forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			739 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			739 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineMulDivRem.cpp -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
 | |
| // srem, urem, frem.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| 
 | |
| /// simplifyValueKnownNonZero - The specific integer value is used in a context
 | |
| /// where it is known to be non-zero.  If this allows us to simplify the
 | |
| /// computation, do so and return the new operand, otherwise return null.
 | |
| static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
 | |
|   // If V has multiple uses, then we would have to do more analysis to determine
 | |
|   // if this is safe.  For example, the use could be in dynamically unreached
 | |
|   // code.
 | |
|   if (!V->hasOneUse()) return 0;
 | |
|   
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // ((1 << A) >>u B) --> (1 << (A-B))
 | |
|   // Because V cannot be zero, we know that B is less than A.
 | |
|   Value *A = 0, *B = 0, *PowerOf2 = 0;
 | |
|   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
 | |
|                       m_Value(B))) &&
 | |
|       // The "1" can be any value known to be a power of 2.
 | |
|       isPowerOfTwo(PowerOf2, IC.getTargetData())) {
 | |
|     A = IC.Builder->CreateSub(A, B);
 | |
|     return IC.Builder->CreateShl(PowerOf2, A);
 | |
|   }
 | |
|   
 | |
|   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
 | |
|   // inexact.  Similarly for <<.
 | |
|   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
 | |
|     if (I->isLogicalShift() &&
 | |
|         isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
 | |
|       // We know that this is an exact/nuw shift and that the input is a
 | |
|       // non-zero context as well.
 | |
|       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
 | |
|         I->setOperand(0, V2);
 | |
|         MadeChange = true;
 | |
|       }
 | |
|       
 | |
|       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
 | |
|         I->setIsExact();
 | |
|         MadeChange = true;
 | |
|       }
 | |
|       
 | |
|       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
 | |
|         I->setHasNoUnsignedWrap();
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // TODO: Lots more we could do here:
 | |
|   //    If V is a phi node, we can call this on each of its operands.
 | |
|   //    "select cond, X, 0" can simplify to "X".
 | |
|   
 | |
|   return MadeChange ? V : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MultiplyOverflows - True if the multiply can not be expressed in an int
 | |
| /// this size.
 | |
| static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
 | |
|   uint32_t W = C1->getBitWidth();
 | |
|   APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
 | |
|   if (sign) {
 | |
|     LHSExt = LHSExt.sext(W * 2);
 | |
|     RHSExt = RHSExt.sext(W * 2);
 | |
|   } else {
 | |
|     LHSExt = LHSExt.zext(W * 2);
 | |
|     RHSExt = RHSExt.zext(W * 2);
 | |
|   }
 | |
|   
 | |
|   APInt MulExt = LHSExt * RHSExt;
 | |
|   
 | |
|   if (!sign)
 | |
|     return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
 | |
|   
 | |
|   APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
 | |
|   APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
 | |
|   return MulExt.slt(Min) || MulExt.sgt(Max);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyMulInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
 | |
|     return BinaryOperator::CreateNeg(Op0, I.getName());
 | |
|   
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     
 | |
|     // ((X << C1)*C2) == (X * (C2 << C1))
 | |
|     if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (SI->getOpcode() == Instruction::Shl)
 | |
|         if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|           return BinaryOperator::CreateMul(SI->getOperand(0),
 | |
|                                            ConstantExpr::getShl(CI, ShOp));
 | |
|     
 | |
|     const APInt &Val = CI->getValue();
 | |
|     if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
 | |
|       Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
 | |
|       BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
 | |
|       if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
 | |
|       if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
 | |
|       return Shl;
 | |
|     }
 | |
|     
 | |
|     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
 | |
|     { Value *X; ConstantInt *C1;
 | |
|       if (Op0->hasOneUse() &&
 | |
|           match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
 | |
|         Value *Add = Builder->CreateMul(X, CI);
 | |
|         return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
 | |
|     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
 | |
|     // The "* (2**n)" thus becomes a potential shifting opportunity.
 | |
|     {
 | |
|       const APInt &   Val = CI->getValue();
 | |
|       const APInt &PosVal = Val.abs();
 | |
|       if (Val.isNegative() && PosVal.isPowerOf2()) {
 | |
|         Value *X = 0, *Y = 0;
 | |
|         if (Op0->hasOneUse()) {
 | |
|           ConstantInt *C1;
 | |
|           Value *Sub = 0;
 | |
|           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
 | |
|             Sub = Builder->CreateSub(X, Y, "suba");
 | |
|           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
 | |
|             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
 | |
|           if (Sub)
 | |
|             return
 | |
|               BinaryOperator::CreateMul(Sub,
 | |
|                                         ConstantInt::get(Y->getType(), PosVal));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Simplify mul instructions with a constant RHS.
 | |
|   if (isa<Constant>(Op1)) {    
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castNegVal(Op1))
 | |
|       return BinaryOperator::CreateMul(Op0v, Op1v);
 | |
| 
 | |
|   // (X / Y) *  Y = X - (X % Y)
 | |
|   // (X / Y) * -Y = (X % Y) - X
 | |
|   {
 | |
|     Value *Op1C = Op1;
 | |
|     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
 | |
|     if (!BO ||
 | |
|         (BO->getOpcode() != Instruction::UDiv && 
 | |
|          BO->getOpcode() != Instruction::SDiv)) {
 | |
|       Op1C = Op0;
 | |
|       BO = dyn_cast<BinaryOperator>(Op1);
 | |
|     }
 | |
|     Value *Neg = dyn_castNegVal(Op1C);
 | |
|     if (BO && BO->hasOneUse() &&
 | |
|         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
 | |
|         (BO->getOpcode() == Instruction::UDiv ||
 | |
|          BO->getOpcode() == Instruction::SDiv)) {
 | |
|       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
 | |
| 
 | |
|       // If the division is exact, X % Y is zero, so we end up with X or -X.
 | |
|       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
 | |
|         if (SDiv->isExact()) {
 | |
|           if (Op1BO == Op1C)
 | |
|             return ReplaceInstUsesWith(I, Op0BO);
 | |
|           return BinaryOperator::CreateNeg(Op0BO);
 | |
|         }
 | |
| 
 | |
|       Value *Rem;
 | |
|       if (BO->getOpcode() == Instruction::UDiv)
 | |
|         Rem = Builder->CreateURem(Op0BO, Op1BO);
 | |
|       else
 | |
|         Rem = Builder->CreateSRem(Op0BO, Op1BO);
 | |
|       Rem->takeName(BO);
 | |
| 
 | |
|       if (Op1BO == Op1C)
 | |
|         return BinaryOperator::CreateSub(Op0BO, Rem);
 | |
|       return BinaryOperator::CreateSub(Rem, Op0BO);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// i1 mul -> i1 and.
 | |
|   if (I.getType()->isIntegerTy(1))
 | |
|     return BinaryOperator::CreateAnd(Op0, Op1);
 | |
| 
 | |
|   // X*(1 << Y) --> X << Y
 | |
|   // (1 << Y)*X --> X << Y
 | |
|   {
 | |
|     Value *Y;
 | |
|     if (match(Op0, m_Shl(m_One(), m_Value(Y))))
 | |
|       return BinaryOperator::CreateShl(Op1, Y);
 | |
|     if (match(Op1, m_Shl(m_One(), m_Value(Y))))
 | |
|       return BinaryOperator::CreateShl(Op0, Y);
 | |
|   }
 | |
|   
 | |
|   // If one of the operands of the multiply is a cast from a boolean value, then
 | |
|   // we know the bool is either zero or one, so this is a 'masking' multiply.
 | |
|   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
 | |
|   if (!I.getType()->isVectorTy()) {
 | |
|     // -2 is "-1 << 1" so it is all bits set except the low one.
 | |
|     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
 | |
|     
 | |
|     Value *BoolCast = 0, *OtherOp = 0;
 | |
|     if (MaskedValueIsZero(Op0, Negative2))
 | |
|       BoolCast = Op0, OtherOp = Op1;
 | |
|     else if (MaskedValueIsZero(Op1, Negative2))
 | |
|       BoolCast = Op1, OtherOp = Op0;
 | |
| 
 | |
|     if (BoolCast) {
 | |
|       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
 | |
|                                     BoolCast);
 | |
|       return BinaryOperator::CreateAnd(V, OtherOp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS.
 | |
|   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|     if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
 | |
|       // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | |
|       // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | |
|       if (Op1F->isExactlyValue(1.0))
 | |
|         return ReplaceInstUsesWith(I, Op0);  // Eliminate 'fmul double %X, 1.0'
 | |
|     } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
 | |
|       // As above, vector X*splat(1.0) -> X in all defined cases.
 | |
|       if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
 | |
|         if (F->isExactlyValue(1.0))
 | |
|           return ReplaceInstUsesWith(I, Op0);
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castFNegVal(Op1))
 | |
|       return BinaryOperator::CreateFMul(Op0v, Op1v);
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
 | |
| /// instruction.
 | |
| bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
 | |
|   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
 | |
|   
 | |
|   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
 | |
|   int NonNullOperand = -1;
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 2;
 | |
|   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 1;
 | |
|   
 | |
|   if (NonNullOperand == -1)
 | |
|     return false;
 | |
|   
 | |
|   Value *SelectCond = SI->getOperand(0);
 | |
|   
 | |
|   // Change the div/rem to use 'Y' instead of the select.
 | |
|   I.setOperand(1, SI->getOperand(NonNullOperand));
 | |
|   
 | |
|   // Okay, we know we replace the operand of the div/rem with 'Y' with no
 | |
|   // problem.  However, the select, or the condition of the select may have
 | |
|   // multiple uses.  Based on our knowledge that the operand must be non-zero,
 | |
|   // propagate the known value for the select into other uses of it, and
 | |
|   // propagate a known value of the condition into its other users.
 | |
|   
 | |
|   // If the select and condition only have a single use, don't bother with this,
 | |
|   // early exit.
 | |
|   if (SI->use_empty() && SelectCond->hasOneUse())
 | |
|     return true;
 | |
|   
 | |
|   // Scan the current block backward, looking for other uses of SI.
 | |
|   BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
 | |
|   
 | |
|   while (BBI != BBFront) {
 | |
|     --BBI;
 | |
|     // If we found a call to a function, we can't assume it will return, so
 | |
|     // information from below it cannot be propagated above it.
 | |
|     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
 | |
|       break;
 | |
|     
 | |
|     // Replace uses of the select or its condition with the known values.
 | |
|     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
 | |
|          I != E; ++I) {
 | |
|       if (*I == SI) {
 | |
|         *I = SI->getOperand(NonNullOperand);
 | |
|         Worklist.Add(BBI);
 | |
|       } else if (*I == SelectCond) {
 | |
|         *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
 | |
|                                    ConstantInt::getFalse(BBI->getContext());
 | |
|         Worklist.Add(BBI);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If we past the instruction, quit looking for it.
 | |
|     if (&*BBI == SI)
 | |
|       SI = 0;
 | |
|     if (&*BBI == SelectCond)
 | |
|       SelectCond = 0;
 | |
|     
 | |
|     // If we ran out of things to eliminate, break out of the loop.
 | |
|     if (SelectCond == 0 && SI == 0)
 | |
|       break;
 | |
|     
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This function implements the transforms common to both integer division
 | |
| /// instructions (udiv and sdiv). It is called by the visitors to those integer
 | |
| /// division instructions.
 | |
| /// @brief Common integer divide transforms
 | |
| Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // The RHS is known non-zero.
 | |
|   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
 | |
|     I.setOperand(1, V);
 | |
|     return &I;
 | |
|   }
 | |
|   
 | |
|   // Handle cases involving: [su]div X, (select Cond, Y, Z)
 | |
|   // This does not apply for fdiv.
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // (X / C1) / C2  -> X / (C1*C2)
 | |
|     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
 | |
|       if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
 | |
|         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
 | |
|           if (MultiplyOverflows(RHS, LHSRHS,
 | |
|                                 I.getOpcode()==Instruction::SDiv))
 | |
|             return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|           return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
 | |
|                                         ConstantExpr::getMul(RHS, LHSRHS));
 | |
|         }
 | |
| 
 | |
|     if (!RHS->isZero()) { // avoid X udiv 0
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|           return R;
 | |
|       if (isa<PHINode>(Op0))
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we can fold away this div instruction.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
 | |
|   Value *X = 0, *Z = 0;
 | |
|   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
 | |
|     bool isSigned = I.getOpcode() == Instruction::SDiv;
 | |
|     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
 | |
|         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
 | |
|       return BinaryOperator::Create(I.getOpcode(), X, Op1);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// dyn_castZExtVal - Checks if V is a zext or constant that can
 | |
| /// be truncated to Ty without losing bits.
 | |
| static Value *dyn_castZExtVal(Value *V, Type *Ty) {
 | |
|   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
 | |
|     if (Z->getSrcTy() == Ty)
 | |
|       return Z->getOperand(0);
 | |
|   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
 | |
|     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
 | |
|       return ConstantExpr::getTrunc(C, Ty);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
|   
 | |
|   { 
 | |
|     // X udiv 2^C -> X >> C
 | |
|     // Check to see if this is an unsigned division with an exact power of 2,
 | |
|     // if so, convert to a right shift.
 | |
|     const APInt *C;
 | |
|     if (match(Op1, m_Power2(C))) {
 | |
|       BinaryOperator *LShr =
 | |
|       BinaryOperator::CreateLShr(Op0, 
 | |
|                                  ConstantInt::get(Op0->getType(), 
 | |
|                                                   C->logBase2()));
 | |
|       if (I.isExact()) LShr->setIsExact();
 | |
|       return LShr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // X udiv C, where C >= signbit
 | |
|     if (C->getValue().isNegative()) {
 | |
|       Value *IC = Builder->CreateICmpULT(Op0, C);
 | |
|       return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
 | |
|                                 ConstantInt::get(I.getType(), 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
 | |
|   { const APInt *CI; Value *N;
 | |
|     if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) {
 | |
|       if (*CI != 1)
 | |
|         N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2()));
 | |
|       if (I.isExact())
 | |
|         return BinaryOperator::CreateExactLShr(Op0, N);
 | |
|       return BinaryOperator::CreateLShr(Op0, N);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
 | |
|   // where C1&C2 are powers of two.
 | |
|   { Value *Cond; const APInt *C1, *C2;
 | |
|     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
 | |
|       // Construct the "on true" case of the select
 | |
|       Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
 | |
|                                        I.isExact());
 | |
|   
 | |
|       // Construct the "on false" case of the select
 | |
|       Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
 | |
|                                        I.isExact());
 | |
|       
 | |
|       // construct the select instruction and return it.
 | |
|       return SelectInst::Create(Cond, TSI, FSI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (zext A) udiv (zext B) --> zext (A udiv B)
 | |
|   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
 | |
|     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
 | |
|       return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
 | |
|                                               I.isExact()),
 | |
|                           I.getType());
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifySDivInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // sdiv X, -1 == -X
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return BinaryOperator::CreateNeg(Op0);
 | |
| 
 | |
|     // sdiv X, C  -->  ashr exact X, log2(C)
 | |
|     if (I.isExact() && RHS->getValue().isNonNegative() &&
 | |
|         RHS->getValue().isPowerOf2()) {
 | |
|       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
 | |
|                                             RHS->getValue().exactLogBase2());
 | |
|       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
 | |
|     }
 | |
| 
 | |
|     // -X/C  -->  X/-C  provided the negation doesn't overflow.
 | |
|     if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
 | |
|       if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
 | |
|         return BinaryOperator::CreateSDiv(Sub->getOperand(1),
 | |
|                                           ConstantExpr::getNeg(RHS));
 | |
|   }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a udiv.
 | |
|   if (I.getType()->isIntegerTy()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op0, Mask)) {
 | |
|       if (MaskedValueIsZero(Op1, Mask)) {
 | |
|         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
 | |
|         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|       }
 | |
|       
 | |
|       if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
 | |
|         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
 | |
|         // Safe because the only negative value (1 << Y) can take on is
 | |
|         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
 | |
|         // the sign bit set.
 | |
|         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
 | |
|     const APFloat &Op1F = Op1C->getValueAPF();
 | |
| 
 | |
|     // If the divisor has an exact multiplicative inverse we can turn the fdiv
 | |
|     // into a cheaper fmul.
 | |
|     APFloat Reciprocal(Op1F.getSemantics());
 | |
|     if (Op1F.getExactInverse(&Reciprocal)) {
 | |
|       ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
 | |
|       return BinaryOperator::CreateFMul(Op0, RFP);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// This function implements the transforms common to both integer remainder
 | |
| /// instructions (urem and srem). It is called by the visitors to those integer
 | |
| /// remainder instructions.
 | |
| /// @brief Common integer remainder transforms
 | |
| Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // The RHS is known non-zero.
 | |
|   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
 | |
|     I.setOperand(1, V);
 | |
|     return &I;
 | |
|   }
 | |
| 
 | |
|   // Handle cases involving: rem X, (select Cond, Y, Z)
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (isa<ConstantInt>(Op1)) {
 | |
|     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|           return R;
 | |
|       } else if (isa<PHINode>(Op0I)) {
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|       }
 | |
| 
 | |
|       // See if we can fold away this rem instruction.
 | |
|       if (SimplifyDemandedInstructionBits(I))
 | |
|         return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitURem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyURemInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Instruction *common = commonIRemTransforms(I))
 | |
|     return common;
 | |
|   
 | |
|   // X urem C^2 -> X and C-1
 | |
|   { const APInt *C;
 | |
|     if (match(Op1, m_Power2(C)))
 | |
|       return BinaryOperator::CreateAnd(Op0,
 | |
|                                        ConstantInt::get(I.getType(), *C-1));
 | |
|   }
 | |
| 
 | |
|   // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)  
 | |
|   if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
 | |
|     Constant *N1 = Constant::getAllOnesValue(I.getType());
 | |
|     Value *Add = Builder->CreateAdd(Op1, N1);
 | |
|     return BinaryOperator::CreateAnd(Op0, Add);
 | |
|   }
 | |
| 
 | |
|   // urem X, (select Cond, 2^C1, 2^C2) -->
 | |
|   //    select Cond, (and X, C1-1), (and X, C2-1)
 | |
|   // when C1&C2 are powers of two.
 | |
|   { Value *Cond; const APInt *C1, *C2;
 | |
|     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
 | |
|       Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
 | |
|       Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
 | |
|       return SelectInst::Create(Cond, TrueAnd, FalseAnd);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (zext A) urem (zext B) --> zext (A urem B)
 | |
|   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
 | |
|     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
 | |
|       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
 | |
|                           I.getType());
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifySRemInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer rem common cases
 | |
|   if (Instruction *Common = commonIRemTransforms(I))
 | |
|     return Common;
 | |
|   
 | |
|   if (Value *RHSNeg = dyn_castNegVal(Op1))
 | |
|     if (!isa<Constant>(RHSNeg) ||
 | |
|         (isa<ConstantInt>(RHSNeg) &&
 | |
|          cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
 | |
|       // X % -Y -> X % Y
 | |
|       Worklist.AddValue(I.getOperand(1));
 | |
|       I.setOperand(1, RHSNeg);
 | |
|       return &I;
 | |
|     }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a urem.
 | |
|   if (I.getType()->isIntegerTy()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
 | |
|       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
 | |
|       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If it's a constant vector, flip any negative values positive.
 | |
|   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
 | |
|     Constant *C = cast<Constant>(Op1);
 | |
|     unsigned VWidth = C->getType()->getVectorNumElements();
 | |
| 
 | |
|     bool hasNegative = false;
 | |
|     bool hasMissing = false;
 | |
|     for (unsigned i = 0; i != VWidth; ++i) {
 | |
|       Constant *Elt = C->getAggregateElement(i);
 | |
|       if (Elt == 0) {
 | |
|         hasMissing = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
 | |
|         if (RHS->isNegative())
 | |
|           hasNegative = true;
 | |
|     }
 | |
| 
 | |
|     if (hasNegative && !hasMissing) {
 | |
|       SmallVector<Constant *, 16> Elts(VWidth);
 | |
|       for (unsigned i = 0; i != VWidth; ++i) {
 | |
|         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
 | |
|         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
 | |
|           if (RHS->isNegative())
 | |
|             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Constant *NewRHSV = ConstantVector::get(Elts);
 | |
|       if (NewRHSV != C) {  // Don't loop on -MININT
 | |
|         Worklist.AddValue(I.getOperand(1));
 | |
|         I.setOperand(1, NewRHSV);
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle cases involving: rem X, (select Cond, Y, Z)
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   return 0;
 | |
| }
 |