forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			528 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			528 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the SSAUpdater class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ssaupdater"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/TinyPtrVector.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Support/AlignOf.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
 | 
						|
static AvailableValsTy &getAvailableVals(void *AV) {
 | 
						|
  return *static_cast<AvailableValsTy*>(AV);
 | 
						|
}
 | 
						|
 | 
						|
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
 | 
						|
  : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
 | 
						|
 | 
						|
SSAUpdater::~SSAUpdater() {
 | 
						|
  delete &getAvailableVals(AV);
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize - Reset this object to get ready for a new set of SSA
 | 
						|
/// updates with type 'Ty'.  PHI nodes get a name based on 'Name'.
 | 
						|
void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
 | 
						|
  if (AV == 0)
 | 
						|
    AV = new AvailableValsTy();
 | 
						|
  else
 | 
						|
    getAvailableVals(AV).clear();
 | 
						|
  ProtoType = Ty;
 | 
						|
  ProtoName = Name;
 | 
						|
}
 | 
						|
 | 
						|
/// HasValueForBlock - Return true if the SSAUpdater already has a value for
 | 
						|
/// the specified block.
 | 
						|
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
 | 
						|
  return getAvailableVals(AV).count(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// AddAvailableValue - Indicate that a rewritten value is available in the
 | 
						|
/// specified block with the specified value.
 | 
						|
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
 | 
						|
  assert(ProtoType != 0 && "Need to initialize SSAUpdater");
 | 
						|
  assert(ProtoType == V->getType() &&
 | 
						|
         "All rewritten values must have the same type");
 | 
						|
  getAvailableVals(AV)[BB] = V;
 | 
						|
}
 | 
						|
 | 
						|
/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
 | 
						|
/// in ValueMapping for each predecessor block.
 | 
						|
static bool IsEquivalentPHI(PHINode *PHI,
 | 
						|
                            DenseMap<BasicBlock*, Value*> &ValueMapping) {
 | 
						|
  unsigned PHINumValues = PHI->getNumIncomingValues();
 | 
						|
  if (PHINumValues != ValueMapping.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Scan the phi to see if it matches.
 | 
						|
  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
 | 
						|
    if (ValueMapping[PHI->getIncomingBlock(i)] !=
 | 
						|
        PHI->getIncomingValue(i)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
 | 
						|
/// live at the end of the specified block.
 | 
						|
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
 | 
						|
  Value *Res = GetValueAtEndOfBlockInternal(BB);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
 | 
						|
/// is live in the middle of the specified block.
 | 
						|
///
 | 
						|
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
 | 
						|
/// important case: if there is a definition of the rewritten value after the
 | 
						|
/// 'use' in BB.  Consider code like this:
 | 
						|
///
 | 
						|
///      X1 = ...
 | 
						|
///   SomeBB:
 | 
						|
///      use(X)
 | 
						|
///      X2 = ...
 | 
						|
///      br Cond, SomeBB, OutBB
 | 
						|
///
 | 
						|
/// In this case, there are two values (X1 and X2) added to the AvailableVals
 | 
						|
/// set by the client of the rewriter, and those values are both live out of
 | 
						|
/// their respective blocks.  However, the use of X happens in the *middle* of
 | 
						|
/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
 | 
						|
/// merge the appropriate values, and this value isn't live out of the block.
 | 
						|
///
 | 
						|
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
 | 
						|
  // If there is no definition of the renamed variable in this block, just use
 | 
						|
  // GetValueAtEndOfBlock to do our work.
 | 
						|
  if (!HasValueForBlock(BB))
 | 
						|
    return GetValueAtEndOfBlock(BB);
 | 
						|
 | 
						|
  // Otherwise, we have the hard case.  Get the live-in values for each
 | 
						|
  // predecessor.
 | 
						|
  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
 | 
						|
  Value *SingularValue = 0;
 | 
						|
 | 
						|
  // We can get our predecessor info by walking the pred_iterator list, but it
 | 
						|
  // is relatively slow.  If we already have PHI nodes in this block, walk one
 | 
						|
  // of them to get the predecessor list instead.
 | 
						|
  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
 | 
						|
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | 
						|
      PredValues.push_back(std::make_pair(PredBB, PredVal));
 | 
						|
 | 
						|
      // Compute SingularValue.
 | 
						|
      if (i == 0)
 | 
						|
        SingularValue = PredVal;
 | 
						|
      else if (PredVal != SingularValue)
 | 
						|
        SingularValue = 0;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    bool isFirstPred = true;
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
      BasicBlock *PredBB = *PI;
 | 
						|
      Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | 
						|
      PredValues.push_back(std::make_pair(PredBB, PredVal));
 | 
						|
 | 
						|
      // Compute SingularValue.
 | 
						|
      if (isFirstPred) {
 | 
						|
        SingularValue = PredVal;
 | 
						|
        isFirstPred = false;
 | 
						|
      } else if (PredVal != SingularValue)
 | 
						|
        SingularValue = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no predecessors, just return undef.
 | 
						|
  if (PredValues.empty())
 | 
						|
    return UndefValue::get(ProtoType);
 | 
						|
 | 
						|
  // Otherwise, if all the merged values are the same, just use it.
 | 
						|
  if (SingularValue != 0)
 | 
						|
    return SingularValue;
 | 
						|
 | 
						|
  // Otherwise, we do need a PHI: check to see if we already have one available
 | 
						|
  // in this block that produces the right value.
 | 
						|
  if (isa<PHINode>(BB->begin())) {
 | 
						|
    DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
 | 
						|
                                               PredValues.end());
 | 
						|
    PHINode *SomePHI;
 | 
						|
    for (BasicBlock::iterator It = BB->begin();
 | 
						|
         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
 | 
						|
      if (IsEquivalentPHI(SomePHI, ValueMapping))
 | 
						|
        return SomePHI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, we have no way out, insert a new one now.
 | 
						|
  PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
 | 
						|
                                         ProtoName, &BB->front());
 | 
						|
 | 
						|
  // Fill in all the predecessors of the PHI.
 | 
						|
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
 | 
						|
    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
 | 
						|
 | 
						|
  // See if the PHI node can be merged to a single value.  This can happen in
 | 
						|
  // loop cases when we get a PHI of itself and one other value.
 | 
						|
  if (Value *V = SimplifyInstruction(InsertedPHI)) {
 | 
						|
    InsertedPHI->eraseFromParent();
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set DebugLoc.
 | 
						|
  InsertedPHI->setDebugLoc(GetFirstDebugLocInBasicBlock(BB));
 | 
						|
 | 
						|
  // If the client wants to know about all new instructions, tell it.
 | 
						|
  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | 
						|
  return InsertedPHI;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
 | 
						|
/// which use their value in the corresponding predecessor.
 | 
						|
void SSAUpdater::RewriteUse(Use &U) {
 | 
						|
  Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
  Value *V;
 | 
						|
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
 | 
						|
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
 | 
						|
  else
 | 
						|
    V = GetValueInMiddleOfBlock(User->getParent());
 | 
						|
 | 
						|
  U.set(V);
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse.  However,
 | 
						|
/// this version of the method can rewrite uses in the same block as a
 | 
						|
/// definition, because it assumes that all uses of a value are below any
 | 
						|
/// inserted values.
 | 
						|
void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
 | 
						|
  Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
  
 | 
						|
  Value *V;
 | 
						|
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
 | 
						|
    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
 | 
						|
  else
 | 
						|
    V = GetValueAtEndOfBlock(User->getParent());
 | 
						|
  
 | 
						|
  U.set(V);
 | 
						|
}
 | 
						|
 | 
						|
/// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
 | 
						|
/// in the SSAUpdaterImpl template.
 | 
						|
namespace {
 | 
						|
  class PHIiter {
 | 
						|
  private:
 | 
						|
    PHINode *PHI;
 | 
						|
    unsigned idx;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit PHIiter(PHINode *P) // begin iterator
 | 
						|
      : PHI(P), idx(0) {}
 | 
						|
    PHIiter(PHINode *P, bool) // end iterator
 | 
						|
      : PHI(P), idx(PHI->getNumIncomingValues()) {}
 | 
						|
 | 
						|
    PHIiter &operator++() { ++idx; return *this; } 
 | 
						|
    bool operator==(const PHIiter& x) const { return idx == x.idx; }
 | 
						|
    bool operator!=(const PHIiter& x) const { return !operator==(x); }
 | 
						|
    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
 | 
						|
    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
 | 
						|
/// specialized for SSAUpdater.
 | 
						|
namespace llvm {
 | 
						|
template<>
 | 
						|
class SSAUpdaterTraits<SSAUpdater> {
 | 
						|
public:
 | 
						|
  typedef BasicBlock BlkT;
 | 
						|
  typedef Value *ValT;
 | 
						|
  typedef PHINode PhiT;
 | 
						|
 | 
						|
  typedef succ_iterator BlkSucc_iterator;
 | 
						|
  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
 | 
						|
  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
 | 
						|
 | 
						|
  typedef PHIiter PHI_iterator;
 | 
						|
  static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
 | 
						|
  static inline PHI_iterator PHI_end(PhiT *PHI) {
 | 
						|
    return PHI_iterator(PHI, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
 | 
						|
  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
 | 
						|
  static void FindPredecessorBlocks(BasicBlock *BB,
 | 
						|
                                    SmallVectorImpl<BasicBlock*> *Preds) {
 | 
						|
    // We can get our predecessor info by walking the pred_iterator list,
 | 
						|
    // but it is relatively slow.  If we already have PHI nodes in this
 | 
						|
    // block, walk one of them to get the predecessor list instead.
 | 
						|
    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
      for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
 | 
						|
        Preds->push_back(SomePhi->getIncomingBlock(PI));
 | 
						|
    } else {
 | 
						|
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
        Preds->push_back(*PI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// GetUndefVal - Get an undefined value of the same type as the value
 | 
						|
  /// being handled.
 | 
						|
  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
 | 
						|
    return UndefValue::get(Updater->ProtoType);
 | 
						|
  }
 | 
						|
 | 
						|
  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
 | 
						|
  /// Reserve space for the operands but do not fill them in yet.
 | 
						|
  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
 | 
						|
                               SSAUpdater *Updater) {
 | 
						|
    PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
 | 
						|
                                   Updater->ProtoName, &BB->front());
 | 
						|
    return PHI;
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddPHIOperand - Add the specified value as an operand of the PHI for
 | 
						|
  /// the specified predecessor block.
 | 
						|
  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
 | 
						|
    PHI->addIncoming(Val, Pred);
 | 
						|
  }
 | 
						|
 | 
						|
  /// InstrIsPHI - Check if an instruction is a PHI.
 | 
						|
  ///
 | 
						|
  static PHINode *InstrIsPHI(Instruction *I) {
 | 
						|
    return dyn_cast<PHINode>(I);
 | 
						|
  }
 | 
						|
 | 
						|
  /// ValueIsPHI - Check if a value is a PHI.
 | 
						|
  ///
 | 
						|
  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
 | 
						|
    return dyn_cast<PHINode>(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
 | 
						|
  /// operands, i.e., it was just added.
 | 
						|
  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
 | 
						|
    PHINode *PHI = ValueIsPHI(Val, Updater);
 | 
						|
    if (PHI && PHI->getNumIncomingValues() == 0)
 | 
						|
      return PHI;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// GetPHIValue - For the specified PHI instruction, return the value
 | 
						|
  /// that it defines.
 | 
						|
  static Value *GetPHIValue(PHINode *PHI) {
 | 
						|
    return PHI;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
 | 
						|
/// for the specified BB and if so, return it.  If not, construct SSA form by
 | 
						|
/// first calculating the required placement of PHIs and then inserting new
 | 
						|
/// PHIs where needed.
 | 
						|
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
 | 
						|
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | 
						|
  if (Value *V = AvailableVals[BB])
 | 
						|
    return V;
 | 
						|
 | 
						|
  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
 | 
						|
  return Impl.GetValue(BB);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoadAndStorePromoter Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
LoadAndStorePromoter::
 | 
						|
LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
 | 
						|
                     SSAUpdater &S, StringRef BaseName) : SSA(S) {
 | 
						|
  if (Insts.empty()) return;
 | 
						|
  
 | 
						|
  Value *SomeVal;
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
 | 
						|
    SomeVal = LI;
 | 
						|
  else
 | 
						|
    SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
 | 
						|
 | 
						|
  if (BaseName.empty())
 | 
						|
    BaseName = SomeVal->getName();
 | 
						|
  SSA.Initialize(SomeVal->getType(), BaseName);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void LoadAndStorePromoter::
 | 
						|
run(const SmallVectorImpl<Instruction*> &Insts) const {
 | 
						|
  
 | 
						|
  // First step: bucket up uses of the alloca by the block they occur in.
 | 
						|
  // This is important because we have to handle multiple defs/uses in a block
 | 
						|
  // ourselves: SSAUpdater is purely for cross-block references.
 | 
						|
  DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
 | 
						|
    Instruction *User = Insts[i];
 | 
						|
    UsesByBlock[User->getParent()].push_back(User);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, now we can iterate over all the blocks in the function with uses,
 | 
						|
  // processing them.  Keep track of which loads are loading a live-in value.
 | 
						|
  // Walk the uses in the use-list order to be determinstic.
 | 
						|
  SmallVector<LoadInst*, 32> LiveInLoads;
 | 
						|
  DenseMap<Value*, Value*> ReplacedLoads;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
 | 
						|
    Instruction *User = Insts[i];
 | 
						|
    BasicBlock *BB = User->getParent();
 | 
						|
    TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
 | 
						|
    
 | 
						|
    // If this block has already been processed, ignore this repeat use.
 | 
						|
    if (BlockUses.empty()) continue;
 | 
						|
    
 | 
						|
    // Okay, this is the first use in the block.  If this block just has a
 | 
						|
    // single user in it, we can rewrite it trivially.
 | 
						|
    if (BlockUses.size() == 1) {
 | 
						|
      // If it is a store, it is a trivial def of the value in the block.
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | 
						|
        updateDebugInfo(SI);
 | 
						|
        SSA.AddAvailableValue(BB, SI->getOperand(0));
 | 
						|
      } else 
 | 
						|
        // Otherwise it is a load, queue it to rewrite as a live-in load.
 | 
						|
        LiveInLoads.push_back(cast<LoadInst>(User));
 | 
						|
      BlockUses.clear();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, check to see if this block is all loads.
 | 
						|
    bool HasStore = false;
 | 
						|
    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
 | 
						|
      if (isa<StoreInst>(BlockUses[i])) {
 | 
						|
        HasStore = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If so, we can queue them all as live in loads.  We don't have an
 | 
						|
    // efficient way to tell which on is first in the block and don't want to
 | 
						|
    // scan large blocks, so just add all loads as live ins.
 | 
						|
    if (!HasStore) {
 | 
						|
      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
 | 
						|
        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
 | 
						|
      BlockUses.clear();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
 | 
						|
    // Since SSAUpdater is purely for cross-block values, we need to determine
 | 
						|
    // the order of these instructions in the block.  If the first use in the
 | 
						|
    // block is a load, then it uses the live in value.  The last store defines
 | 
						|
    // the live out value.  We handle this by doing a linear scan of the block.
 | 
						|
    Value *StoredValue = 0;
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
 | 
						|
      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
 | 
						|
        // If this is a load from an unrelated pointer, ignore it.
 | 
						|
        if (!isInstInList(L, Insts)) continue;
 | 
						|
        
 | 
						|
        // If we haven't seen a store yet, this is a live in use, otherwise
 | 
						|
        // use the stored value.
 | 
						|
        if (StoredValue) {
 | 
						|
          replaceLoadWithValue(L, StoredValue);
 | 
						|
          L->replaceAllUsesWith(StoredValue);
 | 
						|
          ReplacedLoads[L] = StoredValue;
 | 
						|
        } else {
 | 
						|
          LiveInLoads.push_back(L);
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
 | 
						|
        // If this is a store to an unrelated pointer, ignore it.
 | 
						|
        if (!isInstInList(SI, Insts)) continue;
 | 
						|
        updateDebugInfo(SI);
 | 
						|
 | 
						|
        // Remember that this is the active value in the block.
 | 
						|
        StoredValue = SI->getOperand(0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // The last stored value that happened is the live-out for the block.
 | 
						|
    assert(StoredValue && "Already checked that there is a store in block");
 | 
						|
    SSA.AddAvailableValue(BB, StoredValue);
 | 
						|
    BlockUses.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, now we rewrite all loads that use live-in values in the loop,
 | 
						|
  // inserting PHI nodes as necessary.
 | 
						|
  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
 | 
						|
    LoadInst *ALoad = LiveInLoads[i];
 | 
						|
    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
 | 
						|
    replaceLoadWithValue(ALoad, NewVal);
 | 
						|
 | 
						|
    // Avoid assertions in unreachable code.
 | 
						|
    if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
 | 
						|
    ALoad->replaceAllUsesWith(NewVal);
 | 
						|
    ReplacedLoads[ALoad] = NewVal;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Allow the client to do stuff before we start nuking things.
 | 
						|
  doExtraRewritesBeforeFinalDeletion();
 | 
						|
  
 | 
						|
  // Now that everything is rewritten, delete the old instructions from the
 | 
						|
  // function.  They should all be dead now.
 | 
						|
  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
 | 
						|
    Instruction *User = Insts[i];
 | 
						|
    
 | 
						|
    // If this is a load that still has uses, then the load must have been added
 | 
						|
    // as a live value in the SSAUpdate data structure for a block (e.g. because
 | 
						|
    // the loaded value was stored later).  In this case, we need to recursively
 | 
						|
    // propagate the updates until we get to the real value.
 | 
						|
    if (!User->use_empty()) {
 | 
						|
      Value *NewVal = ReplacedLoads[User];
 | 
						|
      assert(NewVal && "not a replaced load?");
 | 
						|
      
 | 
						|
      // Propagate down to the ultimate replacee.  The intermediately loads
 | 
						|
      // could theoretically already have been deleted, so we don't want to
 | 
						|
      // dereference the Value*'s.
 | 
						|
      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
 | 
						|
      while (RLI != ReplacedLoads.end()) {
 | 
						|
        NewVal = RLI->second;
 | 
						|
        RLI = ReplacedLoads.find(NewVal);
 | 
						|
      }
 | 
						|
      
 | 
						|
      replaceLoadWithValue(cast<LoadInst>(User), NewVal);
 | 
						|
      User->replaceAllUsesWith(NewVal);
 | 
						|
    }
 | 
						|
    
 | 
						|
    instructionDeleted(User);
 | 
						|
    User->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
LoadAndStorePromoter::isInstInList(Instruction *I,
 | 
						|
                                   const SmallVectorImpl<Instruction*> &Insts)
 | 
						|
                                   const {
 | 
						|
  return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
 | 
						|
}
 |