forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			731 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			731 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ADCE.cpp - Code to perform dead code elimination -------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Aggressive Dead Code Elimination pass.  This pass
 | 
						|
// optimistically assumes that all instructions are dead until proven otherwise,
 | 
						|
// allowing it to eliminate dead computations that other DCE passes do not
 | 
						|
// catch, particularly involving loop computations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/ADCE.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/ProfileData/InstrProf.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "adce"
 | 
						|
 | 
						|
STATISTIC(NumRemoved, "Number of instructions removed");
 | 
						|
STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
 | 
						|
 | 
						|
// This is a temporary option until we change the interface to this pass based
 | 
						|
// on optimization level.
 | 
						|
static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
 | 
						|
                                           cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
// This option enables removing of may-be-infinite loops which have no other
 | 
						|
// effect.
 | 
						|
static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
 | 
						|
                                 cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Information about Instructions
 | 
						|
struct InstInfoType {
 | 
						|
  /// True if the associated instruction is live.
 | 
						|
  bool Live = false;
 | 
						|
 | 
						|
  /// Quick access to information for block containing associated Instruction.
 | 
						|
  struct BlockInfoType *Block = nullptr;
 | 
						|
};
 | 
						|
 | 
						|
/// Information about basic blocks relevant to dead code elimination.
 | 
						|
struct BlockInfoType {
 | 
						|
  /// True when this block contains a live instructions.
 | 
						|
  bool Live = false;
 | 
						|
 | 
						|
  /// True when this block ends in an unconditional branch.
 | 
						|
  bool UnconditionalBranch = false;
 | 
						|
 | 
						|
  /// True when this block is known to have live PHI nodes.
 | 
						|
  bool HasLivePhiNodes = false;
 | 
						|
 | 
						|
  /// Control dependence sources need to be live for this block.
 | 
						|
  bool CFLive = false;
 | 
						|
 | 
						|
  /// Quick access to the LiveInfo for the terminator,
 | 
						|
  /// holds the value &InstInfo[Terminator]
 | 
						|
  InstInfoType *TerminatorLiveInfo = nullptr;
 | 
						|
 | 
						|
  /// Corresponding BasicBlock.
 | 
						|
  BasicBlock *BB = nullptr;
 | 
						|
 | 
						|
  /// Cache of BB->getTerminator().
 | 
						|
  TerminatorInst *Terminator = nullptr;
 | 
						|
 | 
						|
  /// Post-order numbering of reverse control flow graph.
 | 
						|
  unsigned PostOrder;
 | 
						|
 | 
						|
  bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
 | 
						|
};
 | 
						|
 | 
						|
class AggressiveDeadCodeElimination {
 | 
						|
  Function &F;
 | 
						|
 | 
						|
  // ADCE does not use DominatorTree per se, but it updates it to preserve the
 | 
						|
  // analysis.
 | 
						|
  DominatorTree &DT;
 | 
						|
  PostDominatorTree &PDT;
 | 
						|
 | 
						|
  /// Mapping of blocks to associated information, an element in BlockInfoVec.
 | 
						|
  /// Use MapVector to get deterministic iteration order.
 | 
						|
  MapVector<BasicBlock *, BlockInfoType> BlockInfo;
 | 
						|
  bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
 | 
						|
 | 
						|
  /// Mapping of instructions to associated information.
 | 
						|
  DenseMap<Instruction *, InstInfoType> InstInfo;
 | 
						|
  bool isLive(Instruction *I) { return InstInfo[I].Live; }
 | 
						|
 | 
						|
  /// Instructions known to be live where we need to mark
 | 
						|
  /// reaching definitions as live.
 | 
						|
  SmallVector<Instruction *, 128> Worklist;
 | 
						|
 | 
						|
  /// Debug info scopes around a live instruction.
 | 
						|
  SmallPtrSet<const Metadata *, 32> AliveScopes;
 | 
						|
 | 
						|
  /// Set of blocks with not known to have live terminators.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators;
 | 
						|
 | 
						|
  /// The set of blocks which we have determined whose control
 | 
						|
  /// dependence sources must be live and which have not had
 | 
						|
  /// those dependences analyzed.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
 | 
						|
 | 
						|
  /// Set up auxiliary data structures for Instructions and BasicBlocks and
 | 
						|
  /// initialize the Worklist to the set of must-be-live Instruscions.
 | 
						|
  void initialize();
 | 
						|
 | 
						|
  /// Return true for operations which are always treated as live.
 | 
						|
  bool isAlwaysLive(Instruction &I);
 | 
						|
 | 
						|
  /// Return true for instrumentation instructions for value profiling.
 | 
						|
  bool isInstrumentsConstant(Instruction &I);
 | 
						|
 | 
						|
  /// Propagate liveness to reaching definitions.
 | 
						|
  void markLiveInstructions();
 | 
						|
 | 
						|
  /// Mark an instruction as live.
 | 
						|
  void markLive(Instruction *I);
 | 
						|
 | 
						|
  /// Mark a block as live.
 | 
						|
  void markLive(BlockInfoType &BB);
 | 
						|
  void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
 | 
						|
 | 
						|
  /// Mark terminators of control predecessors of a PHI node live.
 | 
						|
  void markPhiLive(PHINode *PN);
 | 
						|
 | 
						|
  /// Record the Debug Scopes which surround live debug information.
 | 
						|
  void collectLiveScopes(const DILocalScope &LS);
 | 
						|
  void collectLiveScopes(const DILocation &DL);
 | 
						|
 | 
						|
  /// Analyze dead branches to find those whose branches are the sources
 | 
						|
  /// of control dependences impacting a live block. Those branches are
 | 
						|
  /// marked live.
 | 
						|
  void markLiveBranchesFromControlDependences();
 | 
						|
 | 
						|
  /// Remove instructions not marked live, return if any any instruction
 | 
						|
  /// was removed.
 | 
						|
  bool removeDeadInstructions();
 | 
						|
 | 
						|
  /// Identify connected sections of the control flow graph which have
 | 
						|
  /// dead terminators and rewrite the control flow graph to remove them.
 | 
						|
  void updateDeadRegions();
 | 
						|
 | 
						|
  /// Set the BlockInfo::PostOrder field based on a post-order
 | 
						|
  /// numbering of the reverse control flow graph.
 | 
						|
  void computeReversePostOrder();
 | 
						|
 | 
						|
  /// Make the terminator of this block an unconditional branch to \p Target.
 | 
						|
  void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
 | 
						|
 | 
						|
public:
 | 
						|
  AggressiveDeadCodeElimination(Function &F, DominatorTree &DT,
 | 
						|
                                PostDominatorTree &PDT)
 | 
						|
      : F(F), DT(DT), PDT(PDT) {}
 | 
						|
 | 
						|
  bool performDeadCodeElimination();
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
 | 
						|
  initialize();
 | 
						|
  markLiveInstructions();
 | 
						|
  return removeDeadInstructions();
 | 
						|
}
 | 
						|
 | 
						|
static bool isUnconditionalBranch(TerminatorInst *Term) {
 | 
						|
  auto *BR = dyn_cast<BranchInst>(Term);
 | 
						|
  return BR && BR->isUnconditional();
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::initialize() {
 | 
						|
  auto NumBlocks = F.size();
 | 
						|
 | 
						|
  // We will have an entry in the map for each block so we grow the
 | 
						|
  // structure to twice that size to keep the load factor low in the hash table.
 | 
						|
  BlockInfo.reserve(NumBlocks);
 | 
						|
  size_t NumInsts = 0;
 | 
						|
 | 
						|
  // Iterate over blocks and initialize BlockInfoVec entries, count
 | 
						|
  // instructions to size the InstInfo hash table.
 | 
						|
  for (auto &BB : F) {
 | 
						|
    NumInsts += BB.size();
 | 
						|
    auto &Info = BlockInfo[&BB];
 | 
						|
    Info.BB = &BB;
 | 
						|
    Info.Terminator = BB.getTerminator();
 | 
						|
    Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize instruction map and set pointers to block info.
 | 
						|
  InstInfo.reserve(NumInsts);
 | 
						|
  for (auto &BBInfo : BlockInfo)
 | 
						|
    for (Instruction &I : *BBInfo.second.BB)
 | 
						|
      InstInfo[&I].Block = &BBInfo.second;
 | 
						|
 | 
						|
  // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
 | 
						|
  // add any more elements to either after this point.
 | 
						|
  for (auto &BBInfo : BlockInfo)
 | 
						|
    BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
 | 
						|
 | 
						|
  // Collect the set of "root" instructions that are known live.
 | 
						|
  for (Instruction &I : instructions(F))
 | 
						|
    if (isAlwaysLive(I))
 | 
						|
      markLive(&I);
 | 
						|
 | 
						|
  if (!RemoveControlFlowFlag)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!RemoveLoops) {
 | 
						|
    // This stores state for the depth-first iterator. In addition
 | 
						|
    // to recording which nodes have been visited we also record whether
 | 
						|
    // a node is currently on the "stack" of active ancestors of the current
 | 
						|
    // node.
 | 
						|
    using StatusMap = DenseMap<BasicBlock *, bool>;
 | 
						|
 | 
						|
    class DFState : public StatusMap {
 | 
						|
    public:
 | 
						|
      std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
 | 
						|
        return StatusMap::insert(std::make_pair(BB, true));
 | 
						|
      }
 | 
						|
 | 
						|
      // Invoked after we have visited all children of a node.
 | 
						|
      void completed(BasicBlock *BB) { (*this)[BB] = false; }
 | 
						|
 | 
						|
      // Return true if \p BB is currently on the active stack
 | 
						|
      // of ancestors.
 | 
						|
      bool onStack(BasicBlock *BB) {
 | 
						|
        auto Iter = find(BB);
 | 
						|
        return Iter != end() && Iter->second;
 | 
						|
      }
 | 
						|
    } State;
 | 
						|
 | 
						|
    State.reserve(F.size());
 | 
						|
    // Iterate over blocks in depth-first pre-order and
 | 
						|
    // treat all edges to a block already seen as loop back edges
 | 
						|
    // and mark the branch live it if there is a back edge.
 | 
						|
    for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
 | 
						|
      TerminatorInst *Term = BB->getTerminator();
 | 
						|
      if (isLive(Term))
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (auto *Succ : successors(BB))
 | 
						|
        if (State.onStack(Succ)) {
 | 
						|
          // back edge....
 | 
						|
          markLive(Term);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark blocks live if there is no path from the block to a
 | 
						|
  // return of the function.
 | 
						|
  // We do this by seeing which of the postdomtree root children exit the
 | 
						|
  // program, and for all others, mark the subtree live.
 | 
						|
  for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
 | 
						|
    auto *BB = PDTChild->getBlock();
 | 
						|
    auto &Info = BlockInfo[BB];
 | 
						|
    // Real function return
 | 
						|
    if (isa<ReturnInst>(Info.Terminator)) {
 | 
						|
      DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
 | 
						|
                   << '\n';);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // This child is something else, like an infinite loop.
 | 
						|
    for (auto DFNode : depth_first(PDTChild))
 | 
						|
      markLive(BlockInfo[DFNode->getBlock()].Terminator);
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat the entry block as always live
 | 
						|
  auto *BB = &F.getEntryBlock();
 | 
						|
  auto &EntryInfo = BlockInfo[BB];
 | 
						|
  EntryInfo.Live = true;
 | 
						|
  if (EntryInfo.UnconditionalBranch)
 | 
						|
    markLive(EntryInfo.Terminator);
 | 
						|
 | 
						|
  // Build initial collection of blocks with dead terminators
 | 
						|
  for (auto &BBInfo : BlockInfo)
 | 
						|
    if (!BBInfo.second.terminatorIsLive())
 | 
						|
      BlocksWithDeadTerminators.insert(BBInfo.second.BB);
 | 
						|
}
 | 
						|
 | 
						|
bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
 | 
						|
  // TODO -- use llvm::isInstructionTriviallyDead
 | 
						|
  if (I.isEHPad() || I.mayHaveSideEffects()) {
 | 
						|
    // Skip any value profile instrumentation calls if they are
 | 
						|
    // instrumenting constants.
 | 
						|
    if (isInstrumentsConstant(I))
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (!isa<TerminatorInst>(I))
 | 
						|
    return false;
 | 
						|
  if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Check if this instruction is a runtime call for value profiling and
 | 
						|
// if it's instrumenting a constant.
 | 
						|
bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
 | 
						|
  // TODO -- move this test into llvm::isInstructionTriviallyDead
 | 
						|
  if (CallInst *CI = dyn_cast<CallInst>(&I))
 | 
						|
    if (Function *Callee = CI->getCalledFunction())
 | 
						|
      if (Callee->getName().equals(getInstrProfValueProfFuncName()))
 | 
						|
        if (isa<Constant>(CI->getArgOperand(0)))
 | 
						|
          return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::markLiveInstructions() {
 | 
						|
  // Propagate liveness backwards to operands.
 | 
						|
  do {
 | 
						|
    // Worklist holds newly discovered live instructions
 | 
						|
    // where we need to mark the inputs as live.
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      Instruction *LiveInst = Worklist.pop_back_val();
 | 
						|
      DEBUG(dbgs() << "work live: "; LiveInst->dump(););
 | 
						|
 | 
						|
      for (Use &OI : LiveInst->operands())
 | 
						|
        if (Instruction *Inst = dyn_cast<Instruction>(OI))
 | 
						|
          markLive(Inst);
 | 
						|
 | 
						|
      if (auto *PN = dyn_cast<PHINode>(LiveInst))
 | 
						|
        markPhiLive(PN);
 | 
						|
    }
 | 
						|
 | 
						|
    // After data flow liveness has been identified, examine which branch
 | 
						|
    // decisions are required to determine live instructions are executed.
 | 
						|
    markLiveBranchesFromControlDependences();
 | 
						|
 | 
						|
  } while (!Worklist.empty());
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::markLive(Instruction *I) {
 | 
						|
  auto &Info = InstInfo[I];
 | 
						|
  if (Info.Live)
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "mark live: "; I->dump());
 | 
						|
  Info.Live = true;
 | 
						|
  Worklist.push_back(I);
 | 
						|
 | 
						|
  // Collect the live debug info scopes attached to this instruction.
 | 
						|
  if (const DILocation *DL = I->getDebugLoc())
 | 
						|
    collectLiveScopes(*DL);
 | 
						|
 | 
						|
  // Mark the containing block live
 | 
						|
  auto &BBInfo = *Info.Block;
 | 
						|
  if (BBInfo.Terminator == I) {
 | 
						|
    BlocksWithDeadTerminators.erase(BBInfo.BB);
 | 
						|
    // For live terminators, mark destination blocks
 | 
						|
    // live to preserve this control flow edges.
 | 
						|
    if (!BBInfo.UnconditionalBranch)
 | 
						|
      for (auto *BB : successors(I->getParent()))
 | 
						|
        markLive(BB);
 | 
						|
  }
 | 
						|
  markLive(BBInfo);
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
 | 
						|
  if (BBInfo.Live)
 | 
						|
    return;
 | 
						|
  DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
 | 
						|
  BBInfo.Live = true;
 | 
						|
  if (!BBInfo.CFLive) {
 | 
						|
    BBInfo.CFLive = true;
 | 
						|
    NewLiveBlocks.insert(BBInfo.BB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark unconditional branches at the end of live
 | 
						|
  // blocks as live since there is no work to do for them later
 | 
						|
  if (BBInfo.UnconditionalBranch)
 | 
						|
    markLive(BBInfo.Terminator);
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
 | 
						|
  if (!AliveScopes.insert(&LS).second)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isa<DISubprogram>(LS))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Tail-recurse through the scope chain.
 | 
						|
  collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
 | 
						|
  // Even though DILocations are not scopes, shove them into AliveScopes so we
 | 
						|
  // don't revisit them.
 | 
						|
  if (!AliveScopes.insert(&DL).second)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Collect live scopes from the scope chain.
 | 
						|
  collectLiveScopes(*DL.getScope());
 | 
						|
 | 
						|
  // Tail-recurse through the inlined-at chain.
 | 
						|
  if (const DILocation *IA = DL.getInlinedAt())
 | 
						|
    collectLiveScopes(*IA);
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
 | 
						|
  auto &Info = BlockInfo[PN->getParent()];
 | 
						|
  // Only need to check this once per block.
 | 
						|
  if (Info.HasLivePhiNodes)
 | 
						|
    return;
 | 
						|
  Info.HasLivePhiNodes = true;
 | 
						|
 | 
						|
  // If a predecessor block is not live, mark it as control-flow live
 | 
						|
  // which will trigger marking live branches upon which
 | 
						|
  // that block is control dependent.
 | 
						|
  for (auto *PredBB : predecessors(Info.BB)) {
 | 
						|
    auto &Info = BlockInfo[PredBB];
 | 
						|
    if (!Info.CFLive) {
 | 
						|
      Info.CFLive = true;
 | 
						|
      NewLiveBlocks.insert(PredBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
 | 
						|
  if (BlocksWithDeadTerminators.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "new live blocks:\n";
 | 
						|
    for (auto *BB : NewLiveBlocks)
 | 
						|
      dbgs() << "\t" << BB->getName() << '\n';
 | 
						|
    dbgs() << "dead terminator blocks:\n";
 | 
						|
    for (auto *BB : BlocksWithDeadTerminators)
 | 
						|
      dbgs() << "\t" << BB->getName() << '\n';
 | 
						|
  });
 | 
						|
 | 
						|
  // The dominance frontier of a live block X in the reverse
 | 
						|
  // control graph is the set of blocks upon which X is control
 | 
						|
  // dependent. The following sequence computes the set of blocks
 | 
						|
  // which currently have dead terminators that are control
 | 
						|
  // dependence sources of a block which is in NewLiveBlocks.
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 32> IDFBlocks;
 | 
						|
  ReverseIDFCalculator IDFs(PDT);
 | 
						|
  IDFs.setDefiningBlocks(NewLiveBlocks);
 | 
						|
  IDFs.setLiveInBlocks(BlocksWithDeadTerminators);
 | 
						|
  IDFs.calculate(IDFBlocks);
 | 
						|
  NewLiveBlocks.clear();
 | 
						|
 | 
						|
  // Dead terminators which control live blocks are now marked live.
 | 
						|
  for (auto *BB : IDFBlocks) {
 | 
						|
    DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
 | 
						|
    markLive(BB->getTerminator());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  Routines to update the CFG and SSA information before removing dead code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
bool AggressiveDeadCodeElimination::removeDeadInstructions() {
 | 
						|
  // Updates control and dataflow around dead blocks
 | 
						|
  updateDeadRegions();
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    for (Instruction &I : instructions(F)) {
 | 
						|
      // Check if the instruction is alive.
 | 
						|
      if (isLive(&I))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
 | 
						|
        // Check if the scope of this variable location is alive.
 | 
						|
        if (AliveScopes.count(DII->getDebugLoc()->getScope()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If intrinsic is pointing at a live SSA value, there may be an
 | 
						|
        // earlier optimization bug: if we know the location of the variable,
 | 
						|
        // why isn't the scope of the location alive?
 | 
						|
        if (Value *V = DII->getVariableLocation())
 | 
						|
          if (Instruction *II = dyn_cast<Instruction>(V))
 | 
						|
            if (isLive(II))
 | 
						|
              dbgs() << "Dropping debug info for " << *DII << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  // The inverse of the live set is the dead set.  These are those instructions
 | 
						|
  // that have no side effects and do not influence the control flow or return
 | 
						|
  // value of the function, and may therefore be deleted safely.
 | 
						|
  // NOTE: We reuse the Worklist vector here for memory efficiency.
 | 
						|
  for (Instruction &I : instructions(F)) {
 | 
						|
    // Check if the instruction is alive.
 | 
						|
    if (isLive(&I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
 | 
						|
      // Check if the scope of this variable location is alive.
 | 
						|
      if (AliveScopes.count(DII->getDebugLoc()->getScope()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Fallthrough and drop the intrinsic.
 | 
						|
    }
 | 
						|
 | 
						|
    // Prepare to delete.
 | 
						|
    Worklist.push_back(&I);
 | 
						|
    I.dropAllReferences();
 | 
						|
  }
 | 
						|
 | 
						|
  for (Instruction *&I : Worklist) {
 | 
						|
    ++NumRemoved;
 | 
						|
    I->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return !Worklist.empty();
 | 
						|
}
 | 
						|
 | 
						|
// A dead region is the set of dead blocks with a common live post-dominator.
 | 
						|
void AggressiveDeadCodeElimination::updateDeadRegions() {
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "final dead terminator blocks: " << '\n';
 | 
						|
    for (auto *BB : BlocksWithDeadTerminators)
 | 
						|
      dbgs() << '\t' << BB->getName()
 | 
						|
             << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
 | 
						|
  });
 | 
						|
 | 
						|
  // Don't compute the post ordering unless we needed it.
 | 
						|
  bool HavePostOrder = false;
 | 
						|
 | 
						|
  for (auto *BB : BlocksWithDeadTerminators) {
 | 
						|
    auto &Info = BlockInfo[BB];
 | 
						|
    if (Info.UnconditionalBranch) {
 | 
						|
      InstInfo[Info.Terminator].Live = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!HavePostOrder) {
 | 
						|
      computeReversePostOrder();
 | 
						|
      HavePostOrder = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add an unconditional branch to the successor closest to the
 | 
						|
    // end of the function which insures a path to the exit for each
 | 
						|
    // live edge.
 | 
						|
    BlockInfoType *PreferredSucc = nullptr;
 | 
						|
    for (auto *Succ : successors(BB)) {
 | 
						|
      auto *Info = &BlockInfo[Succ];
 | 
						|
      if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
 | 
						|
        PreferredSucc = Info;
 | 
						|
    }
 | 
						|
    assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
 | 
						|
           "Failed to find safe successor for dead branch");
 | 
						|
 | 
						|
    // Collect removed successors to update the (Post)DominatorTrees.
 | 
						|
    SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
 | 
						|
    bool First = true;
 | 
						|
    for (auto *Succ : successors(BB)) {
 | 
						|
      if (!First || Succ != PreferredSucc->BB) {
 | 
						|
        Succ->removePredecessor(BB);
 | 
						|
        RemovedSuccessors.insert(Succ);
 | 
						|
      } else
 | 
						|
        First = false;
 | 
						|
    }
 | 
						|
    makeUnconditional(BB, PreferredSucc->BB);
 | 
						|
 | 
						|
    // Inform the dominators about the deleted CFG edges.
 | 
						|
    SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
 | 
						|
    for (auto *Succ : RemovedSuccessors) {
 | 
						|
      // It might have happened that the same successor appeared multiple times
 | 
						|
      // and the CFG edge wasn't really removed.
 | 
						|
      if (Succ != PreferredSucc->BB) {
 | 
						|
        DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
 | 
						|
                     << BB->getName() << " -> " << Succ->getName() << "\n");
 | 
						|
        DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DT.applyUpdates(DeletedEdges);
 | 
						|
    PDT.applyUpdates(DeletedEdges);
 | 
						|
 | 
						|
    NumBranchesRemoved += 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// reverse top-sort order
 | 
						|
void AggressiveDeadCodeElimination::computeReversePostOrder() {
 | 
						|
  // This provides a post-order numbering of the reverse control flow graph
 | 
						|
  // Note that it is incomplete in the presence of infinite loops but we don't
 | 
						|
  // need numbers blocks which don't reach the end of the functions since
 | 
						|
  // all branches in those blocks are forced live.
 | 
						|
 | 
						|
  // For each block without successors, extend the DFS from the block
 | 
						|
  // backward through the graph
 | 
						|
  SmallPtrSet<BasicBlock*, 16> Visited;
 | 
						|
  unsigned PostOrder = 0;
 | 
						|
  for (auto &BB : F) {
 | 
						|
    if (succ_begin(&BB) != succ_end(&BB))
 | 
						|
      continue;
 | 
						|
    for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
 | 
						|
      BlockInfo[Block].PostOrder = PostOrder++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
 | 
						|
                                                      BasicBlock *Target) {
 | 
						|
  TerminatorInst *PredTerm = BB->getTerminator();
 | 
						|
  // Collect the live debug info scopes attached to this instruction.
 | 
						|
  if (const DILocation *DL = PredTerm->getDebugLoc())
 | 
						|
    collectLiveScopes(*DL);
 | 
						|
 | 
						|
  // Just mark live an existing unconditional branch
 | 
						|
  if (isUnconditionalBranch(PredTerm)) {
 | 
						|
    PredTerm->setSuccessor(0, Target);
 | 
						|
    InstInfo[PredTerm].Live = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
 | 
						|
  NumBranchesRemoved += 1;
 | 
						|
  IRBuilder<> Builder(PredTerm);
 | 
						|
  auto *NewTerm = Builder.CreateBr(Target);
 | 
						|
  InstInfo[NewTerm].Live = true;
 | 
						|
  if (const DILocation *DL = PredTerm->getDebugLoc())
 | 
						|
    NewTerm->setDebugLoc(DL);
 | 
						|
 | 
						|
  InstInfo.erase(PredTerm);
 | 
						|
  PredTerm->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Pass Manager integration code
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
 | 
						|
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
 | 
						|
  if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<PostDominatorTreeAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct ADCELegacyPass : public FunctionPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  ADCELegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | 
						|
    return AggressiveDeadCodeElimination(F, DT, PDT)
 | 
						|
        .performDeadCodeElimination();
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    // We require DominatorTree here only to update and thus preserve it.
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<PostDominatorTreeWrapperPass>();
 | 
						|
    if (!RemoveControlFlowFlag)
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    else {
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<PostDominatorTreeWrapperPass>();
 | 
						|
    }
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char ADCELegacyPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
 | 
						|
                      "Aggressive Dead Code Elimination", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
 |