forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			398 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			398 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
 | 
						|
// inserting a dummy basic block.  This pass may be "required" by passes that
 | 
						|
// cannot deal with critical edges.  For this usage, the structure type is
 | 
						|
// forward declared.  This pass obviously invalidates the CFG, but can update
 | 
						|
// dominator trees.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "break-crit-edges"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ProfileInfo.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumBroken, "Number of blocks inserted");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct BreakCriticalEdges : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    BreakCriticalEdges() : FunctionPass(ID) {
 | 
						|
      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addPreserved<ProfileInfo>();
 | 
						|
 | 
						|
      // No loop canonicalization guarantees are broken by this pass.
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char BreakCriticalEdges::ID = 0;
 | 
						|
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
 | 
						|
                "Break critical edges in CFG", false, false)
 | 
						|
 | 
						|
// Publicly exposed interface to pass...
 | 
						|
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
 | 
						|
FunctionPass *llvm::createBreakCriticalEdgesPass() {
 | 
						|
  return new BreakCriticalEdges();
 | 
						|
}
 | 
						|
 | 
						|
// runOnFunction - Loop over all of the edges in the CFG, breaking critical
 | 
						|
// edges as they are found.
 | 
						|
//
 | 
						|
bool BreakCriticalEdges::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | 
						|
    TerminatorInst *TI = I->getTerminator();
 | 
						|
    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
 | 
						|
      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
        if (SplitCriticalEdge(TI, i, this)) {
 | 
						|
          ++NumBroken;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//    Implementation of the external critical edge manipulation functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// isCriticalEdge - Return true if the specified edge is a critical edge.
 | 
						|
// Critical edges are edges from a block with multiple successors to a block
 | 
						|
// with multiple predecessors.
 | 
						|
//
 | 
						|
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
 | 
						|
                          bool AllowIdenticalEdges) {
 | 
						|
  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
 | 
						|
  if (TI->getNumSuccessors() == 1) return false;
 | 
						|
 | 
						|
  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
 | 
						|
  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
 | 
						|
 | 
						|
  // If there is more than one predecessor, this is a critical edge...
 | 
						|
  assert(I != E && "No preds, but we have an edge to the block?");
 | 
						|
  const BasicBlock *FirstPred = *I;
 | 
						|
  ++I;        // Skip one edge due to the incoming arc from TI.
 | 
						|
  if (!AllowIdenticalEdges)
 | 
						|
    return I != E;
 | 
						|
 | 
						|
  // If AllowIdenticalEdges is true, then we allow this edge to be considered
 | 
						|
  // non-critical iff all preds come from TI's block.
 | 
						|
  while (I != E) {
 | 
						|
    const BasicBlock *P = *I;
 | 
						|
    if (P != FirstPred)
 | 
						|
      return true;
 | 
						|
    // Note: leave this as is until no one ever compiles with either gcc 4.0.1
 | 
						|
    // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
 | 
						|
    E = pred_end(P);
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
 | 
						|
/// may require new PHIs in the new exit block. This function inserts the
 | 
						|
/// new PHIs, as needed.  Preds is a list of preds inside the loop, SplitBB
 | 
						|
/// is the new loop exit block, and DestBB is the old loop exit, now the
 | 
						|
/// successor of SplitBB.
 | 
						|
static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
 | 
						|
                                       BasicBlock *SplitBB,
 | 
						|
                                       BasicBlock *DestBB) {
 | 
						|
  // SplitBB shouldn't have anything non-trivial in it yet.
 | 
						|
  assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
 | 
						|
         "SplitBB has non-PHI nodes!");
 | 
						|
 | 
						|
  // For each PHI in the destination block...
 | 
						|
  for (BasicBlock::iterator I = DestBB->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
    unsigned Idx = PN->getBasicBlockIndex(SplitBB);
 | 
						|
    Value *V = PN->getIncomingValue(Idx);
 | 
						|
    // If the input is a PHI which already satisfies LCSSA, don't create
 | 
						|
    // a new one.
 | 
						|
    if (const PHINode *VP = dyn_cast<PHINode>(V))
 | 
						|
      if (VP->getParent() == SplitBB)
 | 
						|
        continue;
 | 
						|
    // Otherwise a new PHI is needed. Create one and populate it.
 | 
						|
    PHINode *NewPN = PHINode::Create(PN->getType(), Preds.size(), "split",
 | 
						|
                                     SplitBB->getTerminator());
 | 
						|
    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | 
						|
      NewPN->addIncoming(V, Preds[i]);
 | 
						|
    // Update the original PHI.
 | 
						|
    PN->setIncomingValue(Idx, NewPN);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
 | 
						|
/// split the critical edge.  This will update DominatorTree information if it
 | 
						|
/// is available, thus calling this pass will not invalidate either of them.
 | 
						|
/// This returns the new block if the edge was split, null otherwise.
 | 
						|
///
 | 
						|
/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
 | 
						|
/// specified successor will be merged into the same critical edge block.
 | 
						|
/// This is most commonly interesting with switch instructions, which may
 | 
						|
/// have many edges to any one destination.  This ensures that all edges to that
 | 
						|
/// dest go to one block instead of each going to a different block, but isn't
 | 
						|
/// the standard definition of a "critical edge".
 | 
						|
///
 | 
						|
/// It is invalid to call this function on a critical edge that starts at an
 | 
						|
/// IndirectBrInst.  Splitting these edges will almost always create an invalid
 | 
						|
/// program because the address of the new block won't be the one that is jumped
 | 
						|
/// to.
 | 
						|
///
 | 
						|
BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
 | 
						|
                                    Pass *P, bool MergeIdenticalEdges,
 | 
						|
                                    bool DontDeleteUselessPhis) {
 | 
						|
  if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
 | 
						|
 | 
						|
  assert(!isa<IndirectBrInst>(TI) &&
 | 
						|
         "Cannot split critical edge from IndirectBrInst");
 | 
						|
 | 
						|
  BasicBlock *TIBB = TI->getParent();
 | 
						|
  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
 | 
						|
 | 
						|
  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
 | 
						|
  // it in this generic function.
 | 
						|
  if (DestBB->isLandingPad()) return 0;
 | 
						|
 | 
						|
  // Create a new basic block, linking it into the CFG.
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
 | 
						|
                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
 | 
						|
  // Create our unconditional branch.
 | 
						|
  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
 | 
						|
  NewBI->setDebugLoc(TI->getDebugLoc());
 | 
						|
 | 
						|
  // Branch to the new block, breaking the edge.
 | 
						|
  TI->setSuccessor(SuccNum, NewBB);
 | 
						|
 | 
						|
  // Insert the block into the function... right after the block TI lives in.
 | 
						|
  Function &F = *TIBB->getParent();
 | 
						|
  Function::iterator FBBI = TIBB;
 | 
						|
  F.getBasicBlockList().insert(++FBBI, NewBB);
 | 
						|
 | 
						|
  // If there are any PHI nodes in DestBB, we need to update them so that they
 | 
						|
  // merge incoming values from NewBB instead of from TIBB.
 | 
						|
  {
 | 
						|
    unsigned BBIdx = 0;
 | 
						|
    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      // We no longer enter through TIBB, now we come in through NewBB.
 | 
						|
      // Revector exactly one entry in the PHI node that used to come from
 | 
						|
      // TIBB to come from NewBB.
 | 
						|
      PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
      // Reuse the previous value of BBIdx if it lines up.  In cases where we
 | 
						|
      // have multiple phi nodes with *lots* of predecessors, this is a speed
 | 
						|
      // win because we don't have to scan the PHI looking for TIBB.  This
 | 
						|
      // happens because the BB list of PHI nodes are usually in the same
 | 
						|
      // order.
 | 
						|
      if (PN->getIncomingBlock(BBIdx) != TIBB)
 | 
						|
        BBIdx = PN->getBasicBlockIndex(TIBB);
 | 
						|
      PN->setIncomingBlock(BBIdx, NewBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any other edges from TIBB to DestBB, update those to go
 | 
						|
  // through the split block, making those edges non-critical as well (and
 | 
						|
  // reducing the number of phi entries in the DestBB if relevant).
 | 
						|
  if (MergeIdenticalEdges) {
 | 
						|
    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
 | 
						|
      if (TI->getSuccessor(i) != DestBB) continue;
 | 
						|
 | 
						|
      // Remove an entry for TIBB from DestBB phi nodes.
 | 
						|
      DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
 | 
						|
 | 
						|
      // We found another edge to DestBB, go to NewBB instead.
 | 
						|
      TI->setSuccessor(i, NewBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // If we don't have a pass object, we can't update anything...
 | 
						|
  if (P == 0) return NewBB;
 | 
						|
 | 
						|
  DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
 | 
						|
  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
 | 
						|
  ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
 | 
						|
 | 
						|
  // If we have nothing to update, just return.
 | 
						|
  if (DT == 0 && LI == 0 && PI == 0)
 | 
						|
    return NewBB;
 | 
						|
 | 
						|
  // Now update analysis information.  Since the only predecessor of NewBB is
 | 
						|
  // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
 | 
						|
  // anything, as there are other successors of DestBB.  However, if all other
 | 
						|
  // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
 | 
						|
  // loop header) then NewBB dominates DestBB.
 | 
						|
  SmallVector<BasicBlock*, 8> OtherPreds;
 | 
						|
 | 
						|
  // If there is a PHI in the block, loop over predecessors with it, which is
 | 
						|
  // faster than iterating pred_begin/end.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (PN->getIncomingBlock(i) != NewBB)
 | 
						|
        OtherPreds.push_back(PN->getIncomingBlock(i));
 | 
						|
  } else {
 | 
						|
    for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
 | 
						|
         I != E; ++I) {
 | 
						|
      BasicBlock *P = *I;
 | 
						|
      if (P != NewBB)
 | 
						|
        OtherPreds.push_back(P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool NewBBDominatesDestBB = true;
 | 
						|
 | 
						|
  // Should we update DominatorTree information?
 | 
						|
  if (DT) {
 | 
						|
    DomTreeNode *TINode = DT->getNode(TIBB);
 | 
						|
 | 
						|
    // The new block is not the immediate dominator for any other nodes, but
 | 
						|
    // TINode is the immediate dominator for the new node.
 | 
						|
    //
 | 
						|
    if (TINode) {       // Don't break unreachable code!
 | 
						|
      DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
 | 
						|
      DomTreeNode *DestBBNode = 0;
 | 
						|
 | 
						|
      // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
 | 
						|
      if (!OtherPreds.empty()) {
 | 
						|
        DestBBNode = DT->getNode(DestBB);
 | 
						|
        while (!OtherPreds.empty() && NewBBDominatesDestBB) {
 | 
						|
          if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
 | 
						|
            NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
 | 
						|
          OtherPreds.pop_back();
 | 
						|
        }
 | 
						|
        OtherPreds.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
 | 
						|
      // doesn't dominate anything.
 | 
						|
      if (NewBBDominatesDestBB) {
 | 
						|
        if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
 | 
						|
        DT->changeImmediateDominator(DestBBNode, NewBBNode);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update LoopInfo if it is around.
 | 
						|
  if (LI) {
 | 
						|
    if (Loop *TIL = LI->getLoopFor(TIBB)) {
 | 
						|
      // If one or the other blocks were not in a loop, the new block is not
 | 
						|
      // either, and thus LI doesn't need to be updated.
 | 
						|
      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
 | 
						|
        if (TIL == DestLoop) {
 | 
						|
          // Both in the same loop, the NewBB joins loop.
 | 
						|
          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
        } else if (TIL->contains(DestLoop)) {
 | 
						|
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | 
						|
          TIL->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
        } else if (DestLoop->contains(TIL)) {
 | 
						|
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | 
						|
          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
        } else {
 | 
						|
          // Edge from two loops with no containment relation.  Because these
 | 
						|
          // are natural loops, we know that the destination block must be the
 | 
						|
          // header of its loop (adding a branch into a loop elsewhere would
 | 
						|
          // create an irreducible loop).
 | 
						|
          assert(DestLoop->getHeader() == DestBB &&
 | 
						|
                 "Should not create irreducible loops!");
 | 
						|
          if (Loop *P = DestLoop->getParentLoop())
 | 
						|
            P->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If TIBB is in a loop and DestBB is outside of that loop, split the
 | 
						|
      // other exit blocks of the loop that also have predecessors outside
 | 
						|
      // the loop, to maintain a LoopSimplify guarantee.
 | 
						|
      if (!TIL->contains(DestBB) &&
 | 
						|
          P->mustPreserveAnalysisID(LoopSimplifyID)) {
 | 
						|
        assert(!TIL->contains(NewBB) &&
 | 
						|
               "Split point for loop exit is contained in loop!");
 | 
						|
 | 
						|
        // Update LCSSA form in the newly created exit block.
 | 
						|
        if (P->mustPreserveAnalysisID(LCSSAID)) {
 | 
						|
          SmallVector<BasicBlock *, 1> OrigPred;
 | 
						|
          OrigPred.push_back(TIBB);
 | 
						|
          CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
 | 
						|
        }
 | 
						|
 | 
						|
        // For each unique exit block...
 | 
						|
        // FIXME: This code is functionally equivalent to the corresponding
 | 
						|
        // loop in LoopSimplify.
 | 
						|
        SmallVector<BasicBlock *, 4> ExitBlocks;
 | 
						|
        TIL->getExitBlocks(ExitBlocks);
 | 
						|
        for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | 
						|
          // Collect all the preds that are inside the loop, and note
 | 
						|
          // whether there are any preds outside the loop.
 | 
						|
          SmallVector<BasicBlock *, 4> Preds;
 | 
						|
          bool HasPredOutsideOfLoop = false;
 | 
						|
          BasicBlock *Exit = ExitBlocks[i];
 | 
						|
          for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
 | 
						|
               I != E; ++I) {
 | 
						|
            BasicBlock *P = *I;
 | 
						|
            if (TIL->contains(P)) {
 | 
						|
              if (isa<IndirectBrInst>(P->getTerminator())) {
 | 
						|
                Preds.clear();
 | 
						|
                break;
 | 
						|
              }
 | 
						|
              Preds.push_back(P);
 | 
						|
            } else {
 | 
						|
              HasPredOutsideOfLoop = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // If there are any preds not in the loop, we'll need to split
 | 
						|
          // the edges. The Preds.empty() check is needed because a block
 | 
						|
          // may appear multiple times in the list. We can't use
 | 
						|
          // getUniqueExitBlocks above because that depends on LoopSimplify
 | 
						|
          // form, which we're in the process of restoring!
 | 
						|
          if (!Preds.empty() && HasPredOutsideOfLoop) {
 | 
						|
            BasicBlock *NewExitBB =
 | 
						|
              SplitBlockPredecessors(Exit, Preds, "split", P);
 | 
						|
            if (P->mustPreserveAnalysisID(LCSSAID))
 | 
						|
              CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // LCSSA form was updated above for the case where LoopSimplify is
 | 
						|
      // available, which means that all predecessors of loop exit blocks
 | 
						|
      // are within the loop. Without LoopSimplify form, it would be
 | 
						|
      // necessary to insert a new phi.
 | 
						|
      assert((!P->mustPreserveAnalysisID(LCSSAID) ||
 | 
						|
              P->mustPreserveAnalysisID(LoopSimplifyID)) &&
 | 
						|
             "SplitCriticalEdge doesn't know how to update LCCSA form "
 | 
						|
             "without LoopSimplify!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update ProfileInfo if it is around.
 | 
						|
  if (PI)
 | 
						|
    PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
 | 
						|
 | 
						|
  return NewBB;
 | 
						|
}
 |