forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1338 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1338 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LLVM module linker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Linker.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Path.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <cctype>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TypeMap implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class TypeMapTy : public ValueMapTypeRemapper {
 | |
|   /// MappedTypes - This is a mapping from a source type to a destination type
 | |
|   /// to use.
 | |
|   DenseMap<Type*, Type*> MappedTypes;
 | |
| 
 | |
|   /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
 | |
|   /// we speculatively add types to MappedTypes, but keep track of them here in
 | |
|   /// case we need to roll back.
 | |
|   SmallVector<Type*, 16> SpeculativeTypes;
 | |
|   
 | |
|   /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
 | |
|   /// source module that are mapped to an opaque struct in the destination
 | |
|   /// module.
 | |
|   SmallVector<StructType*, 16> SrcDefinitionsToResolve;
 | |
|   
 | |
|   /// DstResolvedOpaqueTypes - This is the set of opaque types in the
 | |
|   /// destination modules who are getting a body from the source module.
 | |
|   SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
 | |
| 
 | |
| public:
 | |
|   /// addTypeMapping - Indicate that the specified type in the destination
 | |
|   /// module is conceptually equivalent to the specified type in the source
 | |
|   /// module.
 | |
|   void addTypeMapping(Type *DstTy, Type *SrcTy);
 | |
| 
 | |
|   /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
 | |
|   /// module from a type definition in the source module.
 | |
|   void linkDefinedTypeBodies();
 | |
|   
 | |
|   /// get - Return the mapped type to use for the specified input type from the
 | |
|   /// source module.
 | |
|   Type *get(Type *SrcTy);
 | |
| 
 | |
|   FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
 | |
| 
 | |
|   /// dump - Dump out the type map for debugging purposes.
 | |
|   void dump() const {
 | |
|     for (DenseMap<Type*, Type*>::const_iterator
 | |
|            I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
 | |
|       dbgs() << "TypeMap: ";
 | |
|       I->first->dump();
 | |
|       dbgs() << " => ";
 | |
|       I->second->dump();
 | |
|       dbgs() << '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   Type *getImpl(Type *T);
 | |
|   /// remapType - Implement the ValueMapTypeRemapper interface.
 | |
|   Type *remapType(Type *SrcTy) {
 | |
|     return get(SrcTy);
 | |
|   }
 | |
|   
 | |
|   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
 | |
| };
 | |
| }
 | |
| 
 | |
| void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
 | |
|   Type *&Entry = MappedTypes[SrcTy];
 | |
|   if (Entry) return;
 | |
|   
 | |
|   if (DstTy == SrcTy) {
 | |
|     Entry = DstTy;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Check to see if these types are recursively isomorphic and establish a
 | |
|   // mapping between them if so.
 | |
|   if (!areTypesIsomorphic(DstTy, SrcTy)) {
 | |
|     // Oops, they aren't isomorphic.  Just discard this request by rolling out
 | |
|     // any speculative mappings we've established.
 | |
|     for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
 | |
|       MappedTypes.erase(SpeculativeTypes[i]);
 | |
|   }
 | |
|   SpeculativeTypes.clear();
 | |
| }
 | |
| 
 | |
| /// areTypesIsomorphic - Recursively walk this pair of types, returning true
 | |
| /// if they are isomorphic, false if they are not.
 | |
| bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
 | |
|   // Two types with differing kinds are clearly not isomorphic.
 | |
|   if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
 | |
| 
 | |
|   // If we have an entry in the MappedTypes table, then we have our answer.
 | |
|   Type *&Entry = MappedTypes[SrcTy];
 | |
|   if (Entry)
 | |
|     return Entry == DstTy;
 | |
| 
 | |
|   // Two identical types are clearly isomorphic.  Remember this
 | |
|   // non-speculatively.
 | |
|   if (DstTy == SrcTy) {
 | |
|     Entry = DstTy;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Okay, we have two types with identical kinds that we haven't seen before.
 | |
| 
 | |
|   // If this is an opaque struct type, special case it.
 | |
|   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
 | |
|     // Mapping an opaque type to any struct, just keep the dest struct.
 | |
|     if (SSTy->isOpaque()) {
 | |
|       Entry = DstTy;
 | |
|       SpeculativeTypes.push_back(SrcTy);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Mapping a non-opaque source type to an opaque dest.  If this is the first
 | |
|     // type that we're mapping onto this destination type then we succeed.  Keep
 | |
|     // the dest, but fill it in later.  This doesn't need to be speculative.  If
 | |
|     // this is the second (different) type that we're trying to map onto the
 | |
|     // same opaque type then we fail.
 | |
|     if (cast<StructType>(DstTy)->isOpaque()) {
 | |
|       // We can only map one source type onto the opaque destination type.
 | |
|       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
 | |
|         return false;
 | |
|       SrcDefinitionsToResolve.push_back(SSTy);
 | |
|       Entry = DstTy;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If the number of subtypes disagree between the two types, then we fail.
 | |
|   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
 | |
|     return false;
 | |
|   
 | |
|   // Fail if any of the extra properties (e.g. array size) of the type disagree.
 | |
|   if (isa<IntegerType>(DstTy))
 | |
|     return false;  // bitwidth disagrees.
 | |
|   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
 | |
|     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
 | |
|       return false;
 | |
|     
 | |
|   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
 | |
|     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
 | |
|       return false;
 | |
|   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
 | |
|     StructType *SSTy = cast<StructType>(SrcTy);
 | |
|     if (DSTy->isLiteral() != SSTy->isLiteral() ||
 | |
|         DSTy->isPacked() != SSTy->isPacked())
 | |
|       return false;
 | |
|   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
 | |
|     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
 | |
|       return false;
 | |
|   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
 | |
|     if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we speculate that these two types will line up and recursively
 | |
|   // check the subelements.
 | |
|   Entry = DstTy;
 | |
|   SpeculativeTypes.push_back(SrcTy);
 | |
| 
 | |
|   for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
 | |
|     if (!areTypesIsomorphic(DstTy->getContainedType(i),
 | |
|                             SrcTy->getContainedType(i)))
 | |
|       return false;
 | |
|   
 | |
|   // If everything seems to have lined up, then everything is great.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
 | |
| /// module from a type definition in the source module.
 | |
| void TypeMapTy::linkDefinedTypeBodies() {
 | |
|   SmallVector<Type*, 16> Elements;
 | |
|   SmallString<16> TmpName;
 | |
|   
 | |
|   // Note that processing entries in this loop (calling 'get') can add new
 | |
|   // entries to the SrcDefinitionsToResolve vector.
 | |
|   while (!SrcDefinitionsToResolve.empty()) {
 | |
|     StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
 | |
|     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
 | |
|     
 | |
|     // TypeMap is a many-to-one mapping, if there were multiple types that
 | |
|     // provide a body for DstSTy then previous iterations of this loop may have
 | |
|     // already handled it.  Just ignore this case.
 | |
|     if (!DstSTy->isOpaque()) continue;
 | |
|     assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
 | |
|     
 | |
|     // Map the body of the source type over to a new body for the dest type.
 | |
|     Elements.resize(SrcSTy->getNumElements());
 | |
|     for (unsigned i = 0, e = Elements.size(); i != e; ++i)
 | |
|       Elements[i] = getImpl(SrcSTy->getElementType(i));
 | |
|     
 | |
|     DstSTy->setBody(Elements, SrcSTy->isPacked());
 | |
|     
 | |
|     // If DstSTy has no name or has a longer name than STy, then viciously steal
 | |
|     // STy's name.
 | |
|     if (!SrcSTy->hasName()) continue;
 | |
|     StringRef SrcName = SrcSTy->getName();
 | |
|     
 | |
|     if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
 | |
|       TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
 | |
|       SrcSTy->setName("");
 | |
|       DstSTy->setName(TmpName.str());
 | |
|       TmpName.clear();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   DstResolvedOpaqueTypes.clear();
 | |
| }
 | |
| 
 | |
| /// get - Return the mapped type to use for the specified input type from the
 | |
| /// source module.
 | |
| Type *TypeMapTy::get(Type *Ty) {
 | |
|   Type *Result = getImpl(Ty);
 | |
|   
 | |
|   // If this caused a reference to any struct type, resolve it before returning.
 | |
|   if (!SrcDefinitionsToResolve.empty())
 | |
|     linkDefinedTypeBodies();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getImpl - This is the recursive version of get().
 | |
| Type *TypeMapTy::getImpl(Type *Ty) {
 | |
|   // If we already have an entry for this type, return it.
 | |
|   Type **Entry = &MappedTypes[Ty];
 | |
|   if (*Entry) return *Entry;
 | |
|   
 | |
|   // If this is not a named struct type, then just map all of the elements and
 | |
|   // then rebuild the type from inside out.
 | |
|   if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
 | |
|     // If there are no element types to map, then the type is itself.  This is
 | |
|     // true for the anonymous {} struct, things like 'float', integers, etc.
 | |
|     if (Ty->getNumContainedTypes() == 0)
 | |
|       return *Entry = Ty;
 | |
|     
 | |
|     // Remap all of the elements, keeping track of whether any of them change.
 | |
|     bool AnyChange = false;
 | |
|     SmallVector<Type*, 4> ElementTypes;
 | |
|     ElementTypes.resize(Ty->getNumContainedTypes());
 | |
|     for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
 | |
|       ElementTypes[i] = getImpl(Ty->getContainedType(i));
 | |
|       AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
 | |
|     }
 | |
|     
 | |
|     // If we found our type while recursively processing stuff, just use it.
 | |
|     Entry = &MappedTypes[Ty];
 | |
|     if (*Entry) return *Entry;
 | |
|     
 | |
|     // If all of the element types mapped directly over, then the type is usable
 | |
|     // as-is.
 | |
|     if (!AnyChange)
 | |
|       return *Entry = Ty;
 | |
|     
 | |
|     // Otherwise, rebuild a modified type.
 | |
|     switch (Ty->getTypeID()) {
 | |
|     default: llvm_unreachable("unknown derived type to remap");
 | |
|     case Type::ArrayTyID:
 | |
|       return *Entry = ArrayType::get(ElementTypes[0],
 | |
|                                      cast<ArrayType>(Ty)->getNumElements());
 | |
|     case Type::VectorTyID: 
 | |
|       return *Entry = VectorType::get(ElementTypes[0],
 | |
|                                       cast<VectorType>(Ty)->getNumElements());
 | |
|     case Type::PointerTyID:
 | |
|       return *Entry = PointerType::get(ElementTypes[0],
 | |
|                                       cast<PointerType>(Ty)->getAddressSpace());
 | |
|     case Type::FunctionTyID:
 | |
|       return *Entry = FunctionType::get(ElementTypes[0],
 | |
|                                         makeArrayRef(ElementTypes).slice(1),
 | |
|                                         cast<FunctionType>(Ty)->isVarArg());
 | |
|     case Type::StructTyID:
 | |
|       // Note that this is only reached for anonymous structs.
 | |
|       return *Entry = StructType::get(Ty->getContext(), ElementTypes,
 | |
|                                       cast<StructType>(Ty)->isPacked());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is an unmapped named struct.  If the struct can be directly
 | |
|   // mapped over, just use it as-is.  This happens in a case when the linked-in
 | |
|   // module has something like:
 | |
|   //   %T = type {%T*, i32}
 | |
|   //   @GV = global %T* null
 | |
|   // where T does not exist at all in the destination module.
 | |
|   //
 | |
|   // The other case we watch for is when the type is not in the destination
 | |
|   // module, but that it has to be rebuilt because it refers to something that
 | |
|   // is already mapped.  For example, if the destination module has:
 | |
|   //  %A = type { i32 }
 | |
|   // and the source module has something like
 | |
|   //  %A' = type { i32 }
 | |
|   //  %B = type { %A'* }
 | |
|   //  @GV = global %B* null
 | |
|   // then we want to create a new type: "%B = type { %A*}" and have it take the
 | |
|   // pristine "%B" name from the source module.
 | |
|   //
 | |
|   // To determine which case this is, we have to recursively walk the type graph
 | |
|   // speculating that we'll be able to reuse it unmodified.  Only if this is
 | |
|   // safe would we map the entire thing over.  Because this is an optimization,
 | |
|   // and is not required for the prettiness of the linked module, we just skip
 | |
|   // it and always rebuild a type here.
 | |
|   StructType *STy = cast<StructType>(Ty);
 | |
|   
 | |
|   // If the type is opaque, we can just use it directly.
 | |
|   if (STy->isOpaque())
 | |
|     return *Entry = STy;
 | |
|   
 | |
|   // Otherwise we create a new type and resolve its body later.  This will be
 | |
|   // resolved by the top level of get().
 | |
|   SrcDefinitionsToResolve.push_back(STy);
 | |
|   StructType *DTy = StructType::create(STy->getContext());
 | |
|   DstResolvedOpaqueTypes.insert(DTy);
 | |
|   return *Entry = DTy;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ModuleLinker implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// ModuleLinker - This is an implementation class for the LinkModules
 | |
|   /// function, which is the entrypoint for this file.
 | |
|   class ModuleLinker {
 | |
|     Module *DstM, *SrcM;
 | |
|     
 | |
|     TypeMapTy TypeMap; 
 | |
| 
 | |
|     /// ValueMap - Mapping of values from what they used to be in Src, to what
 | |
|     /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
 | |
|     /// some overhead due to the use of Value handles which the Linker doesn't
 | |
|     /// actually need, but this allows us to reuse the ValueMapper code.
 | |
|     ValueToValueMapTy ValueMap;
 | |
|     
 | |
|     struct AppendingVarInfo {
 | |
|       GlobalVariable *NewGV;  // New aggregate global in dest module.
 | |
|       Constant *DstInit;      // Old initializer from dest module.
 | |
|       Constant *SrcInit;      // Old initializer from src module.
 | |
|     };
 | |
|     
 | |
|     std::vector<AppendingVarInfo> AppendingVars;
 | |
|     
 | |
|     unsigned Mode; // Mode to treat source module.
 | |
|     
 | |
|     // Set of items not to link in from source.
 | |
|     SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
 | |
|     
 | |
|     // Vector of functions to lazily link in.
 | |
|     std::vector<Function*> LazilyLinkFunctions;
 | |
|     
 | |
|   public:
 | |
|     std::string ErrorMsg;
 | |
|     
 | |
|     ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
 | |
|       : DstM(dstM), SrcM(srcM), Mode(mode) { }
 | |
|     
 | |
|     bool run();
 | |
|     
 | |
|   private:
 | |
|     /// emitError - Helper method for setting a message and returning an error
 | |
|     /// code.
 | |
|     bool emitError(const Twine &Message) {
 | |
|       ErrorMsg = Message.str();
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     /// getLinkageResult - This analyzes the two global values and determines
 | |
|     /// what the result will look like in the destination module.
 | |
|     bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
 | |
|                           GlobalValue::LinkageTypes <,
 | |
|                           GlobalValue::VisibilityTypes &Vis,
 | |
|                           bool &LinkFromSrc);
 | |
| 
 | |
|     /// getLinkedToGlobal - Given a global in the source module, return the
 | |
|     /// global in the destination module that is being linked to, if any.
 | |
|     GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
 | |
|       // If the source has no name it can't link.  If it has local linkage,
 | |
|       // there is no name match-up going on.
 | |
|       if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
 | |
|         return 0;
 | |
|       
 | |
|       // Otherwise see if we have a match in the destination module's symtab.
 | |
|       GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
 | |
|       if (DGV == 0) return 0;
 | |
|         
 | |
|       // If we found a global with the same name in the dest module, but it has
 | |
|       // internal linkage, we are really not doing any linkage here.
 | |
|       if (DGV->hasLocalLinkage())
 | |
|         return 0;
 | |
| 
 | |
|       // Otherwise, we do in fact link to the destination global.
 | |
|       return DGV;
 | |
|     }
 | |
|     
 | |
|     void computeTypeMapping();
 | |
|     bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
 | |
|                                    DenseMap<MDString*, MDNode*> &ErrorNode,
 | |
|                                    DenseMap<MDString*, MDNode*> &WarningNode,
 | |
|                                    DenseMap<MDString*, MDNode*> &OverrideNode,
 | |
|                                    DenseMap<MDString*,
 | |
|                                    SmallSetVector<MDNode*, 8> > &RequireNodes,
 | |
|                                    SmallSetVector<MDString*, 16> &SeenIDs);
 | |
|     
 | |
|     bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
 | |
|     bool linkGlobalProto(GlobalVariable *SrcGV);
 | |
|     bool linkFunctionProto(Function *SrcF);
 | |
|     bool linkAliasProto(GlobalAlias *SrcA);
 | |
|     bool linkModuleFlagsMetadata();
 | |
|     
 | |
|     void linkAppendingVarInit(const AppendingVarInfo &AVI);
 | |
|     void linkGlobalInits();
 | |
|     void linkFunctionBody(Function *Dst, Function *Src);
 | |
|     void linkAliasBodies();
 | |
|     void linkNamedMDNodes();
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
 | |
| /// in the symbol table.  This is good for all clients except for us.  Go
 | |
| /// through the trouble to force this back.
 | |
| static void forceRenaming(GlobalValue *GV, StringRef Name) {
 | |
|   // If the global doesn't force its name or if it already has the right name,
 | |
|   // there is nothing for us to do.
 | |
|   if (GV->hasLocalLinkage() || GV->getName() == Name)
 | |
|     return;
 | |
| 
 | |
|   Module *M = GV->getParent();
 | |
| 
 | |
|   // If there is a conflict, rename the conflict.
 | |
|   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
 | |
|     GV->takeName(ConflictGV);
 | |
|     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
 | |
|     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
 | |
|   } else {
 | |
|     GV->setName(Name);              // Force the name back
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// copyGVAttributes - copy additional attributes (those not needed to construct
 | |
| /// a GlobalValue) from the SrcGV to the DestGV.
 | |
| static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
 | |
|   // Use the maximum alignment, rather than just copying the alignment of SrcGV.
 | |
|   unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
 | |
|   DestGV->copyAttributesFrom(SrcGV);
 | |
|   DestGV->setAlignment(Alignment);
 | |
|   
 | |
|   forceRenaming(DestGV, SrcGV->getName());
 | |
| }
 | |
| 
 | |
| static bool isLessConstraining(GlobalValue::VisibilityTypes a,
 | |
|                                GlobalValue::VisibilityTypes b) {
 | |
|   if (a == GlobalValue::HiddenVisibility)
 | |
|     return false;
 | |
|   if (b == GlobalValue::HiddenVisibility)
 | |
|     return true;
 | |
|   if (a == GlobalValue::ProtectedVisibility)
 | |
|     return false;
 | |
|   if (b == GlobalValue::ProtectedVisibility)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getLinkageResult - This analyzes the two global values and determines what
 | |
| /// the result will look like in the destination module.  In particular, it
 | |
| /// computes the resultant linkage type and visibility, computes whether the
 | |
| /// global in the source should be copied over to the destination (replacing
 | |
| /// the existing one), and computes whether this linkage is an error or not.
 | |
| bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
 | |
|                                     GlobalValue::LinkageTypes <,
 | |
|                                     GlobalValue::VisibilityTypes &Vis,
 | |
|                                     bool &LinkFromSrc) {
 | |
|   assert(Dest && "Must have two globals being queried");
 | |
|   assert(!Src->hasLocalLinkage() &&
 | |
|          "If Src has internal linkage, Dest shouldn't be set!");
 | |
|   
 | |
|   bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
 | |
|   bool DestIsDeclaration = Dest->isDeclaration();
 | |
|   
 | |
|   if (SrcIsDeclaration) {
 | |
|     // If Src is external or if both Src & Dest are external..  Just link the
 | |
|     // external globals, we aren't adding anything.
 | |
|     if (Src->hasDLLImportLinkage()) {
 | |
|       // If one of GVs has DLLImport linkage, result should be dllimport'ed.
 | |
|       if (DestIsDeclaration) {
 | |
|         LinkFromSrc = true;
 | |
|         LT = Src->getLinkage();
 | |
|       }
 | |
|     } else if (Dest->hasExternalWeakLinkage()) {
 | |
|       // If the Dest is weak, use the source linkage.
 | |
|       LinkFromSrc = true;
 | |
|       LT = Src->getLinkage();
 | |
|     } else {
 | |
|       LinkFromSrc = false;
 | |
|       LT = Dest->getLinkage();
 | |
|     }
 | |
|   } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
 | |
|     // If Dest is external but Src is not:
 | |
|     LinkFromSrc = true;
 | |
|     LT = Src->getLinkage();
 | |
|   } else if (Src->isWeakForLinker()) {
 | |
|     // At this point we know that Dest has LinkOnce, External*, Weak, Common,
 | |
|     // or DLL* linkage.
 | |
|     if (Dest->hasExternalWeakLinkage() ||
 | |
|         Dest->hasAvailableExternallyLinkage() ||
 | |
|         (Dest->hasLinkOnceLinkage() &&
 | |
|          (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
 | |
|       LinkFromSrc = true;
 | |
|       LT = Src->getLinkage();
 | |
|     } else {
 | |
|       LinkFromSrc = false;
 | |
|       LT = Dest->getLinkage();
 | |
|     }
 | |
|   } else if (Dest->isWeakForLinker()) {
 | |
|     // At this point we know that Src has External* or DLL* linkage.
 | |
|     if (Src->hasExternalWeakLinkage()) {
 | |
|       LinkFromSrc = false;
 | |
|       LT = Dest->getLinkage();
 | |
|     } else {
 | |
|       LinkFromSrc = true;
 | |
|       LT = GlobalValue::ExternalLinkage;
 | |
|     }
 | |
|   } else {
 | |
|     assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
 | |
|             Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
 | |
|            (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
 | |
|             Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
 | |
|            "Unexpected linkage type!");
 | |
|     return emitError("Linking globals named '" + Src->getName() +
 | |
|                  "': symbol multiply defined!");
 | |
|   }
 | |
| 
 | |
|   // Compute the visibility. We follow the rules in the System V Application
 | |
|   // Binary Interface.
 | |
|   Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
 | |
|     Dest->getVisibility() : Src->getVisibility();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// computeTypeMapping - Loop over all of the linked values to compute type
 | |
| /// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
 | |
| /// we have two struct types 'Foo' but one got renamed when the module was
 | |
| /// loaded into the same LLVMContext.
 | |
| void ModuleLinker::computeTypeMapping() {
 | |
|   // Incorporate globals.
 | |
|   for (Module::global_iterator I = SrcM->global_begin(),
 | |
|        E = SrcM->global_end(); I != E; ++I) {
 | |
|     GlobalValue *DGV = getLinkedToGlobal(I);
 | |
|     if (DGV == 0) continue;
 | |
|     
 | |
|     if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
 | |
|       TypeMap.addTypeMapping(DGV->getType(), I->getType());
 | |
|       continue;      
 | |
|     }
 | |
|     
 | |
|     // Unify the element type of appending arrays.
 | |
|     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
 | |
|     ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
 | |
|     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
 | |
|   }
 | |
|   
 | |
|   // Incorporate functions.
 | |
|   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
 | |
|     if (GlobalValue *DGV = getLinkedToGlobal(I))
 | |
|       TypeMap.addTypeMapping(DGV->getType(), I->getType());
 | |
|   }
 | |
| 
 | |
|   // Incorporate types by name, scanning all the types in the source module.
 | |
|   // At this point, the destination module may have a type "%foo = { i32 }" for
 | |
|   // example.  When the source module got loaded into the same LLVMContext, if
 | |
|   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
 | |
|   std::vector<StructType*> SrcStructTypes;
 | |
|   SrcM->findUsedStructTypes(SrcStructTypes);
 | |
|   SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
 | |
|                                                  SrcStructTypes.end());
 | |
| 
 | |
|   std::vector<StructType*> DstStructTypes;
 | |
|   DstM->findUsedStructTypes(DstStructTypes);
 | |
|   SmallPtrSet<StructType*, 32> DstStructTypesSet(DstStructTypes.begin(),
 | |
|                                                  DstStructTypes.end());
 | |
| 
 | |
|   for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
 | |
|     StructType *ST = SrcStructTypes[i];
 | |
|     if (!ST->hasName()) continue;
 | |
|     
 | |
|     // Check to see if there is a dot in the name followed by a digit.
 | |
|     size_t DotPos = ST->getName().rfind('.');
 | |
|     if (DotPos == 0 || DotPos == StringRef::npos ||
 | |
|         ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
 | |
|       continue;
 | |
|     
 | |
|     // Check to see if the destination module has a struct with the prefix name.
 | |
|     if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
 | |
|       // Don't use it if this actually came from the source module. They're in
 | |
|       // the same LLVMContext after all. Also don't use it unless the type is
 | |
|       // actually used in the destination module. This can happen in situations
 | |
|       // like this:
 | |
|       //
 | |
|       //      Module A                         Module B
 | |
|       //      --------                         --------
 | |
|       //   %Z = type { %A }                %B = type { %C.1 }
 | |
|       //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
 | |
|       //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
 | |
|       //   %C = type { i8* }               %B.3 = type { %C.1 }
 | |
|       //
 | |
|       // When we link Module B with Module A, the '%B' in Module B is
 | |
|       // used. However, that would then use '%C.1'. But when we process '%C.1',
 | |
|       // we prefer to take the '%C' version. So we are then left with both
 | |
|       // '%C.1' and '%C' being used for the same types. This leads to some
 | |
|       // variables using one type and some using the other.
 | |
|       if (!SrcStructTypesSet.count(DST) && DstStructTypesSet.count(DST))
 | |
|         TypeMap.addTypeMapping(DST, ST);
 | |
|   }
 | |
| 
 | |
|   // Don't bother incorporating aliases, they aren't generally typed well.
 | |
|   
 | |
|   // Now that we have discovered all of the type equivalences, get a body for
 | |
|   // any 'opaque' types in the dest module that are now resolved. 
 | |
|   TypeMap.linkDefinedTypeBodies();
 | |
| }
 | |
| 
 | |
| /// linkAppendingVarProto - If there were any appending global variables, link
 | |
| /// them together now.  Return true on error.
 | |
| bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
 | |
|                                          GlobalVariable *SrcGV) {
 | |
|  
 | |
|   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
 | |
|     return emitError("Linking globals named '" + SrcGV->getName() +
 | |
|            "': can only link appending global with another appending global!");
 | |
|   
 | |
|   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
 | |
|   ArrayType *SrcTy =
 | |
|     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
 | |
|   Type *EltTy = DstTy->getElementType();
 | |
|   
 | |
|   // Check to see that they two arrays agree on type.
 | |
|   if (EltTy != SrcTy->getElementType())
 | |
|     return emitError("Appending variables with different element types!");
 | |
|   if (DstGV->isConstant() != SrcGV->isConstant())
 | |
|     return emitError("Appending variables linked with different const'ness!");
 | |
|   
 | |
|   if (DstGV->getAlignment() != SrcGV->getAlignment())
 | |
|     return emitError(
 | |
|              "Appending variables with different alignment need to be linked!");
 | |
|   
 | |
|   if (DstGV->getVisibility() != SrcGV->getVisibility())
 | |
|     return emitError(
 | |
|             "Appending variables with different visibility need to be linked!");
 | |
|   
 | |
|   if (DstGV->getSection() != SrcGV->getSection())
 | |
|     return emitError(
 | |
|           "Appending variables with different section name need to be linked!");
 | |
|   
 | |
|   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
 | |
|   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
 | |
|   
 | |
|   // Create the new global variable.
 | |
|   GlobalVariable *NG =
 | |
|     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
 | |
|                        DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
 | |
|                        DstGV->isThreadLocal(),
 | |
|                        DstGV->getType()->getAddressSpace());
 | |
|   
 | |
|   // Propagate alignment, visibility and section info.
 | |
|   copyGVAttributes(NG, DstGV);
 | |
|   
 | |
|   AppendingVarInfo AVI;
 | |
|   AVI.NewGV = NG;
 | |
|   AVI.DstInit = DstGV->getInitializer();
 | |
|   AVI.SrcInit = SrcGV->getInitializer();
 | |
|   AppendingVars.push_back(AVI);
 | |
| 
 | |
|   // Replace any uses of the two global variables with uses of the new
 | |
|   // global.
 | |
|   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
 | |
| 
 | |
|   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
 | |
|   DstGV->eraseFromParent();
 | |
|   
 | |
|   // Track the source variable so we don't try to link it.
 | |
|   DoNotLinkFromSource.insert(SrcGV);
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// linkGlobalProto - Loop through the global variables in the src module and
 | |
| /// merge them into the dest module.
 | |
| bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
 | |
|   GlobalValue *DGV = getLinkedToGlobal(SGV);
 | |
|   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
 | |
| 
 | |
|   if (DGV) {
 | |
|     // Concatenation of appending linkage variables is magic and handled later.
 | |
|     if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
 | |
|       return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
 | |
|     
 | |
|     // Determine whether linkage of these two globals follows the source
 | |
|     // module's definition or the destination module's definition.
 | |
|     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | |
|     GlobalValue::VisibilityTypes NV;
 | |
|     bool LinkFromSrc = false;
 | |
|     if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
 | |
|       return true;
 | |
|     NewVisibility = NV;
 | |
| 
 | |
|     // If we're not linking from the source, then keep the definition that we
 | |
|     // have.
 | |
|     if (!LinkFromSrc) {
 | |
|       // Special case for const propagation.
 | |
|       if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
 | |
|         if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
 | |
|           DGVar->setConstant(true);
 | |
|       
 | |
|       // Set calculated linkage and visibility.
 | |
|       DGV->setLinkage(NewLinkage);
 | |
|       DGV->setVisibility(*NewVisibility);
 | |
| 
 | |
|       // Make sure to remember this mapping.
 | |
|       ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
 | |
|       
 | |
|       // Track the source global so that we don't attempt to copy it over when 
 | |
|       // processing global initializers.
 | |
|       DoNotLinkFromSource.insert(SGV);
 | |
|       
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // No linking to be performed or linking from the source: simply create an
 | |
|   // identical version of the symbol over in the dest module... the
 | |
|   // initializer will be filled in later by LinkGlobalInits.
 | |
|   GlobalVariable *NewDGV =
 | |
|     new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
 | |
|                        SGV->isConstant(), SGV->getLinkage(), /*init*/0,
 | |
|                        SGV->getName(), /*insertbefore*/0,
 | |
|                        SGV->isThreadLocal(),
 | |
|                        SGV->getType()->getAddressSpace());
 | |
|   // Propagate alignment, visibility and section info.
 | |
|   copyGVAttributes(NewDGV, SGV);
 | |
|   if (NewVisibility)
 | |
|     NewDGV->setVisibility(*NewVisibility);
 | |
| 
 | |
|   if (DGV) {
 | |
|     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
 | |
|     DGV->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   // Make sure to remember this mapping.
 | |
|   ValueMap[SGV] = NewDGV;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// linkFunctionProto - Link the function in the source module into the
 | |
| /// destination module if needed, setting up mapping information.
 | |
| bool ModuleLinker::linkFunctionProto(Function *SF) {
 | |
|   GlobalValue *DGV = getLinkedToGlobal(SF);
 | |
|   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
 | |
| 
 | |
|   if (DGV) {
 | |
|     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | |
|     bool LinkFromSrc = false;
 | |
|     GlobalValue::VisibilityTypes NV;
 | |
|     if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
 | |
|       return true;
 | |
|     NewVisibility = NV;
 | |
| 
 | |
|     if (!LinkFromSrc) {
 | |
|       // Set calculated linkage
 | |
|       DGV->setLinkage(NewLinkage);
 | |
|       DGV->setVisibility(*NewVisibility);
 | |
| 
 | |
|       // Make sure to remember this mapping.
 | |
|       ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
 | |
|       
 | |
|       // Track the function from the source module so we don't attempt to remap 
 | |
|       // it.
 | |
|       DoNotLinkFromSource.insert(SF);
 | |
|       
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there is no linkage to be performed or we are linking from the source,
 | |
|   // bring SF over.
 | |
|   Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
 | |
|                                      SF->getLinkage(), SF->getName(), DstM);
 | |
|   copyGVAttributes(NewDF, SF);
 | |
|   if (NewVisibility)
 | |
|     NewDF->setVisibility(*NewVisibility);
 | |
| 
 | |
|   if (DGV) {
 | |
|     // Any uses of DF need to change to NewDF, with cast.
 | |
|     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
 | |
|     DGV->eraseFromParent();
 | |
|   } else {
 | |
|     // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
 | |
|     if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
 | |
|         SF->hasAvailableExternallyLinkage()) {
 | |
|       DoNotLinkFromSource.insert(SF);
 | |
|       LazilyLinkFunctions.push_back(SF);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   ValueMap[SF] = NewDF;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// LinkAliasProto - Set up prototypes for any aliases that come over from the
 | |
| /// source module.
 | |
| bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
 | |
|   GlobalValue *DGV = getLinkedToGlobal(SGA);
 | |
|   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
 | |
| 
 | |
|   if (DGV) {
 | |
|     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | |
|     GlobalValue::VisibilityTypes NV;
 | |
|     bool LinkFromSrc = false;
 | |
|     if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
 | |
|       return true;
 | |
|     NewVisibility = NV;
 | |
| 
 | |
|     if (!LinkFromSrc) {
 | |
|       // Set calculated linkage.
 | |
|       DGV->setLinkage(NewLinkage);
 | |
|       DGV->setVisibility(*NewVisibility);
 | |
| 
 | |
|       // Make sure to remember this mapping.
 | |
|       ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
 | |
|       
 | |
|       // Track the alias from the source module so we don't attempt to remap it.
 | |
|       DoNotLinkFromSource.insert(SGA);
 | |
|       
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there is no linkage to be performed or we're linking from the source,
 | |
|   // bring over SGA.
 | |
|   GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
 | |
|                                        SGA->getLinkage(), SGA->getName(),
 | |
|                                        /*aliasee*/0, DstM);
 | |
|   copyGVAttributes(NewDA, SGA);
 | |
|   if (NewVisibility)
 | |
|     NewDA->setVisibility(*NewVisibility);
 | |
| 
 | |
|   if (DGV) {
 | |
|     // Any uses of DGV need to change to NewDA, with cast.
 | |
|     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
 | |
|     DGV->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   ValueMap[SGA] = NewDA;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
 | |
|   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElements; ++i)
 | |
|     Dest.push_back(C->getAggregateElement(i));
 | |
| }
 | |
|                              
 | |
| void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
 | |
|   // Merge the initializer.
 | |
|   SmallVector<Constant*, 16> Elements;
 | |
|   getArrayElements(AVI.DstInit, Elements);
 | |
|   
 | |
|   Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
 | |
|   getArrayElements(SrcInit, Elements);
 | |
|   
 | |
|   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
 | |
|   AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
 | |
| }
 | |
| 
 | |
| /// linkGlobalInits - Update the initializers in the Dest module now that all
 | |
| /// globals that may be referenced are in Dest.
 | |
| void ModuleLinker::linkGlobalInits() {
 | |
|   // Loop over all of the globals in the src module, mapping them over as we go
 | |
|   for (Module::const_global_iterator I = SrcM->global_begin(),
 | |
|        E = SrcM->global_end(); I != E; ++I) {
 | |
|     
 | |
|     // Only process initialized GV's or ones not already in dest.
 | |
|     if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;          
 | |
|     
 | |
|     // Grab destination global variable.
 | |
|     GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
 | |
|     // Figure out what the initializer looks like in the dest module.
 | |
|     DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
 | |
|                                  RF_None, &TypeMap));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// linkFunctionBody - Copy the source function over into the dest function and
 | |
| /// fix up references to values.  At this point we know that Dest is an external
 | |
| /// function, and that Src is not.
 | |
| void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
 | |
|   assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
 | |
| 
 | |
|   // Go through and convert function arguments over, remembering the mapping.
 | |
|   Function::arg_iterator DI = Dst->arg_begin();
 | |
|   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | |
|        I != E; ++I, ++DI) {
 | |
|     DI->setName(I->getName());  // Copy the name over.
 | |
| 
 | |
|     // Add a mapping to our mapping.
 | |
|     ValueMap[I] = DI;
 | |
|   }
 | |
| 
 | |
|   if (Mode == Linker::DestroySource) {
 | |
|     // Splice the body of the source function into the dest function.
 | |
|     Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
 | |
|     
 | |
|     // At this point, all of the instructions and values of the function are now
 | |
|     // copied over.  The only problem is that they are still referencing values in
 | |
|     // the Source function as operands.  Loop through all of the operands of the
 | |
|     // functions and patch them up to point to the local versions.
 | |
|     for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|         RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
 | |
|     
 | |
|   } else {
 | |
|     // Clone the body of the function into the dest function.
 | |
|     SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
 | |
|     CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
 | |
|   }
 | |
|   
 | |
|   // There is no need to map the arguments anymore.
 | |
|   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | |
|        I != E; ++I)
 | |
|     ValueMap.erase(I);
 | |
|   
 | |
| }
 | |
| 
 | |
| /// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
 | |
| void ModuleLinker::linkAliasBodies() {
 | |
|   for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
 | |
|        I != E; ++I) {
 | |
|     if (DoNotLinkFromSource.count(I))
 | |
|       continue;
 | |
|     if (Constant *Aliasee = I->getAliasee()) {
 | |
|       GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
 | |
|       DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
 | |
| /// module.
 | |
| void ModuleLinker::linkNamedMDNodes() {
 | |
|   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | |
|   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
 | |
|        E = SrcM->named_metadata_end(); I != E; ++I) {
 | |
|     // Don't link module flags here. Do them separately.
 | |
|     if (&*I == SrcModFlags) continue;
 | |
|     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
 | |
|     // Add Src elements into Dest node.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|       DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
 | |
|                                    RF_None, &TypeMap));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// categorizeModuleFlagNodes - Categorize the module flags according to their
 | |
| /// type: Error, Warning, Override, and Require.
 | |
| bool ModuleLinker::
 | |
| categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
 | |
|                           DenseMap<MDString*, MDNode*> &ErrorNode,
 | |
|                           DenseMap<MDString*, MDNode*> &WarningNode,
 | |
|                           DenseMap<MDString*, MDNode*> &OverrideNode,
 | |
|                           DenseMap<MDString*,
 | |
|                             SmallSetVector<MDNode*, 8> > &RequireNodes,
 | |
|                           SmallSetVector<MDString*, 16> &SeenIDs) {
 | |
|   bool HasErr = false;
 | |
| 
 | |
|   for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
 | |
|     MDNode *Op = ModFlags->getOperand(I);
 | |
|     assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
 | |
|     assert(isa<ConstantInt>(Op->getOperand(0)) &&
 | |
|            "Module flag's first operand must be an integer!");
 | |
|     assert(isa<MDString>(Op->getOperand(1)) &&
 | |
|            "Module flag's second operand must be an MDString!");
 | |
| 
 | |
|     ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
 | |
|     MDString *ID = cast<MDString>(Op->getOperand(1));
 | |
|     Value *Val = Op->getOperand(2);
 | |
|     switch (Behavior->getZExtValue()) {
 | |
|     default:
 | |
|       assert(false && "Invalid behavior in module flag metadata!");
 | |
|       break;
 | |
|     case Module::Error: {
 | |
|       MDNode *&ErrNode = ErrorNode[ID];
 | |
|       if (!ErrNode) ErrNode = Op;
 | |
|       if (ErrNode->getOperand(2) != Val)
 | |
|         HasErr = emitError("linking module flags '" + ID->getString() +
 | |
|                            "': IDs have conflicting values");
 | |
|       break;
 | |
|     }
 | |
|     case Module::Warning: {
 | |
|       MDNode *&WarnNode = WarningNode[ID];
 | |
|       if (!WarnNode) WarnNode = Op;
 | |
|       if (WarnNode->getOperand(2) != Val)
 | |
|         errs() << "WARNING: linking module flags '" << ID->getString()
 | |
|                << "': IDs have conflicting values";
 | |
|       break;
 | |
|     }
 | |
|     case Module::Require:  RequireNodes[ID].insert(Op);     break;
 | |
|     case Module::Override: {
 | |
|       MDNode *&OvrNode = OverrideNode[ID];
 | |
|       if (!OvrNode) OvrNode = Op;
 | |
|       if (OvrNode->getOperand(2) != Val)
 | |
|         HasErr = emitError("linking module flags '" + ID->getString() +
 | |
|                            "': IDs have conflicting override values");
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     SeenIDs.insert(ID);
 | |
|   }
 | |
| 
 | |
|   return HasErr;
 | |
| }
 | |
| 
 | |
| /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
 | |
| /// module.
 | |
| bool ModuleLinker::linkModuleFlagsMetadata() {
 | |
|   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | |
|   if (!SrcModFlags) return false;
 | |
| 
 | |
|   NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
 | |
| 
 | |
|   // If the destination module doesn't have module flags yet, then just copy
 | |
|   // over the source module's flags.
 | |
|   if (DstModFlags->getNumOperands() == 0) {
 | |
|     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
 | |
|       DstModFlags->addOperand(SrcModFlags->getOperand(I));
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool HasErr = false;
 | |
| 
 | |
|   // Otherwise, we have to merge them based on their behaviors. First,
 | |
|   // categorize all of the nodes in the modules' module flags. If an error or
 | |
|   // warning occurs, then emit the appropriate message(s).
 | |
|   DenseMap<MDString*, MDNode*> ErrorNode;
 | |
|   DenseMap<MDString*, MDNode*> WarningNode;
 | |
|   DenseMap<MDString*, MDNode*> OverrideNode;
 | |
|   DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
 | |
|   SmallSetVector<MDString*, 16> SeenIDs;
 | |
| 
 | |
|   HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
 | |
|                                       OverrideNode, RequireNodes, SeenIDs);
 | |
|   HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
 | |
|                                       OverrideNode, RequireNodes, SeenIDs);
 | |
| 
 | |
|   // Check that there isn't both an error and warning node for a flag.
 | |
|   for (SmallSetVector<MDString*, 16>::iterator
 | |
|          I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
 | |
|     MDString *ID = *I;
 | |
|     if (ErrorNode[ID] && WarningNode[ID])
 | |
|       HasErr = emitError("linking module flags '" + ID->getString() +
 | |
|                          "': IDs have conflicting behaviors");
 | |
|   }
 | |
| 
 | |
|   // Early exit if we had an error.
 | |
|   if (HasErr) return true;
 | |
| 
 | |
|   // Get the destination's module flags ready for new operands.
 | |
|   DstModFlags->dropAllReferences();
 | |
| 
 | |
|   // Add all of the module flags to the destination module.
 | |
|   DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
 | |
|   for (SmallSetVector<MDString*, 16>::iterator
 | |
|          I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
 | |
|     MDString *ID = *I;
 | |
|     if (OverrideNode[ID]) {
 | |
|       DstModFlags->addOperand(OverrideNode[ID]);
 | |
|       AddedNodes[ID].push_back(OverrideNode[ID]);
 | |
|     } else if (ErrorNode[ID]) {
 | |
|       DstModFlags->addOperand(ErrorNode[ID]);
 | |
|       AddedNodes[ID].push_back(ErrorNode[ID]);
 | |
|     } else if (WarningNode[ID]) {
 | |
|       DstModFlags->addOperand(WarningNode[ID]);
 | |
|       AddedNodes[ID].push_back(WarningNode[ID]);
 | |
|     }
 | |
| 
 | |
|     for (SmallSetVector<MDNode*, 8>::iterator
 | |
|            II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
 | |
|          II != IE; ++II)
 | |
|       DstModFlags->addOperand(*II);
 | |
|   }
 | |
| 
 | |
|   // Now check that all of the requirements have been satisfied.
 | |
|   for (SmallSetVector<MDString*, 16>::iterator
 | |
|          I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
 | |
|     MDString *ID = *I;
 | |
|     SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
 | |
| 
 | |
|     for (SmallSetVector<MDNode*, 8>::iterator
 | |
|            II = Set.begin(), IE = Set.end(); II != IE; ++II) {
 | |
|       MDNode *Node = *II;
 | |
|       assert(isa<MDNode>(Node->getOperand(2)) &&
 | |
|              "Module flag's third operand must be an MDNode!");
 | |
|       MDNode *Val = cast<MDNode>(Node->getOperand(2));
 | |
| 
 | |
|       MDString *ReqID = cast<MDString>(Val->getOperand(0));
 | |
|       Value *ReqVal = Val->getOperand(1);
 | |
| 
 | |
|       bool HasValue = false;
 | |
|       for (SmallVectorImpl<MDNode*>::iterator
 | |
|              RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
 | |
|            RI != RE; ++RI) {
 | |
|         MDNode *ReqNode = *RI;
 | |
|         if (ReqNode->getOperand(2) == ReqVal) {
 | |
|           HasValue = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!HasValue)
 | |
|         HasErr = emitError("linking module flags '" + ReqID->getString() +
 | |
|                            "': does not have the required value");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return HasErr;
 | |
| }
 | |
|   
 | |
| bool ModuleLinker::run() {
 | |
|   assert(DstM && "Null destination module");
 | |
|   assert(SrcM && "Null source module");
 | |
| 
 | |
|   // Inherit the target data from the source module if the destination module
 | |
|   // doesn't have one already.
 | |
|   if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
 | |
|     DstM->setDataLayout(SrcM->getDataLayout());
 | |
| 
 | |
|   // Copy the target triple from the source to dest if the dest's is empty.
 | |
|   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
 | |
|     DstM->setTargetTriple(SrcM->getTargetTriple());
 | |
| 
 | |
|   if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
 | |
|       SrcM->getDataLayout() != DstM->getDataLayout())
 | |
|     errs() << "WARNING: Linking two modules of different data layouts!\n";
 | |
|   if (!SrcM->getTargetTriple().empty() &&
 | |
|       DstM->getTargetTriple() != SrcM->getTargetTriple()) {
 | |
|     errs() << "WARNING: Linking two modules of different target triples: ";
 | |
|     if (!SrcM->getModuleIdentifier().empty())
 | |
|       errs() << SrcM->getModuleIdentifier() << ": ";
 | |
|     errs() << "'" << SrcM->getTargetTriple() << "' and '" 
 | |
|            << DstM->getTargetTriple() << "'\n";
 | |
|   }
 | |
| 
 | |
|   // Append the module inline asm string.
 | |
|   if (!SrcM->getModuleInlineAsm().empty()) {
 | |
|     if (DstM->getModuleInlineAsm().empty())
 | |
|       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
 | |
|     else
 | |
|       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
 | |
|                                SrcM->getModuleInlineAsm());
 | |
|   }
 | |
| 
 | |
|   // Update the destination module's dependent libraries list with the libraries
 | |
|   // from the source module. There's no opportunity for duplicates here as the
 | |
|   // Module ensures that duplicate insertions are discarded.
 | |
|   for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
 | |
|        SI != SE; ++SI)
 | |
|     DstM->addLibrary(*SI);
 | |
|   
 | |
|   // If the source library's module id is in the dependent library list of the
 | |
|   // destination library, remove it since that module is now linked in.
 | |
|   StringRef ModuleId = SrcM->getModuleIdentifier();
 | |
|   if (!ModuleId.empty())
 | |
|     DstM->removeLibrary(sys::path::stem(ModuleId));
 | |
|   
 | |
|   // Loop over all of the linked values to compute type mappings.
 | |
|   computeTypeMapping();
 | |
| 
 | |
|   // Insert all of the globals in src into the DstM module... without linking
 | |
|   // initializers (which could refer to functions not yet mapped over).
 | |
|   for (Module::global_iterator I = SrcM->global_begin(),
 | |
|        E = SrcM->global_end(); I != E; ++I)
 | |
|     if (linkGlobalProto(I))
 | |
|       return true;
 | |
| 
 | |
|   // Link the functions together between the two modules, without doing function
 | |
|   // bodies... this just adds external function prototypes to the DstM
 | |
|   // function...  We do this so that when we begin processing function bodies,
 | |
|   // all of the global values that may be referenced are available in our
 | |
|   // ValueMap.
 | |
|   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
 | |
|     if (linkFunctionProto(I))
 | |
|       return true;
 | |
| 
 | |
|   // If there were any aliases, link them now.
 | |
|   for (Module::alias_iterator I = SrcM->alias_begin(),
 | |
|        E = SrcM->alias_end(); I != E; ++I)
 | |
|     if (linkAliasProto(I))
 | |
|       return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
 | |
|     linkAppendingVarInit(AppendingVars[i]);
 | |
|   
 | |
|   // Update the initializers in the DstM module now that all globals that may
 | |
|   // be referenced are in DstM.
 | |
|   linkGlobalInits();
 | |
| 
 | |
|   // Link in the function bodies that are defined in the source module into
 | |
|   // DstM.
 | |
|   for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
 | |
|     // Skip if not linking from source.
 | |
|     if (DoNotLinkFromSource.count(SF)) continue;
 | |
|     
 | |
|     // Skip if no body (function is external) or materialize.
 | |
|     if (SF->isDeclaration()) {
 | |
|       if (!SF->isMaterializable())
 | |
|         continue;
 | |
|       if (SF->Materialize(&ErrorMsg))
 | |
|         return true;
 | |
|     }
 | |
|     
 | |
|     linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
 | |
|     SF->Dematerialize();
 | |
|   }
 | |
| 
 | |
|   // Resolve all uses of aliases with aliasees.
 | |
|   linkAliasBodies();
 | |
| 
 | |
|   // Remap all of the named MDNodes in Src into the DstM module. We do this
 | |
|   // after linking GlobalValues so that MDNodes that reference GlobalValues
 | |
|   // are properly remapped.
 | |
|   linkNamedMDNodes();
 | |
| 
 | |
|   // Merge the module flags into the DstM module.
 | |
|   if (linkModuleFlagsMetadata())
 | |
|     return true;
 | |
| 
 | |
|   // Process vector of lazily linked in functions.
 | |
|   bool LinkedInAnyFunctions;
 | |
|   do {
 | |
|     LinkedInAnyFunctions = false;
 | |
|     
 | |
|     for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
 | |
|         E = LazilyLinkFunctions.end(); I != E; ++I) {
 | |
|       if (!*I)
 | |
|         continue;
 | |
|       
 | |
|       Function *SF = *I;
 | |
|       Function *DF = cast<Function>(ValueMap[SF]);
 | |
|       
 | |
|       if (!DF->use_empty()) {
 | |
|         
 | |
|         // Materialize if necessary.
 | |
|         if (SF->isDeclaration()) {
 | |
|           if (!SF->isMaterializable())
 | |
|             continue;
 | |
|           if (SF->Materialize(&ErrorMsg))
 | |
|             return true;
 | |
|         }
 | |
|         
 | |
|         // Link in function body.
 | |
|         linkFunctionBody(DF, SF);
 | |
|         SF->Dematerialize();
 | |
| 
 | |
|         // "Remove" from vector by setting the element to 0.
 | |
|         *I = 0;
 | |
|         
 | |
|         // Set flag to indicate we may have more functions to lazily link in
 | |
|         // since we linked in a function.
 | |
|         LinkedInAnyFunctions = true;
 | |
|       }
 | |
|     }
 | |
|   } while (LinkedInAnyFunctions);
 | |
|   
 | |
|   // Remove any prototypes of functions that were not actually linked in.
 | |
|   for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
 | |
|       E = LazilyLinkFunctions.end(); I != E; ++I) {
 | |
|     if (!*I)
 | |
|       continue;
 | |
|     
 | |
|     Function *SF = *I;
 | |
|     Function *DF = cast<Function>(ValueMap[SF]);
 | |
|     if (DF->use_empty())
 | |
|       DF->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   // Now that all of the types from the source are used, resolve any structs
 | |
|   // copied over to the dest that didn't exist there.
 | |
|   TypeMap.linkDefinedTypeBodies();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LinkModules entrypoint.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// LinkModules - This function links two modules together, with the resulting
 | |
| /// left module modified to be the composite of the two input modules.  If an
 | |
| /// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
 | |
| /// the problem.  Upon failure, the Dest module could be in a modified state,
 | |
| /// and shouldn't be relied on to be consistent.
 | |
| bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode, 
 | |
|                          std::string *ErrorMsg) {
 | |
|   ModuleLinker TheLinker(Dest, Src, Mode);
 | |
|   if (TheLinker.run()) {
 | |
|     if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 |