forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1735 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1735 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements an idiom recognizer that transforms simple loops into a
 | 
						|
// non-loop form.  In cases that this kicks in, it can be a significant
 | 
						|
// performance win.
 | 
						|
//
 | 
						|
// If compiling for code size we avoid idiom recognition if the resulting
 | 
						|
// code could be larger than the code for the original loop. One way this could
 | 
						|
// happen is if the loop is not removable after idiom recognition due to the
 | 
						|
// presence of non-idiom instructions. The initial implementation of the
 | 
						|
// heuristics applies to idioms in multi-block loops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// TODO List:
 | 
						|
//
 | 
						|
// Future loop memory idioms to recognize:
 | 
						|
//   memcmp, memmove, strlen, etc.
 | 
						|
// Future floating point idioms to recognize in -ffast-math mode:
 | 
						|
//   fpowi
 | 
						|
// Future integer operation idioms to recognize:
 | 
						|
//   ctpop, ctlz, cttz
 | 
						|
//
 | 
						|
// Beware that isel's default lowering for ctpop is highly inefficient for
 | 
						|
// i64 and larger types when i64 is legal and the value has few bits set.  It
 | 
						|
// would be good to enhance isel to emit a loop for ctpop in this case.
 | 
						|
//
 | 
						|
// This could recognize common matrix multiplies and dot product idioms and
 | 
						|
// replace them with calls to BLAS (if linked in??).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopAccessAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-idiom"
 | 
						|
 | 
						|
STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
 | 
						|
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
 | 
						|
 | 
						|
static cl::opt<bool> UseLIRCodeSizeHeurs(
 | 
						|
    "use-lir-code-size-heurs",
 | 
						|
    cl::desc("Use loop idiom recognition code size heuristics when compiling"
 | 
						|
             "with -Os/-Oz"),
 | 
						|
    cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class LoopIdiomRecognize {
 | 
						|
  Loop *CurLoop = nullptr;
 | 
						|
  AliasAnalysis *AA;
 | 
						|
  DominatorTree *DT;
 | 
						|
  LoopInfo *LI;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  TargetLibraryInfo *TLI;
 | 
						|
  const TargetTransformInfo *TTI;
 | 
						|
  const DataLayout *DL;
 | 
						|
  bool ApplyCodeSizeHeuristics;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
 | 
						|
                              LoopInfo *LI, ScalarEvolution *SE,
 | 
						|
                              TargetLibraryInfo *TLI,
 | 
						|
                              const TargetTransformInfo *TTI,
 | 
						|
                              const DataLayout *DL)
 | 
						|
      : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {}
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L);
 | 
						|
 | 
						|
private:
 | 
						|
  using StoreList = SmallVector<StoreInst *, 8>;
 | 
						|
  using StoreListMap = MapVector<Value *, StoreList>;
 | 
						|
 | 
						|
  StoreListMap StoreRefsForMemset;
 | 
						|
  StoreListMap StoreRefsForMemsetPattern;
 | 
						|
  StoreList StoreRefsForMemcpy;
 | 
						|
  bool HasMemset;
 | 
						|
  bool HasMemsetPattern;
 | 
						|
  bool HasMemcpy;
 | 
						|
 | 
						|
  /// Return code for isLegalStore()
 | 
						|
  enum LegalStoreKind {
 | 
						|
    None = 0,
 | 
						|
    Memset,
 | 
						|
    MemsetPattern,
 | 
						|
    Memcpy,
 | 
						|
    UnorderedAtomicMemcpy,
 | 
						|
    DontUse // Dummy retval never to be used. Allows catching errors in retval
 | 
						|
            // handling.
 | 
						|
  };
 | 
						|
 | 
						|
  /// \name Countable Loop Idiom Handling
 | 
						|
  /// @{
 | 
						|
 | 
						|
  bool runOnCountableLoop();
 | 
						|
  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
 | 
						|
                      SmallVectorImpl<BasicBlock *> &ExitBlocks);
 | 
						|
 | 
						|
  void collectStores(BasicBlock *BB);
 | 
						|
  LegalStoreKind isLegalStore(StoreInst *SI);
 | 
						|
  bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
 | 
						|
                         bool ForMemset);
 | 
						|
  bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
 | 
						|
 | 
						|
  bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
 | 
						|
                               unsigned StoreAlignment, Value *StoredVal,
 | 
						|
                               Instruction *TheStore,
 | 
						|
                               SmallPtrSetImpl<Instruction *> &Stores,
 | 
						|
                               const SCEVAddRecExpr *Ev, const SCEV *BECount,
 | 
						|
                               bool NegStride, bool IsLoopMemset = false);
 | 
						|
  bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
 | 
						|
  bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
 | 
						|
                                 bool IsLoopMemset = false);
 | 
						|
 | 
						|
  /// @}
 | 
						|
  /// \name Noncountable Loop Idiom Handling
 | 
						|
  /// @{
 | 
						|
 | 
						|
  bool runOnNoncountableLoop();
 | 
						|
 | 
						|
  bool recognizePopcount();
 | 
						|
  void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
 | 
						|
                               PHINode *CntPhi, Value *Var);
 | 
						|
  bool recognizeAndInsertCTLZ();
 | 
						|
  void transformLoopToCountable(BasicBlock *PreCondBB, Instruction *CntInst,
 | 
						|
                                PHINode *CntPhi, Value *Var, const DebugLoc DL,
 | 
						|
                                bool ZeroCheck, bool IsCntPhiUsedOutsideLoop);
 | 
						|
 | 
						|
  /// @}
 | 
						|
};
 | 
						|
 | 
						|
class LoopIdiomRecognizeLegacyPass : public LoopPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
 | 
						|
    initializeLoopIdiomRecognizeLegacyPassPass(
 | 
						|
        *PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | 
						|
    if (skipLoop(L))
 | 
						|
      return false;
 | 
						|
 | 
						|
    AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
    TargetLibraryInfo *TLI =
 | 
						|
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
    const TargetTransformInfo *TTI =
 | 
						|
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | 
						|
            *L->getHeader()->getParent());
 | 
						|
    const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
 | 
						|
 | 
						|
    LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
 | 
						|
    return LIR.runOnLoop(L);
 | 
						|
  }
 | 
						|
 | 
						|
  /// This transformation requires natural loop information & requires that
 | 
						|
  /// loop preheaders be inserted into the CFG.
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char LoopIdiomRecognizeLegacyPass::ID = 0;
 | 
						|
 | 
						|
PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                                              LoopStandardAnalysisResults &AR,
 | 
						|
                                              LPMUpdater &) {
 | 
						|
  const auto *DL = &L.getHeader()->getModule()->getDataLayout();
 | 
						|
 | 
						|
  LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL);
 | 
						|
  if (!LIR.runOnLoop(&L))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  return getLoopPassPreservedAnalyses();
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
 | 
						|
                      "Recognize loop idioms", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
 | 
						|
                    "Recognize loop idioms", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
 | 
						|
 | 
						|
static void deleteDeadInstruction(Instruction *I) {
 | 
						|
  I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
  I->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//          Implementation of LoopIdiomRecognize
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool LoopIdiomRecognize::runOnLoop(Loop *L) {
 | 
						|
  CurLoop = L;
 | 
						|
  // If the loop could not be converted to canonical form, it must have an
 | 
						|
  // indirectbr in it, just give up.
 | 
						|
  if (!L->getLoopPreheader())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Disable loop idiom recognition if the function's name is a common idiom.
 | 
						|
  StringRef Name = L->getHeader()->getParent()->getName();
 | 
						|
  if (Name == "memset" || Name == "memcpy")
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Determine if code size heuristics need to be applied.
 | 
						|
  ApplyCodeSizeHeuristics =
 | 
						|
      L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs;
 | 
						|
 | 
						|
  HasMemset = TLI->has(LibFunc_memset);
 | 
						|
  HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
 | 
						|
  HasMemcpy = TLI->has(LibFunc_memcpy);
 | 
						|
 | 
						|
  if (HasMemset || HasMemsetPattern || HasMemcpy)
 | 
						|
    if (SE->hasLoopInvariantBackedgeTakenCount(L))
 | 
						|
      return runOnCountableLoop();
 | 
						|
 | 
						|
  return runOnNoncountableLoop();
 | 
						|
}
 | 
						|
 | 
						|
bool LoopIdiomRecognize::runOnCountableLoop() {
 | 
						|
  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
 | 
						|
  assert(!isa<SCEVCouldNotCompute>(BECount) &&
 | 
						|
         "runOnCountableLoop() called on a loop without a predictable"
 | 
						|
         "backedge-taken count");
 | 
						|
 | 
						|
  // If this loop executes exactly one time, then it should be peeled, not
 | 
						|
  // optimized by this pass.
 | 
						|
  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
 | 
						|
    if (BECst->getAPInt() == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
  CurLoop->getUniqueExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "loop-idiom Scanning: F["
 | 
						|
               << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
 | 
						|
               << CurLoop->getHeader()->getName() << "\n");
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // The following transforms hoist stores/memsets into the loop pre-header.
 | 
						|
  // Give up if the loop has instructions may throw.
 | 
						|
  LoopSafetyInfo SafetyInfo;
 | 
						|
  computeLoopSafetyInfo(&SafetyInfo, CurLoop);
 | 
						|
  if (SafetyInfo.MayThrow)
 | 
						|
    return MadeChange;
 | 
						|
 | 
						|
  // Scan all the blocks in the loop that are not in subloops.
 | 
						|
  for (auto *BB : CurLoop->getBlocks()) {
 | 
						|
    // Ignore blocks in subloops.
 | 
						|
    if (LI->getLoopFor(BB) != CurLoop)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
 | 
						|
  uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
 | 
						|
  assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
 | 
						|
         "Don't overflow unsigned.");
 | 
						|
  return (unsigned)SizeInBits >> 3;
 | 
						|
}
 | 
						|
 | 
						|
static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
 | 
						|
  const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
 | 
						|
  return ConstStride->getAPInt();
 | 
						|
}
 | 
						|
 | 
						|
/// getMemSetPatternValue - If a strided store of the specified value is safe to
 | 
						|
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
 | 
						|
/// be passed in.  Otherwise, return null.
 | 
						|
///
 | 
						|
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
 | 
						|
/// just replicate their input array and then pass on to memset_pattern16.
 | 
						|
static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
 | 
						|
  // If the value isn't a constant, we can't promote it to being in a constant
 | 
						|
  // array.  We could theoretically do a store to an alloca or something, but
 | 
						|
  // that doesn't seem worthwhile.
 | 
						|
  Constant *C = dyn_cast<Constant>(V);
 | 
						|
  if (!C)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Only handle simple values that are a power of two bytes in size.
 | 
						|
  uint64_t Size = DL->getTypeSizeInBits(V->getType());
 | 
						|
  if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Don't care enough about darwin/ppc to implement this.
 | 
						|
  if (DL->isBigEndian())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Convert to size in bytes.
 | 
						|
  Size /= 8;
 | 
						|
 | 
						|
  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
 | 
						|
  // if the top and bottom are the same (e.g. for vectors and large integers).
 | 
						|
  if (Size > 16)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If the constant is exactly 16 bytes, just use it.
 | 
						|
  if (Size == 16)
 | 
						|
    return C;
 | 
						|
 | 
						|
  // Otherwise, we'll use an array of the constants.
 | 
						|
  unsigned ArraySize = 16 / Size;
 | 
						|
  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
 | 
						|
  return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
 | 
						|
}
 | 
						|
 | 
						|
LoopIdiomRecognize::LegalStoreKind
 | 
						|
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
 | 
						|
  // Don't touch volatile stores.
 | 
						|
  if (SI->isVolatile())
 | 
						|
    return LegalStoreKind::None;
 | 
						|
  // We only want simple or unordered-atomic stores.
 | 
						|
  if (!SI->isUnordered())
 | 
						|
    return LegalStoreKind::None;
 | 
						|
 | 
						|
  // Don't convert stores of non-integral pointer types to memsets (which stores
 | 
						|
  // integers).
 | 
						|
  if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
 | 
						|
    return LegalStoreKind::None;
 | 
						|
 | 
						|
  // Avoid merging nontemporal stores.
 | 
						|
  if (SI->getMetadata(LLVMContext::MD_nontemporal))
 | 
						|
    return LegalStoreKind::None;
 | 
						|
 | 
						|
  Value *StoredVal = SI->getValueOperand();
 | 
						|
  Value *StorePtr = SI->getPointerOperand();
 | 
						|
 | 
						|
  // Reject stores that are so large that they overflow an unsigned.
 | 
						|
  uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
 | 
						|
  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
 | 
						|
    return LegalStoreKind::None;
 | 
						|
 | 
						|
  // See if the pointer expression is an AddRec like {base,+,1} on the current
 | 
						|
  // loop, which indicates a strided store.  If we have something else, it's a
 | 
						|
  // random store we can't handle.
 | 
						|
  const SCEVAddRecExpr *StoreEv =
 | 
						|
      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | 
						|
  if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
 | 
						|
    return LegalStoreKind::None;
 | 
						|
 | 
						|
  // Check to see if we have a constant stride.
 | 
						|
  if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
 | 
						|
    return LegalStoreKind::None;
 | 
						|
 | 
						|
  // See if the store can be turned into a memset.
 | 
						|
 | 
						|
  // If the stored value is a byte-wise value (like i32 -1), then it may be
 | 
						|
  // turned into a memset of i8 -1, assuming that all the consecutive bytes
 | 
						|
  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
 | 
						|
  // but it can be turned into memset_pattern if the target supports it.
 | 
						|
  Value *SplatValue = isBytewiseValue(StoredVal);
 | 
						|
  Constant *PatternValue = nullptr;
 | 
						|
 | 
						|
  // Note: memset and memset_pattern on unordered-atomic is yet not supported
 | 
						|
  bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
 | 
						|
 | 
						|
  // If we're allowed to form a memset, and the stored value would be
 | 
						|
  // acceptable for memset, use it.
 | 
						|
  if (!UnorderedAtomic && HasMemset && SplatValue &&
 | 
						|
      // Verify that the stored value is loop invariant.  If not, we can't
 | 
						|
      // promote the memset.
 | 
						|
      CurLoop->isLoopInvariant(SplatValue)) {
 | 
						|
    // It looks like we can use SplatValue.
 | 
						|
    return LegalStoreKind::Memset;
 | 
						|
  } else if (!UnorderedAtomic && HasMemsetPattern &&
 | 
						|
             // Don't create memset_pattern16s with address spaces.
 | 
						|
             StorePtr->getType()->getPointerAddressSpace() == 0 &&
 | 
						|
             (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
 | 
						|
    // It looks like we can use PatternValue!
 | 
						|
    return LegalStoreKind::MemsetPattern;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, see if the store can be turned into a memcpy.
 | 
						|
  if (HasMemcpy) {
 | 
						|
    // Check to see if the stride matches the size of the store.  If so, then we
 | 
						|
    // know that every byte is touched in the loop.
 | 
						|
    APInt Stride = getStoreStride(StoreEv);
 | 
						|
    unsigned StoreSize = getStoreSizeInBytes(SI, DL);
 | 
						|
    if (StoreSize != Stride && StoreSize != -Stride)
 | 
						|
      return LegalStoreKind::None;
 | 
						|
 | 
						|
    // The store must be feeding a non-volatile load.
 | 
						|
    LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
 | 
						|
 | 
						|
    // Only allow non-volatile loads
 | 
						|
    if (!LI || LI->isVolatile())
 | 
						|
      return LegalStoreKind::None;
 | 
						|
    // Only allow simple or unordered-atomic loads
 | 
						|
    if (!LI->isUnordered())
 | 
						|
      return LegalStoreKind::None;
 | 
						|
 | 
						|
    // See if the pointer expression is an AddRec like {base,+,1} on the current
 | 
						|
    // loop, which indicates a strided load.  If we have something else, it's a
 | 
						|
    // random load we can't handle.
 | 
						|
    const SCEVAddRecExpr *LoadEv =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
 | 
						|
    if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
 | 
						|
      return LegalStoreKind::None;
 | 
						|
 | 
						|
    // The store and load must share the same stride.
 | 
						|
    if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
 | 
						|
      return LegalStoreKind::None;
 | 
						|
 | 
						|
    // Success.  This store can be converted into a memcpy.
 | 
						|
    UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
 | 
						|
    return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
 | 
						|
                           : LegalStoreKind::Memcpy;
 | 
						|
  }
 | 
						|
  // This store can't be transformed into a memset/memcpy.
 | 
						|
  return LegalStoreKind::None;
 | 
						|
}
 | 
						|
 | 
						|
void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
 | 
						|
  StoreRefsForMemset.clear();
 | 
						|
  StoreRefsForMemsetPattern.clear();
 | 
						|
  StoreRefsForMemcpy.clear();
 | 
						|
  for (Instruction &I : *BB) {
 | 
						|
    StoreInst *SI = dyn_cast<StoreInst>(&I);
 | 
						|
    if (!SI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure this is a strided store with a constant stride.
 | 
						|
    switch (isLegalStore(SI)) {
 | 
						|
    case LegalStoreKind::None:
 | 
						|
      // Nothing to do
 | 
						|
      break;
 | 
						|
    case LegalStoreKind::Memset: {
 | 
						|
      // Find the base pointer.
 | 
						|
      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
 | 
						|
      StoreRefsForMemset[Ptr].push_back(SI);
 | 
						|
    } break;
 | 
						|
    case LegalStoreKind::MemsetPattern: {
 | 
						|
      // Find the base pointer.
 | 
						|
      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
 | 
						|
      StoreRefsForMemsetPattern[Ptr].push_back(SI);
 | 
						|
    } break;
 | 
						|
    case LegalStoreKind::Memcpy:
 | 
						|
    case LegalStoreKind::UnorderedAtomicMemcpy:
 | 
						|
      StoreRefsForMemcpy.push_back(SI);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(false && "unhandled return value");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
 | 
						|
/// with the specified backedge count.  This block is known to be in the current
 | 
						|
/// loop and not in any subloops.
 | 
						|
bool LoopIdiomRecognize::runOnLoopBlock(
 | 
						|
    BasicBlock *BB, const SCEV *BECount,
 | 
						|
    SmallVectorImpl<BasicBlock *> &ExitBlocks) {
 | 
						|
  // We can only promote stores in this block if they are unconditionally
 | 
						|
  // executed in the loop.  For a block to be unconditionally executed, it has
 | 
						|
  // to dominate all the exit blocks of the loop.  Verify this now.
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
    if (!DT->dominates(BB, ExitBlocks[i]))
 | 
						|
      return false;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  // Look for store instructions, which may be optimized to memset/memcpy.
 | 
						|
  collectStores(BB);
 | 
						|
 | 
						|
  // Look for a single store or sets of stores with a common base, which can be
 | 
						|
  // optimized into a memset (memset_pattern).  The latter most commonly happens
 | 
						|
  // with structs and handunrolled loops.
 | 
						|
  for (auto &SL : StoreRefsForMemset)
 | 
						|
    MadeChange |= processLoopStores(SL.second, BECount, true);
 | 
						|
 | 
						|
  for (auto &SL : StoreRefsForMemsetPattern)
 | 
						|
    MadeChange |= processLoopStores(SL.second, BECount, false);
 | 
						|
 | 
						|
  // Optimize the store into a memcpy, if it feeds an similarly strided load.
 | 
						|
  for (auto &SI : StoreRefsForMemcpy)
 | 
						|
    MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
 | 
						|
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
    // Look for memset instructions, which may be optimized to a larger memset.
 | 
						|
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
 | 
						|
      WeakTrackingVH InstPtr(&*I);
 | 
						|
      if (!processLoopMemSet(MSI, BECount))
 | 
						|
        continue;
 | 
						|
      MadeChange = true;
 | 
						|
 | 
						|
      // If processing the memset invalidated our iterator, start over from the
 | 
						|
      // top of the block.
 | 
						|
      if (!InstPtr)
 | 
						|
        I = BB->begin();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// processLoopStores - See if this store(s) can be promoted to a memset.
 | 
						|
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
 | 
						|
                                           const SCEV *BECount,
 | 
						|
                                           bool ForMemset) {
 | 
						|
  // Try to find consecutive stores that can be transformed into memsets.
 | 
						|
  SetVector<StoreInst *> Heads, Tails;
 | 
						|
  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
 | 
						|
 | 
						|
  // Do a quadratic search on all of the given stores and find
 | 
						|
  // all of the pairs of stores that follow each other.
 | 
						|
  SmallVector<unsigned, 16> IndexQueue;
 | 
						|
  for (unsigned i = 0, e = SL.size(); i < e; ++i) {
 | 
						|
    assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
 | 
						|
 | 
						|
    Value *FirstStoredVal = SL[i]->getValueOperand();
 | 
						|
    Value *FirstStorePtr = SL[i]->getPointerOperand();
 | 
						|
    const SCEVAddRecExpr *FirstStoreEv =
 | 
						|
        cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
 | 
						|
    APInt FirstStride = getStoreStride(FirstStoreEv);
 | 
						|
    unsigned FirstStoreSize = getStoreSizeInBytes(SL[i], DL);
 | 
						|
 | 
						|
    // See if we can optimize just this store in isolation.
 | 
						|
    if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
 | 
						|
      Heads.insert(SL[i]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Value *FirstSplatValue = nullptr;
 | 
						|
    Constant *FirstPatternValue = nullptr;
 | 
						|
 | 
						|
    if (ForMemset)
 | 
						|
      FirstSplatValue = isBytewiseValue(FirstStoredVal);
 | 
						|
    else
 | 
						|
      FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
 | 
						|
 | 
						|
    assert((FirstSplatValue || FirstPatternValue) &&
 | 
						|
           "Expected either splat value or pattern value.");
 | 
						|
 | 
						|
    IndexQueue.clear();
 | 
						|
    // If a store has multiple consecutive store candidates, search Stores
 | 
						|
    // array according to the sequence: from i+1 to e, then from i-1 to 0.
 | 
						|
    // This is because usually pairing with immediate succeeding or preceding
 | 
						|
    // candidate create the best chance to find memset opportunity.
 | 
						|
    unsigned j = 0;
 | 
						|
    for (j = i + 1; j < e; ++j)
 | 
						|
      IndexQueue.push_back(j);
 | 
						|
    for (j = i; j > 0; --j)
 | 
						|
      IndexQueue.push_back(j - 1);
 | 
						|
 | 
						|
    for (auto &k : IndexQueue) {
 | 
						|
      assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
 | 
						|
      Value *SecondStorePtr = SL[k]->getPointerOperand();
 | 
						|
      const SCEVAddRecExpr *SecondStoreEv =
 | 
						|
          cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
 | 
						|
      APInt SecondStride = getStoreStride(SecondStoreEv);
 | 
						|
 | 
						|
      if (FirstStride != SecondStride)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Value *SecondStoredVal = SL[k]->getValueOperand();
 | 
						|
      Value *SecondSplatValue = nullptr;
 | 
						|
      Constant *SecondPatternValue = nullptr;
 | 
						|
 | 
						|
      if (ForMemset)
 | 
						|
        SecondSplatValue = isBytewiseValue(SecondStoredVal);
 | 
						|
      else
 | 
						|
        SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
 | 
						|
 | 
						|
      assert((SecondSplatValue || SecondPatternValue) &&
 | 
						|
             "Expected either splat value or pattern value.");
 | 
						|
 | 
						|
      if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
 | 
						|
        if (ForMemset) {
 | 
						|
          if (FirstSplatValue != SecondSplatValue)
 | 
						|
            continue;
 | 
						|
        } else {
 | 
						|
          if (FirstPatternValue != SecondPatternValue)
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        Tails.insert(SL[k]);
 | 
						|
        Heads.insert(SL[i]);
 | 
						|
        ConsecutiveChain[SL[i]] = SL[k];
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We may run into multiple chains that merge into a single chain. We mark the
 | 
						|
  // stores that we transformed so that we don't visit the same store twice.
 | 
						|
  SmallPtrSet<Value *, 16> TransformedStores;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // For stores that start but don't end a link in the chain:
 | 
						|
  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
 | 
						|
       it != e; ++it) {
 | 
						|
    if (Tails.count(*it))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We found a store instr that starts a chain. Now follow the chain and try
 | 
						|
    // to transform it.
 | 
						|
    SmallPtrSet<Instruction *, 8> AdjacentStores;
 | 
						|
    StoreInst *I = *it;
 | 
						|
 | 
						|
    StoreInst *HeadStore = I;
 | 
						|
    unsigned StoreSize = 0;
 | 
						|
 | 
						|
    // Collect the chain into a list.
 | 
						|
    while (Tails.count(I) || Heads.count(I)) {
 | 
						|
      if (TransformedStores.count(I))
 | 
						|
        break;
 | 
						|
      AdjacentStores.insert(I);
 | 
						|
 | 
						|
      StoreSize += getStoreSizeInBytes(I, DL);
 | 
						|
      // Move to the next value in the chain.
 | 
						|
      I = ConsecutiveChain[I];
 | 
						|
    }
 | 
						|
 | 
						|
    Value *StoredVal = HeadStore->getValueOperand();
 | 
						|
    Value *StorePtr = HeadStore->getPointerOperand();
 | 
						|
    const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | 
						|
    APInt Stride = getStoreStride(StoreEv);
 | 
						|
 | 
						|
    // Check to see if the stride matches the size of the stores.  If so, then
 | 
						|
    // we know that every byte is touched in the loop.
 | 
						|
    if (StoreSize != Stride && StoreSize != -Stride)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool NegStride = StoreSize == -Stride;
 | 
						|
 | 
						|
    if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
 | 
						|
                                StoredVal, HeadStore, AdjacentStores, StoreEv,
 | 
						|
                                BECount, NegStride)) {
 | 
						|
      TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// processLoopMemSet - See if this memset can be promoted to a large memset.
 | 
						|
bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
 | 
						|
                                           const SCEV *BECount) {
 | 
						|
  // We can only handle non-volatile memsets with a constant size.
 | 
						|
  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we're not allowed to hack on memset, we fail.
 | 
						|
  if (!HasMemset)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Pointer = MSI->getDest();
 | 
						|
 | 
						|
  // See if the pointer expression is an AddRec like {base,+,1} on the current
 | 
						|
  // loop, which indicates a strided store.  If we have something else, it's a
 | 
						|
  // random store we can't handle.
 | 
						|
  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
 | 
						|
  if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Reject memsets that are so large that they overflow an unsigned.
 | 
						|
  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | 
						|
  if ((SizeInBytes >> 32) != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check to see if the stride matches the size of the memset.  If so, then we
 | 
						|
  // know that every byte is touched in the loop.
 | 
						|
  const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
 | 
						|
  if (!ConstStride)
 | 
						|
    return false;
 | 
						|
 | 
						|
  APInt Stride = ConstStride->getAPInt();
 | 
						|
  if (SizeInBytes != Stride && SizeInBytes != -Stride)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that the memset value is loop invariant.  If not, we can't promote
 | 
						|
  // the memset.
 | 
						|
  Value *SplatValue = MSI->getValue();
 | 
						|
  if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 1> MSIs;
 | 
						|
  MSIs.insert(MSI);
 | 
						|
  bool NegStride = SizeInBytes == -Stride;
 | 
						|
  return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
 | 
						|
                                 MSI->getAlignment(), SplatValue, MSI, MSIs, Ev,
 | 
						|
                                 BECount, NegStride, /*IsLoopMemset=*/true);
 | 
						|
}
 | 
						|
 | 
						|
/// mayLoopAccessLocation - Return true if the specified loop might access the
 | 
						|
/// specified pointer location, which is a loop-strided access.  The 'Access'
 | 
						|
/// argument specifies what the verboten forms of access are (read or write).
 | 
						|
static bool
 | 
						|
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
 | 
						|
                      const SCEV *BECount, unsigned StoreSize,
 | 
						|
                      AliasAnalysis &AA,
 | 
						|
                      SmallPtrSetImpl<Instruction *> &IgnoredStores) {
 | 
						|
  // Get the location that may be stored across the loop.  Since the access is
 | 
						|
  // strided positively through memory, we say that the modified location starts
 | 
						|
  // at the pointer and has infinite size.
 | 
						|
  uint64_t AccessSize = MemoryLocation::UnknownSize;
 | 
						|
 | 
						|
  // If the loop iterates a fixed number of times, we can refine the access size
 | 
						|
  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
 | 
						|
  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
 | 
						|
    AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
 | 
						|
 | 
						|
  // TODO: For this to be really effective, we have to dive into the pointer
 | 
						|
  // operand in the store.  Store to &A[i] of 100 will always return may alias
 | 
						|
  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
 | 
						|
  // which will then no-alias a store to &A[100].
 | 
						|
  MemoryLocation StoreLoc(Ptr, AccessSize);
 | 
						|
 | 
						|
  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
 | 
						|
       ++BI)
 | 
						|
    for (Instruction &I : **BI)
 | 
						|
      if (IgnoredStores.count(&I) == 0 &&
 | 
						|
          (AA.getModRefInfo(&I, StoreLoc) & Access))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If we have a negative stride, Start refers to the end of the memory location
 | 
						|
// we're trying to memset.  Therefore, we need to recompute the base pointer,
 | 
						|
// which is just Start - BECount*Size.
 | 
						|
static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
 | 
						|
                                        Type *IntPtr, unsigned StoreSize,
 | 
						|
                                        ScalarEvolution *SE) {
 | 
						|
  const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
 | 
						|
  if (StoreSize != 1)
 | 
						|
    Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
 | 
						|
                           SCEV::FlagNUW);
 | 
						|
  return SE->getMinusSCEV(Start, Index);
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the number of bytes as a SCEV from the backedge taken count.
 | 
						|
///
 | 
						|
/// This also maps the SCEV into the provided type and tries to handle the
 | 
						|
/// computation in a way that will fold cleanly.
 | 
						|
static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
 | 
						|
                               unsigned StoreSize, Loop *CurLoop,
 | 
						|
                               const DataLayout *DL, ScalarEvolution *SE) {
 | 
						|
  const SCEV *NumBytesS;
 | 
						|
  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
 | 
						|
  // pointer size if it isn't already.
 | 
						|
  //
 | 
						|
  // If we're going to need to zero extend the BE count, check if we can add
 | 
						|
  // one to it prior to zero extending without overflow. Provided this is safe,
 | 
						|
  // it allows better simplification of the +1.
 | 
						|
  if (DL->getTypeSizeInBits(BECount->getType()) <
 | 
						|
          DL->getTypeSizeInBits(IntPtr) &&
 | 
						|
      SE->isLoopEntryGuardedByCond(
 | 
						|
          CurLoop, ICmpInst::ICMP_NE, BECount,
 | 
						|
          SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
 | 
						|
    NumBytesS = SE->getZeroExtendExpr(
 | 
						|
        SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
 | 
						|
        IntPtr);
 | 
						|
  } else {
 | 
						|
    NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
 | 
						|
                               SE->getOne(IntPtr), SCEV::FlagNUW);
 | 
						|
  }
 | 
						|
 | 
						|
  // And scale it based on the store size.
 | 
						|
  if (StoreSize != 1) {
 | 
						|
    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
 | 
						|
                               SCEV::FlagNUW);
 | 
						|
  }
 | 
						|
  return NumBytesS;
 | 
						|
}
 | 
						|
 | 
						|
/// processLoopStridedStore - We see a strided store of some value.  If we can
 | 
						|
/// transform this into a memset or memset_pattern in the loop preheader, do so.
 | 
						|
bool LoopIdiomRecognize::processLoopStridedStore(
 | 
						|
    Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
 | 
						|
    Value *StoredVal, Instruction *TheStore,
 | 
						|
    SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
 | 
						|
    const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
 | 
						|
  Value *SplatValue = isBytewiseValue(StoredVal);
 | 
						|
  Constant *PatternValue = nullptr;
 | 
						|
 | 
						|
  if (!SplatValue)
 | 
						|
    PatternValue = getMemSetPatternValue(StoredVal, DL);
 | 
						|
 | 
						|
  assert((SplatValue || PatternValue) &&
 | 
						|
         "Expected either splat value or pattern value.");
 | 
						|
 | 
						|
  // The trip count of the loop and the base pointer of the addrec SCEV is
 | 
						|
  // guaranteed to be loop invariant, which means that it should dominate the
 | 
						|
  // header.  This allows us to insert code for it in the preheader.
 | 
						|
  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
 | 
						|
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | 
						|
  IRBuilder<> Builder(Preheader->getTerminator());
 | 
						|
  SCEVExpander Expander(*SE, *DL, "loop-idiom");
 | 
						|
 | 
						|
  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
 | 
						|
  Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
 | 
						|
 | 
						|
  const SCEV *Start = Ev->getStart();
 | 
						|
  // Handle negative strided loops.
 | 
						|
  if (NegStride)
 | 
						|
    Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
 | 
						|
 | 
						|
  // TODO: ideally we should still be able to generate memset if SCEV expander
 | 
						|
  // is taught to generate the dependencies at the latest point.
 | 
						|
  if (!isSafeToExpand(Start, *SE))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
 | 
						|
  // this into a memset in the loop preheader now if we want.  However, this
 | 
						|
  // would be unsafe to do if there is anything else in the loop that may read
 | 
						|
  // or write to the aliased location.  Check for any overlap by generating the
 | 
						|
  // base pointer and checking the region.
 | 
						|
  Value *BasePtr =
 | 
						|
      Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
 | 
						|
  if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
 | 
						|
                            *AA, Stores)) {
 | 
						|
    Expander.clear();
 | 
						|
    // If we generated new code for the base pointer, clean up.
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, everything looks good, insert the memset.
 | 
						|
 | 
						|
  const SCEV *NumBytesS =
 | 
						|
      getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
 | 
						|
 | 
						|
  // TODO: ideally we should still be able to generate memset if SCEV expander
 | 
						|
  // is taught to generate the dependencies at the latest point.
 | 
						|
  if (!isSafeToExpand(NumBytesS, *SE))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *NumBytes =
 | 
						|
      Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
 | 
						|
 | 
						|
  CallInst *NewCall;
 | 
						|
  if (SplatValue) {
 | 
						|
    NewCall =
 | 
						|
        Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
 | 
						|
  } else {
 | 
						|
    // Everything is emitted in default address space
 | 
						|
    Type *Int8PtrTy = DestInt8PtrTy;
 | 
						|
 | 
						|
    Module *M = TheStore->getModule();
 | 
						|
    Value *MSP =
 | 
						|
        M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
 | 
						|
                               Int8PtrTy, Int8PtrTy, IntPtr);
 | 
						|
    inferLibFuncAttributes(*M->getFunction("memset_pattern16"), *TLI);
 | 
						|
 | 
						|
    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
 | 
						|
    // an constant array of 16-bytes.  Plop the value into a mergable global.
 | 
						|
    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
 | 
						|
                                            GlobalValue::PrivateLinkage,
 | 
						|
                                            PatternValue, ".memset_pattern");
 | 
						|
    GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
 | 
						|
    GV->setAlignment(16);
 | 
						|
    Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
 | 
						|
    NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
 | 
						|
               << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
 | 
						|
  NewCall->setDebugLoc(TheStore->getDebugLoc());
 | 
						|
 | 
						|
  // Okay, the memset has been formed.  Zap the original store and anything that
 | 
						|
  // feeds into it.
 | 
						|
  for (auto *I : Stores)
 | 
						|
    deleteDeadInstruction(I);
 | 
						|
  ++NumMemSet;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// If the stored value is a strided load in the same loop with the same stride
 | 
						|
/// this may be transformable into a memcpy.  This kicks in for stuff like
 | 
						|
/// for (i) A[i] = B[i];
 | 
						|
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
 | 
						|
                                                    const SCEV *BECount) {
 | 
						|
  assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
 | 
						|
 | 
						|
  Value *StorePtr = SI->getPointerOperand();
 | 
						|
  const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
 | 
						|
  APInt Stride = getStoreStride(StoreEv);
 | 
						|
  unsigned StoreSize = getStoreSizeInBytes(SI, DL);
 | 
						|
  bool NegStride = StoreSize == -Stride;
 | 
						|
 | 
						|
  // The store must be feeding a non-volatile load.
 | 
						|
  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
 | 
						|
  assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
 | 
						|
 | 
						|
  // See if the pointer expression is an AddRec like {base,+,1} on the current
 | 
						|
  // loop, which indicates a strided load.  If we have something else, it's a
 | 
						|
  // random load we can't handle.
 | 
						|
  const SCEVAddRecExpr *LoadEv =
 | 
						|
      cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
 | 
						|
 | 
						|
  // The trip count of the loop and the base pointer of the addrec SCEV is
 | 
						|
  // guaranteed to be loop invariant, which means that it should dominate the
 | 
						|
  // header.  This allows us to insert code for it in the preheader.
 | 
						|
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | 
						|
  IRBuilder<> Builder(Preheader->getTerminator());
 | 
						|
  SCEVExpander Expander(*SE, *DL, "loop-idiom");
 | 
						|
 | 
						|
  const SCEV *StrStart = StoreEv->getStart();
 | 
						|
  unsigned StrAS = SI->getPointerAddressSpace();
 | 
						|
  Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
 | 
						|
 | 
						|
  // Handle negative strided loops.
 | 
						|
  if (NegStride)
 | 
						|
    StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
 | 
						|
 | 
						|
  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
 | 
						|
  // this into a memcpy in the loop preheader now if we want.  However, this
 | 
						|
  // would be unsafe to do if there is anything else in the loop that may read
 | 
						|
  // or write the memory region we're storing to.  This includes the load that
 | 
						|
  // feeds the stores.  Check for an alias by generating the base address and
 | 
						|
  // checking everything.
 | 
						|
  Value *StoreBasePtr = Expander.expandCodeFor(
 | 
						|
      StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 1> Stores;
 | 
						|
  Stores.insert(SI);
 | 
						|
  if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
 | 
						|
                            StoreSize, *AA, Stores)) {
 | 
						|
    Expander.clear();
 | 
						|
    // If we generated new code for the base pointer, clean up.
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *LdStart = LoadEv->getStart();
 | 
						|
  unsigned LdAS = LI->getPointerAddressSpace();
 | 
						|
 | 
						|
  // Handle negative strided loops.
 | 
						|
  if (NegStride)
 | 
						|
    LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
 | 
						|
 | 
						|
  // For a memcpy, we have to make sure that the input array is not being
 | 
						|
  // mutated by the loop.
 | 
						|
  Value *LoadBasePtr = Expander.expandCodeFor(
 | 
						|
      LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
 | 
						|
 | 
						|
  if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
 | 
						|
                            *AA, Stores)) {
 | 
						|
    Expander.clear();
 | 
						|
    // If we generated new code for the base pointer, clean up.
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (avoidLIRForMultiBlockLoop())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, everything is safe, we can transform this!
 | 
						|
 | 
						|
  const SCEV *NumBytesS =
 | 
						|
      getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
 | 
						|
 | 
						|
  Value *NumBytes =
 | 
						|
      Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
 | 
						|
 | 
						|
  unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
 | 
						|
  CallInst *NewCall = nullptr;
 | 
						|
  // Check whether to generate an unordered atomic memcpy:
 | 
						|
  //  If the load or store are atomic, then they must neccessarily be unordered
 | 
						|
  //  by previous checks.
 | 
						|
  if (!SI->isAtomic() && !LI->isAtomic())
 | 
						|
    NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, Align);
 | 
						|
  else {
 | 
						|
    // We cannot allow unaligned ops for unordered load/store, so reject
 | 
						|
    // anything where the alignment isn't at least the element size.
 | 
						|
    if (Align < StoreSize)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If the element.atomic memcpy is not lowered into explicit
 | 
						|
    // loads/stores later, then it will be lowered into an element-size
 | 
						|
    // specific lib call. If the lib call doesn't exist for our store size, then
 | 
						|
    // we shouldn't generate the memcpy.
 | 
						|
    if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Create the call.
 | 
						|
    // Note that unordered atomic loads/stores are *required* by the spec to
 | 
						|
    // have an alignment but non-atomic loads/stores may not.
 | 
						|
    NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
 | 
						|
        StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
 | 
						|
        NumBytes, StoreSize);
 | 
						|
  }
 | 
						|
  NewCall->setDebugLoc(SI->getDebugLoc());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
 | 
						|
               << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
 | 
						|
               << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
 | 
						|
 | 
						|
  // Okay, the memcpy has been formed.  Zap the original store and anything that
 | 
						|
  // feeds into it.
 | 
						|
  deleteDeadInstruction(SI);
 | 
						|
  ++NumMemCpy;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// When compiling for codesize we avoid idiom recognition for a multi-block loop
 | 
						|
// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
 | 
						|
//
 | 
						|
bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
 | 
						|
                                                   bool IsLoopMemset) {
 | 
						|
  if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
 | 
						|
    if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
 | 
						|
      DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
 | 
						|
                   << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
 | 
						|
                   << " avoided: multi-block top-level loop\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopIdiomRecognize::runOnNoncountableLoop() {
 | 
						|
  return recognizePopcount() || recognizeAndInsertCTLZ();
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the given conditional branch is based on the comparison between
 | 
						|
/// a variable and zero, and if the variable is non-zero, the control yields to
 | 
						|
/// the loop entry. If the branch matches the behavior, the variable involved
 | 
						|
/// in the comparison is returned. This function will be called to see if the
 | 
						|
/// precondition and postcondition of the loop are in desirable form.
 | 
						|
static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
  if (!Cond)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
 | 
						|
  if (!CmpZero || !CmpZero->isZero())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = Cond->getPredicate();
 | 
						|
  if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
 | 
						|
      (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
 | 
						|
    return Cond->getOperand(0);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Check if the recurrence variable `VarX` is in the right form to create
 | 
						|
// the idiom. Returns the value coerced to a PHINode if so.
 | 
						|
static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
 | 
						|
                                 BasicBlock *LoopEntry) {
 | 
						|
  auto *PhiX = dyn_cast<PHINode>(VarX);
 | 
						|
  if (PhiX && PhiX->getParent() == LoopEntry &&
 | 
						|
      (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
 | 
						|
    return PhiX;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true iff the idiom is detected in the loop.
 | 
						|
///
 | 
						|
/// Additionally:
 | 
						|
/// 1) \p CntInst is set to the instruction counting the population bit.
 | 
						|
/// 2) \p CntPhi is set to the corresponding phi node.
 | 
						|
/// 3) \p Var is set to the value whose population bits are being counted.
 | 
						|
///
 | 
						|
/// The core idiom we are trying to detect is:
 | 
						|
/// \code
 | 
						|
///    if (x0 != 0)
 | 
						|
///      goto loop-exit // the precondition of the loop
 | 
						|
///    cnt0 = init-val;
 | 
						|
///    do {
 | 
						|
///       x1 = phi (x0, x2);
 | 
						|
///       cnt1 = phi(cnt0, cnt2);
 | 
						|
///
 | 
						|
///       cnt2 = cnt1 + 1;
 | 
						|
///        ...
 | 
						|
///       x2 = x1 & (x1 - 1);
 | 
						|
///        ...
 | 
						|
///    } while(x != 0);
 | 
						|
///
 | 
						|
/// loop-exit:
 | 
						|
/// \endcode
 | 
						|
static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
 | 
						|
                                Instruction *&CntInst, PHINode *&CntPhi,
 | 
						|
                                Value *&Var) {
 | 
						|
  // step 1: Check to see if the look-back branch match this pattern:
 | 
						|
  //    "if (a!=0) goto loop-entry".
 | 
						|
  BasicBlock *LoopEntry;
 | 
						|
  Instruction *DefX2, *CountInst;
 | 
						|
  Value *VarX1, *VarX0;
 | 
						|
  PHINode *PhiX, *CountPhi;
 | 
						|
 | 
						|
  DefX2 = CountInst = nullptr;
 | 
						|
  VarX1 = VarX0 = nullptr;
 | 
						|
  PhiX = CountPhi = nullptr;
 | 
						|
  LoopEntry = *(CurLoop->block_begin());
 | 
						|
 | 
						|
  // step 1: Check if the loop-back branch is in desirable form.
 | 
						|
  {
 | 
						|
    if (Value *T = matchCondition(
 | 
						|
            dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
 | 
						|
      DefX2 = dyn_cast<Instruction>(T);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
 | 
						|
  {
 | 
						|
    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
 | 
						|
      return false;
 | 
						|
 | 
						|
    BinaryOperator *SubOneOp;
 | 
						|
 | 
						|
    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
 | 
						|
      VarX1 = DefX2->getOperand(1);
 | 
						|
    else {
 | 
						|
      VarX1 = DefX2->getOperand(0);
 | 
						|
      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
 | 
						|
    }
 | 
						|
    if (!SubOneOp)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Instruction *SubInst = cast<Instruction>(SubOneOp);
 | 
						|
    ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
 | 
						|
    if (!Dec ||
 | 
						|
        !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
 | 
						|
          (SubInst->getOpcode() == Instruction::Add &&
 | 
						|
           Dec->isMinusOne()))) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // step 3: Check the recurrence of variable X
 | 
						|
  PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
 | 
						|
  if (!PhiX)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
 | 
						|
  {
 | 
						|
    CountInst = nullptr;
 | 
						|
    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
 | 
						|
                              IterE = LoopEntry->end();
 | 
						|
         Iter != IterE; Iter++) {
 | 
						|
      Instruction *Inst = &*Iter;
 | 
						|
      if (Inst->getOpcode() != Instruction::Add)
 | 
						|
        continue;
 | 
						|
 | 
						|
      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
      if (!Inc || !Inc->isOne())
 | 
						|
        continue;
 | 
						|
 | 
						|
      PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
 | 
						|
      if (!Phi)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check if the result of the instruction is live of the loop.
 | 
						|
      bool LiveOutLoop = false;
 | 
						|
      for (User *U : Inst->users()) {
 | 
						|
        if ((cast<Instruction>(U))->getParent() != LoopEntry) {
 | 
						|
          LiveOutLoop = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (LiveOutLoop) {
 | 
						|
        CountInst = Inst;
 | 
						|
        CountPhi = Phi;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CountInst)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // step 5: check if the precondition is in this form:
 | 
						|
  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
 | 
						|
  {
 | 
						|
    auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
 | 
						|
    Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
 | 
						|
    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
 | 
						|
      return false;
 | 
						|
 | 
						|
    CntInst = CountInst;
 | 
						|
    CntPhi = CountPhi;
 | 
						|
    Var = T;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the idiom is detected in the loop.
 | 
						|
///
 | 
						|
/// Additionally:
 | 
						|
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
 | 
						|
///       or nullptr if there is no such.
 | 
						|
/// 2) \p CntPhi is set to the corresponding phi node
 | 
						|
///       or nullptr if there is no such.
 | 
						|
/// 3) \p Var is set to the value whose CTLZ could be used.
 | 
						|
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
 | 
						|
///
 | 
						|
/// The core idiom we are trying to detect is:
 | 
						|
/// \code
 | 
						|
///    if (x0 == 0)
 | 
						|
///      goto loop-exit // the precondition of the loop
 | 
						|
///    cnt0 = init-val;
 | 
						|
///    do {
 | 
						|
///       x = phi (x0, x.next);   //PhiX
 | 
						|
///       cnt = phi(cnt0, cnt.next);
 | 
						|
///
 | 
						|
///       cnt.next = cnt + 1;
 | 
						|
///        ...
 | 
						|
///       x.next = x >> 1;   // DefX
 | 
						|
///        ...
 | 
						|
///    } while(x.next != 0);
 | 
						|
///
 | 
						|
/// loop-exit:
 | 
						|
/// \endcode
 | 
						|
static bool detectCTLZIdiom(Loop *CurLoop, PHINode *&PhiX,
 | 
						|
                            Instruction *&CntInst, PHINode *&CntPhi,
 | 
						|
                            Instruction *&DefX) {
 | 
						|
  BasicBlock *LoopEntry;
 | 
						|
  Value *VarX = nullptr;
 | 
						|
 | 
						|
  DefX = nullptr;
 | 
						|
  PhiX = nullptr;
 | 
						|
  CntInst = nullptr;
 | 
						|
  CntPhi = nullptr;
 | 
						|
  LoopEntry = *(CurLoop->block_begin());
 | 
						|
 | 
						|
  // step 1: Check if the loop-back branch is in desirable form.
 | 
						|
  if (Value *T = matchCondition(
 | 
						|
          dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
 | 
						|
    DefX = dyn_cast<Instruction>(T);
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // step 2: detect instructions corresponding to "x.next = x >> 1"
 | 
						|
  if (!DefX || DefX->getOpcode() != Instruction::AShr)
 | 
						|
    return false;
 | 
						|
  ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
 | 
						|
  if (!Shft || !Shft->isOne())
 | 
						|
    return false;
 | 
						|
  VarX = DefX->getOperand(0);
 | 
						|
 | 
						|
  // step 3: Check the recurrence of variable X
 | 
						|
  PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
 | 
						|
  if (!PhiX)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
 | 
						|
  // TODO: We can skip the step. If loop trip count is known (CTLZ),
 | 
						|
  //       then all uses of "cnt.next" could be optimized to the trip count
 | 
						|
  //       plus "cnt0". Currently it is not optimized.
 | 
						|
  //       This step could be used to detect POPCNT instruction:
 | 
						|
  //       cnt.next = cnt + (x.next & 1)
 | 
						|
  for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
 | 
						|
                            IterE = LoopEntry->end();
 | 
						|
       Iter != IterE; Iter++) {
 | 
						|
    Instruction *Inst = &*Iter;
 | 
						|
    if (Inst->getOpcode() != Instruction::Add)
 | 
						|
      continue;
 | 
						|
 | 
						|
    ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
    if (!Inc || !Inc->isOne())
 | 
						|
      continue;
 | 
						|
 | 
						|
    PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
 | 
						|
    if (!Phi)
 | 
						|
      continue;
 | 
						|
 | 
						|
    CntInst = Inst;
 | 
						|
    CntPhi = Phi;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (!CntInst)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Recognize CTLZ idiom in a non-countable loop and convert the loop
 | 
						|
/// to countable (with CTLZ trip count).
 | 
						|
/// If CTLZ inserted as a new trip count returns true; otherwise, returns false.
 | 
						|
bool LoopIdiomRecognize::recognizeAndInsertCTLZ() {
 | 
						|
  // Give up if the loop has multiple blocks or multiple backedges.
 | 
						|
  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Instruction *CntInst, *DefX;
 | 
						|
  PHINode *CntPhi, *PhiX;
 | 
						|
  if (!detectCTLZIdiom(CurLoop, PhiX, CntInst, CntPhi, DefX))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsCntPhiUsedOutsideLoop = false;
 | 
						|
  for (User *U : CntPhi->users())
 | 
						|
    if (!CurLoop->contains(dyn_cast<Instruction>(U))) {
 | 
						|
      IsCntPhiUsedOutsideLoop = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  bool IsCntInstUsedOutsideLoop = false;
 | 
						|
  for (User *U : CntInst->users())
 | 
						|
    if (!CurLoop->contains(dyn_cast<Instruction>(U))) {
 | 
						|
      IsCntInstUsedOutsideLoop = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  // If both CntInst and CntPhi are used outside the loop the profitability
 | 
						|
  // is questionable.
 | 
						|
  if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // For some CPUs result of CTLZ(X) intrinsic is undefined
 | 
						|
  // when X is 0. If we can not guarantee X != 0, we need to check this
 | 
						|
  // when expand.
 | 
						|
  bool ZeroCheck = false;
 | 
						|
  // It is safe to assume Preheader exist as it was checked in
 | 
						|
  // parent function RunOnLoop.
 | 
						|
  BasicBlock *PH = CurLoop->getLoopPreheader();
 | 
						|
  Value *InitX = PhiX->getIncomingValueForBlock(PH);
 | 
						|
  // If we check X != 0 before entering the loop we don't need a zero
 | 
						|
  // check in CTLZ intrinsic, but only if Cnt Phi is not used outside of the
 | 
						|
  // loop (if it is used we count CTLZ(X >> 1)).
 | 
						|
  if (!IsCntPhiUsedOutsideLoop)
 | 
						|
    if (BasicBlock *PreCondBB = PH->getSinglePredecessor())
 | 
						|
      if (BranchInst *PreCondBr =
 | 
						|
          dyn_cast<BranchInst>(PreCondBB->getTerminator())) {
 | 
						|
        if (matchCondition(PreCondBr, PH) == InitX)
 | 
						|
          ZeroCheck = true;
 | 
						|
      }
 | 
						|
 | 
						|
  // Check if CTLZ intrinsic is profitable. Assume it is always profitable
 | 
						|
  // if we delete the loop (the loop has only 6 instructions):
 | 
						|
  //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
 | 
						|
  //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
 | 
						|
  //  %shr = ashr %n.addr.0, 1
 | 
						|
  //  %tobool = icmp eq %shr, 0
 | 
						|
  //  %inc = add nsw %i.0, 1
 | 
						|
  //  br i1 %tobool
 | 
						|
 | 
						|
  IRBuilder<> Builder(PH->getTerminator());
 | 
						|
  SmallVector<const Value *, 2> Ops =
 | 
						|
      {InitX, ZeroCheck ? Builder.getTrue() : Builder.getFalse()};
 | 
						|
  ArrayRef<const Value *> Args(Ops);
 | 
						|
  if (CurLoop->getHeader()->size() != 6 &&
 | 
						|
      TTI->getIntrinsicCost(Intrinsic::ctlz, InitX->getType(), Args) >
 | 
						|
          TargetTransformInfo::TCC_Basic)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DebugLoc DL = DefX->getDebugLoc();
 | 
						|
  transformLoopToCountable(PH, CntInst, CntPhi, InitX, DL, ZeroCheck,
 | 
						|
                           IsCntPhiUsedOutsideLoop);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Recognizes a population count idiom in a non-countable loop.
 | 
						|
///
 | 
						|
/// If detected, transforms the relevant code to issue the popcount intrinsic
 | 
						|
/// function call, and returns true; otherwise, returns false.
 | 
						|
bool LoopIdiomRecognize::recognizePopcount() {
 | 
						|
  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Counting population are usually conducted by few arithmetic instructions.
 | 
						|
  // Such instructions can be easily "absorbed" by vacant slots in a
 | 
						|
  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
 | 
						|
  // in a compact loop.
 | 
						|
 | 
						|
  // Give up if the loop has multiple blocks or multiple backedges.
 | 
						|
  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *LoopBody = *(CurLoop->block_begin());
 | 
						|
  if (LoopBody->size() >= 20) {
 | 
						|
    // The loop is too big, bail out.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // It should have a preheader containing nothing but an unconditional branch.
 | 
						|
  BasicBlock *PH = CurLoop->getLoopPreheader();
 | 
						|
  if (!PH || &PH->front() != PH->getTerminator())
 | 
						|
    return false;
 | 
						|
  auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
 | 
						|
  if (!EntryBI || EntryBI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It should have a precondition block where the generated popcount instrinsic
 | 
						|
  // function can be inserted.
 | 
						|
  auto *PreCondBB = PH->getSinglePredecessor();
 | 
						|
  if (!PreCondBB)
 | 
						|
    return false;
 | 
						|
  auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
 | 
						|
  if (!PreCondBI || PreCondBI->isUnconditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Instruction *CntInst;
 | 
						|
  PHINode *CntPhi;
 | 
						|
  Value *Val;
 | 
						|
  if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
 | 
						|
    return false;
 | 
						|
 | 
						|
  transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
 | 
						|
                                       const DebugLoc &DL) {
 | 
						|
  Value *Ops[] = {Val};
 | 
						|
  Type *Tys[] = {Val->getType()};
 | 
						|
 | 
						|
  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
 | 
						|
  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
 | 
						|
  CI->setDebugLoc(DL);
 | 
						|
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
static CallInst *createCTLZIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
 | 
						|
                                     const DebugLoc &DL, bool ZeroCheck) {
 | 
						|
  Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
 | 
						|
  Type *Tys[] = {Val->getType()};
 | 
						|
 | 
						|
  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctlz, Tys);
 | 
						|
  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
 | 
						|
  CI->setDebugLoc(DL);
 | 
						|
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
/// Transform the following loop:
 | 
						|
/// loop:
 | 
						|
///   CntPhi = PHI [Cnt0, CntInst]
 | 
						|
///   PhiX = PHI [InitX, DefX]
 | 
						|
///   CntInst = CntPhi + 1
 | 
						|
///   DefX = PhiX >> 1
 | 
						|
///   LOOP_BODY
 | 
						|
///   Br: loop if (DefX != 0)
 | 
						|
/// Use(CntPhi) or Use(CntInst)
 | 
						|
///
 | 
						|
/// Into:
 | 
						|
/// If CntPhi used outside the loop:
 | 
						|
///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
 | 
						|
///   Count = CountPrev + 1
 | 
						|
/// else
 | 
						|
///   Count = BitWidth(InitX) - CTLZ(InitX)
 | 
						|
/// loop:
 | 
						|
///   CntPhi = PHI [Cnt0, CntInst]
 | 
						|
///   PhiX = PHI [InitX, DefX]
 | 
						|
///   PhiCount = PHI [Count, Dec]
 | 
						|
///   CntInst = CntPhi + 1
 | 
						|
///   DefX = PhiX >> 1
 | 
						|
///   Dec = PhiCount - 1
 | 
						|
///   LOOP_BODY
 | 
						|
///   Br: loop if (Dec != 0)
 | 
						|
/// Use(CountPrev + Cnt0) // Use(CntPhi)
 | 
						|
/// or
 | 
						|
/// Use(Count + Cnt0) // Use(CntInst)
 | 
						|
///
 | 
						|
/// If LOOP_BODY is empty the loop will be deleted.
 | 
						|
/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
 | 
						|
void LoopIdiomRecognize::transformLoopToCountable(
 | 
						|
    BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX,
 | 
						|
    const DebugLoc DL, bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
 | 
						|
  BranchInst *PreheaderBr = dyn_cast<BranchInst>(Preheader->getTerminator());
 | 
						|
 | 
						|
  // Step 1: Insert the CTLZ instruction at the end of the preheader block
 | 
						|
  //   Count = BitWidth - CTLZ(InitX);
 | 
						|
  // If there are uses of CntPhi create:
 | 
						|
  //   CountPrev = BitWidth - CTLZ(InitX >> 1);
 | 
						|
  IRBuilder<> Builder(PreheaderBr);
 | 
						|
  Builder.SetCurrentDebugLocation(DL);
 | 
						|
  Value *CTLZ, *Count, *CountPrev, *NewCount, *InitXNext;
 | 
						|
 | 
						|
  if (IsCntPhiUsedOutsideLoop)
 | 
						|
    InitXNext = Builder.CreateAShr(InitX,
 | 
						|
                                   ConstantInt::get(InitX->getType(), 1));
 | 
						|
  else
 | 
						|
    InitXNext = InitX;
 | 
						|
  CTLZ = createCTLZIntrinsic(Builder, InitXNext, DL, ZeroCheck);
 | 
						|
  Count = Builder.CreateSub(
 | 
						|
      ConstantInt::get(CTLZ->getType(),
 | 
						|
                       CTLZ->getType()->getIntegerBitWidth()),
 | 
						|
      CTLZ);
 | 
						|
  if (IsCntPhiUsedOutsideLoop) {
 | 
						|
    CountPrev = Count;
 | 
						|
    Count = Builder.CreateAdd(
 | 
						|
        CountPrev,
 | 
						|
        ConstantInt::get(CountPrev->getType(), 1));
 | 
						|
  }
 | 
						|
  if (IsCntPhiUsedOutsideLoop)
 | 
						|
    NewCount = Builder.CreateZExtOrTrunc(CountPrev,
 | 
						|
        cast<IntegerType>(CntInst->getType()));
 | 
						|
  else
 | 
						|
    NewCount = Builder.CreateZExtOrTrunc(Count,
 | 
						|
        cast<IntegerType>(CntInst->getType()));
 | 
						|
 | 
						|
  // If the CTLZ counter's initial value is not zero, insert Add Inst.
 | 
						|
  Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
 | 
						|
  ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
 | 
						|
  if (!InitConst || !InitConst->isZero())
 | 
						|
    NewCount = Builder.CreateAdd(NewCount, CntInitVal);
 | 
						|
 | 
						|
  // Step 2: Insert new IV and loop condition:
 | 
						|
  // loop:
 | 
						|
  //   ...
 | 
						|
  //   PhiCount = PHI [Count, Dec]
 | 
						|
  //   ...
 | 
						|
  //   Dec = PhiCount - 1
 | 
						|
  //   ...
 | 
						|
  //   Br: loop if (Dec != 0)
 | 
						|
  BasicBlock *Body = *(CurLoop->block_begin());
 | 
						|
  auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
 | 
						|
  ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
 | 
						|
  Type *Ty = Count->getType();
 | 
						|
 | 
						|
  PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
 | 
						|
 | 
						|
  Builder.SetInsertPoint(LbCond);
 | 
						|
  Instruction *TcDec = cast<Instruction>(
 | 
						|
      Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
 | 
						|
                        "tcdec", false, true));
 | 
						|
 | 
						|
  TcPhi->addIncoming(Count, Preheader);
 | 
						|
  TcPhi->addIncoming(TcDec, Body);
 | 
						|
 | 
						|
  CmpInst::Predicate Pred =
 | 
						|
      (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
 | 
						|
  LbCond->setPredicate(Pred);
 | 
						|
  LbCond->setOperand(0, TcDec);
 | 
						|
  LbCond->setOperand(1, ConstantInt::get(Ty, 0));
 | 
						|
 | 
						|
  // Step 3: All the references to the original counter outside
 | 
						|
  //  the loop are replaced with the NewCount -- the value returned from
 | 
						|
  //  __builtin_ctlz(x).
 | 
						|
  if (IsCntPhiUsedOutsideLoop)
 | 
						|
    CntPhi->replaceUsesOutsideBlock(NewCount, Body);
 | 
						|
  else
 | 
						|
    CntInst->replaceUsesOutsideBlock(NewCount, Body);
 | 
						|
 | 
						|
  // step 4: Forget the "non-computable" trip-count SCEV associated with the
 | 
						|
  //   loop. The loop would otherwise not be deleted even if it becomes empty.
 | 
						|
  SE->forgetLoop(CurLoop);
 | 
						|
}
 | 
						|
 | 
						|
void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
 | 
						|
                                                 Instruction *CntInst,
 | 
						|
                                                 PHINode *CntPhi, Value *Var) {
 | 
						|
  BasicBlock *PreHead = CurLoop->getLoopPreheader();
 | 
						|
  auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
 | 
						|
  const DebugLoc DL = CntInst->getDebugLoc();
 | 
						|
 | 
						|
  // Assuming before transformation, the loop is following:
 | 
						|
  //  if (x) // the precondition
 | 
						|
  //     do { cnt++; x &= x - 1; } while(x);
 | 
						|
 | 
						|
  // Step 1: Insert the ctpop instruction at the end of the precondition block
 | 
						|
  IRBuilder<> Builder(PreCondBr);
 | 
						|
  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
 | 
						|
  {
 | 
						|
    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
 | 
						|
    NewCount = PopCntZext =
 | 
						|
        Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
 | 
						|
 | 
						|
    if (NewCount != PopCnt)
 | 
						|
      (cast<Instruction>(NewCount))->setDebugLoc(DL);
 | 
						|
 | 
						|
    // TripCnt is exactly the number of iterations the loop has
 | 
						|
    TripCnt = NewCount;
 | 
						|
 | 
						|
    // If the population counter's initial value is not zero, insert Add Inst.
 | 
						|
    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
 | 
						|
    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
 | 
						|
    if (!InitConst || !InitConst->isZero()) {
 | 
						|
      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
 | 
						|
      (cast<Instruction>(NewCount))->setDebugLoc(DL);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
 | 
						|
  //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
 | 
						|
  //   function would be partial dead code, and downstream passes will drag
 | 
						|
  //   it back from the precondition block to the preheader.
 | 
						|
  {
 | 
						|
    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
 | 
						|
 | 
						|
    Value *Opnd0 = PopCntZext;
 | 
						|
    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
 | 
						|
    if (PreCond->getOperand(0) != Var)
 | 
						|
      std::swap(Opnd0, Opnd1);
 | 
						|
 | 
						|
    ICmpInst *NewPreCond = cast<ICmpInst>(
 | 
						|
        Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
 | 
						|
    PreCondBr->setCondition(NewPreCond);
 | 
						|
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Step 3: Note that the population count is exactly the trip count of the
 | 
						|
  // loop in question, which enable us to to convert the loop from noncountable
 | 
						|
  // loop into a countable one. The benefit is twofold:
 | 
						|
  //
 | 
						|
  //  - If the loop only counts population, the entire loop becomes dead after
 | 
						|
  //    the transformation. It is a lot easier to prove a countable loop dead
 | 
						|
  //    than to prove a noncountable one. (In some C dialects, an infinite loop
 | 
						|
  //    isn't dead even if it computes nothing useful. In general, DCE needs
 | 
						|
  //    to prove a noncountable loop finite before safely delete it.)
 | 
						|
  //
 | 
						|
  //  - If the loop also performs something else, it remains alive.
 | 
						|
  //    Since it is transformed to countable form, it can be aggressively
 | 
						|
  //    optimized by some optimizations which are in general not applicable
 | 
						|
  //    to a noncountable loop.
 | 
						|
  //
 | 
						|
  // After this step, this loop (conceptually) would look like following:
 | 
						|
  //   newcnt = __builtin_ctpop(x);
 | 
						|
  //   t = newcnt;
 | 
						|
  //   if (x)
 | 
						|
  //     do { cnt++; x &= x-1; t--) } while (t > 0);
 | 
						|
  BasicBlock *Body = *(CurLoop->block_begin());
 | 
						|
  {
 | 
						|
    auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
 | 
						|
    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
 | 
						|
    Type *Ty = TripCnt->getType();
 | 
						|
 | 
						|
    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
 | 
						|
 | 
						|
    Builder.SetInsertPoint(LbCond);
 | 
						|
    Instruction *TcDec = cast<Instruction>(
 | 
						|
        Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
 | 
						|
                          "tcdec", false, true));
 | 
						|
 | 
						|
    TcPhi->addIncoming(TripCnt, PreHead);
 | 
						|
    TcPhi->addIncoming(TcDec, Body);
 | 
						|
 | 
						|
    CmpInst::Predicate Pred =
 | 
						|
        (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
 | 
						|
    LbCond->setPredicate(Pred);
 | 
						|
    LbCond->setOperand(0, TcDec);
 | 
						|
    LbCond->setOperand(1, ConstantInt::get(Ty, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Step 4: All the references to the original population counter outside
 | 
						|
  //  the loop are replaced with the NewCount -- the value returned from
 | 
						|
  //  __builtin_ctpop().
 | 
						|
  CntInst->replaceUsesOutsideBlock(NewCount, Body);
 | 
						|
 | 
						|
  // step 5: Forget the "non-computable" trip-count SCEV associated with the
 | 
						|
  //   loop. The loop would otherwise not be deleted even if it becomes empty.
 | 
						|
  SE->forgetLoop(CurLoop);
 | 
						|
}
 |