpoint or gdb users to search for a function by name without any context.
 | 
						|
class JitPool {
 | 
						|
  SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
 | 
						|
  mutable sys::Mutex Lock;
 | 
						|
public:
 | 
						|
  void Add(JIT *jit) {
 | 
						|
    MutexGuard guard(Lock);
 | 
						|
    JITs.insert(jit);
 | 
						|
  }
 | 
						|
  void Remove(JIT *jit) {
 | 
						|
    MutexGuard guard(Lock);
 | 
						|
    JITs.erase(jit);
 | 
						|
  }
 | 
						|
  void *getPointerToNamedFunction(const char *Name) const {
 | 
						|
    MutexGuard guard(Lock);
 | 
						|
    assert(JITs.size() != 0 && "No Jit registered");
 | 
						|
    //search function in every instance of JIT
 | 
						|
    for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
 | 
						|
           end = JITs.end();
 | 
						|
         Jit != end; ++Jit) {
 | 
						|
      if (Function *F = (*Jit)->FindFunctionNamed(Name))
 | 
						|
        return (*Jit)->getPointerToFunction(F);
 | 
						|
    }
 | 
						|
    // The function is not available : fallback on the first created (will
 | 
						|
    // search in symbol of the current program/library)
 | 
						|
    return (*JITs.begin())->getPointerToNamedFunction(Name);
 | 
						|
  }
 | 
						|
};
 | 
						|
ManagedStatic<JitPool> AllJits;
 | 
						|
}
 | 
						|
extern "C" {
 | 
						|
  // getPointerToNamedFunction - This function is used as a global wrapper to
 | 
						|
  // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
 | 
						|
  // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
 | 
						|
  // need to resolve function(s) that are being mis-codegenerated, so we need to
 | 
						|
  // resolve their addresses at runtime, and this is the way to do it.
 | 
						|
  void *getPointerToNamedFunction(const char *Name) {
 | 
						|
    return AllJits->getPointerToNamedFunction(Name);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
 | 
						|
         JITMemoryManager *jmm, bool GVsWithCode)
 | 
						|
  : ExecutionEngine(M), TM(tm), TJI(tji),
 | 
						|
    JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
 | 
						|
    AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
 | 
						|
  setTargetData(TM.getTargetData());
 | 
						|
 | 
						|
  jitstate = new JITState(M);
 | 
						|
 | 
						|
  // Initialize JCE
 | 
						|
  JCE = createEmitter(*this, JMM, TM);
 | 
						|
 | 
						|
  // Register in global list of all JITs.
 | 
						|
  AllJits->Add(this);
 | 
						|
 | 
						|
  // Add target data
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  FunctionPassManager &PM = jitstate->getPM(locked);
 | 
						|
  PM.add(new TargetData(*TM.getTargetData()));
 | 
						|
 | 
						|
  // Turn the machine code intermediate representation into bytes in memory that
 | 
						|
  // may be executed.
 | 
						|
  if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
 | 
						|
    report_fatal_error("Target does not support machine code emission!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Register routine for informing unwinding runtime about new EH frames
 | 
						|
#if HAVE_EHTABLE_SUPPORT
 | 
						|
#if USE_KEYMGR
 | 
						|
  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
 | 
						|
    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
 | 
						|
 | 
						|
  // The key is created on demand, and libgcc creates it the first time an
 | 
						|
  // exception occurs. Since we need the key to register frames, we create
 | 
						|
  // it now.
 | 
						|
  if (!LOI)
 | 
						|
    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
 | 
						|
  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
 | 
						|
  InstallExceptionTableRegister(DarwinRegisterFrame);
 | 
						|
  // Not sure about how to deregister on Darwin.
 | 
						|
#else
 | 
						|
  InstallExceptionTableRegister(__register_frame);
 | 
						|
  InstallExceptionTableDeregister(__deregister_frame);
 | 
						|
#endif // __APPLE__
 | 
						|
#endif // HAVE_EHTABLE_SUPPORT
 | 
						|
 | 
						|
  // Initialize passes.
 | 
						|
  PM.doInitialization();
 | 
						|
}
 | 
						|
 | 
						|
JIT::~JIT() {
 | 
						|
  // Unregister all exception tables registered by this JIT.
 | 
						|
  DeregisterAllTables();
 | 
						|
  // Cleanup.
 | 
						|
  AllJits->Remove(this);
 | 
						|
  delete jitstate;
 | 
						|
  delete JCE;
 | 
						|
  // JMM is a ownership of JCE, so we no need delete JMM here.
 | 
						|
  delete &TM;
 | 
						|
}
 | 
						|
 | 
						|
/// addModule - Add a new Module to the JIT.  If we previously removed the last
 | 
						|
/// Module, we need re-initialize jitstate with a valid Module.
 | 
						|
void JIT::addModule(Module *M) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  if (Modules.empty()) {
 | 
						|
    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
 | 
						|
 | 
						|
    jitstate = new JITState(M);
 | 
						|
 | 
						|
    FunctionPassManager &PM = jitstate->getPM(locked);
 | 
						|
    PM.add(new TargetData(*TM.getTargetData()));
 | 
						|
 | 
						|
    // Turn the machine code intermediate representation into bytes in memory
 | 
						|
    // that may be executed.
 | 
						|
    if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
 | 
						|
      report_fatal_error("Target does not support machine code emission!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Initialize passes.
 | 
						|
    PM.doInitialization();
 | 
						|
  }
 | 
						|
 | 
						|
  ExecutionEngine::addModule(M);
 | 
						|
}
 | 
						|
 | 
						|
/// removeModule - If we are removing the last Module, invalidate the jitstate
 | 
						|
/// since the PassManager it contains references a released Module.
 | 
						|
bool JIT::removeModule(Module *M) {
 | 
						|
  bool result = ExecutionEngine::removeModule(M);
 | 
						|
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  if (jitstate->getModule() == M) {
 | 
						|
    delete jitstate;
 | 
						|
    jitstate = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!jitstate && !Modules.empty()) {
 | 
						|
    jitstate = new JITState(Modules[0]);
 | 
						|
 | 
						|
    FunctionPassManager &PM = jitstate->getPM(locked);
 | 
						|
    PM.add(new TargetData(*TM.getTargetData()));
 | 
						|
 | 
						|
    // Turn the machine code intermediate representation into bytes in memory
 | 
						|
    // that may be executed.
 | 
						|
    if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
 | 
						|
      report_fatal_error("Target does not support machine code emission!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Initialize passes.
 | 
						|
    PM.doInitialization();
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// run - Start execution with the specified function and arguments.
 | 
						|
///
 | 
						|
GenericValue JIT::runFunction(Function *F,
 | 
						|
                              const std::vector<GenericValue> &ArgValues) {
 | 
						|
  assert(F && "Function *F was null at entry to run()");
 | 
						|
 | 
						|
  void *FPtr = getPointerToFunction(F);
 | 
						|
  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
 | 
						|
  FunctionType *FTy = F->getFunctionType();
 | 
						|
  Type *RetTy = FTy->getReturnType();
 | 
						|
 | 
						|
  assert((FTy->getNumParams() == ArgValues.size() ||
 | 
						|
          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
 | 
						|
         "Wrong number of arguments passed into function!");
 | 
						|
  assert(FTy->getNumParams() == ArgValues.size() &&
 | 
						|
         "This doesn't support passing arguments through varargs (yet)!");
 | 
						|
 | 
						|
  // Handle some common cases first.  These cases correspond to common `main'
 | 
						|
  // prototypes.
 | 
						|
  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
 | 
						|
    switch (ArgValues.size()) {
 | 
						|
    case 3:
 | 
						|
      if (FTy->getParamType(0)->isIntegerTy(32) &&
 | 
						|
          FTy->getParamType(1)->isPointerTy() &&
 | 
						|
          FTy->getParamType(2)->isPointerTy()) {
 | 
						|
        int (*PF)(int, char **, const char **) =
 | 
						|
          (int(*)(int, char **, const char **))(intptr_t)FPtr;
 | 
						|
 | 
						|
        // Call the function.
 | 
						|
        GenericValue rv;
 | 
						|
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
 | 
						|
                                 (char **)GVTOP(ArgValues[1]),
 | 
						|
                                 (const char **)GVTOP(ArgValues[2])));
 | 
						|
        return rv;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      if (FTy->getParamType(0)->isIntegerTy(32) &&
 | 
						|
          FTy->getParamType(1)->isPointerTy()) {
 | 
						|
        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
 | 
						|
 | 
						|
        // Call the function.
 | 
						|
        GenericValue rv;
 | 
						|
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
 | 
						|
                                 (char **)GVTOP(ArgValues[1])));
 | 
						|
        return rv;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 1:
 | 
						|
      if (FTy->getNumParams() == 1 &&
 | 
						|
          FTy->getParamType(0)->isIntegerTy(32)) {
 | 
						|
        GenericValue rv;
 | 
						|
        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
 | 
						|
        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
 | 
						|
        return rv;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle cases where no arguments are passed first.
 | 
						|
  if (ArgValues.empty()) {
 | 
						|
    GenericValue rv;
 | 
						|
    switch (RetTy->getTypeID()) {
 | 
						|
    default: llvm_unreachable("Unknown return type for function call!");
 | 
						|
    case Type::IntegerTyID: {
 | 
						|
      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
 | 
						|
      if (BitWidth == 1)
 | 
						|
        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
 | 
						|
      else if (BitWidth <= 8)
 | 
						|
        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
 | 
						|
      else if (BitWidth <= 16)
 | 
						|
        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
 | 
						|
      else if (BitWidth <= 32)
 | 
						|
        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
 | 
						|
      else if (BitWidth <= 64)
 | 
						|
        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
 | 
						|
      else
 | 
						|
        llvm_unreachable("Integer types > 64 bits not supported");
 | 
						|
      return rv;
 | 
						|
    }
 | 
						|
    case Type::VoidTyID:
 | 
						|
      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
 | 
						|
      return rv;
 | 
						|
    case Type::FloatTyID:
 | 
						|
      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
 | 
						|
      return rv;
 | 
						|
    case Type::DoubleTyID:
 | 
						|
      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
 | 
						|
      return rv;
 | 
						|
    case Type::X86_FP80TyID:
 | 
						|
    case Type::FP128TyID:
 | 
						|
    case Type::PPC_FP128TyID:
 | 
						|
      llvm_unreachable("long double not supported yet");
 | 
						|
    case Type::PointerTyID:
 | 
						|
      return PTOGV(((void*(*)())(intptr_t)FPtr)());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, this is not one of our quick and easy cases.  Because we don't have a
 | 
						|
  // full FFI, we have to codegen a nullary stub function that just calls the
 | 
						|
  // function we are interested in, passing in constants for all of the
 | 
						|
  // arguments.  Make this function and return.
 | 
						|
 | 
						|
  // First, create the function.
 | 
						|
  FunctionType *STy=FunctionType::get(RetTy, false);
 | 
						|
  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
 | 
						|
                                    F->getParent());
 | 
						|
 | 
						|
  // Insert a basic block.
 | 
						|
  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
 | 
						|
 | 
						|
  // Convert all of the GenericValue arguments over to constants.  Note that we
 | 
						|
  // currently don't support varargs.
 | 
						|
  SmallVector<Value*, 8> Args;
 | 
						|
  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
 | 
						|
    Constant *C = 0;
 | 
						|
    Type *ArgTy = FTy->getParamType(i);
 | 
						|
    const GenericValue &AV = ArgValues[i];
 | 
						|
    switch (ArgTy->getTypeID()) {
 | 
						|
    default: llvm_unreachable("Unknown argument type for function call!");
 | 
						|
    case Type::IntegerTyID:
 | 
						|
        C = ConstantInt::get(F->getContext(), AV.IntVal);
 | 
						|
        break;
 | 
						|
    case Type::FloatTyID:
 | 
						|
        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
 | 
						|
        break;
 | 
						|
    case Type::DoubleTyID:
 | 
						|
        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
 | 
						|
        break;
 | 
						|
    case Type::PPC_FP128TyID:
 | 
						|
    case Type::X86_FP80TyID:
 | 
						|
    case Type::FP128TyID:
 | 
						|
        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
 | 
						|
        break;
 | 
						|
    case Type::PointerTyID:
 | 
						|
      void *ArgPtr = GVTOP(AV);
 | 
						|
      if (sizeof(void*) == 4)
 | 
						|
        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
 | 
						|
                             (int)(intptr_t)ArgPtr);
 | 
						|
      else
 | 
						|
        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
 | 
						|
                             (intptr_t)ArgPtr);
 | 
						|
      // Cast the integer to pointer
 | 
						|
      C = ConstantExpr::getIntToPtr(C, ArgTy);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    Args.push_back(C);
 | 
						|
  }
 | 
						|
 | 
						|
  CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
 | 
						|
  TheCall->setCallingConv(F->getCallingConv());
 | 
						|
  TheCall->setTailCall();
 | 
						|
  if (!TheCall->getType()->isVoidTy())
 | 
						|
    // Return result of the call.
 | 
						|
    ReturnInst::Create(F->getContext(), TheCall, StubBB);
 | 
						|
  else
 | 
						|
    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
 | 
						|
 | 
						|
  // Finally, call our nullary stub function.
 | 
						|
  GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
 | 
						|
  // Erase it, since no other function can have a reference to it.
 | 
						|
  Stub->eraseFromParent();
 | 
						|
  // And return the result.
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void JIT::RegisterJITEventListener(JITEventListener *L) {
 | 
						|
  if (L == NULL)
 | 
						|
    return;
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  EventListeners.push_back(L);
 | 
						|
}
 | 
						|
void JIT::UnregisterJITEventListener(JITEventListener *L) {
 | 
						|
  if (L == NULL)
 | 
						|
    return;
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  std::vector<JITEventListener*>::reverse_iterator I=
 | 
						|
      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
 | 
						|
  if (I != EventListeners.rend()) {
 | 
						|
    std::swap(*I, EventListeners.back());
 | 
						|
    EventListeners.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
void JIT::NotifyFunctionEmitted(
 | 
						|
    const Function &F,
 | 
						|
    void *Code, size_t Size,
 | 
						|
    const JITEvent_EmittedFunctionDetails &Details) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
 | 
						|
    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void JIT::NotifyFreeingMachineCode(void *OldPtr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
 | 
						|
    EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// runJITOnFunction - Run the FunctionPassManager full of
 | 
						|
/// just-in-time compilation passes on F, hopefully filling in
 | 
						|
/// GlobalAddress[F] with the address of F's machine code.
 | 
						|
///
 | 
						|
void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  class MCIListener : public JITEventListener {
 | 
						|
    MachineCodeInfo *const MCI;
 | 
						|
   public:
 | 
						|
    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
 | 
						|
    virtual void NotifyFunctionEmitted(const Function &,
 | 
						|
                                       void *Code, size_t Size,
 | 
						|
                                       const EmittedFunctionDetails &) {
 | 
						|
      MCI->setAddress(Code);
 | 
						|
      MCI->setSize(Size);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  MCIListener MCIL(MCI);
 | 
						|
  if (MCI)
 | 
						|
    RegisterJITEventListener(&MCIL);
 | 
						|
 | 
						|
  runJITOnFunctionUnlocked(F, locked);
 | 
						|
 | 
						|
  if (MCI)
 | 
						|
    UnregisterJITEventListener(&MCIL);
 | 
						|
}
 | 
						|
 | 
						|
void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
 | 
						|
  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
 | 
						|
 | 
						|
  jitTheFunction(F, locked);
 | 
						|
 | 
						|
  // If the function referred to another function that had not yet been
 | 
						|
  // read from bitcode, and we are jitting non-lazily, emit it now.
 | 
						|
  while (!jitstate->getPendingFunctions(locked).empty()) {
 | 
						|
    Function *PF = jitstate->getPendingFunctions(locked).back();
 | 
						|
    jitstate->getPendingFunctions(locked).pop_back();
 | 
						|
 | 
						|
    assert(!PF->hasAvailableExternallyLinkage() &&
 | 
						|
           "Externally-defined function should not be in pending list.");
 | 
						|
 | 
						|
    jitTheFunction(PF, locked);
 | 
						|
 | 
						|
    // Now that the function has been jitted, ask the JITEmitter to rewrite
 | 
						|
    // the stub with real address of the function.
 | 
						|
    updateFunctionStub(PF);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
 | 
						|
  isAlreadyCodeGenerating = true;
 | 
						|
  jitstate->getPM(locked).run(*F);
 | 
						|
  isAlreadyCodeGenerating = false;
 | 
						|
 | 
						|
  // clear basic block addresses after this function is done
 | 
						|
  getBasicBlockAddressMap(locked).clear();
 | 
						|
}
 | 
						|
 | 
						|
/// getPointerToFunction - This method is used to get the address of the
 | 
						|
/// specified function, compiling it if necessary.
 | 
						|
///
 | 
						|
void *JIT::getPointerToFunction(Function *F) {
 | 
						|
 | 
						|
  if (void *Addr = getPointerToGlobalIfAvailable(F))
 | 
						|
    return Addr;   // Check if function already code gen'd
 | 
						|
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  // Now that this thread owns the lock, make sure we read in the function if it
 | 
						|
  // exists in this Module.
 | 
						|
  std::string ErrorMsg;
 | 
						|
  if (F->Materialize(&ErrorMsg)) {
 | 
						|
    report_fatal_error("Error reading function '" + F->getName()+
 | 
						|
                      "' from bitcode file: " + ErrorMsg);
 | 
						|
  }
 | 
						|
 | 
						|
  // ... and check if another thread has already code gen'd the function.
 | 
						|
  if (void *Addr = getPointerToGlobalIfAvailable(F))
 | 
						|
    return Addr;
 | 
						|
 | 
						|
  if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
 | 
						|
    bool AbortOnFailure = !F->hasExternalWeakLinkage();
 | 
						|
    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
 | 
						|
    addGlobalMapping(F, Addr);
 | 
						|
    return Addr;
 | 
						|
  }
 | 
						|
 | 
						|
  runJITOnFunctionUnlocked(F, locked);
 | 
						|
 | 
						|
  void *Addr = getPointerToGlobalIfAvailable(F);
 | 
						|
  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | 
						|
  return Addr;
 | 
						|
}
 | 
						|
 | 
						|
void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  BasicBlockAddressMapTy::iterator I =
 | 
						|
    getBasicBlockAddressMap(locked).find(BB);
 | 
						|
  if (I == getBasicBlockAddressMap(locked).end()) {
 | 
						|
    getBasicBlockAddressMap(locked)[BB] = Addr;
 | 
						|
  } else {
 | 
						|
    // ignore repeats: some BBs can be split into few MBBs?
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  getBasicBlockAddressMap(locked).erase(BB);
 | 
						|
}
 | 
						|
 | 
						|
void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
 | 
						|
  // make sure it's function is compiled by JIT
 | 
						|
  (void)getPointerToFunction(BB->getParent());
 | 
						|
 | 
						|
  // resolve basic block address
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  BasicBlockAddressMapTy::iterator I =
 | 
						|
    getBasicBlockAddressMap(locked).find(BB);
 | 
						|
  if (I != getBasicBlockAddressMap(locked).end()) {
 | 
						|
    return I->second;
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("JIT does not have BB address for address-of-label, was"
 | 
						|
                     " it eliminated by optimizer?");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void *JIT::getPointerToNamedFunction(const std::string &Name,
 | 
						|
                                     bool AbortOnFailure){
 | 
						|
  if (!isSymbolSearchingDisabled()) {
 | 
						|
    void *ptr = JMM->getPointerToNamedFunction(Name, false);
 | 
						|
    if (ptr)
 | 
						|
      return ptr;
 | 
						|
  }
 | 
						|
 | 
						|
  /// If a LazyFunctionCreator is installed, use it to get/create the function.
 | 
						|
  if (LazyFunctionCreator)
 | 
						|
    if (void *RP = LazyFunctionCreator(Name))
 | 
						|
      return RP;
 | 
						|
 | 
						|
  if (AbortOnFailure) {
 | 
						|
    report_fatal_error("Program used external function '"+Name+
 | 
						|
                      "' which could not be resolved!");
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getOrEmitGlobalVariable - Return the address of the specified global
 | 
						|
/// variable, possibly emitting it to memory if needed.  This is used by the
 | 
						|
/// Emitter.
 | 
						|
void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  void *Ptr = getPointerToGlobalIfAvailable(GV);
 | 
						|
  if (Ptr) return Ptr;
 | 
						|
 | 
						|
  // If the global is external, just remember the address.
 | 
						|
  if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
 | 
						|
#if HAVE___DSO_HANDLE
 | 
						|
    if (GV->getName() == "__dso_handle")
 | 
						|
      return (void*)&__dso_handle;
 | 
						|
#endif
 | 
						|
    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
 | 
						|
    if (Ptr == 0) {
 | 
						|
      report_fatal_error("Could not resolve external global address: "
 | 
						|
                        +GV->getName());
 | 
						|
    }
 | 
						|
    addGlobalMapping(GV, Ptr);
 | 
						|
  } else {
 | 
						|
    // If the global hasn't been emitted to memory yet, allocate space and
 | 
						|
    // emit it into memory.
 | 
						|
    Ptr = getMemoryForGV(GV);
 | 
						|
    addGlobalMapping(GV, Ptr);
 | 
						|
    EmitGlobalVariable(GV);  // Initialize the variable.
 | 
						|
  }
 | 
						|
  return Ptr;
 | 
						|
}
 | 
						|
 | 
						|
/// recompileAndRelinkFunction - This method is used to force a function
 | 
						|
/// which has already been compiled, to be compiled again, possibly
 | 
						|
/// after it has been modified. Then the entry to the old copy is overwritten
 | 
						|
/// with a branch to the new copy. If there was no old copy, this acts
 | 
						|
/// just like JIT::getPointerToFunction().
 | 
						|
///
 | 
						|
void *JIT::recompileAndRelinkFunction(Function *F) {
 | 
						|
  void *OldAddr = getPointerToGlobalIfAvailable(F);
 | 
						|
 | 
						|
  // If it's not already compiled there is no reason to patch it up.
 | 
						|
  if (OldAddr == 0) { return getPointerToFunction(F); }
 | 
						|
 | 
						|
  // Delete the old function mapping.
 | 
						|
  addGlobalMapping(F, 0);
 | 
						|
 | 
						|
  // Recodegen the function
 | 
						|
  runJITOnFunction(F);
 | 
						|
 | 
						|
  // Update state, forward the old function to the new function.
 | 
						|
  void *Addr = getPointerToGlobalIfAvailable(F);
 | 
						|
  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | 
						|
  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
 | 
						|
  return Addr;
 | 
						|
}
 | 
						|
 | 
						|
/// getMemoryForGV - This method abstracts memory allocation of global
 | 
						|
/// variable so that the JIT can allocate thread local variables depending
 | 
						|
/// on the target.
 | 
						|
///
 | 
						|
char* JIT::getMemoryForGV(const GlobalVariable* GV) {
 | 
						|
  char *Ptr;
 | 
						|
 | 
						|
  // GlobalVariable's which are not "constant" will cause trouble in a server
 | 
						|
  // situation. It's returned in the same block of memory as code which may
 | 
						|
  // not be writable.
 | 
						|
  if (isGVCompilationDisabled() && !GV->isConstant()) {
 | 
						|
    report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Some applications require globals and code to live together, so they may
 | 
						|
  // be allocated into the same buffer, but in general globals are allocated
 | 
						|
  // through the memory manager which puts them near the code but not in the
 | 
						|
  // same buffer.
 | 
						|
  Type *GlobalType = GV->getType()->getElementType();
 | 
						|
  size_t S = getTargetData()->getTypeAllocSize(GlobalType);
 | 
						|
  size_t A = getTargetData()->getPreferredAlignment(GV);
 | 
						|
  if (GV->isThreadLocal()) {
 | 
						|
    MutexGuard locked(lock);
 | 
						|
    Ptr = TJI.allocateThreadLocalMemory(S);
 | 
						|
  } else if (TJI.allocateSeparateGVMemory()) {
 | 
						|
    if (A <= 8) {
 | 
						|
      Ptr = (char*)malloc(S);
 | 
						|
    } else {
 | 
						|
      // Allocate S+A bytes of memory, then use an aligned pointer within that
 | 
						|
      // space.
 | 
						|
      Ptr = (char*)malloc(S+A);
 | 
						|
      unsigned MisAligned = ((intptr_t)Ptr & (A-1));
 | 
						|
      Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
 | 
						|
    }
 | 
						|
  } else if (AllocateGVsWithCode) {
 | 
						|
    Ptr = (char*)JCE->allocateSpace(S, A);
 | 
						|
  } else {
 | 
						|
    Ptr = (char*)JCE->allocateGlobal(S, A);
 | 
						|
  }
 | 
						|
  return Ptr;
 | 
						|
}
 | 
						|
 | 
						|
void JIT::addPendingFunction(Function *F) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  jitstate->getPendingFunctions(locked).push_back(F);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
JITEventListener::~JITEventListener() {}
 |