forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1428 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1428 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This Pass handles loop interchange transform.
 | 
						|
// This pass interchanges loops to provide a more cache-friendly memory access
 | 
						|
// patterns.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/DependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include <cassert>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-interchange"
 | 
						|
 | 
						|
static cl::opt<int> LoopInterchangeCostThreshold(
 | 
						|
    "loop-interchange-threshold", cl::init(0), cl::Hidden,
 | 
						|
    cl::desc("Interchange if you gain more than this number"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
using LoopVector = SmallVector<Loop *, 8>;
 | 
						|
 | 
						|
// TODO: Check if we can use a sparse matrix here.
 | 
						|
using CharMatrix = std::vector<std::vector<char>>;
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Maximum number of dependencies that can be handled in the dependency matrix.
 | 
						|
static const unsigned MaxMemInstrCount = 100;
 | 
						|
 | 
						|
// Maximum loop depth supported.
 | 
						|
static const unsigned MaxLoopNestDepth = 10;
 | 
						|
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
static void printDepMatrix(CharMatrix &DepMatrix) {
 | 
						|
  for (auto &Row : DepMatrix) {
 | 
						|
    for (auto D : Row)
 | 
						|
      DEBUG(dbgs() << D << " ");
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
 | 
						|
                                     Loop *L, DependenceInfo *DI) {
 | 
						|
  using ValueVector = SmallVector<Value *, 16>;
 | 
						|
 | 
						|
  ValueVector MemInstr;
 | 
						|
 | 
						|
  // For each block.
 | 
						|
  for (BasicBlock *BB : L->blocks()) {
 | 
						|
    // Scan the BB and collect legal loads and stores.
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (!isa<Instruction>(I))
 | 
						|
        return false;
 | 
						|
      if (auto *Ld = dyn_cast<LoadInst>(&I)) {
 | 
						|
        if (!Ld->isSimple())
 | 
						|
          return false;
 | 
						|
        MemInstr.push_back(&I);
 | 
						|
      } else if (auto *St = dyn_cast<StoreInst>(&I)) {
 | 
						|
        if (!St->isSimple())
 | 
						|
          return false;
 | 
						|
        MemInstr.push_back(&I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Found " << MemInstr.size()
 | 
						|
               << " Loads and Stores to analyze\n");
 | 
						|
 | 
						|
  ValueVector::iterator I, IE, J, JE;
 | 
						|
 | 
						|
  for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
 | 
						|
    for (J = I, JE = MemInstr.end(); J != JE; ++J) {
 | 
						|
      std::vector<char> Dep;
 | 
						|
      Instruction *Src = cast<Instruction>(*I);
 | 
						|
      Instruction *Dst = cast<Instruction>(*J);
 | 
						|
      if (Src == Dst)
 | 
						|
        continue;
 | 
						|
      // Ignore Input dependencies.
 | 
						|
      if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
 | 
						|
        continue;
 | 
						|
      // Track Output, Flow, and Anti dependencies.
 | 
						|
      if (auto D = DI->depends(Src, Dst, true)) {
 | 
						|
        assert(D->isOrdered() && "Expected an output, flow or anti dep.");
 | 
						|
        DEBUG(StringRef DepType =
 | 
						|
                  D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
 | 
						|
              dbgs() << "Found " << DepType
 | 
						|
                     << " dependency between Src and Dst\n"
 | 
						|
                     << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
 | 
						|
        unsigned Levels = D->getLevels();
 | 
						|
        char Direction;
 | 
						|
        for (unsigned II = 1; II <= Levels; ++II) {
 | 
						|
          const SCEV *Distance = D->getDistance(II);
 | 
						|
          const SCEVConstant *SCEVConst =
 | 
						|
              dyn_cast_or_null<SCEVConstant>(Distance);
 | 
						|
          if (SCEVConst) {
 | 
						|
            const ConstantInt *CI = SCEVConst->getValue();
 | 
						|
            if (CI->isNegative())
 | 
						|
              Direction = '<';
 | 
						|
            else if (CI->isZero())
 | 
						|
              Direction = '=';
 | 
						|
            else
 | 
						|
              Direction = '>';
 | 
						|
            Dep.push_back(Direction);
 | 
						|
          } else if (D->isScalar(II)) {
 | 
						|
            Direction = 'S';
 | 
						|
            Dep.push_back(Direction);
 | 
						|
          } else {
 | 
						|
            unsigned Dir = D->getDirection(II);
 | 
						|
            if (Dir == Dependence::DVEntry::LT ||
 | 
						|
                Dir == Dependence::DVEntry::LE)
 | 
						|
              Direction = '<';
 | 
						|
            else if (Dir == Dependence::DVEntry::GT ||
 | 
						|
                     Dir == Dependence::DVEntry::GE)
 | 
						|
              Direction = '>';
 | 
						|
            else if (Dir == Dependence::DVEntry::EQ)
 | 
						|
              Direction = '=';
 | 
						|
            else
 | 
						|
              Direction = '*';
 | 
						|
            Dep.push_back(Direction);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        while (Dep.size() != Level) {
 | 
						|
          Dep.push_back('I');
 | 
						|
        }
 | 
						|
 | 
						|
        DepMatrix.push_back(Dep);
 | 
						|
        if (DepMatrix.size() > MaxMemInstrCount) {
 | 
						|
          DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
 | 
						|
                       << " dependencies inside loop\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't have a DepMatrix to check legality return false.
 | 
						|
  if (DepMatrix.empty())
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// A loop is moved from index 'from' to an index 'to'. Update the Dependence
 | 
						|
// matrix by exchanging the two columns.
 | 
						|
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
 | 
						|
                                    unsigned ToIndx) {
 | 
						|
  unsigned numRows = DepMatrix.size();
 | 
						|
  for (unsigned i = 0; i < numRows; ++i) {
 | 
						|
    char TmpVal = DepMatrix[i][ToIndx];
 | 
						|
    DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
 | 
						|
    DepMatrix[i][FromIndx] = TmpVal;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
 | 
						|
// '>'
 | 
						|
static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                                   unsigned Column) {
 | 
						|
  for (unsigned i = 0; i <= Column; ++i) {
 | 
						|
    if (DepMatrix[Row][i] == '<')
 | 
						|
      return false;
 | 
						|
    if (DepMatrix[Row][i] == '>')
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  // All dependencies were '=','S' or 'I'
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks if no dependence exist in the dependency matrix in Row before Column.
 | 
						|
static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                                 unsigned Column) {
 | 
						|
  for (unsigned i = 0; i < Column; ++i) {
 | 
						|
    if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
 | 
						|
        DepMatrix[Row][i] != 'I')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                                unsigned OuterLoopId, char InnerDep,
 | 
						|
                                char OuterDep) {
 | 
						|
  if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (InnerDep == OuterDep)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // It is legal to interchange if and only if after interchange no row has a
 | 
						|
  // '>' direction as the leftmost non-'='.
 | 
						|
 | 
						|
  if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (InnerDep == '<')
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (InnerDep == '>') {
 | 
						|
    // If OuterLoopId represents outermost loop then interchanging will make the
 | 
						|
    // 1st dependency as '>'
 | 
						|
    if (OuterLoopId == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If all dependencies before OuterloopId are '=','S'or 'I'. Then
 | 
						|
    // interchanging will result in this row having an outermost non '='
 | 
						|
    // dependency of '>'
 | 
						|
    if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks if it is legal to interchange 2 loops.
 | 
						|
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
 | 
						|
// if the direction matrix, after the same permutation is applied to its
 | 
						|
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
 | 
						|
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
 | 
						|
                                      unsigned InnerLoopId,
 | 
						|
                                      unsigned OuterLoopId) {
 | 
						|
  unsigned NumRows = DepMatrix.size();
 | 
						|
  // For each row check if it is valid to interchange.
 | 
						|
  for (unsigned Row = 0; Row < NumRows; ++Row) {
 | 
						|
    char InnerDep = DepMatrix[Row][InnerLoopId];
 | 
						|
    char OuterDep = DepMatrix[Row][OuterLoopId];
 | 
						|
    if (InnerDep == '*' || OuterDep == '*')
 | 
						|
      return false;
 | 
						|
    if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
 | 
						|
  DEBUG(dbgs() << "Calling populateWorklist on Func: "
 | 
						|
               << L.getHeader()->getParent()->getName() << " Loop: %"
 | 
						|
               << L.getHeader()->getName() << '\n');
 | 
						|
  LoopVector LoopList;
 | 
						|
  Loop *CurrentLoop = &L;
 | 
						|
  const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
 | 
						|
  while (!Vec->empty()) {
 | 
						|
    // The current loop has multiple subloops in it hence it is not tightly
 | 
						|
    // nested.
 | 
						|
    // Discard all loops above it added into Worklist.
 | 
						|
    if (Vec->size() != 1) {
 | 
						|
      LoopList.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    LoopList.push_back(CurrentLoop);
 | 
						|
    CurrentLoop = Vec->front();
 | 
						|
    Vec = &CurrentLoop->getSubLoops();
 | 
						|
  }
 | 
						|
  LoopList.push_back(CurrentLoop);
 | 
						|
  V.push_back(std::move(LoopList));
 | 
						|
}
 | 
						|
 | 
						|
static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
 | 
						|
  PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
 | 
						|
  if (InnerIndexVar)
 | 
						|
    return InnerIndexVar;
 | 
						|
  if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
 | 
						|
    return nullptr;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PhiVar = cast<PHINode>(I);
 | 
						|
    Type *PhiTy = PhiVar->getType();
 | 
						|
    if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
 | 
						|
        !PhiTy->isPointerTy())
 | 
						|
      return nullptr;
 | 
						|
    const SCEVAddRecExpr *AddRec =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
 | 
						|
    if (!AddRec || !AddRec->isAffine())
 | 
						|
      continue;
 | 
						|
    const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | 
						|
    if (!isa<SCEVConstant>(Step))
 | 
						|
      continue;
 | 
						|
    // Found the induction variable.
 | 
						|
    // FIXME: Handle loops with more than one induction variable. Note that,
 | 
						|
    // currently, legality makes sure we have only one induction variable.
 | 
						|
    return PhiVar;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// LoopInterchangeLegality checks if it is legal to interchange the loop.
 | 
						|
class LoopInterchangeLegality {
 | 
						|
public:
 | 
						|
  LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                          LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA,
 | 
						|
                          OptimizationRemarkEmitter *ORE)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
 | 
						|
        PreserveLCSSA(PreserveLCSSA), ORE(ORE) {}
 | 
						|
 | 
						|
  /// Check if the loops can be interchanged.
 | 
						|
  bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
 | 
						|
                           CharMatrix &DepMatrix);
 | 
						|
 | 
						|
  /// Check if the loop structure is understood. We do not handle triangular
 | 
						|
  /// loops for now.
 | 
						|
  bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
 | 
						|
 | 
						|
  bool currentLimitations();
 | 
						|
 | 
						|
  bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
 | 
						|
 | 
						|
private:
 | 
						|
  bool tightlyNested(Loop *Outer, Loop *Inner);
 | 
						|
  bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
 | 
						|
  bool areAllUsesReductions(Instruction *Ins, Loop *L);
 | 
						|
  bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
 | 
						|
  bool findInductionAndReductions(Loop *L,
 | 
						|
                                  SmallVector<PHINode *, 8> &Inductions,
 | 
						|
                                  SmallVector<PHINode *, 8> &Reductions);
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  bool PreserveLCSSA;
 | 
						|
 | 
						|
  /// Interface to emit optimization remarks.
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
 | 
						|
  bool InnerLoopHasReduction = false;
 | 
						|
};
 | 
						|
 | 
						|
/// LoopInterchangeProfitability checks if it is profitable to interchange the
 | 
						|
/// loop.
 | 
						|
class LoopInterchangeProfitability {
 | 
						|
public:
 | 
						|
  LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                               OptimizationRemarkEmitter *ORE)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
 | 
						|
 | 
						|
  /// Check if the loop interchange is profitable.
 | 
						|
  bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
 | 
						|
                    CharMatrix &DepMatrix);
 | 
						|
 | 
						|
private:
 | 
						|
  int getInstrOrderCost();
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  /// Scev analysis.
 | 
						|
  ScalarEvolution *SE;
 | 
						|
 | 
						|
  /// Interface to emit optimization remarks.
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
};
 | 
						|
 | 
						|
/// LoopInterchangeTransform interchanges the loop.
 | 
						|
class LoopInterchangeTransform {
 | 
						|
public:
 | 
						|
  LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                           LoopInfo *LI, DominatorTree *DT,
 | 
						|
                           BasicBlock *LoopNestExit,
 | 
						|
                           bool InnerLoopContainsReductions)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
 | 
						|
        LoopExit(LoopNestExit),
 | 
						|
        InnerLoopHasReduction(InnerLoopContainsReductions) {}
 | 
						|
 | 
						|
  /// Interchange OuterLoop and InnerLoop.
 | 
						|
  bool transform();
 | 
						|
  void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
 | 
						|
  void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
 | 
						|
 | 
						|
private:
 | 
						|
  void splitInnerLoopLatch(Instruction *);
 | 
						|
  void splitInnerLoopHeader();
 | 
						|
  bool adjustLoopLinks();
 | 
						|
  void adjustLoopPreheaders();
 | 
						|
  bool adjustLoopBranches();
 | 
						|
  void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
 | 
						|
                           BasicBlock *NewPred);
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  /// Scev analysis.
 | 
						|
  ScalarEvolution *SE;
 | 
						|
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  BasicBlock *LoopExit;
 | 
						|
  bool InnerLoopHasReduction;
 | 
						|
};
 | 
						|
 | 
						|
// Main LoopInterchange Pass.
 | 
						|
struct LoopInterchange : public FunctionPass {
 | 
						|
  static char ID;
 | 
						|
  ScalarEvolution *SE = nullptr;
 | 
						|
  LoopInfo *LI = nullptr;
 | 
						|
  DependenceInfo *DI = nullptr;
 | 
						|
  DominatorTree *DT = nullptr;
 | 
						|
  bool PreserveLCSSA;
 | 
						|
 | 
						|
  /// Interface to emit optimization remarks.
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
 | 
						|
  LoopInterchange() : FunctionPass(ID) {
 | 
						|
    initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
    AU.addRequired<AAResultsWrapperPass>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    AU.addRequired<DependenceAnalysisWrapperPass>();
 | 
						|
    AU.addRequiredID(LoopSimplifyID);
 | 
						|
    AU.addRequiredID(LCSSAID);
 | 
						|
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F))
 | 
						|
      return false;
 | 
						|
 | 
						|
    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
 | 
						|
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
    DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
    ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | 
						|
    PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
 | 
						|
 | 
						|
    // Build up a worklist of loop pairs to analyze.
 | 
						|
    SmallVector<LoopVector, 8> Worklist;
 | 
						|
 | 
						|
    for (Loop *L : *LI)
 | 
						|
      populateWorklist(*L, Worklist);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
 | 
						|
    bool Changed = true;
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      LoopVector LoopList = Worklist.pop_back_val();
 | 
						|
      Changed = processLoopList(LoopList, F);
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isComputableLoopNest(LoopVector LoopList) {
 | 
						|
    for (Loop *L : LoopList) {
 | 
						|
      const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
 | 
						|
      if (ExitCountOuter == SE->getCouldNotCompute()) {
 | 
						|
        DEBUG(dbgs() << "Couldn't compute backedge count\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (L->getNumBackEdges() != 1) {
 | 
						|
        DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (!L->getExitingBlock()) {
 | 
						|
        DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned selectLoopForInterchange(const LoopVector &LoopList) {
 | 
						|
    // TODO: Add a better heuristic to select the loop to be interchanged based
 | 
						|
    // on the dependence matrix. Currently we select the innermost loop.
 | 
						|
    return LoopList.size() - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool processLoopList(LoopVector LoopList, Function &F) {
 | 
						|
    bool Changed = false;
 | 
						|
    unsigned LoopNestDepth = LoopList.size();
 | 
						|
    if (LoopNestDepth < 2) {
 | 
						|
      DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (LoopNestDepth > MaxLoopNestDepth) {
 | 
						|
      DEBUG(dbgs() << "Cannot handle loops of depth greater than "
 | 
						|
                   << MaxLoopNestDepth << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (!isComputableLoopNest(LoopList)) {
 | 
						|
      DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth << "\n");
 | 
						|
 | 
						|
    CharMatrix DependencyMatrix;
 | 
						|
    Loop *OuterMostLoop = *(LoopList.begin());
 | 
						|
    if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
 | 
						|
                                  OuterMostLoop, DI)) {
 | 
						|
      DEBUG(dbgs() << "Populating dependency matrix failed\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
    DEBUG(dbgs() << "Dependence before interchange\n");
 | 
						|
    printDepMatrix(DependencyMatrix);
 | 
						|
#endif
 | 
						|
 | 
						|
    BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
 | 
						|
    BranchInst *OuterMostLoopLatchBI =
 | 
						|
        dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
 | 
						|
    if (!OuterMostLoopLatchBI)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Since we currently do not handle LCSSA PHI's any failure in loop
 | 
						|
    // condition will now branch to LoopNestExit.
 | 
						|
    // TODO: This should be removed once we handle LCSSA PHI nodes.
 | 
						|
 | 
						|
    // Get the Outermost loop exit.
 | 
						|
    BasicBlock *LoopNestExit;
 | 
						|
    if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
 | 
						|
      LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
 | 
						|
    else
 | 
						|
      LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
    if (isa<PHINode>(LoopNestExit->begin())) {
 | 
						|
      DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
 | 
						|
                      "since on failure all loops branch to loop nest exit.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned SelecLoopId = selectLoopForInterchange(LoopList);
 | 
						|
    // Move the selected loop outwards to the best possible position.
 | 
						|
    for (unsigned i = SelecLoopId; i > 0; i--) {
 | 
						|
      bool Interchanged =
 | 
						|
          processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
 | 
						|
      if (!Interchanged)
 | 
						|
        return Changed;
 | 
						|
      // Loops interchanged reflect the same in LoopList
 | 
						|
      std::swap(LoopList[i - 1], LoopList[i]);
 | 
						|
 | 
						|
      // Update the DependencyMatrix
 | 
						|
      interChangeDependencies(DependencyMatrix, i, i - 1);
 | 
						|
      DT->recalculate(F);
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
      DEBUG(dbgs() << "Dependence after interchange\n");
 | 
						|
      printDepMatrix(DependencyMatrix);
 | 
						|
#endif
 | 
						|
      Changed |= Interchanged;
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
 | 
						|
                   unsigned OuterLoopId, BasicBlock *LoopNestExit,
 | 
						|
                   std::vector<std::vector<char>> &DependencyMatrix) {
 | 
						|
    DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
 | 
						|
                 << " and OuterLoopId = " << OuterLoopId << "\n");
 | 
						|
    Loop *InnerLoop = LoopList[InnerLoopId];
 | 
						|
    Loop *OuterLoop = LoopList[OuterLoopId];
 | 
						|
 | 
						|
    LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
 | 
						|
                                PreserveLCSSA, ORE);
 | 
						|
    if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | 
						|
      DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "Loops are legal to interchange\n");
 | 
						|
    LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
 | 
						|
    if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | 
						|
      DEBUG(dbgs() << "Interchanging loops not profitable\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemark(DEBUG_TYPE, "Interchanged",
 | 
						|
                                InnerLoop->getStartLoc(),
 | 
						|
                                InnerLoop->getHeader())
 | 
						|
             << "Loop interchanged with enclosing loop.";
 | 
						|
    });
 | 
						|
 | 
						|
    LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
 | 
						|
                                 LoopNestExit, LIL.hasInnerLoopReduction());
 | 
						|
    LIT.transform();
 | 
						|
    DEBUG(dbgs() << "Loops interchanged\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
 | 
						|
  return llvm::none_of(Ins->users(), [=](User *U) -> bool {
 | 
						|
    auto *UserIns = dyn_cast<PHINode>(U);
 | 
						|
    RecurrenceDescriptor RD;
 | 
						|
    return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
 | 
						|
    BasicBlock *BB) {
 | 
						|
  for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    // Load corresponding to reduction PHI's are safe while concluding if
 | 
						|
    // tightly nested.
 | 
						|
    if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | 
						|
      if (!areAllUsesReductions(L, InnerLoop))
 | 
						|
        return true;
 | 
						|
    } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
 | 
						|
    BasicBlock *BB) {
 | 
						|
  for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    // Stores corresponding to reductions are safe while concluding if tightly
 | 
						|
    // nested.
 | 
						|
    if (StoreInst *L = dyn_cast<StoreInst>(I)) {
 | 
						|
      if (!isa<PHINode>(L->getOperand(0)))
 | 
						|
        return true;
 | 
						|
    } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Checking if loops are tightly nested\n");
 | 
						|
 | 
						|
  // A perfectly nested loop will not have any branch in between the outer and
 | 
						|
  // inner block i.e. outer header will branch to either inner preheader and
 | 
						|
  // outerloop latch.
 | 
						|
  BranchInst *OuterLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | 
						|
  if (!OuterLoopHeaderBI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (BasicBlock *Succ : OuterLoopHeaderBI->successors())
 | 
						|
    if (Succ != InnerLoopPreHeader && Succ != OuterLoopLatch)
 | 
						|
      return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
 | 
						|
  // We do not have any basic block in between now make sure the outer header
 | 
						|
  // and outer loop latch doesn't contain any unsafe instructions.
 | 
						|
  if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
 | 
						|
      containsUnsafeInstructionsInLatch(OuterLoopLatch))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Loops are perfectly nested\n");
 | 
						|
  // We have a perfect loop nest.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::isLoopStructureUnderstood(
 | 
						|
    PHINode *InnerInduction) {
 | 
						|
  unsigned Num = InnerInduction->getNumOperands();
 | 
						|
  BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
 | 
						|
  for (unsigned i = 0; i < Num; ++i) {
 | 
						|
    Value *Val = InnerInduction->getOperand(i);
 | 
						|
    if (isa<Constant>(Val))
 | 
						|
      continue;
 | 
						|
    Instruction *I = dyn_cast<Instruction>(Val);
 | 
						|
    if (!I)
 | 
						|
      return false;
 | 
						|
    // TODO: Handle triangular loops.
 | 
						|
    // e.g. for(int i=0;i<N;i++)
 | 
						|
    //        for(int j=i;j<N;j++)
 | 
						|
    unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
 | 
						|
    if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
 | 
						|
            InnerLoopPreheader &&
 | 
						|
        !OuterLoop->isLoopInvariant(I)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::findInductionAndReductions(
 | 
						|
    Loop *L, SmallVector<PHINode *, 8> &Inductions,
 | 
						|
    SmallVector<PHINode *, 8> &Reductions) {
 | 
						|
  if (!L->getLoopLatch() || !L->getLoopPredecessor())
 | 
						|
    return false;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    RecurrenceDescriptor RD;
 | 
						|
    InductionDescriptor ID;
 | 
						|
    PHINode *PHI = cast<PHINode>(I);
 | 
						|
    if (InductionDescriptor::isInductionPHI(PHI, L, SE, ID))
 | 
						|
      Inductions.push_back(PHI);
 | 
						|
    else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
 | 
						|
      Reductions.push_back(PHI);
 | 
						|
    else {
 | 
						|
      DEBUG(
 | 
						|
          dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
 | 
						|
  for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PHI = cast<PHINode>(I);
 | 
						|
    // Reduction lcssa phi will have only 1 incoming block that from loop latch.
 | 
						|
    if (PHI->getNumIncomingValues() > 1)
 | 
						|
      return false;
 | 
						|
    Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
 | 
						|
    if (!Ins)
 | 
						|
      return false;
 | 
						|
    // Incoming value for lcssa phi's in outer loop exit can only be inner loop
 | 
						|
    // exits lcssa phi else it would not be tightly nested.
 | 
						|
    if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
 | 
						|
                                         BasicBlock *LoopHeader) {
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
 | 
						|
    assert(BI->getNumSuccessors() == 2 &&
 | 
						|
           "Branch leaving loop latch must have 2 successors");
 | 
						|
    for (BasicBlock *Succ : BI->successors()) {
 | 
						|
      if (Succ == LoopHeader)
 | 
						|
        continue;
 | 
						|
      return Succ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// This function indicates the current limitations in the transform as a result
 | 
						|
// of which we do not proceed.
 | 
						|
bool LoopInterchangeLegality::currentLimitations() {
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
 | 
						|
  PHINode *InnerInductionVar;
 | 
						|
  SmallVector<PHINode *, 8> Inductions;
 | 
						|
  SmallVector<PHINode *, 8> Reductions;
 | 
						|
  if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) {
 | 
						|
    DEBUG(dbgs() << "Only inner loops with induction or reduction PHI nodes "
 | 
						|
                 << "are supported currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Only inner loops with induction or reduction PHI nodes can be"
 | 
						|
                " interchange currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Currently we handle only loops with 1 induction variable.
 | 
						|
  if (Inductions.size() != 1) {
 | 
						|
    DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
 | 
						|
                 << "Failed to interchange due to current limitation\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Only inner loops with 1 induction variable can be "
 | 
						|
                "interchanged currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (Reductions.size() > 0)
 | 
						|
    InnerLoopHasReduction = true;
 | 
						|
 | 
						|
  InnerInductionVar = Inductions.pop_back_val();
 | 
						|
  Reductions.clear();
 | 
						|
  if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) {
 | 
						|
    DEBUG(dbgs() << "Only outer loops with induction or reduction PHI nodes "
 | 
						|
                 << "are supported currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Only outer loops with induction or reduction PHI nodes can be"
 | 
						|
                " interchanged currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Outer loop cannot have reduction because then loops will not be tightly
 | 
						|
  // nested.
 | 
						|
  if (!Reductions.empty()) {
 | 
						|
    DEBUG(dbgs() << "Outer loops with reductions are not supported "
 | 
						|
                 << "currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Outer loops with reductions cannot be interchangeed "
 | 
						|
                "currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // TODO: Currently we handle only loops with 1 induction variable.
 | 
						|
  if (Inductions.size() != 1) {
 | 
						|
    DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
 | 
						|
                 << "supported currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Only outer loops with 1 induction variable can be "
 | 
						|
                "interchanged currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Triangular loops are not handled for now.
 | 
						|
  if (!isLoopStructureUnderstood(InnerInductionVar)) {
 | 
						|
    DEBUG(dbgs() << "Loop structure not understood by pass\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Inner loop structure not understood currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
 | 
						|
  BasicBlock *LoopExitBlock =
 | 
						|
      getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
 | 
						|
  if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true)) {
 | 
						|
    DEBUG(dbgs() << "Can only handle LCSSA PHIs in outer loops currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuter",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Only outer loops with LCSSA PHIs can be interchange "
 | 
						|
                "currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
 | 
						|
  if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false)) {
 | 
						|
    DEBUG(dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Only inner loops with LCSSA PHIs can be interchange "
 | 
						|
                "currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Current limitation: Since we split the inner loop latch at the point
 | 
						|
  // were induction variable is incremented (induction.next); We cannot have
 | 
						|
  // more than 1 user of induction.next since it would result in broken code
 | 
						|
  // after split.
 | 
						|
  // e.g.
 | 
						|
  // for(i=0;i<N;i++) {
 | 
						|
  //    for(j = 0;j<M;j++) {
 | 
						|
  //      A[j+1][i+2] = A[j][i]+k;
 | 
						|
  //  }
 | 
						|
  // }
 | 
						|
  Instruction *InnerIndexVarInc = nullptr;
 | 
						|
  if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
 | 
						|
    InnerIndexVarInc =
 | 
						|
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
 | 
						|
  else
 | 
						|
    InnerIndexVarInc =
 | 
						|
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
 | 
						|
 | 
						|
  if (!InnerIndexVarInc) {
 | 
						|
    DEBUG(dbgs() << "Did not find an instruction to increment the induction "
 | 
						|
                 << "variable.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "The inner loop does not increment the induction variable.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we split the inner loop latch on this induction variable. Make sure
 | 
						|
  // we do not have any instruction between the induction variable and branch
 | 
						|
  // instruction.
 | 
						|
 | 
						|
  bool FoundInduction = false;
 | 
						|
  for (const Instruction &I : llvm::reverse(*InnerLoopLatch)) {
 | 
						|
    if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
 | 
						|
        isa<ZExtInst>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We found an instruction. If this is not induction variable then it is not
 | 
						|
    // safe to split this loop latch.
 | 
						|
    if (!I.isIdenticalTo(InnerIndexVarInc)) {
 | 
						|
      DEBUG(dbgs() << "Found unsupported instructions between induction "
 | 
						|
                   << "variable increment and branch.\n");
 | 
						|
      ORE->emit([&]() {
 | 
						|
        return OptimizationRemarkMissed(
 | 
						|
                   DEBUG_TYPE, "UnsupportedInsBetweenInduction",
 | 
						|
                   InnerLoop->getStartLoc(), InnerLoop->getHeader())
 | 
						|
               << "Found unsupported instruction between induction variable "
 | 
						|
                  "increment and branch.";
 | 
						|
      });
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    FoundInduction = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  // The loop latch ended and we didn't find the induction variable return as
 | 
						|
  // current limitation.
 | 
						|
  if (!FoundInduction) {
 | 
						|
    DEBUG(dbgs() << "Did not find the induction variable.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Did not find the induction variable.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
 | 
						|
                                                  unsigned OuterLoopId,
 | 
						|
                                                  CharMatrix &DepMatrix) {
 | 
						|
  if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
 | 
						|
    DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
 | 
						|
                 << " and OuterLoopId = " << OuterLoopId
 | 
						|
                 << " due to dependence\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Cannot interchange loops due to dependences.";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if outer and inner loop contain legal instructions only.
 | 
						|
  for (auto *BB : OuterLoop->blocks())
 | 
						|
    for (Instruction &I : *BB)
 | 
						|
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
        // readnone functions do not prevent interchanging.
 | 
						|
        if (CI->doesNotReadMemory())
 | 
						|
          continue;
 | 
						|
        DEBUG(dbgs() << "Loops with call instructions cannot be interchanged "
 | 
						|
                     << "safely.");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
  // Create unique Preheaders if we already do not have one.
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
 | 
						|
  // Create  a unique outer preheader -
 | 
						|
  // 1) If OuterLoop preheader is not present.
 | 
						|
  // 2) If OuterLoop Preheader is same as OuterLoop Header
 | 
						|
  // 3) If OuterLoop Preheader is same as Header of the previous loop.
 | 
						|
  // 4) If OuterLoop Preheader is Entry node.
 | 
						|
  if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
 | 
						|
      isa<PHINode>(OuterLoopPreHeader->begin()) ||
 | 
						|
      !OuterLoopPreHeader->getUniquePredecessor()) {
 | 
						|
    OuterLoopPreHeader =
 | 
						|
        InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
 | 
						|
      InnerLoopPreHeader == OuterLoop->getHeader()) {
 | 
						|
    InnerLoopPreHeader =
 | 
						|
        InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: The loops could not be interchanged due to current limitations in the
 | 
						|
  // transform module.
 | 
						|
  if (currentLimitations()) {
 | 
						|
    DEBUG(dbgs() << "Not legal because of current transform limitation\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the loops are tightly nested.
 | 
						|
  if (!tightlyNested(OuterLoop, InnerLoop)) {
 | 
						|
    DEBUG(dbgs() << "Loops not tightly nested\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Cannot interchange loops because they are not tightly "
 | 
						|
                "nested.";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int LoopInterchangeProfitability::getInstrOrderCost() {
 | 
						|
  unsigned GoodOrder, BadOrder;
 | 
						|
  BadOrder = GoodOrder = 0;
 | 
						|
  for (BasicBlock *BB : InnerLoop->blocks()) {
 | 
						|
    for (Instruction &Ins : *BB) {
 | 
						|
      if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
 | 
						|
        unsigned NumOp = GEP->getNumOperands();
 | 
						|
        bool FoundInnerInduction = false;
 | 
						|
        bool FoundOuterInduction = false;
 | 
						|
        for (unsigned i = 0; i < NumOp; ++i) {
 | 
						|
          const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
 | 
						|
          const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
 | 
						|
          if (!AR)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // If we find the inner induction after an outer induction e.g.
 | 
						|
          // for(int i=0;i<N;i++)
 | 
						|
          //   for(int j=0;j<N;j++)
 | 
						|
          //     A[i][j] = A[i-1][j-1]+k;
 | 
						|
          // then it is a good order.
 | 
						|
          if (AR->getLoop() == InnerLoop) {
 | 
						|
            // We found an InnerLoop induction after OuterLoop induction. It is
 | 
						|
            // a good order.
 | 
						|
            FoundInnerInduction = true;
 | 
						|
            if (FoundOuterInduction) {
 | 
						|
              GoodOrder++;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // If we find the outer induction after an inner induction e.g.
 | 
						|
          // for(int i=0;i<N;i++)
 | 
						|
          //   for(int j=0;j<N;j++)
 | 
						|
          //     A[j][i] = A[j-1][i-1]+k;
 | 
						|
          // then it is a bad order.
 | 
						|
          if (AR->getLoop() == OuterLoop) {
 | 
						|
            // We found an OuterLoop induction after InnerLoop induction. It is
 | 
						|
            // a bad order.
 | 
						|
            FoundOuterInduction = true;
 | 
						|
            if (FoundInnerInduction) {
 | 
						|
              BadOrder++;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return GoodOrder - BadOrder;
 | 
						|
}
 | 
						|
 | 
						|
static bool isProfitableForVectorization(unsigned InnerLoopId,
 | 
						|
                                         unsigned OuterLoopId,
 | 
						|
                                         CharMatrix &DepMatrix) {
 | 
						|
  // TODO: Improve this heuristic to catch more cases.
 | 
						|
  // If the inner loop is loop independent or doesn't carry any dependency it is
 | 
						|
  // profitable to move this to outer position.
 | 
						|
  for (auto &Row : DepMatrix) {
 | 
						|
    if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
 | 
						|
      return false;
 | 
						|
    // TODO: We need to improve this heuristic.
 | 
						|
    if (Row[OuterLoopId] != '=')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // If outer loop has dependence and inner loop is loop independent then it is
 | 
						|
  // profitable to interchange to enable parallelism.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
 | 
						|
                                                unsigned OuterLoopId,
 | 
						|
                                                CharMatrix &DepMatrix) {
 | 
						|
  // TODO: Add better profitability checks.
 | 
						|
  // e.g
 | 
						|
  // 1) Construct dependency matrix and move the one with no loop carried dep
 | 
						|
  //    inside to enable vectorization.
 | 
						|
 | 
						|
  // This is rough cost estimation algorithm. It counts the good and bad order
 | 
						|
  // of induction variables in the instruction and allows reordering if number
 | 
						|
  // of bad orders is more than good.
 | 
						|
  int Cost = getInstrOrderCost();
 | 
						|
  DEBUG(dbgs() << "Cost = " << Cost << "\n");
 | 
						|
  if (Cost < -LoopInterchangeCostThreshold)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // It is not profitable as per current cache profitability model. But check if
 | 
						|
  // we can move this loop outside to improve parallelism.
 | 
						|
  if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ORE->emit([&]() {
 | 
						|
    return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
 | 
						|
                                    InnerLoop->getStartLoc(),
 | 
						|
                                    InnerLoop->getHeader())
 | 
						|
           << "Interchanging loops is too costly (cost="
 | 
						|
           << ore::NV("Cost", Cost) << ", threshold="
 | 
						|
           << ore::NV("Threshold", LoopInterchangeCostThreshold)
 | 
						|
           << ") and it does not improve parallelism.";
 | 
						|
  });
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
 | 
						|
                                               Loop *InnerLoop) {
 | 
						|
  for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    if (*I == InnerLoop) {
 | 
						|
      OuterLoop->removeChildLoop(I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Couldn't find loop");
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
 | 
						|
                                                Loop *OuterLoop) {
 | 
						|
  Loop *OuterLoopParent = OuterLoop->getParentLoop();
 | 
						|
  if (OuterLoopParent) {
 | 
						|
    // Remove the loop from its parent loop.
 | 
						|
    removeChildLoop(OuterLoopParent, OuterLoop);
 | 
						|
    removeChildLoop(OuterLoop, InnerLoop);
 | 
						|
    OuterLoopParent->addChildLoop(InnerLoop);
 | 
						|
  } else {
 | 
						|
    removeChildLoop(OuterLoop, InnerLoop);
 | 
						|
    LI->changeTopLevelLoop(OuterLoop, InnerLoop);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!InnerLoop->empty())
 | 
						|
    OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
 | 
						|
 | 
						|
  InnerLoop->addChildLoop(OuterLoop);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::transform() {
 | 
						|
  bool Transformed = false;
 | 
						|
  Instruction *InnerIndexVar;
 | 
						|
 | 
						|
  if (InnerLoop->getSubLoops().empty()) {
 | 
						|
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
    DEBUG(dbgs() << "Calling Split Inner Loop\n");
 | 
						|
    PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
 | 
						|
    if (!InductionPHI) {
 | 
						|
      DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
 | 
						|
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
 | 
						|
    else
 | 
						|
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
 | 
						|
 | 
						|
    // Ensure that InductionPHI is the first Phi node as required by
 | 
						|
    // splitInnerLoopHeader
 | 
						|
    if (&InductionPHI->getParent()->front() != InductionPHI)
 | 
						|
      InductionPHI->moveBefore(&InductionPHI->getParent()->front());
 | 
						|
 | 
						|
    // Split at the place were the induction variable is
 | 
						|
    // incremented/decremented.
 | 
						|
    // TODO: This splitting logic may not work always. Fix this.
 | 
						|
    splitInnerLoopLatch(InnerIndexVar);
 | 
						|
    DEBUG(dbgs() << "splitInnerLoopLatch done\n");
 | 
						|
 | 
						|
    // Splits the inner loops phi nodes out into a separate basic block.
 | 
						|
    splitInnerLoopHeader();
 | 
						|
    DEBUG(dbgs() << "splitInnerLoopHeader done\n");
 | 
						|
  }
 | 
						|
 | 
						|
  Transformed |= adjustLoopLinks();
 | 
						|
  if (!Transformed) {
 | 
						|
    DEBUG(dbgs() << "adjustLoopLinks failed\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  restructureLoops(InnerLoop, OuterLoop);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
 | 
						|
  InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::splitInnerLoopHeader() {
 | 
						|
  // Split the inner loop header out. Here make sure that the reduction PHI's
 | 
						|
  // stay in the innerloop body.
 | 
						|
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  if (InnerLoopHasReduction) {
 | 
						|
    // Note: The induction PHI must be the first PHI for this to work
 | 
						|
    BasicBlock *New = InnerLoopHeader->splitBasicBlock(
 | 
						|
        ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
 | 
						|
    if (LI)
 | 
						|
      if (Loop *L = LI->getLoopFor(InnerLoopHeader))
 | 
						|
        L->addBasicBlockToLoop(New, *LI);
 | 
						|
 | 
						|
    // Adjust Reduction PHI's in the block.
 | 
						|
    SmallVector<PHINode *, 8> PHIVec;
 | 
						|
    for (auto I = New->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      PHINode *PHI = dyn_cast<PHINode>(I);
 | 
						|
      Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
 | 
						|
      PHI->replaceAllUsesWith(V);
 | 
						|
      PHIVec.push_back((PHI));
 | 
						|
    }
 | 
						|
    for (PHINode *P : PHIVec) {
 | 
						|
      P->eraseFromParent();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
 | 
						|
                  "InnerLoopHeader\n");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Move all instructions except the terminator from FromBB right before
 | 
						|
/// InsertBefore
 | 
						|
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
 | 
						|
  auto &ToList = InsertBefore->getParent()->getInstList();
 | 
						|
  auto &FromList = FromBB->getInstList();
 | 
						|
 | 
						|
  ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
 | 
						|
                FromBB->getTerminator()->getIterator());
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
 | 
						|
                                                   BasicBlock *OldPred,
 | 
						|
                                                   BasicBlock *NewPred) {
 | 
						|
  for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PHI = cast<PHINode>(I);
 | 
						|
    unsigned Num = PHI->getNumIncomingValues();
 | 
						|
    for (unsigned i = 0; i < Num; ++i) {
 | 
						|
      if (PHI->getIncomingBlock(i) == OldPred)
 | 
						|
        PHI->setIncomingBlock(i, NewPred);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::adjustLoopBranches() {
 | 
						|
  DEBUG(dbgs() << "adjustLoopBranches called\n");
 | 
						|
  // Adjust the loop preheader
 | 
						|
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
 | 
						|
  BasicBlock *InnerLoopLatchPredecessor =
 | 
						|
      InnerLoopLatch->getUniquePredecessor();
 | 
						|
  BasicBlock *InnerLoopLatchSuccessor;
 | 
						|
  BasicBlock *OuterLoopLatchSuccessor;
 | 
						|
 | 
						|
  BranchInst *OuterLoopLatchBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
 | 
						|
  BranchInst *InnerLoopLatchBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
 | 
						|
  BranchInst *OuterLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | 
						|
  BranchInst *InnerLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
 | 
						|
 | 
						|
  if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
 | 
						|
      !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
 | 
						|
      !InnerLoopHeaderBI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchInst *InnerLoopLatchPredecessorBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
 | 
						|
  BranchInst *OuterLoopPredecessorBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
 | 
						|
 | 
						|
  if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
 | 
						|
    return false;
 | 
						|
  BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
 | 
						|
  if (!InnerLoopHeaderSuccessor)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Adjust Loop Preheader and headers
 | 
						|
 | 
						|
  unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
 | 
						|
  for (unsigned i = 0; i < NumSucc; ++i) {
 | 
						|
    if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
 | 
						|
      OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
 | 
						|
  }
 | 
						|
 | 
						|
  NumSucc = OuterLoopHeaderBI->getNumSuccessors();
 | 
						|
  for (unsigned i = 0; i < NumSucc; ++i) {
 | 
						|
    if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
 | 
						|
      OuterLoopHeaderBI->setSuccessor(i, LoopExit);
 | 
						|
    else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
 | 
						|
      OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor);
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust reduction PHI's now that the incoming block has changed.
 | 
						|
  updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
 | 
						|
                      OuterLoopHeader);
 | 
						|
 | 
						|
  BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
 | 
						|
  InnerLoopHeaderBI->eraseFromParent();
 | 
						|
 | 
						|
  // -------------Adjust loop latches-----------
 | 
						|
  if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
 | 
						|
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
 | 
						|
  else
 | 
						|
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
  NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
 | 
						|
  for (unsigned i = 0; i < NumSucc; ++i) {
 | 
						|
    if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
 | 
						|
      InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
 | 
						|
  // the value and remove this PHI node from inner loop.
 | 
						|
  SmallVector<PHINode *, 8> LcssaVec;
 | 
						|
  for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *LcssaPhi = cast<PHINode>(I);
 | 
						|
    LcssaVec.push_back(LcssaPhi);
 | 
						|
  }
 | 
						|
  for (PHINode *P : LcssaVec) {
 | 
						|
    Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
 | 
						|
    P->replaceAllUsesWith(Incoming);
 | 
						|
    P->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
 | 
						|
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
 | 
						|
  else
 | 
						|
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
  if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
 | 
						|
    InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
 | 
						|
  else
 | 
						|
    InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
 | 
						|
 | 
						|
  updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
 | 
						|
 | 
						|
  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
 | 
						|
    OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
 | 
						|
  } else {
 | 
						|
    OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::adjustLoopPreheaders() {
 | 
						|
  // We have interchanged the preheaders so we need to interchange the data in
 | 
						|
  // the preheader as well.
 | 
						|
  // This is because the content of inner preheader was previously executed
 | 
						|
  // inside the outer loop.
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BranchInst *InnerTermBI =
 | 
						|
      cast<BranchInst>(InnerLoopPreHeader->getTerminator());
 | 
						|
 | 
						|
  // These instructions should now be executed inside the loop.
 | 
						|
  // Move instruction into a new block after outer header.
 | 
						|
  moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
 | 
						|
  // These instructions were not executed previously in the loop so move them to
 | 
						|
  // the older inner loop preheader.
 | 
						|
  moveBBContents(OuterLoopPreHeader, InnerTermBI);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::adjustLoopLinks() {
 | 
						|
  // Adjust all branches in the inner and outer loop.
 | 
						|
  bool Changed = adjustLoopBranches();
 | 
						|
  if (Changed)
 | 
						|
    adjustLoopPreheaders();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
char LoopInterchange::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
 | 
						|
                      "Interchanges loops for cache reuse", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | 
						|
 | 
						|
INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
 | 
						|
                    "Interchanges loops for cache reuse", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
 |