forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1616 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1616 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass transforms loops that contain branches on loop-invariant conditions
 | 
						|
// to multiple loops.  For example, it turns the left into the right code:
 | 
						|
//
 | 
						|
//  for (...)                  if (lic)
 | 
						|
//    A                          for (...)
 | 
						|
//    if (lic)                     A; B; C
 | 
						|
//      B                      else
 | 
						|
//    C                          for (...)
 | 
						|
//                                 A; C
 | 
						|
//
 | 
						|
// This can increase the size of the code exponentially (doubling it every time
 | 
						|
// a loop is unswitched) so we only unswitch if the resultant code will be
 | 
						|
// smaller than a threshold.
 | 
						|
//
 | 
						|
// This pass expects LICM to be run before it to hoist invariant conditions out
 | 
						|
// of the loop, to make the unswitching opportunity obvious.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/DivergenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unswitch"
 | 
						|
 | 
						|
STATISTIC(NumBranches, "Number of branches unswitched");
 | 
						|
STATISTIC(NumSwitches, "Number of switches unswitched");
 | 
						|
STATISTIC(NumGuards,   "Number of guards unswitched");
 | 
						|
STATISTIC(NumSelects , "Number of selects unswitched");
 | 
						|
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
 | 
						|
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
 | 
						|
STATISTIC(TotalInsts,  "Total number of instructions analyzed");
 | 
						|
 | 
						|
// The specific value of 100 here was chosen based only on intuition and a
 | 
						|
// few specific examples.
 | 
						|
static cl::opt<unsigned>
 | 
						|
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
 | 
						|
          cl::init(100), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class LUAnalysisCache {
 | 
						|
    using UnswitchedValsMap =
 | 
						|
        DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
 | 
						|
    using UnswitchedValsIt = UnswitchedValsMap::iterator;
 | 
						|
 | 
						|
    struct LoopProperties {
 | 
						|
      unsigned CanBeUnswitchedCount;
 | 
						|
      unsigned WasUnswitchedCount;
 | 
						|
      unsigned SizeEstimation;
 | 
						|
      UnswitchedValsMap UnswitchedVals;
 | 
						|
    };
 | 
						|
 | 
						|
    // Here we use std::map instead of DenseMap, since we need to keep valid
 | 
						|
    // LoopProperties pointer for current loop for better performance.
 | 
						|
    using LoopPropsMap = std::map<const Loop *, LoopProperties>;
 | 
						|
    using LoopPropsMapIt = LoopPropsMap::iterator;
 | 
						|
 | 
						|
    LoopPropsMap LoopsProperties;
 | 
						|
    UnswitchedValsMap *CurLoopInstructions = nullptr;
 | 
						|
    LoopProperties *CurrentLoopProperties = nullptr;
 | 
						|
 | 
						|
    // A loop unswitching with an estimated cost above this threshold
 | 
						|
    // is not performed. MaxSize is turned into unswitching quota for
 | 
						|
    // the current loop, and reduced correspondingly, though note that
 | 
						|
    // the quota is returned by releaseMemory() when the loop has been
 | 
						|
    // processed, so that MaxSize will return to its previous
 | 
						|
    // value. So in most cases MaxSize will equal the Threshold flag
 | 
						|
    // when a new loop is processed. An exception to that is that
 | 
						|
    // MaxSize will have a smaller value while processing nested loops
 | 
						|
    // that were introduced due to loop unswitching of an outer loop.
 | 
						|
    //
 | 
						|
    // FIXME: The way that MaxSize works is subtle and depends on the
 | 
						|
    // pass manager processing loops and calling releaseMemory() in a
 | 
						|
    // specific order. It would be good to find a more straightforward
 | 
						|
    // way of doing what MaxSize does.
 | 
						|
    unsigned MaxSize;
 | 
						|
 | 
						|
  public:
 | 
						|
    LUAnalysisCache() : MaxSize(Threshold) {}
 | 
						|
 | 
						|
    // Analyze loop. Check its size, calculate is it possible to unswitch
 | 
						|
    // it. Returns true if we can unswitch this loop.
 | 
						|
    bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
 | 
						|
                   AssumptionCache *AC);
 | 
						|
 | 
						|
    // Clean all data related to given loop.
 | 
						|
    void forgetLoop(const Loop *L);
 | 
						|
 | 
						|
    // Mark case value as unswitched.
 | 
						|
    // Since SI instruction can be partly unswitched, in order to avoid
 | 
						|
    // extra unswitching in cloned loops keep track all unswitched values.
 | 
						|
    void setUnswitched(const SwitchInst *SI, const Value *V);
 | 
						|
 | 
						|
    // Check was this case value unswitched before or not.
 | 
						|
    bool isUnswitched(const SwitchInst *SI, const Value *V);
 | 
						|
 | 
						|
    // Returns true if another unswitching could be done within the cost
 | 
						|
    // threshold.
 | 
						|
    bool CostAllowsUnswitching();
 | 
						|
 | 
						|
    // Clone all loop-unswitch related loop properties.
 | 
						|
    // Redistribute unswitching quotas.
 | 
						|
    // Note, that new loop data is stored inside the VMap.
 | 
						|
    void cloneData(const Loop *NewLoop, const Loop *OldLoop,
 | 
						|
                   const ValueToValueMapTy &VMap);
 | 
						|
  };
 | 
						|
 | 
						|
  class LoopUnswitch : public LoopPass {
 | 
						|
    LoopInfo *LI;  // Loop information
 | 
						|
    LPPassManager *LPM;
 | 
						|
    AssumptionCache *AC;
 | 
						|
 | 
						|
    // Used to check if second loop needs processing after
 | 
						|
    // RewriteLoopBodyWithConditionConstant rewrites first loop.
 | 
						|
    std::vector<Loop*> LoopProcessWorklist;
 | 
						|
 | 
						|
    LUAnalysisCache BranchesInfo;
 | 
						|
 | 
						|
    bool OptimizeForSize;
 | 
						|
    bool redoLoop = false;
 | 
						|
 | 
						|
    Loop *currentLoop = nullptr;
 | 
						|
    DominatorTree *DT = nullptr;
 | 
						|
    BasicBlock *loopHeader = nullptr;
 | 
						|
    BasicBlock *loopPreheader = nullptr;
 | 
						|
 | 
						|
    bool SanitizeMemory;
 | 
						|
    LoopSafetyInfo SafetyInfo;
 | 
						|
 | 
						|
    // LoopBlocks contains all of the basic blocks of the loop, including the
 | 
						|
    // preheader of the loop, the body of the loop, and the exit blocks of the
 | 
						|
    // loop, in that order.
 | 
						|
    std::vector<BasicBlock*> LoopBlocks;
 | 
						|
    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
 | 
						|
    std::vector<BasicBlock*> NewBlocks;
 | 
						|
 | 
						|
    bool hasBranchDivergence;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
 | 
						|
    explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
 | 
						|
        : LoopPass(ID), OptimizeForSize(Os),
 | 
						|
          hasBranchDivergence(hasBranchDivergence) {
 | 
						|
        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | 
						|
    bool processCurrentLoop();
 | 
						|
    bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
 | 
						|
 | 
						|
    /// This transformation requires natural loop information & requires that
 | 
						|
    /// loop preheaders be inserted into the CFG.
 | 
						|
    ///
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<AssumptionCacheTracker>();
 | 
						|
      AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
      if (hasBranchDivergence)
 | 
						|
        AU.addRequired<DivergenceAnalysis>();
 | 
						|
      getLoopAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void releaseMemory() override {
 | 
						|
      BranchesInfo.forgetLoop(currentLoop);
 | 
						|
    }
 | 
						|
 | 
						|
    void initLoopData() {
 | 
						|
      loopHeader = currentLoop->getHeader();
 | 
						|
      loopPreheader = currentLoop->getLoopPreheader();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Split all of the edges from inside the loop to their exit blocks.
 | 
						|
    /// Update the appropriate Phi nodes as we do so.
 | 
						|
    void SplitExitEdges(Loop *L,
 | 
						|
                        const SmallVectorImpl<BasicBlock *> &ExitBlocks);
 | 
						|
 | 
						|
    bool TryTrivialLoopUnswitch(bool &Changed);
 | 
						|
 | 
						|
    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
 | 
						|
                              TerminatorInst *TI = nullptr);
 | 
						|
    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
 | 
						|
                                  BasicBlock *ExitBlock, TerminatorInst *TI);
 | 
						|
    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
 | 
						|
                                     TerminatorInst *TI);
 | 
						|
 | 
						|
    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | 
						|
                                              Constant *Val, bool isEqual);
 | 
						|
 | 
						|
    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
 | 
						|
                                        BasicBlock *TrueDest,
 | 
						|
                                        BasicBlock *FalseDest,
 | 
						|
                                        BranchInst *OldBranch,
 | 
						|
                                        TerminatorInst *TI);
 | 
						|
 | 
						|
    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
 | 
						|
 | 
						|
    /// Given that the Invariant is not equal to Val. Simplify instructions
 | 
						|
    /// in the loop.
 | 
						|
    Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
 | 
						|
                                           Constant *Val);
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Analyze loop. Check its size, calculate is it possible to unswitch
 | 
						|
// it. Returns true if we can unswitch this loop.
 | 
						|
bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
 | 
						|
                                AssumptionCache *AC) {
 | 
						|
  LoopPropsMapIt PropsIt;
 | 
						|
  bool Inserted;
 | 
						|
  std::tie(PropsIt, Inserted) =
 | 
						|
      LoopsProperties.insert(std::make_pair(L, LoopProperties()));
 | 
						|
 | 
						|
  LoopProperties &Props = PropsIt->second;
 | 
						|
 | 
						|
  if (Inserted) {
 | 
						|
    // New loop.
 | 
						|
 | 
						|
    // Limit the number of instructions to avoid causing significant code
 | 
						|
    // expansion, and the number of basic blocks, to avoid loops with
 | 
						|
    // large numbers of branches which cause loop unswitching to go crazy.
 | 
						|
    // This is a very ad-hoc heuristic.
 | 
						|
 | 
						|
    SmallPtrSet<const Value *, 32> EphValues;
 | 
						|
    CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | 
						|
 | 
						|
    // FIXME: This is overly conservative because it does not take into
 | 
						|
    // consideration code simplification opportunities and code that can
 | 
						|
    // be shared by the resultant unswitched loops.
 | 
						|
    CodeMetrics Metrics;
 | 
						|
    for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
 | 
						|
         ++I)
 | 
						|
      Metrics.analyzeBasicBlock(*I, TTI, EphValues);
 | 
						|
 | 
						|
    Props.SizeEstimation = Metrics.NumInsts;
 | 
						|
    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
 | 
						|
    Props.WasUnswitchedCount = 0;
 | 
						|
    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
 | 
						|
 | 
						|
    if (Metrics.notDuplicatable) {
 | 
						|
      DEBUG(dbgs() << "NOT unswitching loop %"
 | 
						|
                   << L->getHeader()->getName() << ", contents cannot be "
 | 
						|
                   << "duplicated!\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Be careful. This links are good only before new loop addition.
 | 
						|
  CurrentLoopProperties = &Props;
 | 
						|
  CurLoopInstructions = &Props.UnswitchedVals;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Clean all data related to given loop.
 | 
						|
void LUAnalysisCache::forgetLoop(const Loop *L) {
 | 
						|
  LoopPropsMapIt LIt = LoopsProperties.find(L);
 | 
						|
 | 
						|
  if (LIt != LoopsProperties.end()) {
 | 
						|
    LoopProperties &Props = LIt->second;
 | 
						|
    MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
 | 
						|
               Props.SizeEstimation;
 | 
						|
    LoopsProperties.erase(LIt);
 | 
						|
  }
 | 
						|
 | 
						|
  CurrentLoopProperties = nullptr;
 | 
						|
  CurLoopInstructions = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Mark case value as unswitched.
 | 
						|
// Since SI instruction can be partly unswitched, in order to avoid
 | 
						|
// extra unswitching in cloned loops keep track all unswitched values.
 | 
						|
void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
 | 
						|
  (*CurLoopInstructions)[SI].insert(V);
 | 
						|
}
 | 
						|
 | 
						|
// Check was this case value unswitched before or not.
 | 
						|
bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
 | 
						|
  return (*CurLoopInstructions)[SI].count(V);
 | 
						|
}
 | 
						|
 | 
						|
bool LUAnalysisCache::CostAllowsUnswitching() {
 | 
						|
  return CurrentLoopProperties->CanBeUnswitchedCount > 0;
 | 
						|
}
 | 
						|
 | 
						|
// Clone all loop-unswitch related loop properties.
 | 
						|
// Redistribute unswitching quotas.
 | 
						|
// Note, that new loop data is stored inside the VMap.
 | 
						|
void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
 | 
						|
                                const ValueToValueMapTy &VMap) {
 | 
						|
  LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
 | 
						|
  LoopProperties &OldLoopProps = *CurrentLoopProperties;
 | 
						|
  UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
 | 
						|
 | 
						|
  // Reallocate "can-be-unswitched quota"
 | 
						|
 | 
						|
  --OldLoopProps.CanBeUnswitchedCount;
 | 
						|
  ++OldLoopProps.WasUnswitchedCount;
 | 
						|
  NewLoopProps.WasUnswitchedCount = 0;
 | 
						|
  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
 | 
						|
  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
 | 
						|
  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
 | 
						|
 | 
						|
  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
 | 
						|
 | 
						|
  // Clone unswitched values info:
 | 
						|
  // for new loop switches we clone info about values that was
 | 
						|
  // already unswitched and has redundant successors.
 | 
						|
  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
 | 
						|
    const SwitchInst *OldInst = I->first;
 | 
						|
    Value *NewI = VMap.lookup(OldInst);
 | 
						|
    const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
 | 
						|
    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
 | 
						|
 | 
						|
    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
char LoopUnswitch::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
 | 
						|
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
 | 
						|
                      false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
 | 
						|
  return new LoopUnswitch(Os, hasBranchDivergence);
 | 
						|
}
 | 
						|
 | 
						|
/// Operator chain lattice.
 | 
						|
enum OperatorChain {
 | 
						|
  OC_OpChainNone,    ///< There is no operator.
 | 
						|
  OC_OpChainOr,      ///< There are only ORs.
 | 
						|
  OC_OpChainAnd,     ///< There are only ANDs.
 | 
						|
  OC_OpChainMixed    ///< There are ANDs and ORs.
 | 
						|
};
 | 
						|
 | 
						|
/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
 | 
						|
/// an invariant piece, return the invariant. Otherwise, return null.
 | 
						|
//
 | 
						|
/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
 | 
						|
/// mixed operator chain, as we can not reliably find a value which will simplify
 | 
						|
/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
 | 
						|
/// to simplify the chain.
 | 
						|
///
 | 
						|
/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
 | 
						|
/// simplify the condition itself to a loop variant condition, but at the
 | 
						|
/// cost of creating an entirely new loop.
 | 
						|
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
 | 
						|
                                   OperatorChain &ParentChain,
 | 
						|
                                   DenseMap<Value *, Value *> &Cache) {
 | 
						|
  auto CacheIt = Cache.find(Cond);
 | 
						|
  if (CacheIt != Cache.end())
 | 
						|
    return CacheIt->second;
 | 
						|
 | 
						|
  // We started analyze new instruction, increment scanned instructions counter.
 | 
						|
  ++TotalInsts;
 | 
						|
 | 
						|
  // We can never unswitch on vector conditions.
 | 
						|
  if (Cond->getType()->isVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Constants should be folded, not unswitched on!
 | 
						|
  if (isa<Constant>(Cond)) return nullptr;
 | 
						|
 | 
						|
  // TODO: Handle: br (VARIANT|INVARIANT).
 | 
						|
 | 
						|
  // Hoist simple values out.
 | 
						|
  if (L->makeLoopInvariant(Cond, Changed)) {
 | 
						|
    Cache[Cond] = Cond;
 | 
						|
    return Cond;
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk up the operator chain to find partial invariant conditions.
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
 | 
						|
    if (BO->getOpcode() == Instruction::And ||
 | 
						|
        BO->getOpcode() == Instruction::Or) {
 | 
						|
      // Given the previous operator, compute the current operator chain status.
 | 
						|
      OperatorChain NewChain;
 | 
						|
      switch (ParentChain) {
 | 
						|
      case OC_OpChainNone:
 | 
						|
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
 | 
						|
                                      OC_OpChainOr;
 | 
						|
        break;
 | 
						|
      case OC_OpChainOr:
 | 
						|
        NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
 | 
						|
                                      OC_OpChainMixed;
 | 
						|
        break;
 | 
						|
      case OC_OpChainAnd:
 | 
						|
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
 | 
						|
                                      OC_OpChainMixed;
 | 
						|
        break;
 | 
						|
      case OC_OpChainMixed:
 | 
						|
        NewChain = OC_OpChainMixed;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we reach a Mixed state, we do not want to keep walking up as we can not
 | 
						|
      // reliably find a value that will simplify the chain. With this check, we
 | 
						|
      // will return null on the first sight of mixed chain and the caller will
 | 
						|
      // either backtrack to find partial LIV in other operand or return null.
 | 
						|
      if (NewChain != OC_OpChainMixed) {
 | 
						|
        // Update the current operator chain type before we search up the chain.
 | 
						|
        ParentChain = NewChain;
 | 
						|
        // If either the left or right side is invariant, we can unswitch on this,
 | 
						|
        // which will cause the branch to go away in one loop and the condition to
 | 
						|
        // simplify in the other one.
 | 
						|
        if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
 | 
						|
                                              ParentChain, Cache)) {
 | 
						|
          Cache[Cond] = LHS;
 | 
						|
          return LHS;
 | 
						|
        }
 | 
						|
        // We did not manage to find a partial LIV in operand(0). Backtrack and try
 | 
						|
        // operand(1).
 | 
						|
        ParentChain = NewChain;
 | 
						|
        if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
 | 
						|
                                              ParentChain, Cache)) {
 | 
						|
          Cache[Cond] = RHS;
 | 
						|
          return RHS;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  Cache[Cond] = nullptr;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
 | 
						|
/// an invariant piece, return the invariant along with the operator chain type.
 | 
						|
/// Otherwise, return null.
 | 
						|
static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
 | 
						|
                                                              Loop *L,
 | 
						|
                                                              bool &Changed) {
 | 
						|
  DenseMap<Value *, Value *> Cache;
 | 
						|
  OperatorChain OpChain = OC_OpChainNone;
 | 
						|
  Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
 | 
						|
 | 
						|
  // In case we do find a LIV, it can not be obtained by walking up a mixed
 | 
						|
  // operator chain.
 | 
						|
  assert((!FCond || OpChain != OC_OpChainMixed) &&
 | 
						|
        "Do not expect a partial LIV with mixed operator chain");
 | 
						|
  return {FCond, OpChain};
 | 
						|
}
 | 
						|
 | 
						|
bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
 | 
						|
  if (skipLoop(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
 | 
						|
      *L->getHeader()->getParent());
 | 
						|
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  LPM = &LPM_Ref;
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  currentLoop = L;
 | 
						|
  Function *F = currentLoop->getHeader()->getParent();
 | 
						|
 | 
						|
  SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
 | 
						|
  if (SanitizeMemory)
 | 
						|
    computeLoopSafetyInfo(&SafetyInfo, L);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  do {
 | 
						|
    assert(currentLoop->isLCSSAForm(*DT));
 | 
						|
    redoLoop = false;
 | 
						|
    Changed |= processCurrentLoop();
 | 
						|
  } while(redoLoop);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the BasicBlock BB is unreachable from the loop header.
 | 
						|
// Return false, otherwise.
 | 
						|
bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
 | 
						|
  auto *Node = DT->getNode(BB)->getIDom();
 | 
						|
  BasicBlock *DomBB = Node->getBlock();
 | 
						|
  while (currentLoop->contains(DomBB)) {
 | 
						|
    BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
 | 
						|
 | 
						|
    Node = DT->getNode(DomBB)->getIDom();
 | 
						|
    DomBB = Node->getBlock();
 | 
						|
 | 
						|
    if (!BInst || !BInst->isConditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *Cond = BInst->getCondition();
 | 
						|
    if (!isa<ConstantInt>(Cond))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *UnreachableSucc =
 | 
						|
        Cond == ConstantInt::getTrue(Cond->getContext())
 | 
						|
            ? BInst->getSuccessor(1)
 | 
						|
            : BInst->getSuccessor(0);
 | 
						|
 | 
						|
    if (DT->dominates(UnreachableSucc, BB))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FIXME: Remove this workaround when freeze related patches are done.
 | 
						|
/// LoopUnswitch and Equality propagation in GVN have discrepancy about
 | 
						|
/// whether branch on undef/poison has undefine behavior. Here it is to
 | 
						|
/// rule out some common cases that we found such discrepancy already
 | 
						|
/// causing problems. Detail could be found in PR31652. Note if the
 | 
						|
/// func returns true, it is unsafe. But if it is false, it doesn't mean
 | 
						|
/// it is necessarily safe.
 | 
						|
static bool EqualityPropUnSafe(Value &LoopCond) {
 | 
						|
  ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
 | 
						|
  if (!CI || !CI->isEquality())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *LHS = CI->getOperand(0);
 | 
						|
  Value *RHS = CI->getOperand(1);
 | 
						|
  if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
 | 
						|
    return true;
 | 
						|
 | 
						|
  auto hasUndefInPHI = [](PHINode &PN) {
 | 
						|
    for (Value *Opd : PN.incoming_values()) {
 | 
						|
      if (isa<UndefValue>(Opd))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
  PHINode *LPHI = dyn_cast<PHINode>(LHS);
 | 
						|
  PHINode *RPHI = dyn_cast<PHINode>(RHS);
 | 
						|
  if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  auto hasUndefInSelect = [](SelectInst &SI) {
 | 
						|
    if (isa<UndefValue>(SI.getTrueValue()) ||
 | 
						|
        isa<UndefValue>(SI.getFalseValue()))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
  SelectInst *LSI = dyn_cast<SelectInst>(LHS);
 | 
						|
  SelectInst *RSI = dyn_cast<SelectInst>(RHS);
 | 
						|
  if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Do actual work and unswitch loop if possible and profitable.
 | 
						|
bool LoopUnswitch::processCurrentLoop() {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  initLoopData();
 | 
						|
 | 
						|
  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
 | 
						|
  if (!loopPreheader)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Loops with indirectbr cannot be cloned.
 | 
						|
  if (!currentLoop->isSafeToClone())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Without dedicated exits, splitting the exit edge may fail.
 | 
						|
  if (!currentLoop->hasDedicatedExits())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVMContext &Context = loopHeader->getContext();
 | 
						|
 | 
						|
  // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
 | 
						|
  if (!BranchesInfo.countLoop(
 | 
						|
          currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | 
						|
                           *currentLoop->getHeader()->getParent()),
 | 
						|
          AC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Try trivial unswitch first before loop over other basic blocks in the loop.
 | 
						|
  if (TryTrivialLoopUnswitch(Changed)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Run through the instructions in the loop, keeping track of three things:
 | 
						|
  //
 | 
						|
  //  - That we do not unswitch loops containing convergent operations, as we
 | 
						|
  //    might be making them control dependent on the unswitch value when they
 | 
						|
  //    were not before.
 | 
						|
  //    FIXME: This could be refined to only bail if the convergent operation is
 | 
						|
  //    not already control-dependent on the unswitch value.
 | 
						|
  //
 | 
						|
  //  - That basic blocks in the loop contain invokes whose predecessor edges we
 | 
						|
  //    cannot split.
 | 
						|
  //
 | 
						|
  //  - The set of guard intrinsics encountered (these are non terminator
 | 
						|
  //    instructions that are also profitable to be unswitched).
 | 
						|
 | 
						|
  SmallVector<IntrinsicInst *, 4> Guards;
 | 
						|
 | 
						|
  for (const auto BB : currentLoop->blocks()) {
 | 
						|
    for (auto &I : *BB) {
 | 
						|
      auto CS = CallSite(&I);
 | 
						|
      if (!CS) continue;
 | 
						|
      if (CS.hasFnAttr(Attribute::Convergent))
 | 
						|
        return false;
 | 
						|
      if (auto *II = dyn_cast<InvokeInst>(&I))
 | 
						|
        if (!II->getUnwindDest()->canSplitPredecessors())
 | 
						|
          return false;
 | 
						|
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::experimental_guard)
 | 
						|
          Guards.push_back(II);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not do non-trivial unswitch while optimizing for size.
 | 
						|
  // FIXME: Use Function::optForSize().
 | 
						|
  if (OptimizeForSize ||
 | 
						|
      loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (IntrinsicInst *Guard : Guards) {
 | 
						|
    Value *LoopCond =
 | 
						|
        FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
 | 
						|
    if (LoopCond &&
 | 
						|
        UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
 | 
						|
      // NB! Unswitching (if successful) could have erased some of the
 | 
						|
      // instructions in Guards leaving dangling pointers there.  This is fine
 | 
						|
      // because we're returning now, and won't look at Guards again.
 | 
						|
      ++NumGuards;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the basic blocks in the loop.  If we find an interior
 | 
						|
  // block that is branching on a loop-invariant condition, we can unswitch this
 | 
						|
  // loop.
 | 
						|
  for (Loop::block_iterator I = currentLoop->block_begin(),
 | 
						|
         E = currentLoop->block_end(); I != E; ++I) {
 | 
						|
    TerminatorInst *TI = (*I)->getTerminator();
 | 
						|
 | 
						|
    // Unswitching on a potentially uninitialized predicate is not
 | 
						|
    // MSan-friendly. Limit this to the cases when the original predicate is
 | 
						|
    // guaranteed to execute, to avoid creating a use-of-uninitialized-value
 | 
						|
    // in the code that did not have one.
 | 
						|
    // This is a workaround for the discrepancy between LLVM IR and MSan
 | 
						|
    // semantics. See PR28054 for more details.
 | 
						|
    if (SanitizeMemory &&
 | 
						|
        !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      // Some branches may be rendered unreachable because of previous
 | 
						|
      // unswitching.
 | 
						|
      // Unswitch only those branches that are reachable.
 | 
						|
      if (isUnreachableDueToPreviousUnswitching(*I))
 | 
						|
        continue;
 | 
						|
 
 | 
						|
      // If this isn't branching on an invariant condition, we can't unswitch
 | 
						|
      // it.
 | 
						|
      if (BI->isConditional()) {
 | 
						|
        // See if this, or some part of it, is loop invariant.  If so, we can
 | 
						|
        // unswitch on it if we desire.
 | 
						|
        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
 | 
						|
                                               currentLoop, Changed).first;
 | 
						|
        if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
 | 
						|
            UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
 | 
						|
          ++NumBranches;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
      Value *SC = SI->getCondition();
 | 
						|
      Value *LoopCond;
 | 
						|
      OperatorChain OpChain;
 | 
						|
      std::tie(LoopCond, OpChain) =
 | 
						|
        FindLIVLoopCondition(SC, currentLoop, Changed);
 | 
						|
 | 
						|
      unsigned NumCases = SI->getNumCases();
 | 
						|
      if (LoopCond && NumCases) {
 | 
						|
        // Find a value to unswitch on:
 | 
						|
        // FIXME: this should chose the most expensive case!
 | 
						|
        // FIXME: scan for a case with a non-critical edge?
 | 
						|
        Constant *UnswitchVal = nullptr;
 | 
						|
        // Find a case value such that at least one case value is unswitched
 | 
						|
        // out.
 | 
						|
        if (OpChain == OC_OpChainAnd) {
 | 
						|
          // If the chain only has ANDs and the switch has a case value of 0.
 | 
						|
          // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
 | 
						|
          auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
 | 
						|
          if (BranchesInfo.isUnswitched(SI, AllZero))
 | 
						|
            continue;
 | 
						|
          // We are unswitching 0 out.
 | 
						|
          UnswitchVal = AllZero;
 | 
						|
        } else if (OpChain == OC_OpChainOr) {
 | 
						|
          // If the chain only has ORs and the switch has a case value of ~0.
 | 
						|
          // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
 | 
						|
          auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
 | 
						|
          if (BranchesInfo.isUnswitched(SI, AllOne))
 | 
						|
            continue;
 | 
						|
          // We are unswitching ~0 out.
 | 
						|
          UnswitchVal = AllOne;
 | 
						|
        } else {
 | 
						|
          assert(OpChain == OC_OpChainNone && 
 | 
						|
                 "Expect to unswitch on trivial chain");
 | 
						|
          // Do not process same value again and again.
 | 
						|
          // At this point we have some cases already unswitched and
 | 
						|
          // some not yet unswitched. Let's find the first not yet unswitched one.
 | 
						|
          for (auto Case : SI->cases()) {
 | 
						|
            Constant *UnswitchValCandidate = Case.getCaseValue();
 | 
						|
            if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
 | 
						|
              UnswitchVal = UnswitchValCandidate;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!UnswitchVal)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
 | 
						|
          ++NumSwitches;
 | 
						|
          // In case of a full LIV, UnswitchVal is the value we unswitched out.
 | 
						|
          // In case of a partial LIV, we only unswitch when its an AND-chain
 | 
						|
          // or OR-chain. In both cases switch input value simplifies to
 | 
						|
          // UnswitchVal.
 | 
						|
          BranchesInfo.setUnswitched(SI, UnswitchVal);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Scan the instructions to check for unswitchable values.
 | 
						|
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
 | 
						|
         BBI != E; ++BBI)
 | 
						|
      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
 | 
						|
        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
 | 
						|
                                               currentLoop, Changed).first;
 | 
						|
        if (LoopCond && UnswitchIfProfitable(LoopCond,
 | 
						|
                                             ConstantInt::getTrue(Context))) {
 | 
						|
          ++NumSelects;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Check to see if all paths from BB exit the loop with no side effects
 | 
						|
/// (including infinite loops).
 | 
						|
///
 | 
						|
/// If true, we return true and set ExitBB to the block we
 | 
						|
/// exit through.
 | 
						|
///
 | 
						|
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
 | 
						|
                                         BasicBlock *&ExitBB,
 | 
						|
                                         std::set<BasicBlock*> &Visited) {
 | 
						|
  if (!Visited.insert(BB).second) {
 | 
						|
    // Already visited. Without more analysis, this could indicate an infinite
 | 
						|
    // loop.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (!L->contains(BB)) {
 | 
						|
    // Otherwise, this is a loop exit, this is fine so long as this is the
 | 
						|
    // first exit.
 | 
						|
    if (ExitBB) return false;
 | 
						|
    ExitBB = BB;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
 | 
						|
  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
 | 
						|
    // Check to see if the successor is a trivial loop exit.
 | 
						|
    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, everything after this looks good, check to make sure that this block
 | 
						|
  // doesn't include any side effects.
 | 
						|
  for (Instruction &I : *BB)
 | 
						|
    if (I.mayHaveSideEffects())
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified block unconditionally leads to an exit from
 | 
						|
/// the specified loop, and has no side-effects in the process. If so, return
 | 
						|
/// the block that is exited to, otherwise return null.
 | 
						|
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
 | 
						|
  std::set<BasicBlock*> Visited;
 | 
						|
  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
 | 
						|
  BasicBlock *ExitBB = nullptr;
 | 
						|
  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
 | 
						|
    return ExitBB;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// We have found that we can unswitch currentLoop when LoopCond == Val to
 | 
						|
/// simplify the loop.  If we decide that this is profitable,
 | 
						|
/// unswitch the loop, reprocess the pieces, then return true.
 | 
						|
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
 | 
						|
                                        TerminatorInst *TI) {
 | 
						|
  // Check to see if it would be profitable to unswitch current loop.
 | 
						|
  if (!BranchesInfo.CostAllowsUnswitching()) {
 | 
						|
    DEBUG(dbgs() << "NOT unswitching loop %"
 | 
						|
                 << currentLoop->getHeader()->getName()
 | 
						|
                 << " at non-trivial condition '" << *Val
 | 
						|
                 << "' == " << *LoopCond << "\n"
 | 
						|
                 << ". Cost too high.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (hasBranchDivergence &&
 | 
						|
      getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) {
 | 
						|
    DEBUG(dbgs() << "NOT unswitching loop %"
 | 
						|
                 << currentLoop->getHeader()->getName()
 | 
						|
                 << " at non-trivial condition '" << *Val
 | 
						|
                 << "' == " << *LoopCond << "\n"
 | 
						|
                 << ". Condition is divergent.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively clone the specified loop and all of its children,
 | 
						|
/// mapping the blocks with the specified map.
 | 
						|
static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
 | 
						|
                       LoopInfo *LI, LPPassManager *LPM) {
 | 
						|
  Loop &New = *LI->AllocateLoop();
 | 
						|
  if (PL)
 | 
						|
    PL->addChildLoop(&New);
 | 
						|
  else
 | 
						|
    LI->addTopLevelLoop(&New);
 | 
						|
  LPM->addLoop(New);
 | 
						|
 | 
						|
  // Add all of the blocks in L to the new loop.
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (LI->getLoopFor(*I) == L)
 | 
						|
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
 | 
						|
 | 
						|
  // Add all of the subloops to the new loop.
 | 
						|
  for (Loop *I : *L)
 | 
						|
    CloneLoop(I, &New, VM, LI, LPM);
 | 
						|
 | 
						|
  return &New;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
 | 
						|
/// otherwise branch to FalseDest. Insert the code immediately before OldBranch
 | 
						|
/// and remove (but not erase!) it from the function.
 | 
						|
void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
 | 
						|
                                                  BasicBlock *TrueDest,
 | 
						|
                                                  BasicBlock *FalseDest,
 | 
						|
                                                  BranchInst *OldBranch,
 | 
						|
                                                  TerminatorInst *TI) {
 | 
						|
  assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
 | 
						|
  // Insert a conditional branch on LIC to the two preheaders.  The original
 | 
						|
  // code is the true version and the new code is the false version.
 | 
						|
  Value *BranchVal = LIC;
 | 
						|
  bool Swapped = false;
 | 
						|
  if (!isa<ConstantInt>(Val) ||
 | 
						|
      Val->getType() != Type::getInt1Ty(LIC->getContext()))
 | 
						|
    BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
 | 
						|
  else if (Val != ConstantInt::getTrue(Val->getContext())) {
 | 
						|
    // We want to enter the new loop when the condition is true.
 | 
						|
    std::swap(TrueDest, FalseDest);
 | 
						|
    Swapped = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Old branch will be removed, so save its parent and successor to update the
 | 
						|
  // DomTree.
 | 
						|
  auto *OldBranchSucc = OldBranch->getSuccessor(0);
 | 
						|
  auto *OldBranchParent = OldBranch->getParent();
 | 
						|
 | 
						|
  // Insert the new branch.
 | 
						|
  BranchInst *BI =
 | 
						|
      IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
 | 
						|
  if (Swapped)
 | 
						|
    BI->swapProfMetadata();
 | 
						|
 | 
						|
  // Remove the old branch so there is only one branch at the end. This is
 | 
						|
  // needed to perform DomTree's internal DFS walk on the function's CFG.
 | 
						|
  OldBranch->removeFromParent();
 | 
						|
 | 
						|
  // Inform the DT about the new branch.
 | 
						|
  if (DT) {
 | 
						|
    // First, add both successors.
 | 
						|
    SmallVector<DominatorTree::UpdateType, 3> Updates;
 | 
						|
    if (TrueDest != OldBranchParent)
 | 
						|
      Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
 | 
						|
    if (FalseDest != OldBranchParent)
 | 
						|
      Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
 | 
						|
    // If both of the new successors are different from the old one, inform the
 | 
						|
    // DT that the edge was deleted.
 | 
						|
    if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
 | 
						|
      Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
 | 
						|
    }
 | 
						|
 | 
						|
    DT->applyUpdates(Updates);
 | 
						|
  }
 | 
						|
 | 
						|
  // If either edge is critical, split it. This helps preserve LoopSimplify
 | 
						|
  // form for enclosing loops.
 | 
						|
  auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
 | 
						|
  SplitCriticalEdge(BI, 0, Options);
 | 
						|
  SplitCriticalEdge(BI, 1, Options);
 | 
						|
}
 | 
						|
 | 
						|
/// Given a loop that has a trivial unswitchable condition in it (a cond branch
 | 
						|
/// from its header block to its latch block, where the path through the loop
 | 
						|
/// that doesn't execute its body has no side-effects), unswitch it. This
 | 
						|
/// doesn't involve any code duplication, just moving the conditional branch
 | 
						|
/// outside of the loop and updating loop info.
 | 
						|
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
 | 
						|
                                            BasicBlock *ExitBlock,
 | 
						|
                                            TerminatorInst *TI) {
 | 
						|
  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
 | 
						|
               << loopHeader->getName() << " [" << L->getBlocks().size()
 | 
						|
               << " blocks] in Function "
 | 
						|
               << L->getHeader()->getParent()->getName() << " on cond: " << *Val
 | 
						|
               << " == " << *Cond << "\n");
 | 
						|
 | 
						|
  // First step, split the preheader, so that we know that there is a safe place
 | 
						|
  // to insert the conditional branch.  We will change loopPreheader to have a
 | 
						|
  // conditional branch on Cond.
 | 
						|
  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
 | 
						|
 | 
						|
  // Now that we have a place to insert the conditional branch, create a place
 | 
						|
  // to branch to: this is the exit block out of the loop that we should
 | 
						|
  // short-circuit to.
 | 
						|
 | 
						|
  // Split this block now, so that the loop maintains its exit block, and so
 | 
						|
  // that the jump from the preheader can execute the contents of the exit block
 | 
						|
  // without actually branching to it (the exit block should be dominated by the
 | 
						|
  // loop header, not the preheader).
 | 
						|
  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
 | 
						|
  BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
 | 
						|
 | 
						|
  // Okay, now we have a position to branch from and a position to branch to,
 | 
						|
  // insert the new conditional branch.
 | 
						|
  auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
 | 
						|
  assert(OldBranch && "Failed to split the preheader");
 | 
						|
  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
 | 
						|
  LPM->deleteSimpleAnalysisValue(OldBranch, L);
 | 
						|
 | 
						|
  // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
 | 
						|
  // Delete it, as it is no longer needed.
 | 
						|
  delete OldBranch;
 | 
						|
 | 
						|
  // We need to reprocess this loop, it could be unswitched again.
 | 
						|
  redoLoop = true;
 | 
						|
 | 
						|
  // Now that we know that the loop is never entered when this condition is a
 | 
						|
  // particular value, rewrite the loop with this info.  We know that this will
 | 
						|
  // at least eliminate the old branch.
 | 
						|
  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
 | 
						|
  ++NumTrivial;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if the first non-constant condition starting from the loop header is
 | 
						|
/// a trivial unswitch condition: that is, a condition controls whether or not
 | 
						|
/// the loop does anything at all. If it is a trivial condition, unswitching
 | 
						|
/// produces no code duplications (equivalently, it produces a simpler loop and
 | 
						|
/// a new empty loop, which gets deleted). Therefore always unswitch trivial
 | 
						|
/// condition.
 | 
						|
bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
 | 
						|
  BasicBlock *CurrentBB = currentLoop->getHeader();
 | 
						|
  TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
 | 
						|
  LLVMContext &Context = CurrentBB->getContext();
 | 
						|
 | 
						|
  // If loop header has only one reachable successor (currently via an
 | 
						|
  // unconditional branch or constant foldable conditional branch, but
 | 
						|
  // should also consider adding constant foldable switch instruction in
 | 
						|
  // future), we should keep looking for trivial condition candidates in
 | 
						|
  // the successor as well. An alternative is to constant fold conditions
 | 
						|
  // and merge successors into loop header (then we only need to check header's
 | 
						|
  // terminator). The reason for not doing this in LoopUnswitch pass is that
 | 
						|
  // it could potentially break LoopPassManager's invariants. Folding dead
 | 
						|
  // branches could either eliminate the current loop or make other loops
 | 
						|
  // unreachable. LCSSA form might also not be preserved after deleting
 | 
						|
  // branches. The following code keeps traversing loop header's successors
 | 
						|
  // until it finds the trivial condition candidate (condition that is not a
 | 
						|
  // constant). Since unswitching generates branches with constant conditions,
 | 
						|
  // this scenario could be very common in practice.
 | 
						|
  SmallSet<BasicBlock*, 8> Visited;
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    // If we exit loop or reach a previous visited block, then
 | 
						|
    // we can not reach any trivial condition candidates (unfoldable
 | 
						|
    // branch instructions or switch instructions) and no unswitch
 | 
						|
    // can happen. Exit and return false.
 | 
						|
    if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check if this loop will execute any side-effecting instructions (e.g.
 | 
						|
    // stores, calls, volatile loads) in the part of the loop that the code
 | 
						|
    // *would* execute. Check the header first.
 | 
						|
    for (Instruction &I : *CurrentBB)
 | 
						|
      if (I.mayHaveSideEffects())
 | 
						|
        return false;
 | 
						|
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
 | 
						|
      if (BI->isUnconditional()) {
 | 
						|
        CurrentBB = BI->getSuccessor(0);
 | 
						|
      } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
 | 
						|
        CurrentBB = BI->getSuccessor(0);
 | 
						|
      } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
 | 
						|
        CurrentBB = BI->getSuccessor(1);
 | 
						|
      } else {
 | 
						|
        // Found a trivial condition candidate: non-foldable conditional branch.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
 | 
						|
      // At this point, any constant-foldable instructions should have probably
 | 
						|
      // been folded.
 | 
						|
      ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
 | 
						|
      if (!Cond)
 | 
						|
        break;
 | 
						|
      // Find the target block we are definitely going to.
 | 
						|
      CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
 | 
						|
    } else {
 | 
						|
      // We do not understand these terminator instructions.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    CurrentTerm = CurrentBB->getTerminator();
 | 
						|
  }
 | 
						|
 | 
						|
  // CondVal is the condition that controls the trivial condition.
 | 
						|
  // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
 | 
						|
  Constant *CondVal = nullptr;
 | 
						|
  BasicBlock *LoopExitBB = nullptr;
 | 
						|
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
 | 
						|
    // If this isn't branching on an invariant condition, we can't unswitch it.
 | 
						|
    if (!BI->isConditional())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
 | 
						|
                                           currentLoop, Changed).first;
 | 
						|
 | 
						|
    // Unswitch only if the trivial condition itself is an LIV (not
 | 
						|
    // partial LIV which could occur in and/or)
 | 
						|
    if (!LoopCond || LoopCond != BI->getCondition())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check to see if a successor of the branch is guaranteed to
 | 
						|
    // exit through a unique exit block without having any
 | 
						|
    // side-effects.  If so, determine the value of Cond that causes
 | 
						|
    // it to do this.
 | 
						|
    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
 | 
						|
                                             BI->getSuccessor(0)))) {
 | 
						|
      CondVal = ConstantInt::getTrue(Context);
 | 
						|
    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
 | 
						|
                                                    BI->getSuccessor(1)))) {
 | 
						|
      CondVal = ConstantInt::getFalse(Context);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we didn't find a single unique LoopExit block, or if the loop exit
 | 
						|
    // block contains phi nodes, this isn't trivial.
 | 
						|
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
 | 
						|
      return false;   // Can't handle this.
 | 
						|
 | 
						|
    if (EqualityPropUnSafe(*LoopCond))
 | 
						|
      return false;
 | 
						|
 | 
						|
    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
 | 
						|
                             CurrentTerm);
 | 
						|
    ++NumBranches;
 | 
						|
    return true;
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
 | 
						|
    // If this isn't switching on an invariant condition, we can't unswitch it.
 | 
						|
    Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
 | 
						|
                                           currentLoop, Changed).first;
 | 
						|
 | 
						|
    // Unswitch only if the trivial condition itself is an LIV (not
 | 
						|
    // partial LIV which could occur in and/or)
 | 
						|
    if (!LoopCond || LoopCond != SI->getCondition())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check to see if a successor of the switch is guaranteed to go to the
 | 
						|
    // latch block or exit through a one exit block without having any
 | 
						|
    // side-effects.  If so, determine the value of Cond that causes it to do
 | 
						|
    // this.
 | 
						|
    // Note that we can't trivially unswitch on the default case or
 | 
						|
    // on already unswitched cases.
 | 
						|
    for (auto Case : SI->cases()) {
 | 
						|
      BasicBlock *LoopExitCandidate;
 | 
						|
      if ((LoopExitCandidate =
 | 
						|
               isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
 | 
						|
        // Okay, we found a trivial case, remember the value that is trivial.
 | 
						|
        ConstantInt *CaseVal = Case.getCaseValue();
 | 
						|
 | 
						|
        // Check that it was not unswitched before, since already unswitched
 | 
						|
        // trivial vals are looks trivial too.
 | 
						|
        if (BranchesInfo.isUnswitched(SI, CaseVal))
 | 
						|
          continue;
 | 
						|
        LoopExitBB = LoopExitCandidate;
 | 
						|
        CondVal = CaseVal;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we didn't find a single unique LoopExit block, or if the loop exit
 | 
						|
    // block contains phi nodes, this isn't trivial.
 | 
						|
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
 | 
						|
      return false;   // Can't handle this.
 | 
						|
 | 
						|
    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
 | 
						|
                             nullptr);
 | 
						|
 | 
						|
    // We are only unswitching full LIV.
 | 
						|
    BranchesInfo.setUnswitched(SI, CondVal);
 | 
						|
    ++NumSwitches;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Split all of the edges from inside the loop to their exit blocks.
 | 
						|
/// Update the appropriate Phi nodes as we do so.
 | 
						|
void LoopUnswitch::SplitExitEdges(Loop *L,
 | 
						|
                               const SmallVectorImpl<BasicBlock *> &ExitBlocks){
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ExitBlock = ExitBlocks[i];
 | 
						|
    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
 | 
						|
                                       pred_end(ExitBlock));
 | 
						|
 | 
						|
    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
 | 
						|
    // general, if we call it on all predecessors of all exits then it does.
 | 
						|
    SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
 | 
						|
                           /*PreserveLCSSA*/ true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// We determined that the loop is profitable to unswitch when LIC equal Val.
 | 
						|
/// Split it into loop versions and test the condition outside of either loop.
 | 
						|
/// Return the loops created as Out1/Out2.
 | 
						|
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
 | 
						|
                                               Loop *L, TerminatorInst *TI) {
 | 
						|
  Function *F = loopHeader->getParent();
 | 
						|
  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
 | 
						|
        << loopHeader->getName() << " [" << L->getBlocks().size()
 | 
						|
        << " blocks] in Function " << F->getName()
 | 
						|
        << " when '" << *Val << "' == " << *LIC << "\n");
 | 
						|
 | 
						|
  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
 | 
						|
    SEWP->getSE().forgetLoop(L);
 | 
						|
 | 
						|
  LoopBlocks.clear();
 | 
						|
  NewBlocks.clear();
 | 
						|
 | 
						|
  // First step, split the preheader and exit blocks, and add these blocks to
 | 
						|
  // the LoopBlocks list.
 | 
						|
  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
 | 
						|
  LoopBlocks.push_back(NewPreheader);
 | 
						|
 | 
						|
  // We want the loop to come after the preheader, but before the exit blocks.
 | 
						|
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  // Split all of the edges from inside the loop to their exit blocks.  Update
 | 
						|
  // the appropriate Phi nodes as we do so.
 | 
						|
  SplitExitEdges(L, ExitBlocks);
 | 
						|
 | 
						|
  // The exit blocks may have been changed due to edge splitting, recompute.
 | 
						|
  ExitBlocks.clear();
 | 
						|
  L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  // Add exit blocks to the loop blocks.
 | 
						|
  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
 | 
						|
 | 
						|
  // Next step, clone all of the basic blocks that make up the loop (including
 | 
						|
  // the loop preheader and exit blocks), keeping track of the mapping between
 | 
						|
  // the instructions and blocks.
 | 
						|
  NewBlocks.reserve(LoopBlocks.size());
 | 
						|
  ValueToValueMapTy VMap;
 | 
						|
  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
 | 
						|
 | 
						|
    NewBlocks.push_back(NewBB);
 | 
						|
    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
 | 
						|
    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
 | 
						|
  }
 | 
						|
 | 
						|
  // Splice the newly inserted blocks into the function right before the
 | 
						|
  // original preheader.
 | 
						|
  F->getBasicBlockList().splice(NewPreheader->getIterator(),
 | 
						|
                                F->getBasicBlockList(),
 | 
						|
                                NewBlocks[0]->getIterator(), F->end());
 | 
						|
 | 
						|
  // Now we create the new Loop object for the versioned loop.
 | 
						|
  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
 | 
						|
 | 
						|
  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
 | 
						|
  // Probably clone more loop-unswitch related loop properties.
 | 
						|
  BranchesInfo.cloneData(NewLoop, L, VMap);
 | 
						|
 | 
						|
  Loop *ParentLoop = L->getParentLoop();
 | 
						|
  if (ParentLoop) {
 | 
						|
    // Make sure to add the cloned preheader and exit blocks to the parent loop
 | 
						|
    // as well.
 | 
						|
    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
 | 
						|
    // The new exit block should be in the same loop as the old one.
 | 
						|
    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
 | 
						|
      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
 | 
						|
 | 
						|
    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
           "Exit block should have been split to have one successor!");
 | 
						|
    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
 | 
						|
 | 
						|
    // If the successor of the exit block had PHI nodes, add an entry for
 | 
						|
    // NewExit.
 | 
						|
    for (BasicBlock::iterator I = ExitSucc->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
 | 
						|
      ValueToValueMapTy::iterator It = VMap.find(V);
 | 
						|
      if (It != VMap.end()) V = It->second;
 | 
						|
      PN->addIncoming(V, NewExit);
 | 
						|
    }
 | 
						|
 | 
						|
    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
 | 
						|
      PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
 | 
						|
                                    &*ExitSucc->getFirstInsertionPt());
 | 
						|
 | 
						|
      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
 | 
						|
           I != E; ++I) {
 | 
						|
        BasicBlock *BB = *I;
 | 
						|
        LandingPadInst *LPI = BB->getLandingPadInst();
 | 
						|
        LPI->replaceAllUsesWith(PN);
 | 
						|
        PN->addIncoming(LPI, BB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite the code to refer to itself.
 | 
						|
  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
 | 
						|
    for (Instruction &I : *NewBlocks[i]) {
 | 
						|
      RemapInstruction(&I, VMap,
 | 
						|
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | 
						|
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::assume)
 | 
						|
          AC->registerAssumption(II);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite the original preheader to select between versions of the loop.
 | 
						|
  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
 | 
						|
  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
 | 
						|
         "Preheader splitting did not work correctly!");
 | 
						|
 | 
						|
  // Emit the new branch that selects between the two versions of this loop.
 | 
						|
  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
 | 
						|
                                 TI);
 | 
						|
  LPM->deleteSimpleAnalysisValue(OldBR, L);
 | 
						|
 | 
						|
  // The OldBr was replaced by a new one and removed (but not erased) by
 | 
						|
  // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
 | 
						|
  delete OldBR;
 | 
						|
 | 
						|
  LoopProcessWorklist.push_back(NewLoop);
 | 
						|
  redoLoop = true;
 | 
						|
 | 
						|
  // Keep a WeakTrackingVH holding onto LIC.  If the first call to
 | 
						|
  // RewriteLoopBody
 | 
						|
  // deletes the instruction (for example by simplifying a PHI that feeds into
 | 
						|
  // the condition that we're unswitching on), we don't rewrite the second
 | 
						|
  // iteration.
 | 
						|
  WeakTrackingVH LICHandle(LIC);
 | 
						|
 | 
						|
  // Now we rewrite the original code to know that the condition is true and the
 | 
						|
  // new code to know that the condition is false.
 | 
						|
  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
 | 
						|
 | 
						|
  // It's possible that simplifying one loop could cause the other to be
 | 
						|
  // changed to another value or a constant.  If its a constant, don't simplify
 | 
						|
  // it.
 | 
						|
  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
 | 
						|
      LICHandle && !isa<Constant>(LICHandle))
 | 
						|
    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
 | 
						|
}
 | 
						|
 | 
						|
/// Remove all instances of I from the worklist vector specified.
 | 
						|
static void RemoveFromWorklist(Instruction *I,
 | 
						|
                               std::vector<Instruction*> &Worklist) {
 | 
						|
 | 
						|
  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
 | 
						|
                 Worklist.end());
 | 
						|
}
 | 
						|
 | 
						|
/// When we find that I really equals V, remove I from the
 | 
						|
/// program, replacing all uses with V and update the worklist.
 | 
						|
static void ReplaceUsesOfWith(Instruction *I, Value *V,
 | 
						|
                              std::vector<Instruction*> &Worklist,
 | 
						|
                              Loop *L, LPPassManager *LPM) {
 | 
						|
  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
 | 
						|
 | 
						|
  // Add uses to the worklist, which may be dead now.
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
      Worklist.push_back(Use);
 | 
						|
 | 
						|
  // Add users to the worklist which may be simplified now.
 | 
						|
  for (User *U : I->users())
 | 
						|
    Worklist.push_back(cast<Instruction>(U));
 | 
						|
  LPM->deleteSimpleAnalysisValue(I, L);
 | 
						|
  RemoveFromWorklist(I, Worklist);
 | 
						|
  I->replaceAllUsesWith(V);
 | 
						|
  if (!I->mayHaveSideEffects())
 | 
						|
    I->eraseFromParent();
 | 
						|
  ++NumSimplify;
 | 
						|
}
 | 
						|
 | 
						|
/// We know either that the value LIC has the value specified by Val in the
 | 
						|
/// specified loop, or we know it does NOT have that value.
 | 
						|
/// Rewrite any uses of LIC or of properties correlated to it.
 | 
						|
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | 
						|
                                                        Constant *Val,
 | 
						|
                                                        bool IsEqual) {
 | 
						|
  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
 | 
						|
 | 
						|
  // FIXME: Support correlated properties, like:
 | 
						|
  //  for (...)
 | 
						|
  //    if (li1 < li2)
 | 
						|
  //      ...
 | 
						|
  //    if (li1 > li2)
 | 
						|
  //      ...
 | 
						|
 | 
						|
  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
 | 
						|
  // selects, switches.
 | 
						|
  std::vector<Instruction*> Worklist;
 | 
						|
  LLVMContext &Context = Val->getContext();
 | 
						|
 | 
						|
  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
 | 
						|
  // in the loop with the appropriate one directly.
 | 
						|
  if (IsEqual || (isa<ConstantInt>(Val) &&
 | 
						|
      Val->getType()->isIntegerTy(1))) {
 | 
						|
    Value *Replacement;
 | 
						|
    if (IsEqual)
 | 
						|
      Replacement = Val;
 | 
						|
    else
 | 
						|
      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
 | 
						|
                                     !cast<ConstantInt>(Val)->getZExtValue());
 | 
						|
 | 
						|
    for (User *U : LIC->users()) {
 | 
						|
      Instruction *UI = dyn_cast<Instruction>(U);
 | 
						|
      if (!UI || !L->contains(UI))
 | 
						|
        continue;
 | 
						|
      Worklist.push_back(UI);
 | 
						|
    }
 | 
						|
 | 
						|
    for (Instruction *UI : Worklist)
 | 
						|
      UI->replaceUsesOfWith(LIC, Replacement);
 | 
						|
 | 
						|
    SimplifyCode(Worklist, L);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we don't know the precise value of LIC, but we do know that it
 | 
						|
  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
 | 
						|
  // can.  This case occurs when we unswitch switch statements.
 | 
						|
  for (User *U : LIC->users()) {
 | 
						|
    Instruction *UI = dyn_cast<Instruction>(U);
 | 
						|
    if (!UI || !L->contains(UI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // At this point, we know LIC is definitely not Val. Try to use some simple
 | 
						|
    // logic to simplify the user w.r.t. to the context.
 | 
						|
    if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
 | 
						|
      if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
 | 
						|
        // This in-loop instruction has been simplified w.r.t. its context,
 | 
						|
        // i.e. LIC != Val, make sure we propagate its replacement value to
 | 
						|
        // all its users.
 | 
						|
        //  
 | 
						|
        // We can not yet delete UI, the LIC user, yet, because that would invalidate
 | 
						|
        // the LIC->users() iterator !. However, we can make this instruction
 | 
						|
        // dead by replacing all its users and push it onto the worklist so that
 | 
						|
        // it can be properly deleted and its operands simplified. 
 | 
						|
        UI->replaceAllUsesWith(Replacement);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // This is a LIC user, push it into the worklist so that SimplifyCode can
 | 
						|
    // attempt to simplify it.
 | 
						|
    Worklist.push_back(UI);
 | 
						|
 | 
						|
    // If we know that LIC is not Val, use this info to simplify code.
 | 
						|
    SwitchInst *SI = dyn_cast<SwitchInst>(UI);
 | 
						|
    if (!SI || !isa<ConstantInt>(Val)) continue;
 | 
						|
 | 
						|
    // NOTE: if a case value for the switch is unswitched out, we record it
 | 
						|
    // after the unswitch finishes. We can not record it here as the switch
 | 
						|
    // is not a direct user of the partial LIV.
 | 
						|
    SwitchInst::CaseHandle DeadCase =
 | 
						|
        *SI->findCaseValue(cast<ConstantInt>(Val));
 | 
						|
    // Default case is live for multiple values.
 | 
						|
    if (DeadCase == *SI->case_default())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Found a dead case value.  Don't remove PHI nodes in the
 | 
						|
    // successor if they become single-entry, those PHI nodes may
 | 
						|
    // be in the Users list.
 | 
						|
 | 
						|
    BasicBlock *Switch = SI->getParent();
 | 
						|
    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
 | 
						|
    BasicBlock *Latch = L->getLoopLatch();
 | 
						|
 | 
						|
    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
 | 
						|
    // If the DeadCase successor dominates the loop latch, then the
 | 
						|
    // transformation isn't safe since it will delete the sole predecessor edge
 | 
						|
    // to the latch.
 | 
						|
    if (Latch && DT->dominates(SISucc, Latch))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // FIXME: This is a hack.  We need to keep the successor around
 | 
						|
    // and hooked up so as to preserve the loop structure, because
 | 
						|
    // trying to update it is complicated.  So instead we preserve the
 | 
						|
    // loop structure and put the block on a dead code path.
 | 
						|
    SplitEdge(Switch, SISucc, DT, LI);
 | 
						|
    // Compute the successors instead of relying on the return value
 | 
						|
    // of SplitEdge, since it may have split the switch successor
 | 
						|
    // after PHI nodes.
 | 
						|
    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
 | 
						|
    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
 | 
						|
    // Create an "unreachable" destination.
 | 
						|
    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
 | 
						|
                                           Switch->getParent(),
 | 
						|
                                           OldSISucc);
 | 
						|
    new UnreachableInst(Context, Abort);
 | 
						|
    // Force the new case destination to branch to the "unreachable"
 | 
						|
    // block while maintaining a (dead) CFG edge to the old block.
 | 
						|
    NewSISucc->getTerminator()->eraseFromParent();
 | 
						|
    BranchInst::Create(Abort, OldSISucc,
 | 
						|
                       ConstantInt::getTrue(Context), NewSISucc);
 | 
						|
    // Release the PHI operands for this edge.
 | 
						|
    for (BasicBlock::iterator II = NewSISucc->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(II); ++II)
 | 
						|
      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
 | 
						|
                           UndefValue::get(PN->getType()));
 | 
						|
    // Tell the domtree about the new block. We don't fully update the
 | 
						|
    // domtree here -- instead we force it to do a full recomputation
 | 
						|
    // after the pass is complete -- but we do need to inform it of
 | 
						|
    // new blocks.
 | 
						|
    DT->addNewBlock(Abort, NewSISucc);
 | 
						|
  }
 | 
						|
 | 
						|
  SimplifyCode(Worklist, L);
 | 
						|
}
 | 
						|
 | 
						|
/// Now that we have simplified some instructions in the loop, walk over it and
 | 
						|
/// constant prop, dce, and fold control flow where possible. Note that this is
 | 
						|
/// effectively a very simple loop-structure-aware optimizer. During processing
 | 
						|
/// of this loop, L could very well be deleted, so it must not be used.
 | 
						|
///
 | 
						|
/// FIXME: When the loop optimizer is more mature, separate this out to a new
 | 
						|
/// pass.
 | 
						|
///
 | 
						|
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
 | 
						|
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *I = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
 | 
						|
    // Simple DCE.
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
 | 
						|
 | 
						|
      // Add uses to the worklist, which may be dead now.
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
          Worklist.push_back(Use);
 | 
						|
      LPM->deleteSimpleAnalysisValue(I, L);
 | 
						|
      RemoveFromWorklist(I, Worklist);
 | 
						|
      I->eraseFromParent();
 | 
						|
      ++NumSimplify;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if instruction simplification can hack this up.  This is common for
 | 
						|
    // things like "select false, X, Y" after unswitching made the condition be
 | 
						|
    // 'false'.  TODO: update the domtree properly so we can pass it here.
 | 
						|
    if (Value *V = SimplifyInstruction(I, DL))
 | 
						|
      if (LI->replacementPreservesLCSSAForm(I, V)) {
 | 
						|
        ReplaceUsesOfWith(I, V, Worklist, L, LPM);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    // Special case hacks that appear commonly in unswitched code.
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | 
						|
      if (BI->isUnconditional()) {
 | 
						|
        // If BI's parent is the only pred of the successor, fold the two blocks
 | 
						|
        // together.
 | 
						|
        BasicBlock *Pred = BI->getParent();
 | 
						|
        BasicBlock *Succ = BI->getSuccessor(0);
 | 
						|
        BasicBlock *SinglePred = Succ->getSinglePredecessor();
 | 
						|
        if (!SinglePred) continue;  // Nothing to do.
 | 
						|
        assert(SinglePred == Pred && "CFG broken");
 | 
						|
 | 
						|
        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
 | 
						|
              << Succ->getName() << "\n");
 | 
						|
 | 
						|
        // Resolve any single entry PHI nodes in Succ.
 | 
						|
        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
 | 
						|
          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
 | 
						|
 | 
						|
        // If Succ has any successors with PHI nodes, update them to have
 | 
						|
        // entries coming from Pred instead of Succ.
 | 
						|
        Succ->replaceAllUsesWith(Pred);
 | 
						|
 | 
						|
        // Move all of the successor contents from Succ to Pred.
 | 
						|
        Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
 | 
						|
                                   Succ->begin(), Succ->end());
 | 
						|
        LPM->deleteSimpleAnalysisValue(BI, L);
 | 
						|
        RemoveFromWorklist(BI, Worklist);
 | 
						|
        BI->eraseFromParent();
 | 
						|
 | 
						|
        // Remove Succ from the loop tree.
 | 
						|
        LI->removeBlock(Succ);
 | 
						|
        LPM->deleteSimpleAnalysisValue(Succ, L);
 | 
						|
        Succ->eraseFromParent();
 | 
						|
        ++NumSimplify;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Simple simplifications we can do given the information that Cond is
 | 
						|
/// definitely not equal to Val.
 | 
						|
Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
 | 
						|
                                                     Value *Invariant,
 | 
						|
                                                     Constant *Val) {
 | 
						|
  // icmp eq cond, val -> false
 | 
						|
  ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
 | 
						|
  if (CI && CI->isEquality()) {
 | 
						|
    Value *Op0 = CI->getOperand(0);
 | 
						|
    Value *Op1 = CI->getOperand(1);
 | 
						|
    if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
 | 
						|
      LLVMContext &Ctx = Inst->getContext();
 | 
						|
      if (CI->getPredicate() == CmpInst::ICMP_EQ)
 | 
						|
        return ConstantInt::getFalse(Ctx);
 | 
						|
      else 
 | 
						|
        return ConstantInt::getTrue(Ctx);
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: there may be other opportunities, e.g. comparison with floating
 | 
						|
  // point, or Invariant - Val != 0, etc.
 | 
						|
  return nullptr;
 | 
						|
}
 |