forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1026 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1026 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Loop Distribution Pass.  Its main focus is to
 | 
						|
// distribute loops that cannot be vectorized due to dependence cycles.  It
 | 
						|
// tries to isolate the offending dependences into a new loop allowing
 | 
						|
// vectorization of the remaining parts.
 | 
						|
//
 | 
						|
// For dependence analysis, the pass uses the LoopVectorizer's
 | 
						|
// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
 | 
						|
// memory operations, special care is taken to preserve the lexical order of
 | 
						|
// these operations.
 | 
						|
//
 | 
						|
// Similarly to the Vectorizer, the pass also supports loop versioning to
 | 
						|
// run-time disambiguate potentially overlapping arrays.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/LoopDistribute.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/EquivalenceClasses.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/LoopAccessAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopAnalysisManager.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopVersioning.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <cassert>
 | 
						|
#include <functional>
 | 
						|
#include <list>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define LDIST_NAME "loop-distribute"
 | 
						|
#define DEBUG_TYPE LDIST_NAME
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    LDistVerify("loop-distribute-verify", cl::Hidden,
 | 
						|
                cl::desc("Turn on DominatorTree and LoopInfo verification "
 | 
						|
                         "after Loop Distribution"),
 | 
						|
                cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> DistributeNonIfConvertible(
 | 
						|
    "loop-distribute-non-if-convertible", cl::Hidden,
 | 
						|
    cl::desc("Whether to distribute into a loop that may not be "
 | 
						|
             "if-convertible by the loop vectorizer"),
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
static cl::opt<unsigned> DistributeSCEVCheckThreshold(
 | 
						|
    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
 | 
						|
    cl::desc("The maximum number of SCEV checks allowed for Loop "
 | 
						|
             "Distribution"));
 | 
						|
 | 
						|
static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
 | 
						|
    "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
 | 
						|
    cl::Hidden,
 | 
						|
    cl::desc(
 | 
						|
        "The maximum number of SCEV checks allowed for Loop "
 | 
						|
        "Distribution for loop marked with #pragma loop distribute(enable)"));
 | 
						|
 | 
						|
static cl::opt<bool> EnableLoopDistribute(
 | 
						|
    "enable-loop-distribute", cl::Hidden,
 | 
						|
    cl::desc("Enable the new, experimental LoopDistribution Pass"),
 | 
						|
    cl::init(false));
 | 
						|
 | 
						|
STATISTIC(NumLoopsDistributed, "Number of loops distributed");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// \brief Maintains the set of instructions of the loop for a partition before
 | 
						|
/// cloning.  After cloning, it hosts the new loop.
 | 
						|
class InstPartition {
 | 
						|
  using InstructionSet = SmallPtrSet<Instruction *, 8>;
 | 
						|
 | 
						|
public:
 | 
						|
  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
 | 
						|
      : DepCycle(DepCycle), OrigLoop(L) {
 | 
						|
    Set.insert(I);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Returns whether this partition contains a dependence cycle.
 | 
						|
  bool hasDepCycle() const { return DepCycle; }
 | 
						|
 | 
						|
  /// \brief Adds an instruction to this partition.
 | 
						|
  void add(Instruction *I) { Set.insert(I); }
 | 
						|
 | 
						|
  /// \brief Collection accessors.
 | 
						|
  InstructionSet::iterator begin() { return Set.begin(); }
 | 
						|
  InstructionSet::iterator end() { return Set.end(); }
 | 
						|
  InstructionSet::const_iterator begin() const { return Set.begin(); }
 | 
						|
  InstructionSet::const_iterator end() const { return Set.end(); }
 | 
						|
  bool empty() const { return Set.empty(); }
 | 
						|
 | 
						|
  /// \brief Moves this partition into \p Other.  This partition becomes empty
 | 
						|
  /// after this.
 | 
						|
  void moveTo(InstPartition &Other) {
 | 
						|
    Other.Set.insert(Set.begin(), Set.end());
 | 
						|
    Set.clear();
 | 
						|
    Other.DepCycle |= DepCycle;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Populates the partition with a transitive closure of all the
 | 
						|
  /// instructions that the seeded instructions dependent on.
 | 
						|
  void populateUsedSet() {
 | 
						|
    // FIXME: We currently don't use control-dependence but simply include all
 | 
						|
    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
 | 
						|
    // up.
 | 
						|
    for (auto *B : OrigLoop->getBlocks())
 | 
						|
      Set.insert(B->getTerminator());
 | 
						|
 | 
						|
    // Follow the use-def chains to form a transitive closure of all the
 | 
						|
    // instructions that the originally seeded instructions depend on.
 | 
						|
    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      Instruction *I = Worklist.pop_back_val();
 | 
						|
      // Insert instructions from the loop that we depend on.
 | 
						|
      for (Value *V : I->operand_values()) {
 | 
						|
        auto *I = dyn_cast<Instruction>(V);
 | 
						|
        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
 | 
						|
          Worklist.push_back(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Clones the original loop.
 | 
						|
  ///
 | 
						|
  /// Updates LoopInfo and DominatorTree using the information that block \p
 | 
						|
  /// LoopDomBB dominates the loop.
 | 
						|
  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
 | 
						|
                               unsigned Index, LoopInfo *LI,
 | 
						|
                               DominatorTree *DT) {
 | 
						|
    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
 | 
						|
                                          VMap, Twine(".ldist") + Twine(Index),
 | 
						|
                                          LI, DT, ClonedLoopBlocks);
 | 
						|
    return ClonedLoop;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief The cloned loop.  If this partition is mapped to the original loop,
 | 
						|
  /// this is null.
 | 
						|
  const Loop *getClonedLoop() const { return ClonedLoop; }
 | 
						|
 | 
						|
  /// \brief Returns the loop where this partition ends up after distribution.
 | 
						|
  /// If this partition is mapped to the original loop then use the block from
 | 
						|
  /// the loop.
 | 
						|
  const Loop *getDistributedLoop() const {
 | 
						|
    return ClonedLoop ? ClonedLoop : OrigLoop;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief The VMap that is populated by cloning and then used in
 | 
						|
  /// remapinstruction to remap the cloned instructions.
 | 
						|
  ValueToValueMapTy &getVMap() { return VMap; }
 | 
						|
 | 
						|
  /// \brief Remaps the cloned instructions using VMap.
 | 
						|
  void remapInstructions() {
 | 
						|
    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Based on the set of instructions selected for this partition,
 | 
						|
  /// removes the unnecessary ones.
 | 
						|
  void removeUnusedInsts() {
 | 
						|
    SmallVector<Instruction *, 8> Unused;
 | 
						|
 | 
						|
    for (auto *Block : OrigLoop->getBlocks())
 | 
						|
      for (auto &Inst : *Block)
 | 
						|
        if (!Set.count(&Inst)) {
 | 
						|
          Instruction *NewInst = &Inst;
 | 
						|
          if (!VMap.empty())
 | 
						|
            NewInst = cast<Instruction>(VMap[NewInst]);
 | 
						|
 | 
						|
          assert(!isa<BranchInst>(NewInst) &&
 | 
						|
                 "Branches are marked used early on");
 | 
						|
          Unused.push_back(NewInst);
 | 
						|
        }
 | 
						|
 | 
						|
    // Delete the instructions backwards, as it has a reduced likelihood of
 | 
						|
    // having to update as many def-use and use-def chains.
 | 
						|
    for (auto *Inst : reverse(Unused)) {
 | 
						|
      if (!Inst->use_empty())
 | 
						|
        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
 | 
						|
      Inst->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void print() const {
 | 
						|
    if (DepCycle)
 | 
						|
      dbgs() << "  (cycle)\n";
 | 
						|
    for (auto *I : Set)
 | 
						|
      // Prefix with the block name.
 | 
						|
      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  void printBlocks() const {
 | 
						|
    for (auto *BB : getDistributedLoop()->getBlocks())
 | 
						|
      dbgs() << *BB;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// \brief Instructions from OrigLoop selected for this partition.
 | 
						|
  InstructionSet Set;
 | 
						|
 | 
						|
  /// \brief Whether this partition contains a dependence cycle.
 | 
						|
  bool DepCycle;
 | 
						|
 | 
						|
  /// \brief The original loop.
 | 
						|
  Loop *OrigLoop;
 | 
						|
 | 
						|
  /// \brief The cloned loop.  If this partition is mapped to the original loop,
 | 
						|
  /// this is null.
 | 
						|
  Loop *ClonedLoop = nullptr;
 | 
						|
 | 
						|
  /// \brief The blocks of ClonedLoop including the preheader.  If this
 | 
						|
  /// partition is mapped to the original loop, this is empty.
 | 
						|
  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
 | 
						|
 | 
						|
  /// \brief These gets populated once the set of instructions have been
 | 
						|
  /// finalized. If this partition is mapped to the original loop, these are not
 | 
						|
  /// set.
 | 
						|
  ValueToValueMapTy VMap;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Holds the set of Partitions.  It populates them, merges them and then
 | 
						|
/// clones the loops.
 | 
						|
class InstPartitionContainer {
 | 
						|
  using InstToPartitionIdT = DenseMap<Instruction *, int>;
 | 
						|
 | 
						|
public:
 | 
						|
  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
 | 
						|
      : L(L), LI(LI), DT(DT) {}
 | 
						|
 | 
						|
  /// \brief Returns the number of partitions.
 | 
						|
  unsigned getSize() const { return PartitionContainer.size(); }
 | 
						|
 | 
						|
  /// \brief Adds \p Inst into the current partition if that is marked to
 | 
						|
  /// contain cycles.  Otherwise start a new partition for it.
 | 
						|
  void addToCyclicPartition(Instruction *Inst) {
 | 
						|
    // If the current partition is non-cyclic.  Start a new one.
 | 
						|
    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
 | 
						|
      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
 | 
						|
    else
 | 
						|
      PartitionContainer.back().add(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Adds \p Inst into a partition that is not marked to contain
 | 
						|
  /// dependence cycles.
 | 
						|
  ///
 | 
						|
  //  Initially we isolate memory instructions into as many partitions as
 | 
						|
  //  possible, then later we may merge them back together.
 | 
						|
  void addToNewNonCyclicPartition(Instruction *Inst) {
 | 
						|
    PartitionContainer.emplace_back(Inst, L);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Merges adjacent non-cyclic partitions.
 | 
						|
  ///
 | 
						|
  /// The idea is that we currently only want to isolate the non-vectorizable
 | 
						|
  /// partition.  We could later allow more distribution among these partition
 | 
						|
  /// too.
 | 
						|
  void mergeAdjacentNonCyclic() {
 | 
						|
    mergeAdjacentPartitionsIf(
 | 
						|
        [](const InstPartition *P) { return !P->hasDepCycle(); });
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief If a partition contains only conditional stores, we won't vectorize
 | 
						|
  /// it.  Try to merge it with a previous cyclic partition.
 | 
						|
  void mergeNonIfConvertible() {
 | 
						|
    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
 | 
						|
      if (Partition->hasDepCycle())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Now, check if all stores are conditional in this partition.
 | 
						|
      bool seenStore = false;
 | 
						|
 | 
						|
      for (auto *Inst : *Partition)
 | 
						|
        if (isa<StoreInst>(Inst)) {
 | 
						|
          seenStore = true;
 | 
						|
          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      return seenStore;
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Merges the partitions according to various heuristics.
 | 
						|
  void mergeBeforePopulating() {
 | 
						|
    mergeAdjacentNonCyclic();
 | 
						|
    if (!DistributeNonIfConvertible)
 | 
						|
      mergeNonIfConvertible();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Merges partitions in order to ensure that no loads are duplicated.
 | 
						|
  ///
 | 
						|
  /// We can't duplicate loads because that could potentially reorder them.
 | 
						|
  /// LoopAccessAnalysis provides dependency information with the context that
 | 
						|
  /// the order of memory operation is preserved.
 | 
						|
  ///
 | 
						|
  /// Return if any partitions were merged.
 | 
						|
  bool mergeToAvoidDuplicatedLoads() {
 | 
						|
    using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
 | 
						|
    using ToBeMergedT = EquivalenceClasses<InstPartition *>;
 | 
						|
 | 
						|
    LoadToPartitionT LoadToPartition;
 | 
						|
    ToBeMergedT ToBeMerged;
 | 
						|
 | 
						|
    // Step through the partitions and create equivalence between partitions
 | 
						|
    // that contain the same load.  Also put partitions in between them in the
 | 
						|
    // same equivalence class to avoid reordering of memory operations.
 | 
						|
    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
 | 
						|
                                       E = PartitionContainer.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      auto *PartI = &*I;
 | 
						|
 | 
						|
      // If a load occurs in two partitions PartI and PartJ, merge all
 | 
						|
      // partitions (PartI, PartJ] into PartI.
 | 
						|
      for (Instruction *Inst : *PartI)
 | 
						|
        if (isa<LoadInst>(Inst)) {
 | 
						|
          bool NewElt;
 | 
						|
          LoadToPartitionT::iterator LoadToPart;
 | 
						|
 | 
						|
          std::tie(LoadToPart, NewElt) =
 | 
						|
              LoadToPartition.insert(std::make_pair(Inst, PartI));
 | 
						|
          if (!NewElt) {
 | 
						|
            DEBUG(dbgs() << "Merging partitions due to this load in multiple "
 | 
						|
                         << "partitions: " << PartI << ", "
 | 
						|
                         << LoadToPart->second << "\n" << *Inst << "\n");
 | 
						|
 | 
						|
            auto PartJ = I;
 | 
						|
            do {
 | 
						|
              --PartJ;
 | 
						|
              ToBeMerged.unionSets(PartI, &*PartJ);
 | 
						|
            } while (&*PartJ != LoadToPart->second);
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (ToBeMerged.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Merge the member of an equivalence class into its class leader.  This
 | 
						|
    // makes the members empty.
 | 
						|
    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (!I->isLeader())
 | 
						|
        continue;
 | 
						|
 | 
						|
      auto PartI = I->getData();
 | 
						|
      for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
 | 
						|
                                   ToBeMerged.member_end())) {
 | 
						|
        PartJ->moveTo(*PartI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove the empty partitions.
 | 
						|
    PartitionContainer.remove_if(
 | 
						|
        [](const InstPartition &P) { return P.empty(); });
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Sets up the mapping between instructions to partitions.  If the
 | 
						|
  /// instruction is duplicated across multiple partitions, set the entry to -1.
 | 
						|
  void setupPartitionIdOnInstructions() {
 | 
						|
    int PartitionID = 0;
 | 
						|
    for (const auto &Partition : PartitionContainer) {
 | 
						|
      for (Instruction *Inst : Partition) {
 | 
						|
        bool NewElt;
 | 
						|
        InstToPartitionIdT::iterator Iter;
 | 
						|
 | 
						|
        std::tie(Iter, NewElt) =
 | 
						|
            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
 | 
						|
        if (!NewElt)
 | 
						|
          Iter->second = -1;
 | 
						|
      }
 | 
						|
      ++PartitionID;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Populates the partition with everything that the seeding
 | 
						|
  /// instructions require.
 | 
						|
  void populateUsedSet() {
 | 
						|
    for (auto &P : PartitionContainer)
 | 
						|
      P.populateUsedSet();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief This performs the main chunk of the work of cloning the loops for
 | 
						|
  /// the partitions.
 | 
						|
  void cloneLoops() {
 | 
						|
    BasicBlock *OrigPH = L->getLoopPreheader();
 | 
						|
    // At this point the predecessor of the preheader is either the memcheck
 | 
						|
    // block or the top part of the original preheader.
 | 
						|
    BasicBlock *Pred = OrigPH->getSinglePredecessor();
 | 
						|
    assert(Pred && "Preheader does not have a single predecessor");
 | 
						|
    BasicBlock *ExitBlock = L->getExitBlock();
 | 
						|
    assert(ExitBlock && "No single exit block");
 | 
						|
    Loop *NewLoop;
 | 
						|
 | 
						|
    assert(!PartitionContainer.empty() && "at least two partitions expected");
 | 
						|
    // We're cloning the preheader along with the loop so we already made sure
 | 
						|
    // it was empty.
 | 
						|
    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
 | 
						|
           "preheader not empty");
 | 
						|
 | 
						|
    // Create a loop for each partition except the last.  Clone the original
 | 
						|
    // loop before PH along with adding a preheader for the cloned loop.  Then
 | 
						|
    // update PH to point to the newly added preheader.
 | 
						|
    BasicBlock *TopPH = OrigPH;
 | 
						|
    unsigned Index = getSize() - 1;
 | 
						|
    for (auto I = std::next(PartitionContainer.rbegin()),
 | 
						|
              E = PartitionContainer.rend();
 | 
						|
         I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
 | 
						|
      auto *Part = &*I;
 | 
						|
 | 
						|
      NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
 | 
						|
 | 
						|
      Part->getVMap()[ExitBlock] = TopPH;
 | 
						|
      Part->remapInstructions();
 | 
						|
    }
 | 
						|
    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
 | 
						|
 | 
						|
    // Now go in forward order and update the immediate dominator for the
 | 
						|
    // preheaders with the exiting block of the previous loop.  Dominance
 | 
						|
    // within the loop is updated in cloneLoopWithPreheader.
 | 
						|
    for (auto Curr = PartitionContainer.cbegin(),
 | 
						|
              Next = std::next(PartitionContainer.cbegin()),
 | 
						|
              E = PartitionContainer.cend();
 | 
						|
         Next != E; ++Curr, ++Next)
 | 
						|
      DT->changeImmediateDominator(
 | 
						|
          Next->getDistributedLoop()->getLoopPreheader(),
 | 
						|
          Curr->getDistributedLoop()->getExitingBlock());
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Removes the dead instructions from the cloned loops.
 | 
						|
  void removeUnusedInsts() {
 | 
						|
    for (auto &Partition : PartitionContainer)
 | 
						|
      Partition.removeUnusedInsts();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief For each memory pointer, it computes the partitionId the pointer is
 | 
						|
  /// used in.
 | 
						|
  ///
 | 
						|
  /// This returns an array of int where the I-th entry corresponds to I-th
 | 
						|
  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
 | 
						|
  /// partitions its entry is set to -1.
 | 
						|
  SmallVector<int, 8>
 | 
						|
  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
 | 
						|
    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
 | 
						|
 | 
						|
    unsigned N = RtPtrCheck->Pointers.size();
 | 
						|
    SmallVector<int, 8> PtrToPartitions(N);
 | 
						|
    for (unsigned I = 0; I < N; ++I) {
 | 
						|
      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
 | 
						|
      auto Instructions =
 | 
						|
          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
 | 
						|
 | 
						|
      int &Partition = PtrToPartitions[I];
 | 
						|
      // First set it to uninitialized.
 | 
						|
      Partition = -2;
 | 
						|
      for (Instruction *Inst : Instructions) {
 | 
						|
        // Note that this could be -1 if Inst is duplicated across multiple
 | 
						|
        // partitions.
 | 
						|
        int ThisPartition = this->InstToPartitionId[Inst];
 | 
						|
        if (Partition == -2)
 | 
						|
          Partition = ThisPartition;
 | 
						|
        // -1 means belonging to multiple partitions.
 | 
						|
        else if (Partition == -1)
 | 
						|
          break;
 | 
						|
        else if (Partition != (int)ThisPartition)
 | 
						|
          Partition = -1;
 | 
						|
      }
 | 
						|
      assert(Partition != -2 && "Pointer not belonging to any partition");
 | 
						|
    }
 | 
						|
 | 
						|
    return PtrToPartitions;
 | 
						|
  }
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const {
 | 
						|
    unsigned Index = 0;
 | 
						|
    for (const auto &P : PartitionContainer) {
 | 
						|
      OS << "Partition " << Index++ << " (" << &P << "):\n";
 | 
						|
      P.print();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void dump() const { print(dbgs()); }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  friend raw_ostream &operator<<(raw_ostream &OS,
 | 
						|
                                 const InstPartitionContainer &Partitions) {
 | 
						|
    Partitions.print(OS);
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  void printBlocks() const {
 | 
						|
    unsigned Index = 0;
 | 
						|
    for (const auto &P : PartitionContainer) {
 | 
						|
      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
 | 
						|
      P.printBlocks();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  using PartitionContainerT = std::list<InstPartition>;
 | 
						|
 | 
						|
  /// \brief List of partitions.
 | 
						|
  PartitionContainerT PartitionContainer;
 | 
						|
 | 
						|
  /// \brief Mapping from Instruction to partition Id.  If the instruction
 | 
						|
  /// belongs to multiple partitions the entry contains -1.
 | 
						|
  InstToPartitionIdT InstToPartitionId;
 | 
						|
 | 
						|
  Loop *L;
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
 | 
						|
  /// \brief The control structure to merge adjacent partitions if both satisfy
 | 
						|
  /// the \p Predicate.
 | 
						|
  template <class UnaryPredicate>
 | 
						|
  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
 | 
						|
    InstPartition *PrevMatch = nullptr;
 | 
						|
    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
 | 
						|
      auto DoesMatch = Predicate(&*I);
 | 
						|
      if (PrevMatch == nullptr && DoesMatch) {
 | 
						|
        PrevMatch = &*I;
 | 
						|
        ++I;
 | 
						|
      } else if (PrevMatch != nullptr && DoesMatch) {
 | 
						|
        I->moveTo(*PrevMatch);
 | 
						|
        I = PartitionContainer.erase(I);
 | 
						|
      } else {
 | 
						|
        PrevMatch = nullptr;
 | 
						|
        ++I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief For each memory instruction, this class maintains difference of the
 | 
						|
/// number of unsafe dependences that start out from this instruction minus
 | 
						|
/// those that end here.
 | 
						|
///
 | 
						|
/// By traversing the memory instructions in program order and accumulating this
 | 
						|
/// number, we know whether any unsafe dependence crosses over a program point.
 | 
						|
class MemoryInstructionDependences {
 | 
						|
  using Dependence = MemoryDepChecker::Dependence;
 | 
						|
 | 
						|
public:
 | 
						|
  struct Entry {
 | 
						|
    Instruction *Inst;
 | 
						|
    unsigned NumUnsafeDependencesStartOrEnd = 0;
 | 
						|
 | 
						|
    Entry(Instruction *Inst) : Inst(Inst) {}
 | 
						|
  };
 | 
						|
 | 
						|
  using AccessesType = SmallVector<Entry, 8>;
 | 
						|
 | 
						|
  AccessesType::const_iterator begin() const { return Accesses.begin(); }
 | 
						|
  AccessesType::const_iterator end() const { return Accesses.end(); }
 | 
						|
 | 
						|
  MemoryInstructionDependences(
 | 
						|
      const SmallVectorImpl<Instruction *> &Instructions,
 | 
						|
      const SmallVectorImpl<Dependence> &Dependences) {
 | 
						|
    Accesses.append(Instructions.begin(), Instructions.end());
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Backward dependences:\n");
 | 
						|
    for (auto &Dep : Dependences)
 | 
						|
      if (Dep.isPossiblyBackward()) {
 | 
						|
        // Note that the designations source and destination follow the program
 | 
						|
        // order, i.e. source is always first.  (The direction is given by the
 | 
						|
        // DepType.)
 | 
						|
        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
 | 
						|
        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
 | 
						|
 | 
						|
        DEBUG(Dep.print(dbgs(), 2, Instructions));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  AccessesType Accesses;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief The actual class performing the per-loop work.
 | 
						|
class LoopDistributeForLoop {
 | 
						|
public:
 | 
						|
  LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
 | 
						|
                        ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
 | 
						|
      : L(L), F(F), LI(LI), DT(DT), SE(SE), ORE(ORE) {
 | 
						|
    setForced();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Try to distribute an inner-most loop.
 | 
						|
  bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
 | 
						|
    assert(L->empty() && "Only process inner loops.");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
 | 
						|
                 << "\" checking " << *L << "\n");
 | 
						|
 | 
						|
    if (!L->getExitBlock())
 | 
						|
      return fail("MultipleExitBlocks", "multiple exit blocks");
 | 
						|
    if (!L->isLoopSimplifyForm())
 | 
						|
      return fail("NotLoopSimplifyForm",
 | 
						|
                  "loop is not in loop-simplify form");
 | 
						|
 | 
						|
    BasicBlock *PH = L->getLoopPreheader();
 | 
						|
 | 
						|
    // LAA will check that we only have a single exiting block.
 | 
						|
    LAI = &GetLAA(*L);
 | 
						|
 | 
						|
    // Currently, we only distribute to isolate the part of the loop with
 | 
						|
    // dependence cycles to enable partial vectorization.
 | 
						|
    if (LAI->canVectorizeMemory())
 | 
						|
      return fail("MemOpsCanBeVectorized",
 | 
						|
                  "memory operations are safe for vectorization");
 | 
						|
 | 
						|
    auto *Dependences = LAI->getDepChecker().getDependences();
 | 
						|
    if (!Dependences || Dependences->empty())
 | 
						|
      return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
 | 
						|
 | 
						|
    InstPartitionContainer Partitions(L, LI, DT);
 | 
						|
 | 
						|
    // First, go through each memory operation and assign them to consecutive
 | 
						|
    // partitions (the order of partitions follows program order).  Put those
 | 
						|
    // with unsafe dependences into "cyclic" partition otherwise put each store
 | 
						|
    // in its own "non-cyclic" partition (we'll merge these later).
 | 
						|
    //
 | 
						|
    // Note that a memory operation (e.g. Load2 below) at a program point that
 | 
						|
    // has an unsafe dependence (Store3->Load1) spanning over it must be
 | 
						|
    // included in the same cyclic partition as the dependent operations.  This
 | 
						|
    // is to preserve the original program order after distribution.  E.g.:
 | 
						|
    //
 | 
						|
    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
 | 
						|
    //  Load1   -.                     1                       0->1
 | 
						|
    //  Load2    | /Unsafe/            0                       1
 | 
						|
    //  Store3  -'                    -1                       1->0
 | 
						|
    //  Load4                          0                       0
 | 
						|
    //
 | 
						|
    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
 | 
						|
    // we just keep assigning to the same cyclic partition until
 | 
						|
    // NumUnsafeDependencesActive reaches 0.
 | 
						|
    const MemoryDepChecker &DepChecker = LAI->getDepChecker();
 | 
						|
    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
 | 
						|
                                     *Dependences);
 | 
						|
 | 
						|
    int NumUnsafeDependencesActive = 0;
 | 
						|
    for (auto &InstDep : MID) {
 | 
						|
      Instruction *I = InstDep.Inst;
 | 
						|
      // We update NumUnsafeDependencesActive post-instruction, catch the
 | 
						|
      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
 | 
						|
      if (NumUnsafeDependencesActive ||
 | 
						|
          InstDep.NumUnsafeDependencesStartOrEnd > 0)
 | 
						|
        Partitions.addToCyclicPartition(I);
 | 
						|
      else
 | 
						|
        Partitions.addToNewNonCyclicPartition(I);
 | 
						|
      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
 | 
						|
      assert(NumUnsafeDependencesActive >= 0 &&
 | 
						|
             "Negative number of dependences active");
 | 
						|
    }
 | 
						|
 | 
						|
    // Add partitions for values used outside.  These partitions can be out of
 | 
						|
    // order from the original program order.  This is OK because if the
 | 
						|
    // partition uses a load we will merge this partition with the original
 | 
						|
    // partition of the load that we set up in the previous loop (see
 | 
						|
    // mergeToAvoidDuplicatedLoads).
 | 
						|
    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
 | 
						|
    for (auto *Inst : DefsUsedOutside)
 | 
						|
      Partitions.addToNewNonCyclicPartition(Inst);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
 | 
						|
    if (Partitions.getSize() < 2)
 | 
						|
      return fail("CantIsolateUnsafeDeps",
 | 
						|
                  "cannot isolate unsafe dependencies");
 | 
						|
 | 
						|
    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
 | 
						|
    // should be able to vectorize these together.
 | 
						|
    Partitions.mergeBeforePopulating();
 | 
						|
    DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
 | 
						|
    if (Partitions.getSize() < 2)
 | 
						|
      return fail("CantIsolateUnsafeDeps",
 | 
						|
                  "cannot isolate unsafe dependencies");
 | 
						|
 | 
						|
    // Now, populate the partitions with non-memory operations.
 | 
						|
    Partitions.populateUsedSet();
 | 
						|
    DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
 | 
						|
 | 
						|
    // In order to preserve original lexical order for loads, keep them in the
 | 
						|
    // partition that we set up in the MemoryInstructionDependences loop.
 | 
						|
    if (Partitions.mergeToAvoidDuplicatedLoads()) {
 | 
						|
      DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
 | 
						|
                   << Partitions);
 | 
						|
      if (Partitions.getSize() < 2)
 | 
						|
        return fail("CantIsolateUnsafeDeps",
 | 
						|
                    "cannot isolate unsafe dependencies");
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't distribute the loop if we need too many SCEV run-time checks.
 | 
						|
    const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
 | 
						|
    if (Pred.getComplexity() > (IsForced.getValueOr(false)
 | 
						|
                                    ? PragmaDistributeSCEVCheckThreshold
 | 
						|
                                    : DistributeSCEVCheckThreshold))
 | 
						|
      return fail("TooManySCEVRuntimeChecks",
 | 
						|
                  "too many SCEV run-time checks needed.\n");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
 | 
						|
    // We're done forming the partitions set up the reverse mapping from
 | 
						|
    // instructions to partitions.
 | 
						|
    Partitions.setupPartitionIdOnInstructions();
 | 
						|
 | 
						|
    // To keep things simple have an empty preheader before we version or clone
 | 
						|
    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
 | 
						|
    // rely on PH having a predecessor.)
 | 
						|
    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
 | 
						|
      SplitBlock(PH, PH->getTerminator(), DT, LI);
 | 
						|
 | 
						|
    // If we need run-time checks, version the loop now.
 | 
						|
    auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
 | 
						|
    const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
 | 
						|
    const auto &AllChecks = RtPtrChecking->getChecks();
 | 
						|
    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
 | 
						|
                                                  RtPtrChecking);
 | 
						|
 | 
						|
    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
 | 
						|
      DEBUG(dbgs() << "\nPointers:\n");
 | 
						|
      DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
 | 
						|
      LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
 | 
						|
      LVer.setAliasChecks(std::move(Checks));
 | 
						|
      LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
 | 
						|
      LVer.versionLoop(DefsUsedOutside);
 | 
						|
      LVer.annotateLoopWithNoAlias();
 | 
						|
    }
 | 
						|
 | 
						|
    // Create identical copies of the original loop for each partition and hook
 | 
						|
    // them up sequentially.
 | 
						|
    Partitions.cloneLoops();
 | 
						|
 | 
						|
    // Now, we remove the instruction from each loop that don't belong to that
 | 
						|
    // partition.
 | 
						|
    Partitions.removeUnusedInsts();
 | 
						|
    DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
 | 
						|
    DEBUG(Partitions.printBlocks());
 | 
						|
 | 
						|
    if (LDistVerify) {
 | 
						|
      LI->verify(*DT);
 | 
						|
      DT->verifyDomTree();
 | 
						|
    }
 | 
						|
 | 
						|
    ++NumLoopsDistributed;
 | 
						|
    // Report the success.
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
 | 
						|
                                L->getHeader())
 | 
						|
             << "distributed loop";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Provide diagnostics then \return with false.
 | 
						|
  bool fail(StringRef RemarkName, StringRef Message) {
 | 
						|
    LLVMContext &Ctx = F->getContext();
 | 
						|
    bool Forced = isForced().getValueOr(false);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Skipping; " << Message << "\n");
 | 
						|
 | 
						|
    // With Rpass-missed report that distribution failed.
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
 | 
						|
                                      L->getStartLoc(), L->getHeader())
 | 
						|
             << "loop not distributed: use -Rpass-analysis=loop-distribute for "
 | 
						|
                "more "
 | 
						|
                "info";
 | 
						|
    });
 | 
						|
 | 
						|
    // With Rpass-analysis report why.  This is on by default if distribution
 | 
						|
    // was requested explicitly.
 | 
						|
    ORE->emit(OptimizationRemarkAnalysis(
 | 
						|
                  Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
 | 
						|
                  RemarkName, L->getStartLoc(), L->getHeader())
 | 
						|
              << "loop not distributed: " << Message);
 | 
						|
 | 
						|
    // Also issue a warning if distribution was requested explicitly but it
 | 
						|
    // failed.
 | 
						|
    if (Forced)
 | 
						|
      Ctx.diagnose(DiagnosticInfoOptimizationFailure(
 | 
						|
          *F, L->getStartLoc(), "loop not distributed: failed "
 | 
						|
                                "explicitly specified loop distribution"));
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Return if distribution forced to be enabled/disabled for the loop.
 | 
						|
  ///
 | 
						|
  /// If the optional has a value, it indicates whether distribution was forced
 | 
						|
  /// to be enabled (true) or disabled (false).  If the optional has no value
 | 
						|
  /// distribution was not forced either way.
 | 
						|
  const Optional<bool> &isForced() const { return IsForced; }
 | 
						|
 | 
						|
private:
 | 
						|
  /// \brief Filter out checks between pointers from the same partition.
 | 
						|
  ///
 | 
						|
  /// \p PtrToPartition contains the partition number for pointers.  Partition
 | 
						|
  /// number -1 means that the pointer is used in multiple partitions.  In this
 | 
						|
  /// case we can't safely omit the check.
 | 
						|
  SmallVector<RuntimePointerChecking::PointerCheck, 4>
 | 
						|
  includeOnlyCrossPartitionChecks(
 | 
						|
      const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
 | 
						|
      const SmallVectorImpl<int> &PtrToPartition,
 | 
						|
      const RuntimePointerChecking *RtPtrChecking) {
 | 
						|
    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
 | 
						|
 | 
						|
    copy_if(AllChecks, std::back_inserter(Checks),
 | 
						|
            [&](const RuntimePointerChecking::PointerCheck &Check) {
 | 
						|
              for (unsigned PtrIdx1 : Check.first->Members)
 | 
						|
                for (unsigned PtrIdx2 : Check.second->Members)
 | 
						|
                  // Only include this check if there is a pair of pointers
 | 
						|
                  // that require checking and the pointers fall into
 | 
						|
                  // separate partitions.
 | 
						|
                  //
 | 
						|
                  // (Note that we already know at this point that the two
 | 
						|
                  // pointer groups need checking but it doesn't follow
 | 
						|
                  // that each pair of pointers within the two groups need
 | 
						|
                  // checking as well.
 | 
						|
                  //
 | 
						|
                  // In other words we don't want to include a check just
 | 
						|
                  // because there is a pair of pointers between the two
 | 
						|
                  // pointer groups that require checks and a different
 | 
						|
                  // pair whose pointers fall into different partitions.)
 | 
						|
                  if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
 | 
						|
                      !RuntimePointerChecking::arePointersInSamePartition(
 | 
						|
                          PtrToPartition, PtrIdx1, PtrIdx2))
 | 
						|
                    return true;
 | 
						|
              return false;
 | 
						|
            });
 | 
						|
 | 
						|
    return Checks;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Check whether the loop metadata is forcing distribution to be
 | 
						|
  /// enabled/disabled.
 | 
						|
  void setForced() {
 | 
						|
    Optional<const MDOperand *> Value =
 | 
						|
        findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
 | 
						|
    if (!Value)
 | 
						|
      return;
 | 
						|
 | 
						|
    const MDOperand *Op = *Value;
 | 
						|
    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
 | 
						|
    IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  Loop *L;
 | 
						|
  Function *F;
 | 
						|
 | 
						|
  // Analyses used.
 | 
						|
  LoopInfo *LI;
 | 
						|
  const LoopAccessInfo *LAI = nullptr;
 | 
						|
  DominatorTree *DT;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
 | 
						|
  /// \brief Indicates whether distribution is forced to be enabled/disabled for
 | 
						|
  /// the loop.
 | 
						|
  ///
 | 
						|
  /// If the optional has a value, it indicates whether distribution was forced
 | 
						|
  /// to be enabled (true) or disabled (false).  If the optional has no value
 | 
						|
  /// distribution was not forced either way.
 | 
						|
  Optional<bool> IsForced;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Shared implementation between new and old PMs.
 | 
						|
static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
 | 
						|
                    ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
 | 
						|
                    std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
 | 
						|
  // Build up a worklist of inner-loops to vectorize. This is necessary as the
 | 
						|
  // act of distributing a loop creates new loops and can invalidate iterators
 | 
						|
  // across the loops.
 | 
						|
  SmallVector<Loop *, 8> Worklist;
 | 
						|
 | 
						|
  for (Loop *TopLevelLoop : *LI)
 | 
						|
    for (Loop *L : depth_first(TopLevelLoop))
 | 
						|
      // We only handle inner-most loops.
 | 
						|
      if (L->empty())
 | 
						|
        Worklist.push_back(L);
 | 
						|
 | 
						|
  // Now walk the identified inner loops.
 | 
						|
  bool Changed = false;
 | 
						|
  for (Loop *L : Worklist) {
 | 
						|
    LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);
 | 
						|
 | 
						|
    // If distribution was forced for the specific loop to be
 | 
						|
    // enabled/disabled, follow that.  Otherwise use the global flag.
 | 
						|
    if (LDL.isForced().getValueOr(EnableLoopDistribute))
 | 
						|
      Changed |= LDL.processLoop(GetLAA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Process each loop nest in the function.
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// \brief The pass class.
 | 
						|
class LoopDistributeLegacy : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  LoopDistributeLegacy() : FunctionPass(ID) {
 | 
						|
    // The default is set by the caller.
 | 
						|
    initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
 | 
						|
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | 
						|
    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
 | 
						|
        [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
 | 
						|
 | 
						|
    return runImpl(F, LI, DT, SE, ORE, GetLAA);
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
    AU.addRequired<LoopAccessLegacyAnalysis>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
PreservedAnalyses LoopDistributePass::run(Function &F,
 | 
						|
                                          FunctionAnalysisManager &AM) {
 | 
						|
  auto &LI = AM.getResult<LoopAnalysis>(F);
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
 | 
						|
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | 
						|
 | 
						|
  // We don't directly need these analyses but they're required for loop
 | 
						|
  // analyses so provide them below.
 | 
						|
  auto &AA = AM.getResult<AAManager>(F);
 | 
						|
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
 | 
						|
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
 | 
						|
  auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
 | 
						|
  std::function<const LoopAccessInfo &(Loop &)> GetLAA =
 | 
						|
      [&](Loop &L) -> const LoopAccessInfo & {
 | 
						|
    LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI};
 | 
						|
    return LAM.getResult<LoopAccessAnalysis>(L, AR);
 | 
						|
  };
 | 
						|
 | 
						|
  bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<LoopAnalysis>();
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
char LoopDistributeLegacy::ID;
 | 
						|
 | 
						|
static const char ldist_name[] = "Loop Distribution";
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
 | 
						|
                      false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }
 |