forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			374 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			374 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass does the inverse transformation of what LICM does.
 | 
						|
// It traverses all of the instructions in the loop's preheader and sinks
 | 
						|
// them to the loop body where frequency is lower than the loop's preheader.
 | 
						|
// This pass is a reverse-transformation of LICM. It differs from the Sink
 | 
						|
// pass in the following ways:
 | 
						|
//
 | 
						|
// * It only handles sinking of instructions from the loop's preheader to the
 | 
						|
//   loop's body
 | 
						|
// * It uses alias set tracker to get more accurate alias info
 | 
						|
// * It uses block frequency info to find the optimal sinking locations
 | 
						|
//
 | 
						|
// Overall algorithm:
 | 
						|
//
 | 
						|
// For I in Preheader:
 | 
						|
//   InsertBBs = BBs that uses I
 | 
						|
//   For BB in sorted(LoopBBs):
 | 
						|
//     DomBBs = BBs in InsertBBs that are dominated by BB
 | 
						|
//     if freq(DomBBs) > freq(BB)
 | 
						|
//       InsertBBs = UseBBs - DomBBs + BB
 | 
						|
//   For BB in InsertBBs:
 | 
						|
//     Insert I at BB's beginning
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/LoopSink.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loopsink"
 | 
						|
 | 
						|
STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
 | 
						|
STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
 | 
						|
 | 
						|
static cl::opt<unsigned> SinkFrequencyPercentThreshold(
 | 
						|
    "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
 | 
						|
    cl::desc("Do not sink instructions that require cloning unless they "
 | 
						|
             "execute less than this percent of the time."));
 | 
						|
 | 
						|
static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
 | 
						|
    "max-uses-for-sinking", cl::Hidden, cl::init(30),
 | 
						|
    cl::desc("Do not sink instructions that have too many uses."));
 | 
						|
 | 
						|
/// Return adjusted total frequency of \p BBs.
 | 
						|
///
 | 
						|
/// * If there is only one BB, sinking instruction will not introduce code
 | 
						|
///   size increase. Thus there is no need to adjust the frequency.
 | 
						|
/// * If there are more than one BB, sinking would lead to code size increase.
 | 
						|
///   In this case, we add some "tax" to the total frequency to make it harder
 | 
						|
///   to sink. E.g.
 | 
						|
///     Freq(Preheader) = 100
 | 
						|
///     Freq(BBs) = sum(50, 49) = 99
 | 
						|
///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
 | 
						|
///   BBs as the difference is too small to justify the code size increase.
 | 
						|
///   To model this, The adjusted Freq(BBs) will be:
 | 
						|
///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
 | 
						|
static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
 | 
						|
                                      BlockFrequencyInfo &BFI) {
 | 
						|
  BlockFrequency T = 0;
 | 
						|
  for (BasicBlock *B : BBs)
 | 
						|
    T += BFI.getBlockFreq(B);
 | 
						|
  if (BBs.size() > 1)
 | 
						|
    T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
 | 
						|
  return T;
 | 
						|
}
 | 
						|
 | 
						|
/// Return a set of basic blocks to insert sinked instructions.
 | 
						|
///
 | 
						|
/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
 | 
						|
///
 | 
						|
/// * Inside the loop \p L
 | 
						|
/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
 | 
						|
///   that domintates the UseBB
 | 
						|
/// * Has minimum total frequency that is no greater than preheader frequency
 | 
						|
///
 | 
						|
/// The purpose of the function is to find the optimal sinking points to
 | 
						|
/// minimize execution cost, which is defined as "sum of frequency of
 | 
						|
/// BBsToSinkInto".
 | 
						|
/// As a result, the returned BBsToSinkInto needs to have minimum total
 | 
						|
/// frequency.
 | 
						|
/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
 | 
						|
/// frequency, the optimal solution is not sinking (return empty set).
 | 
						|
///
 | 
						|
/// \p ColdLoopBBs is used to help find the optimal sinking locations.
 | 
						|
/// It stores a list of BBs that is:
 | 
						|
///
 | 
						|
/// * Inside the loop \p L
 | 
						|
/// * Has a frequency no larger than the loop's preheader
 | 
						|
/// * Sorted by BB frequency
 | 
						|
///
 | 
						|
/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
 | 
						|
/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
 | 
						|
/// caller.
 | 
						|
static SmallPtrSet<BasicBlock *, 2>
 | 
						|
findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
 | 
						|
                  const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
 | 
						|
                  DominatorTree &DT, BlockFrequencyInfo &BFI) {
 | 
						|
  SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
 | 
						|
  if (UseBBs.size() == 0)
 | 
						|
    return BBsToSinkInto;
 | 
						|
 | 
						|
  BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
 | 
						|
  SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
 | 
						|
 | 
						|
  // For every iteration:
 | 
						|
  //   * Pick the ColdestBB from ColdLoopBBs
 | 
						|
  //   * Find the set BBsDominatedByColdestBB that satisfy:
 | 
						|
  //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
 | 
						|
  //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
 | 
						|
  //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
 | 
						|
  //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
 | 
						|
  //     BBsToSinkInto
 | 
						|
  for (BasicBlock *ColdestBB : ColdLoopBBs) {
 | 
						|
    BBsDominatedByColdestBB.clear();
 | 
						|
    for (BasicBlock *SinkedBB : BBsToSinkInto)
 | 
						|
      if (DT.dominates(ColdestBB, SinkedBB))
 | 
						|
        BBsDominatedByColdestBB.insert(SinkedBB);
 | 
						|
    if (BBsDominatedByColdestBB.size() == 0)
 | 
						|
      continue;
 | 
						|
    if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
 | 
						|
        BFI.getBlockFreq(ColdestBB)) {
 | 
						|
      for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
 | 
						|
        BBsToSinkInto.erase(DominatedBB);
 | 
						|
      }
 | 
						|
      BBsToSinkInto.insert(ColdestBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the total frequency of BBsToSinkInto is larger than preheader frequency,
 | 
						|
  // do not sink.
 | 
						|
  if (adjustedSumFreq(BBsToSinkInto, BFI) >
 | 
						|
      BFI.getBlockFreq(L.getLoopPreheader()))
 | 
						|
    BBsToSinkInto.clear();
 | 
						|
  return BBsToSinkInto;
 | 
						|
}
 | 
						|
 | 
						|
// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
 | 
						|
// sinking is successful.
 | 
						|
// \p LoopBlockNumber is used to sort the insertion blocks to ensure
 | 
						|
// determinism.
 | 
						|
static bool sinkInstruction(Loop &L, Instruction &I,
 | 
						|
                            const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
 | 
						|
                            const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
 | 
						|
                            LoopInfo &LI, DominatorTree &DT,
 | 
						|
                            BlockFrequencyInfo &BFI) {
 | 
						|
  // Compute the set of blocks in loop L which contain a use of I.
 | 
						|
  SmallPtrSet<BasicBlock *, 2> BBs;
 | 
						|
  for (auto &U : I.uses()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U.getUser());
 | 
						|
    // We cannot sink I to PHI-uses.
 | 
						|
    if (dyn_cast<PHINode>(UI))
 | 
						|
      return false;
 | 
						|
    // We cannot sink I if it has uses outside of the loop.
 | 
						|
    if (!L.contains(LI.getLoopFor(UI->getParent())))
 | 
						|
      return false;
 | 
						|
    BBs.insert(UI->getParent());
 | 
						|
  }
 | 
						|
 | 
						|
  // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
 | 
						|
  // BBs.size() to avoid expensive computation.
 | 
						|
  // FIXME: Handle code size growth for min_size and opt_size.
 | 
						|
  if (BBs.size() > MaxNumberOfUseBBsForSinking)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the set of BBs that we should insert a copy of I.
 | 
						|
  SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
 | 
						|
      findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
 | 
						|
  if (BBsToSinkInto.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Copy the final BBs into a vector and sort them using the total ordering
 | 
						|
  // of the loop block numbers as iterating the set doesn't give a useful
 | 
						|
  // order. No need to stable sort as the block numbers are a total ordering.
 | 
						|
  SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
 | 
						|
  SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
 | 
						|
                             BBsToSinkInto.end());
 | 
						|
  std::sort(SortedBBsToSinkInto.begin(), SortedBBsToSinkInto.end(),
 | 
						|
            [&](BasicBlock *A, BasicBlock *B) {
 | 
						|
              return *LoopBlockNumber.find(A) < *LoopBlockNumber.find(B);
 | 
						|
            });
 | 
						|
 | 
						|
  BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
 | 
						|
  // FIXME: Optimize the efficiency for cloned value replacement. The current
 | 
						|
  //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
 | 
						|
  for (BasicBlock *N : SortedBBsToSinkInto) {
 | 
						|
    if (N == MoveBB)
 | 
						|
      continue;
 | 
						|
    // Clone I and replace its uses.
 | 
						|
    Instruction *IC = I.clone();
 | 
						|
    IC->setName(I.getName());
 | 
						|
    IC->insertBefore(&*N->getFirstInsertionPt());
 | 
						|
    // Replaces uses of I with IC in N
 | 
						|
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
 | 
						|
      Use &U = *UI++;
 | 
						|
      auto *I = cast<Instruction>(U.getUser());
 | 
						|
      if (I->getParent() == N)
 | 
						|
        U.set(IC);
 | 
						|
    }
 | 
						|
    // Replaces uses of I with IC in blocks dominated by N
 | 
						|
    replaceDominatedUsesWith(&I, IC, DT, N);
 | 
						|
    DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
 | 
						|
                 << '\n');
 | 
						|
    NumLoopSunkCloned++;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
 | 
						|
  NumLoopSunk++;
 | 
						|
  I.moveBefore(&*MoveBB->getFirstInsertionPt());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Sinks instructions from loop's preheader to the loop body if the
 | 
						|
/// sum frequency of inserted copy is smaller than preheader's frequency.
 | 
						|
static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
 | 
						|
                                          DominatorTree &DT,
 | 
						|
                                          BlockFrequencyInfo &BFI,
 | 
						|
                                          ScalarEvolution *SE) {
 | 
						|
  BasicBlock *Preheader = L.getLoopPreheader();
 | 
						|
  if (!Preheader)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Enable LoopSink only when runtime profile is available.
 | 
						|
  // With static profile, the sinking decision may be sub-optimal.
 | 
						|
  if (!Preheader->getParent()->getEntryCount())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
 | 
						|
  // If there are no basic blocks with lower frequency than the preheader then
 | 
						|
  // we can avoid the detailed analysis as we will never find profitable sinking
 | 
						|
  // opportunities.
 | 
						|
  if (all_of(L.blocks(), [&](const BasicBlock *BB) {
 | 
						|
        return BFI.getBlockFreq(BB) > PreheaderFreq;
 | 
						|
      }))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  AliasSetTracker CurAST(AA);
 | 
						|
 | 
						|
  // Compute alias set.
 | 
						|
  for (BasicBlock *BB : L.blocks())
 | 
						|
    CurAST.add(*BB);
 | 
						|
 | 
						|
  // Sort loop's basic blocks by frequency
 | 
						|
  SmallVector<BasicBlock *, 10> ColdLoopBBs;
 | 
						|
  SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
 | 
						|
  int i = 0;
 | 
						|
  for (BasicBlock *B : L.blocks())
 | 
						|
    if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
 | 
						|
      ColdLoopBBs.push_back(B);
 | 
						|
      LoopBlockNumber[B] = ++i;
 | 
						|
    }
 | 
						|
  std::stable_sort(ColdLoopBBs.begin(), ColdLoopBBs.end(),
 | 
						|
                   [&](BasicBlock *A, BasicBlock *B) {
 | 
						|
                     return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
 | 
						|
                   });
 | 
						|
 | 
						|
  // Traverse preheader's instructions in reverse order becaue if A depends
 | 
						|
  // on B (A appears after B), A needs to be sinked first before B can be
 | 
						|
  // sinked.
 | 
						|
  for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
 | 
						|
    Instruction *I = &*II++;
 | 
						|
    // No need to check for instruction's operands are loop invariant.
 | 
						|
    assert(L.hasLoopInvariantOperands(I) &&
 | 
						|
           "Insts in a loop's preheader should have loop invariant operands!");
 | 
						|
    if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr))
 | 
						|
      continue;
 | 
						|
    if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
 | 
						|
      Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed && SE)
 | 
						|
    SE->forgetLoopDispositions(&L);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
 | 
						|
  LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
 | 
						|
  // Nothing to do if there are no loops.
 | 
						|
  if (LI.empty())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  AAResults &AA = FAM.getResult<AAManager>(F);
 | 
						|
  DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
 | 
						|
 | 
						|
  // We want to do a postorder walk over the loops. Since loops are a tree this
 | 
						|
  // is equivalent to a reversed preorder walk and preorder is easy to compute
 | 
						|
  // without recursion. Since we reverse the preorder, we will visit siblings
 | 
						|
  // in reverse program order. This isn't expected to matter at all but is more
 | 
						|
  // consistent with sinking algorithms which generally work bottom-up.
 | 
						|
  SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  do {
 | 
						|
    Loop &L = *PreorderLoops.pop_back_val();
 | 
						|
 | 
						|
    // Note that we don't pass SCEV here because it is only used to invalidate
 | 
						|
    // loops in SCEV and we don't preserve (or request) SCEV at all making that
 | 
						|
    // unnecessary.
 | 
						|
    Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
 | 
						|
                                             /*ScalarEvolution*/ nullptr);
 | 
						|
  } while (!PreorderLoops.empty());
 | 
						|
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct LegacyLoopSinkPass : public LoopPass {
 | 
						|
  static char ID;
 | 
						|
  LegacyLoopSinkPass() : LoopPass(ID) {
 | 
						|
    initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | 
						|
    if (skipLoop(L))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
 | 
						|
    return sinkLoopInvariantInstructions(
 | 
						|
        *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
 | 
						|
        getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
 | 
						|
        getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
 | 
						|
        getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
 | 
						|
        SE ? &SE->getSE() : nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char LegacyLoopSinkPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
 | 
						|
                      false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
 |