forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1493 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1493 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs various transformations related to eliminating memcpy
 | 
						|
// calls, or transforming sets of stores into memset's.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "memcpyopt"
 | 
						|
 | 
						|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
 | 
						|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
 | 
						|
STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
 | 
						|
STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
 | 
						|
 | 
						|
static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
 | 
						|
                                  bool &VariableIdxFound,
 | 
						|
                                  const DataLayout &DL) {
 | 
						|
  // Skip over the first indices.
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (unsigned i = 1; i != Idx; ++i, ++GTI)
 | 
						|
    /*skip along*/;
 | 
						|
 | 
						|
  // Compute the offset implied by the rest of the indices.
 | 
						|
  int64_t Offset = 0;
 | 
						|
  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | 
						|
    if (!OpC)
 | 
						|
      return VariableIdxFound = true;
 | 
						|
    if (OpC->isZero()) continue;  // No offset.
 | 
						|
 | 
						|
    // Handle struct indices, which add their field offset to the pointer.
 | 
						|
    if (StructType *STy = GTI.getStructTypeOrNull()) {
 | 
						|
      Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we have a sequential type like an array or vector.  Multiply
 | 
						|
    // the index by the ElementSize.
 | 
						|
    uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
    Offset += Size*OpC->getSExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
 | 
						|
/// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
 | 
						|
/// might be &A[40]. In this case offset would be -8.
 | 
						|
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
 | 
						|
                            const DataLayout &DL) {
 | 
						|
  Ptr1 = Ptr1->stripPointerCasts();
 | 
						|
  Ptr2 = Ptr2->stripPointerCasts();
 | 
						|
 | 
						|
  // Handle the trivial case first.
 | 
						|
  if (Ptr1 == Ptr2) {
 | 
						|
    Offset = 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
 | 
						|
  GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
 | 
						|
 | 
						|
  bool VariableIdxFound = false;
 | 
						|
 | 
						|
  // If one pointer is a GEP and the other isn't, then see if the GEP is a
 | 
						|
  // constant offset from the base, as in "P" and "gep P, 1".
 | 
						|
  if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
 | 
						|
    Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
 | 
						|
    return !VariableIdxFound;
 | 
						|
  }
 | 
						|
 | 
						|
  if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
 | 
						|
    Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
 | 
						|
    return !VariableIdxFound;
 | 
						|
  }
 | 
						|
 | 
						|
  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
 | 
						|
  // base.  After that base, they may have some number of common (and
 | 
						|
  // potentially variable) indices.  After that they handle some constant
 | 
						|
  // offset, which determines their offset from each other.  At this point, we
 | 
						|
  // handle no other case.
 | 
						|
  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Skip any common indices and track the GEP types.
 | 
						|
  unsigned Idx = 1;
 | 
						|
  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
 | 
						|
    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
 | 
						|
      break;
 | 
						|
 | 
						|
  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
 | 
						|
  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
 | 
						|
  if (VariableIdxFound) return false;
 | 
						|
 | 
						|
  Offset = Offset2-Offset1;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Represents a range of memset'd bytes with the ByteVal value.
 | 
						|
/// This allows us to analyze stores like:
 | 
						|
///   store 0 -> P+1
 | 
						|
///   store 0 -> P+0
 | 
						|
///   store 0 -> P+3
 | 
						|
///   store 0 -> P+2
 | 
						|
/// which sometimes happens with stores to arrays of structs etc.  When we see
 | 
						|
/// the first store, we make a range [1, 2).  The second store extends the range
 | 
						|
/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
 | 
						|
/// two ranges into [0, 3) which is memset'able.
 | 
						|
struct MemsetRange {
 | 
						|
  // Start/End - A semi range that describes the span that this range covers.
 | 
						|
  // The range is closed at the start and open at the end: [Start, End).
 | 
						|
  int64_t Start, End;
 | 
						|
 | 
						|
  /// StartPtr - The getelementptr instruction that points to the start of the
 | 
						|
  /// range.
 | 
						|
  Value *StartPtr;
 | 
						|
 | 
						|
  /// Alignment - The known alignment of the first store.
 | 
						|
  unsigned Alignment;
 | 
						|
 | 
						|
  /// TheStores - The actual stores that make up this range.
 | 
						|
  SmallVector<Instruction*, 16> TheStores;
 | 
						|
 | 
						|
  bool isProfitableToUseMemset(const DataLayout &DL) const;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
 | 
						|
  // If we found more than 4 stores to merge or 16 bytes, use memset.
 | 
						|
  if (TheStores.size() >= 4 || End-Start >= 16) return true;
 | 
						|
 | 
						|
  // If there is nothing to merge, don't do anything.
 | 
						|
  if (TheStores.size() < 2) return false;
 | 
						|
 | 
						|
  // If any of the stores are a memset, then it is always good to extend the
 | 
						|
  // memset.
 | 
						|
  for (Instruction *SI : TheStores)
 | 
						|
    if (!isa<StoreInst>(SI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Assume that the code generator is capable of merging pairs of stores
 | 
						|
  // together if it wants to.
 | 
						|
  if (TheStores.size() == 2) return false;
 | 
						|
 | 
						|
  // If we have fewer than 8 stores, it can still be worthwhile to do this.
 | 
						|
  // For example, merging 4 i8 stores into an i32 store is useful almost always.
 | 
						|
  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
 | 
						|
  // memset will be split into 2 32-bit stores anyway) and doing so can
 | 
						|
  // pessimize the llvm optimizer.
 | 
						|
  //
 | 
						|
  // Since we don't have perfect knowledge here, make some assumptions: assume
 | 
						|
  // the maximum GPR width is the same size as the largest legal integer
 | 
						|
  // size. If so, check to see whether we will end up actually reducing the
 | 
						|
  // number of stores used.
 | 
						|
  unsigned Bytes = unsigned(End-Start);
 | 
						|
  unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
 | 
						|
  if (MaxIntSize == 0)
 | 
						|
    MaxIntSize = 1;
 | 
						|
  unsigned NumPointerStores = Bytes / MaxIntSize;
 | 
						|
 | 
						|
  // Assume the remaining bytes if any are done a byte at a time.
 | 
						|
  unsigned NumByteStores = Bytes % MaxIntSize;
 | 
						|
 | 
						|
  // If we will reduce the # stores (according to this heuristic), do the
 | 
						|
  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
 | 
						|
  // etc.
 | 
						|
  return TheStores.size() > NumPointerStores+NumByteStores;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class MemsetRanges {
 | 
						|
  using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
 | 
						|
 | 
						|
  /// A sorted list of the memset ranges.
 | 
						|
  SmallVector<MemsetRange, 8> Ranges;
 | 
						|
 | 
						|
  const DataLayout &DL;
 | 
						|
 | 
						|
public:
 | 
						|
  MemsetRanges(const DataLayout &DL) : DL(DL) {}
 | 
						|
 | 
						|
  using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
 | 
						|
 | 
						|
  const_iterator begin() const { return Ranges.begin(); }
 | 
						|
  const_iterator end() const { return Ranges.end(); }
 | 
						|
  bool empty() const { return Ranges.empty(); }
 | 
						|
 | 
						|
  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
      addStore(OffsetFromFirst, SI);
 | 
						|
    else
 | 
						|
      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
 | 
						|
  }
 | 
						|
 | 
						|
  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
 | 
						|
    int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
 | 
						|
 | 
						|
    addRange(OffsetFromFirst, StoreSize,
 | 
						|
             SI->getPointerOperand(), SI->getAlignment(), SI);
 | 
						|
  }
 | 
						|
 | 
						|
  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
 | 
						|
    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | 
						|
    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
 | 
						|
  }
 | 
						|
 | 
						|
  void addRange(int64_t Start, int64_t Size, Value *Ptr,
 | 
						|
                unsigned Alignment, Instruction *Inst);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Add a new store to the MemsetRanges data structure.  This adds a
 | 
						|
/// new range for the specified store at the specified offset, merging into
 | 
						|
/// existing ranges as appropriate.
 | 
						|
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
 | 
						|
                            unsigned Alignment, Instruction *Inst) {
 | 
						|
  int64_t End = Start+Size;
 | 
						|
 | 
						|
  range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
 | 
						|
    [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
 | 
						|
 | 
						|
  // We now know that I == E, in which case we didn't find anything to merge
 | 
						|
  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
 | 
						|
  // to insert a new range.  Handle this now.
 | 
						|
  if (I == Ranges.end() || End < I->Start) {
 | 
						|
    MemsetRange &R = *Ranges.insert(I, MemsetRange());
 | 
						|
    R.Start        = Start;
 | 
						|
    R.End          = End;
 | 
						|
    R.StartPtr     = Ptr;
 | 
						|
    R.Alignment    = Alignment;
 | 
						|
    R.TheStores.push_back(Inst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // This store overlaps with I, add it.
 | 
						|
  I->TheStores.push_back(Inst);
 | 
						|
 | 
						|
  // At this point, we may have an interval that completely contains our store.
 | 
						|
  // If so, just add it to the interval and return.
 | 
						|
  if (I->Start <= Start && I->End >= End)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
 | 
						|
  // but is not entirely contained within the range.
 | 
						|
 | 
						|
  // See if the range extends the start of the range.  In this case, it couldn't
 | 
						|
  // possibly cause it to join the prior range, because otherwise we would have
 | 
						|
  // stopped on *it*.
 | 
						|
  if (Start < I->Start) {
 | 
						|
    I->Start = Start;
 | 
						|
    I->StartPtr = Ptr;
 | 
						|
    I->Alignment = Alignment;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
 | 
						|
  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
 | 
						|
  // End.
 | 
						|
  if (End > I->End) {
 | 
						|
    I->End = End;
 | 
						|
    range_iterator NextI = I;
 | 
						|
    while (++NextI != Ranges.end() && End >= NextI->Start) {
 | 
						|
      // Merge the range in.
 | 
						|
      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
 | 
						|
      if (NextI->End > I->End)
 | 
						|
        I->End = NextI->End;
 | 
						|
      Ranges.erase(NextI);
 | 
						|
      NextI = I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         MemCpyOptLegacyPass Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class MemCpyOptLegacyPass : public FunctionPass {
 | 
						|
  MemCpyOptPass Impl;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  MemCpyOptLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
private:
 | 
						|
  // This transformation requires dominator postdominator info
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<MemoryDependenceWrapperPass>();
 | 
						|
    AU.addRequired<AAResultsWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.addPreserved<MemoryDependenceWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char MemCpyOptLegacyPass::ID = 0;
 | 
						|
 | 
						|
/// The public interface to this file...
 | 
						|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
/// When scanning forward over instructions, we look for some other patterns to
 | 
						|
/// fold away. In particular, this looks for stores to neighboring locations of
 | 
						|
/// memory. If it sees enough consecutive ones, it attempts to merge them
 | 
						|
/// together into a memcpy/memset.
 | 
						|
Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
 | 
						|
                                                 Value *StartPtr,
 | 
						|
                                                 Value *ByteVal) {
 | 
						|
  const DataLayout &DL = StartInst->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Okay, so we now have a single store that can be splatable.  Scan to find
 | 
						|
  // all subsequent stores of the same value to offset from the same pointer.
 | 
						|
  // Join these together into ranges, so we can decide whether contiguous blocks
 | 
						|
  // are stored.
 | 
						|
  MemsetRanges Ranges(DL);
 | 
						|
 | 
						|
  BasicBlock::iterator BI(StartInst);
 | 
						|
  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
 | 
						|
    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
 | 
						|
      // If the instruction is readnone, ignore it, otherwise bail out.  We
 | 
						|
      // don't even allow readonly here because we don't want something like:
 | 
						|
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
 | 
						|
      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
 | 
						|
      // If this is a store, see if we can merge it in.
 | 
						|
      if (!NextStore->isSimple()) break;
 | 
						|
 | 
						|
      // Check to see if this stored value is of the same byte-splattable value.
 | 
						|
      if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Check to see if this store is to a constant offset from the start ptr.
 | 
						|
      int64_t Offset;
 | 
						|
      if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
 | 
						|
                           DL))
 | 
						|
        break;
 | 
						|
 | 
						|
      Ranges.addStore(Offset, NextStore);
 | 
						|
    } else {
 | 
						|
      MemSetInst *MSI = cast<MemSetInst>(BI);
 | 
						|
 | 
						|
      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
 | 
						|
          !isa<ConstantInt>(MSI->getLength()))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Check to see if this store is to a constant offset from the start ptr.
 | 
						|
      int64_t Offset;
 | 
						|
      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
 | 
						|
        break;
 | 
						|
 | 
						|
      Ranges.addMemSet(Offset, MSI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have no ranges, then we just had a single store with nothing that
 | 
						|
  // could be merged in.  This is a very common case of course.
 | 
						|
  if (Ranges.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we had at least one store that could be merged in, add the starting
 | 
						|
  // store as well.  We try to avoid this unless there is at least something
 | 
						|
  // interesting as a small compile-time optimization.
 | 
						|
  Ranges.addInst(0, StartInst);
 | 
						|
 | 
						|
  // If we create any memsets, we put it right before the first instruction that
 | 
						|
  // isn't part of the memset block.  This ensure that the memset is dominated
 | 
						|
  // by any addressing instruction needed by the start of the block.
 | 
						|
  IRBuilder<> Builder(&*BI);
 | 
						|
 | 
						|
  // Now that we have full information about ranges, loop over the ranges and
 | 
						|
  // emit memset's for anything big enough to be worthwhile.
 | 
						|
  Instruction *AMemSet = nullptr;
 | 
						|
  for (const MemsetRange &Range : Ranges) {
 | 
						|
    if (Range.TheStores.size() == 1) continue;
 | 
						|
 | 
						|
    // If it is profitable to lower this range to memset, do so now.
 | 
						|
    if (!Range.isProfitableToUseMemset(DL))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, we do want to transform this!  Create a new memset.
 | 
						|
    // Get the starting pointer of the block.
 | 
						|
    StartPtr = Range.StartPtr;
 | 
						|
 | 
						|
    // Determine alignment
 | 
						|
    unsigned Alignment = Range.Alignment;
 | 
						|
    if (Alignment == 0) {
 | 
						|
      Type *EltType =
 | 
						|
        cast<PointerType>(StartPtr->getType())->getElementType();
 | 
						|
      Alignment = DL.getABITypeAlignment(EltType);
 | 
						|
    }
 | 
						|
 | 
						|
    AMemSet =
 | 
						|
      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Replace stores:\n";
 | 
						|
          for (Instruction *SI : Range.TheStores)
 | 
						|
            dbgs() << *SI << '\n';
 | 
						|
          dbgs() << "With: " << *AMemSet << '\n');
 | 
						|
 | 
						|
    if (!Range.TheStores.empty())
 | 
						|
      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
 | 
						|
 | 
						|
    // Zap all the stores.
 | 
						|
    for (Instruction *SI : Range.TheStores) {
 | 
						|
      MD->removeInstruction(SI);
 | 
						|
      SI->eraseFromParent();
 | 
						|
    }
 | 
						|
    ++NumMemSetInfer;
 | 
						|
  }
 | 
						|
 | 
						|
  return AMemSet;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
 | 
						|
                                     const LoadInst *LI) {
 | 
						|
  unsigned StoreAlign = SI->getAlignment();
 | 
						|
  if (!StoreAlign)
 | 
						|
    StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
 | 
						|
  unsigned LoadAlign = LI->getAlignment();
 | 
						|
  if (!LoadAlign)
 | 
						|
    LoadAlign = DL.getABITypeAlignment(LI->getType());
 | 
						|
 | 
						|
  return std::min(StoreAlign, LoadAlign);
 | 
						|
}
 | 
						|
 | 
						|
// This method try to lift a store instruction before position P.
 | 
						|
// It will lift the store and its argument + that anything that
 | 
						|
// may alias with these.
 | 
						|
// The method returns true if it was successful.
 | 
						|
static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
 | 
						|
                   const LoadInst *LI) {
 | 
						|
  // If the store alias this position, early bail out.
 | 
						|
  MemoryLocation StoreLoc = MemoryLocation::get(SI);
 | 
						|
  if (AA.getModRefInfo(P, StoreLoc) != MRI_NoModRef)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Keep track of the arguments of all instruction we plan to lift
 | 
						|
  // so we can make sure to lift them as well if apropriate.
 | 
						|
  DenseSet<Instruction*> Args;
 | 
						|
  if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
 | 
						|
    if (Ptr->getParent() == SI->getParent())
 | 
						|
      Args.insert(Ptr);
 | 
						|
 | 
						|
  // Instruction to lift before P.
 | 
						|
  SmallVector<Instruction*, 8> ToLift;
 | 
						|
 | 
						|
  // Memory locations of lifted instructions.
 | 
						|
  SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
 | 
						|
 | 
						|
  // Lifted callsites.
 | 
						|
  SmallVector<ImmutableCallSite, 8> CallSites;
 | 
						|
 | 
						|
  const MemoryLocation LoadLoc = MemoryLocation::get(LI);
 | 
						|
 | 
						|
  for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
 | 
						|
    auto *C = &*I;
 | 
						|
 | 
						|
    bool MayAlias = AA.getModRefInfo(C, None) != MRI_NoModRef;
 | 
						|
 | 
						|
    bool NeedLift = false;
 | 
						|
    if (Args.erase(C))
 | 
						|
      NeedLift = true;
 | 
						|
    else if (MayAlias) {
 | 
						|
      NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
 | 
						|
        return AA.getModRefInfo(C, ML);
 | 
						|
      });
 | 
						|
 | 
						|
      if (!NeedLift)
 | 
						|
        NeedLift =
 | 
						|
            llvm::any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) {
 | 
						|
              return AA.getModRefInfo(C, CS);
 | 
						|
            });
 | 
						|
    }
 | 
						|
 | 
						|
    if (!NeedLift)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MayAlias) {
 | 
						|
      // Since LI is implicitly moved downwards past the lifted instructions,
 | 
						|
      // none of them may modify its source.
 | 
						|
      if (AA.getModRefInfo(C, LoadLoc) & MRI_Mod)
 | 
						|
        return false;
 | 
						|
      else if (auto CS = ImmutableCallSite(C)) {
 | 
						|
        // If we can't lift this before P, it's game over.
 | 
						|
        if (AA.getModRefInfo(P, CS) != MRI_NoModRef)
 | 
						|
          return false;
 | 
						|
 | 
						|
        CallSites.push_back(CS);
 | 
						|
      } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
 | 
						|
        // If we can't lift this before P, it's game over.
 | 
						|
        auto ML = MemoryLocation::get(C);
 | 
						|
        if (AA.getModRefInfo(P, ML) != MRI_NoModRef)
 | 
						|
          return false;
 | 
						|
 | 
						|
        MemLocs.push_back(ML);
 | 
						|
      } else
 | 
						|
        // We don't know how to lift this instruction.
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ToLift.push_back(C);
 | 
						|
    for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
 | 
						|
      if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
 | 
						|
        if (A->getParent() == SI->getParent())
 | 
						|
          Args.insert(A);
 | 
						|
  }
 | 
						|
 | 
						|
  // We made it, we need to lift
 | 
						|
  for (auto *I : llvm::reverse(ToLift)) {
 | 
						|
    DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
 | 
						|
    I->moveBefore(P);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
 | 
						|
  if (!SI->isSimple()) return false;
 | 
						|
 | 
						|
  // Avoid merging nontemporal stores since the resulting
 | 
						|
  // memcpy/memset would not be able to preserve the nontemporal hint.
 | 
						|
  // In theory we could teach how to propagate the !nontemporal metadata to
 | 
						|
  // memset calls. However, that change would force the backend to
 | 
						|
  // conservatively expand !nontemporal memset calls back to sequences of
 | 
						|
  // store instructions (effectively undoing the merging).
 | 
						|
  if (SI->getMetadata(LLVMContext::MD_nontemporal))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = SI->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Load to store forwarding can be interpreted as memcpy.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
 | 
						|
    if (LI->isSimple() && LI->hasOneUse() &&
 | 
						|
        LI->getParent() == SI->getParent()) {
 | 
						|
 | 
						|
      auto *T = LI->getType();
 | 
						|
      if (T->isAggregateType()) {
 | 
						|
        AliasAnalysis &AA = LookupAliasAnalysis();
 | 
						|
        MemoryLocation LoadLoc = MemoryLocation::get(LI);
 | 
						|
 | 
						|
        // We use alias analysis to check if an instruction may store to
 | 
						|
        // the memory we load from in between the load and the store. If
 | 
						|
        // such an instruction is found, we try to promote there instead
 | 
						|
        // of at the store position.
 | 
						|
        Instruction *P = SI;
 | 
						|
        for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
 | 
						|
          if (AA.getModRefInfo(&I, LoadLoc) & MRI_Mod) {
 | 
						|
            P = &I;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // We found an instruction that may write to the loaded memory.
 | 
						|
        // We can try to promote at this position instead of the store
 | 
						|
        // position if nothing alias the store memory after this and the store
 | 
						|
        // destination is not in the range.
 | 
						|
        if (P && P != SI) {
 | 
						|
          if (!moveUp(AA, SI, P, LI))
 | 
						|
            P = nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        // If a valid insertion position is found, then we can promote
 | 
						|
        // the load/store pair to a memcpy.
 | 
						|
        if (P) {
 | 
						|
          // If we load from memory that may alias the memory we store to,
 | 
						|
          // memmove must be used to preserve semantic. If not, memcpy can
 | 
						|
          // be used.
 | 
						|
          bool UseMemMove = false;
 | 
						|
          if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
 | 
						|
            UseMemMove = true;
 | 
						|
 | 
						|
          unsigned Align = findCommonAlignment(DL, SI, LI);
 | 
						|
          uint64_t Size = DL.getTypeStoreSize(T);
 | 
						|
 | 
						|
          IRBuilder<> Builder(P);
 | 
						|
          Instruction *M;
 | 
						|
          if (UseMemMove)
 | 
						|
            M = Builder.CreateMemMove(SI->getPointerOperand(),
 | 
						|
                                      LI->getPointerOperand(), Size,
 | 
						|
                                      Align, SI->isVolatile());
 | 
						|
          else
 | 
						|
            M = Builder.CreateMemCpy(SI->getPointerOperand(),
 | 
						|
                                     LI->getPointerOperand(), Size,
 | 
						|
                                     Align, SI->isVolatile());
 | 
						|
 | 
						|
          DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI
 | 
						|
                       << " => " << *M << "\n");
 | 
						|
 | 
						|
          MD->removeInstruction(SI);
 | 
						|
          SI->eraseFromParent();
 | 
						|
          MD->removeInstruction(LI);
 | 
						|
          LI->eraseFromParent();
 | 
						|
          ++NumMemCpyInstr;
 | 
						|
 | 
						|
          // Make sure we do not invalidate the iterator.
 | 
						|
          BBI = M->getIterator();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Detect cases where we're performing call slot forwarding, but
 | 
						|
      // happen to be using a load-store pair to implement it, rather than
 | 
						|
      // a memcpy.
 | 
						|
      MemDepResult ldep = MD->getDependency(LI);
 | 
						|
      CallInst *C = nullptr;
 | 
						|
      if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
 | 
						|
        C = dyn_cast<CallInst>(ldep.getInst());
 | 
						|
 | 
						|
      if (C) {
 | 
						|
        // Check that nothing touches the dest of the "copy" between
 | 
						|
        // the call and the store.
 | 
						|
        Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
 | 
						|
        bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
 | 
						|
        AliasAnalysis &AA = LookupAliasAnalysis();
 | 
						|
        MemoryLocation StoreLoc = MemoryLocation::get(SI);
 | 
						|
        for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
 | 
						|
             I != E; --I) {
 | 
						|
          if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) {
 | 
						|
            C = nullptr;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          // The store to dest may never happen if an exception can be thrown
 | 
						|
          // between the load and the store.
 | 
						|
          if (I->mayThrow() && !CpyDestIsLocal) {
 | 
						|
            C = nullptr;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (C) {
 | 
						|
        bool changed = performCallSlotOptzn(
 | 
						|
            LI, SI->getPointerOperand()->stripPointerCasts(),
 | 
						|
            LI->getPointerOperand()->stripPointerCasts(),
 | 
						|
            DL.getTypeStoreSize(SI->getOperand(0)->getType()),
 | 
						|
            findCommonAlignment(DL, SI, LI), C);
 | 
						|
        if (changed) {
 | 
						|
          MD->removeInstruction(SI);
 | 
						|
          SI->eraseFromParent();
 | 
						|
          MD->removeInstruction(LI);
 | 
						|
          LI->eraseFromParent();
 | 
						|
          ++NumMemCpyInstr;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // There are two cases that are interesting for this code to handle: memcpy
 | 
						|
  // and memset.  Right now we only handle memset.
 | 
						|
 | 
						|
  // Ensure that the value being stored is something that can be memset'able a
 | 
						|
  // byte at a time like "0" or "-1" or any width, as well as things like
 | 
						|
  // 0xA0A0A0A0 and 0.0.
 | 
						|
  auto *V = SI->getOperand(0);
 | 
						|
  if (Value *ByteVal = isBytewiseValue(V)) {
 | 
						|
    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
 | 
						|
                                              ByteVal)) {
 | 
						|
      BBI = I->getIterator(); // Don't invalidate iterator.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an aggregate, we try to promote it to memset regardless
 | 
						|
    // of opportunity for merging as it can expose optimization opportunities
 | 
						|
    // in subsequent passes.
 | 
						|
    auto *T = V->getType();
 | 
						|
    if (T->isAggregateType()) {
 | 
						|
      uint64_t Size = DL.getTypeStoreSize(T);
 | 
						|
      unsigned Align = SI->getAlignment();
 | 
						|
      if (!Align)
 | 
						|
        Align = DL.getABITypeAlignment(T);
 | 
						|
      IRBuilder<> Builder(SI);
 | 
						|
      auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
 | 
						|
                                     Size, Align, SI->isVolatile());
 | 
						|
 | 
						|
      DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
 | 
						|
 | 
						|
      MD->removeInstruction(SI);
 | 
						|
      SI->eraseFromParent();
 | 
						|
      NumMemSetInfer++;
 | 
						|
 | 
						|
      // Make sure we do not invalidate the iterator.
 | 
						|
      BBI = M->getIterator();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
 | 
						|
  // See if there is another memset or store neighboring this memset which
 | 
						|
  // allows us to widen out the memset to do a single larger store.
 | 
						|
  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
 | 
						|
    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
 | 
						|
                                              MSI->getValue())) {
 | 
						|
      BBI = I->getIterator(); // Don't invalidate iterator.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Takes a memcpy and a call that it depends on,
 | 
						|
/// and checks for the possibility of a call slot optimization by having
 | 
						|
/// the call write its result directly into the destination of the memcpy.
 | 
						|
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
 | 
						|
                                         Value *cpySrc, uint64_t cpyLen,
 | 
						|
                                         unsigned cpyAlign, CallInst *C) {
 | 
						|
  // The general transformation to keep in mind is
 | 
						|
  //
 | 
						|
  //   call @func(..., src, ...)
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //
 | 
						|
  // ->
 | 
						|
  //
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //   call @func(..., dest, ...)
 | 
						|
  //
 | 
						|
  // Since moving the memcpy is technically awkward, we additionally check that
 | 
						|
  // src only holds uninitialized values at the moment of the call, meaning that
 | 
						|
  // the memcpy can be discarded rather than moved.
 | 
						|
 | 
						|
  // Lifetime marks shouldn't be operated on.
 | 
						|
  if (Function *F = C->getCalledFunction())
 | 
						|
    if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Deliberately get the source and destination with bitcasts stripped away,
 | 
						|
  // because we'll need to do type comparisons based on the underlying type.
 | 
						|
  CallSite CS(C);
 | 
						|
 | 
						|
  // Require that src be an alloca.  This simplifies the reasoning considerably.
 | 
						|
  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
 | 
						|
  if (!srcAlloca)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
 | 
						|
  if (!srcArraySize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = cpy->getModule()->getDataLayout();
 | 
						|
  uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
 | 
						|
                     srcArraySize->getZExtValue();
 | 
						|
 | 
						|
  if (cpyLen < srcSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that accessing the first srcSize bytes of dest will not cause a
 | 
						|
  // trap.  Otherwise the transform is invalid since it might cause a trap
 | 
						|
  // to occur earlier than it otherwise would.
 | 
						|
  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
 | 
						|
    // The destination is an alloca.  Check it is larger than srcSize.
 | 
						|
    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
 | 
						|
    if (!destArraySize)
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
 | 
						|
                        destArraySize->getZExtValue();
 | 
						|
 | 
						|
    if (destSize < srcSize)
 | 
						|
      return false;
 | 
						|
  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
 | 
						|
    // The store to dest may never happen if the call can throw.
 | 
						|
    if (C->mayThrow())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (A->getDereferenceableBytes() < srcSize) {
 | 
						|
      // If the destination is an sret parameter then only accesses that are
 | 
						|
      // outside of the returned struct type can trap.
 | 
						|
      if (!A->hasStructRetAttr())
 | 
						|
        return false;
 | 
						|
 | 
						|
      Type *StructTy = cast<PointerType>(A->getType())->getElementType();
 | 
						|
      if (!StructTy->isSized()) {
 | 
						|
        // The call may never return and hence the copy-instruction may never
 | 
						|
        // be executed, and therefore it's not safe to say "the destination
 | 
						|
        // has at least <cpyLen> bytes, as implied by the copy-instruction",
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      uint64_t destSize = DL.getTypeAllocSize(StructTy);
 | 
						|
      if (destSize < srcSize)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that dest points to memory that is at least as aligned as src.
 | 
						|
  unsigned srcAlign = srcAlloca->getAlignment();
 | 
						|
  if (!srcAlign)
 | 
						|
    srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
 | 
						|
  bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
 | 
						|
  // If dest is not aligned enough and we can't increase its alignment then
 | 
						|
  // bail out.
 | 
						|
  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that src is not accessed except via the call and the memcpy.  This
 | 
						|
  // guarantees that it holds only undefined values when passed in (so the final
 | 
						|
  // memcpy can be dropped), that it is not read or written between the call and
 | 
						|
  // the memcpy, and that writing beyond the end of it is undefined.
 | 
						|
  SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
 | 
						|
                                   srcAlloca->user_end());
 | 
						|
  while (!srcUseList.empty()) {
 | 
						|
    User *U = srcUseList.pop_back_val();
 | 
						|
 | 
						|
    if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
 | 
						|
      for (User *UU : U->users())
 | 
						|
        srcUseList.push_back(UU);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
 | 
						|
      if (!G->hasAllZeroIndices())
 | 
						|
        return false;
 | 
						|
 | 
						|
      for (User *UU : U->users())
 | 
						|
        srcUseList.push_back(UU);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
 | 
						|
      if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
          IT->getIntrinsicID() == Intrinsic::lifetime_end)
 | 
						|
        continue;
 | 
						|
 | 
						|
    if (U != C && U != cpy)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that src isn't captured by the called function since the
 | 
						|
  // transformation can cause aliasing issues in that case.
 | 
						|
  for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | 
						|
    if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Since we're changing the parameter to the callsite, we need to make sure
 | 
						|
  // that what would be the new parameter dominates the callsite.
 | 
						|
  DominatorTree &DT = LookupDomTree();
 | 
						|
  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
 | 
						|
    if (!DT.dominates(cpyDestInst, C))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // In addition to knowing that the call does not access src in some
 | 
						|
  // unexpected manner, for example via a global, which we deduce from
 | 
						|
  // the use analysis, we also need to know that it does not sneakily
 | 
						|
  // access dest.  We rely on AA to figure this out for us.
 | 
						|
  AliasAnalysis &AA = LookupAliasAnalysis();
 | 
						|
  ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
 | 
						|
  // If necessary, perform additional analysis.
 | 
						|
  if (MR != MRI_NoModRef)
 | 
						|
    MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
 | 
						|
  if (MR != MRI_NoModRef)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can't create address space casts here because we don't know if they're
 | 
						|
  // safe for the target.
 | 
						|
  if (cpySrc->getType()->getPointerAddressSpace() !=
 | 
						|
      cpyDest->getType()->getPointerAddressSpace())
 | 
						|
    return false;
 | 
						|
  for (unsigned i = 0; i < CS.arg_size(); ++i)
 | 
						|
    if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
 | 
						|
        cpySrc->getType()->getPointerAddressSpace() !=
 | 
						|
        CS.getArgument(i)->getType()->getPointerAddressSpace())
 | 
						|
      return false;
 | 
						|
 | 
						|
  // All the checks have passed, so do the transformation.
 | 
						|
  bool changedArgument = false;
 | 
						|
  for (unsigned i = 0; i < CS.arg_size(); ++i)
 | 
						|
    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
 | 
						|
      Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
 | 
						|
        : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
 | 
						|
                                      cpyDest->getName(), C);
 | 
						|
      changedArgument = true;
 | 
						|
      if (CS.getArgument(i)->getType() == Dest->getType())
 | 
						|
        CS.setArgument(i, Dest);
 | 
						|
      else
 | 
						|
        CS.setArgument(i, CastInst::CreatePointerCast(Dest,
 | 
						|
                          CS.getArgument(i)->getType(), Dest->getName(), C));
 | 
						|
    }
 | 
						|
 | 
						|
  if (!changedArgument)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the destination wasn't sufficiently aligned then increase its alignment.
 | 
						|
  if (!isDestSufficientlyAligned) {
 | 
						|
    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
 | 
						|
    cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // Drop any cached information about the call, because we may have changed
 | 
						|
  // its dependence information by changing its parameter.
 | 
						|
  MD->removeInstruction(C);
 | 
						|
 | 
						|
  // Update AA metadata
 | 
						|
  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
 | 
						|
  // handled here, but combineMetadata doesn't support them yet
 | 
						|
  unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
 | 
						|
                         LLVMContext::MD_noalias,
 | 
						|
                         LLVMContext::MD_invariant_group};
 | 
						|
  combineMetadata(C, cpy, KnownIDs);
 | 
						|
 | 
						|
  // Remove the memcpy.
 | 
						|
  MD->removeInstruction(cpy);
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
 | 
						|
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
 | 
						|
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
 | 
						|
                                                  MemCpyInst *MDep) {
 | 
						|
  // We can only transforms memcpy's where the dest of one is the source of the
 | 
						|
  // other.
 | 
						|
  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If dep instruction is reading from our current input, then it is a noop
 | 
						|
  // transfer and substituting the input won't change this instruction.  Just
 | 
						|
  // ignore the input and let someone else zap MDep.  This handles cases like:
 | 
						|
  //    memcpy(a <- a)
 | 
						|
  //    memcpy(b <- a)
 | 
						|
  if (M->getSource() == MDep->getSource())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Second, the length of the memcpy's must be the same, or the preceding one
 | 
						|
  // must be larger than the following one.
 | 
						|
  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
 | 
						|
  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  AliasAnalysis &AA = LookupAliasAnalysis();
 | 
						|
 | 
						|
  // Verify that the copied-from memory doesn't change in between the two
 | 
						|
  // transfers.  For example, in:
 | 
						|
  //    memcpy(a <- b)
 | 
						|
  //    *b = 42;
 | 
						|
  //    memcpy(c <- a)
 | 
						|
  // It would be invalid to transform the second memcpy into memcpy(c <- b).
 | 
						|
  //
 | 
						|
  // TODO: If the code between M and MDep is transparent to the destination "c",
 | 
						|
  // then we could still perform the xform by moving M up to the first memcpy.
 | 
						|
  //
 | 
						|
  // NOTE: This is conservative, it will stop on any read from the source loc,
 | 
						|
  // not just the defining memcpy.
 | 
						|
  MemDepResult SourceDep =
 | 
						|
      MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
 | 
						|
                                   M->getIterator(), M->getParent());
 | 
						|
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the dest of the second might alias the source of the first, then the
 | 
						|
  // source and dest might overlap.  We still want to eliminate the intermediate
 | 
						|
  // value, but we have to generate a memmove instead of memcpy.
 | 
						|
  bool UseMemMove = false;
 | 
						|
  if (!AA.isNoAlias(MemoryLocation::getForDest(M),
 | 
						|
                    MemoryLocation::getForSource(MDep)))
 | 
						|
    UseMemMove = true;
 | 
						|
 | 
						|
  // If all checks passed, then we can transform M.
 | 
						|
 | 
						|
  // Make sure to use the lesser of the alignment of the source and the dest
 | 
						|
  // since we're changing where we're reading from, but don't want to increase
 | 
						|
  // the alignment past what can be read from or written to.
 | 
						|
  // TODO: Is this worth it if we're creating a less aligned memcpy? For
 | 
						|
  // example we could be moving from movaps -> movq on x86.
 | 
						|
  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
 | 
						|
 | 
						|
  IRBuilder<> Builder(M);
 | 
						|
  if (UseMemMove)
 | 
						|
    Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | 
						|
                          Align, M->isVolatile());
 | 
						|
  else
 | 
						|
    Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | 
						|
                         Align, M->isVolatile());
 | 
						|
 | 
						|
  // Remove the instruction we're replacing.
 | 
						|
  MD->removeInstruction(M);
 | 
						|
  M->eraseFromParent();
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// We've found that the (upward scanning) memory dependence of \p MemCpy is
 | 
						|
/// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
 | 
						|
/// weren't copied over by \p MemCpy.
 | 
						|
///
 | 
						|
/// In other words, transform:
 | 
						|
/// \code
 | 
						|
///   memset(dst, c, dst_size);
 | 
						|
///   memcpy(dst, src, src_size);
 | 
						|
/// \endcode
 | 
						|
/// into:
 | 
						|
/// \code
 | 
						|
///   memcpy(dst, src, src_size);
 | 
						|
///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
 | 
						|
/// \endcode
 | 
						|
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
 | 
						|
                                                  MemSetInst *MemSet) {
 | 
						|
  // We can only transform memset/memcpy with the same destination.
 | 
						|
  if (MemSet->getDest() != MemCpy->getDest())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that there are no other dependencies on the memset destination.
 | 
						|
  MemDepResult DstDepInfo =
 | 
						|
      MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
 | 
						|
                                   MemCpy->getIterator(), MemCpy->getParent());
 | 
						|
  if (DstDepInfo.getInst() != MemSet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use the same i8* dest as the memcpy, killing the memset dest if different.
 | 
						|
  Value *Dest = MemCpy->getRawDest();
 | 
						|
  Value *DestSize = MemSet->getLength();
 | 
						|
  Value *SrcSize = MemCpy->getLength();
 | 
						|
 | 
						|
  // By default, create an unaligned memset.
 | 
						|
  unsigned Align = 1;
 | 
						|
  // If Dest is aligned, and SrcSize is constant, use the minimum alignment
 | 
						|
  // of the sum.
 | 
						|
  const unsigned DestAlign =
 | 
						|
      std::max(MemSet->getAlignment(), MemCpy->getAlignment());
 | 
						|
  if (DestAlign > 1)
 | 
						|
    if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
 | 
						|
      Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
 | 
						|
 | 
						|
  IRBuilder<> Builder(MemCpy);
 | 
						|
 | 
						|
  // If the sizes have different types, zext the smaller one.
 | 
						|
  if (DestSize->getType() != SrcSize->getType()) {
 | 
						|
    if (DestSize->getType()->getIntegerBitWidth() >
 | 
						|
        SrcSize->getType()->getIntegerBitWidth())
 | 
						|
      SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
 | 
						|
    else
 | 
						|
      DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
 | 
						|
  Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
 | 
						|
  Value *MemsetLen = Builder.CreateSelect(
 | 
						|
      Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
 | 
						|
  Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
 | 
						|
                       MemsetLen, Align);
 | 
						|
 | 
						|
  MD->removeInstruction(MemSet);
 | 
						|
  MemSet->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Transform memcpy to memset when its source was just memset.
 | 
						|
/// In other words, turn:
 | 
						|
/// \code
 | 
						|
///   memset(dst1, c, dst1_size);
 | 
						|
///   memcpy(dst2, dst1, dst2_size);
 | 
						|
/// \endcode
 | 
						|
/// into:
 | 
						|
/// \code
 | 
						|
///   memset(dst1, c, dst1_size);
 | 
						|
///   memset(dst2, c, dst2_size);
 | 
						|
/// \endcode
 | 
						|
/// When dst2_size <= dst1_size.
 | 
						|
///
 | 
						|
/// The \p MemCpy must have a Constant length.
 | 
						|
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
 | 
						|
                                               MemSetInst *MemSet) {
 | 
						|
  AliasAnalysis &AA = LookupAliasAnalysis();
 | 
						|
 | 
						|
  // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
 | 
						|
  // memcpying from the same address. Otherwise it is hard to reason about.
 | 
						|
  if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
 | 
						|
  ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
 | 
						|
  // Make sure the memcpy doesn't read any more than what the memset wrote.
 | 
						|
  // Don't worry about sizes larger than i64.
 | 
						|
  if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  IRBuilder<> Builder(MemCpy);
 | 
						|
  Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
 | 
						|
                       CopySize, MemCpy->getAlignment());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Perform simplification of memcpy's.  If we have memcpy A
 | 
						|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
 | 
						|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
 | 
						|
/// circumstances). This allows later passes to remove the first memcpy
 | 
						|
/// altogether.
 | 
						|
bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
 | 
						|
  // We can only optimize non-volatile memcpy's.
 | 
						|
  if (M->isVolatile()) return false;
 | 
						|
 | 
						|
  // If the source and destination of the memcpy are the same, then zap it.
 | 
						|
  if (M->getSource() == M->getDest()) {
 | 
						|
    MD->removeInstruction(M);
 | 
						|
    M->eraseFromParent();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If copying from a constant, try to turn the memcpy into a memset.
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
      if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
 | 
						|
        IRBuilder<> Builder(M);
 | 
						|
        Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
 | 
						|
                             M->getAlignment(), false);
 | 
						|
        MD->removeInstruction(M);
 | 
						|
        M->eraseFromParent();
 | 
						|
        ++NumCpyToSet;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
  MemDepResult DepInfo = MD->getDependency(M);
 | 
						|
 | 
						|
  // Try to turn a partially redundant memset + memcpy into
 | 
						|
  // memcpy + smaller memset.  We don't need the memcpy size for this.
 | 
						|
  if (DepInfo.isClobber())
 | 
						|
    if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
 | 
						|
      if (processMemSetMemCpyDependence(M, MDep))
 | 
						|
        return true;
 | 
						|
 | 
						|
  // The optimizations after this point require the memcpy size.
 | 
						|
  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!CopySize) return false;
 | 
						|
 | 
						|
  // There are four possible optimizations we can do for memcpy:
 | 
						|
  //   a) memcpy-memcpy xform which exposes redundance for DSE.
 | 
						|
  //   b) call-memcpy xform for return slot optimization.
 | 
						|
  //   c) memcpy from freshly alloca'd space or space that has just started its
 | 
						|
  //      lifetime copies undefined data, and we can therefore eliminate the
 | 
						|
  //      memcpy in favor of the data that was already at the destination.
 | 
						|
  //   d) memcpy from a just-memset'd source can be turned into memset.
 | 
						|
  if (DepInfo.isClobber()) {
 | 
						|
    if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
 | 
						|
      if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
 | 
						|
                               CopySize->getZExtValue(), M->getAlignment(),
 | 
						|
                               C)) {
 | 
						|
        MD->removeInstruction(M);
 | 
						|
        M->eraseFromParent();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
 | 
						|
  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
 | 
						|
      SrcLoc, true, M->getIterator(), M->getParent());
 | 
						|
 | 
						|
  if (SrcDepInfo.isClobber()) {
 | 
						|
    if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
 | 
						|
      return processMemCpyMemCpyDependence(M, MDep);
 | 
						|
  } else if (SrcDepInfo.isDef()) {
 | 
						|
    Instruction *I = SrcDepInfo.getInst();
 | 
						|
    bool hasUndefContents = false;
 | 
						|
 | 
						|
    if (isa<AllocaInst>(I)) {
 | 
						|
      hasUndefContents = true;
 | 
						|
    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | 
						|
        if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | 
						|
          if (LTSize->getZExtValue() >= CopySize->getZExtValue())
 | 
						|
            hasUndefContents = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (hasUndefContents) {
 | 
						|
      MD->removeInstruction(M);
 | 
						|
      M->eraseFromParent();
 | 
						|
      ++NumMemCpyInstr;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SrcDepInfo.isClobber())
 | 
						|
    if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
 | 
						|
      if (performMemCpyToMemSetOptzn(M, MDep)) {
 | 
						|
        MD->removeInstruction(M);
 | 
						|
        M->eraseFromParent();
 | 
						|
        ++NumCpyToSet;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
 | 
						|
/// not to alias.
 | 
						|
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
 | 
						|
  AliasAnalysis &AA = LookupAliasAnalysis();
 | 
						|
 | 
						|
  if (!TLI->has(LibFunc_memmove))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // See if the pointers alias.
 | 
						|
  if (!AA.isNoAlias(MemoryLocation::getForDest(M),
 | 
						|
                    MemoryLocation::getForSource(M)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
 | 
						|
               << "\n");
 | 
						|
 | 
						|
  // If not, then we know we can transform this.
 | 
						|
  Type *ArgTys[3] = { M->getRawDest()->getType(),
 | 
						|
                      M->getRawSource()->getType(),
 | 
						|
                      M->getLength()->getType() };
 | 
						|
  M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
 | 
						|
                                                 Intrinsic::memcpy, ArgTys));
 | 
						|
 | 
						|
  // MemDep may have over conservative information about this instruction, just
 | 
						|
  // conservatively flush it from the cache.
 | 
						|
  MD->removeInstruction(M);
 | 
						|
 | 
						|
  ++NumMoveToCpy;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This is called on every byval argument in call sites.
 | 
						|
bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
 | 
						|
  const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
 | 
						|
  // Find out what feeds this byval argument.
 | 
						|
  Value *ByValArg = CS.getArgument(ArgNo);
 | 
						|
  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
 | 
						|
  uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
 | 
						|
  MemDepResult DepInfo = MD->getPointerDependencyFrom(
 | 
						|
      MemoryLocation(ByValArg, ByValSize), true,
 | 
						|
      CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
 | 
						|
  if (!DepInfo.isClobber())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
 | 
						|
  // a memcpy, see if we can byval from the source of the memcpy instead of the
 | 
						|
  // result.
 | 
						|
  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
 | 
						|
  if (!MDep || MDep->isVolatile() ||
 | 
						|
      ByValArg->stripPointerCasts() != MDep->getDest())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The length of the memcpy must be larger or equal to the size of the byval.
 | 
						|
  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
 | 
						|
  if (!C1 || C1->getValue().getZExtValue() < ByValSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the alignment of the byval.  If the call doesn't specify the alignment,
 | 
						|
  // then it is some target specific value that we can't know.
 | 
						|
  unsigned ByValAlign = CS.getParamAlignment(ArgNo);
 | 
						|
  if (ByValAlign == 0) return false;
 | 
						|
 | 
						|
  // If it is greater than the memcpy, then we check to see if we can force the
 | 
						|
  // source of the memcpy to the alignment we need.  If we fail, we bail out.
 | 
						|
  AssumptionCache &AC = LookupAssumptionCache();
 | 
						|
  DominatorTree &DT = LookupDomTree();
 | 
						|
  if (MDep->getAlignment() < ByValAlign &&
 | 
						|
      getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
 | 
						|
                                 CS.getInstruction(), &AC, &DT) < ByValAlign)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The address space of the memcpy source must match the byval argument
 | 
						|
  if (MDep->getSource()->getType()->getPointerAddressSpace() !=
 | 
						|
      ByValArg->getType()->getPointerAddressSpace())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that the copied-from memory doesn't change in between the memcpy and
 | 
						|
  // the byval call.
 | 
						|
  //    memcpy(a <- b)
 | 
						|
  //    *b = 42;
 | 
						|
  //    foo(*a)
 | 
						|
  // It would be invalid to transform the second memcpy into foo(*b).
 | 
						|
  //
 | 
						|
  // NOTE: This is conservative, it will stop on any read from the source loc,
 | 
						|
  // not just the defining memcpy.
 | 
						|
  MemDepResult SourceDep = MD->getPointerDependencyFrom(
 | 
						|
      MemoryLocation::getForSource(MDep), false,
 | 
						|
      CS.getInstruction()->getIterator(), MDep->getParent());
 | 
						|
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *TmpCast = MDep->getSource();
 | 
						|
  if (MDep->getSource()->getType() != ByValArg->getType())
 | 
						|
    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
 | 
						|
                              "tmpcast", CS.getInstruction());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
 | 
						|
               << "  " << *MDep << "\n"
 | 
						|
               << "  " << *CS.getInstruction() << "\n");
 | 
						|
 | 
						|
  // Otherwise we're good!  Update the byval argument.
 | 
						|
  CS.setArgument(ArgNo, TmpCast);
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Executes one iteration of MemCpyOptPass.
 | 
						|
bool MemCpyOptPass::iterateOnFunction(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Walk all instruction in the function.
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
 | 
						|
      // Avoid invalidating the iterator.
 | 
						|
      Instruction *I = &*BI++;
 | 
						|
 | 
						|
      bool RepeatInstruction = false;
 | 
						|
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
        MadeChange |= processStore(SI, BI);
 | 
						|
      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
 | 
						|
        RepeatInstruction = processMemSet(M, BI);
 | 
						|
      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
 | 
						|
        RepeatInstruction = processMemCpy(M);
 | 
						|
      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
 | 
						|
        RepeatInstruction = processMemMove(M);
 | 
						|
      else if (auto CS = CallSite(I)) {
 | 
						|
        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | 
						|
          if (CS.isByValArgument(i))
 | 
						|
            MadeChange |= processByValArgument(CS, i);
 | 
						|
      }
 | 
						|
 | 
						|
      // Reprocess the instruction if desired.
 | 
						|
      if (RepeatInstruction) {
 | 
						|
        if (BI != BB.begin())
 | 
						|
          --BI;
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
 | 
						|
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
 | 
						|
  auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
 | 
						|
    return AM.getResult<AAManager>(F);
 | 
						|
  };
 | 
						|
  auto LookupAssumptionCache = [&]() -> AssumptionCache & {
 | 
						|
    return AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  };
 | 
						|
  auto LookupDomTree = [&]() -> DominatorTree & {
 | 
						|
    return AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  };
 | 
						|
 | 
						|
  bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
 | 
						|
                            LookupAssumptionCache, LookupDomTree);
 | 
						|
  if (!MadeChange)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserve<MemoryDependenceAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
bool MemCpyOptPass::runImpl(
 | 
						|
    Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
 | 
						|
    std::function<AliasAnalysis &()> LookupAliasAnalysis_,
 | 
						|
    std::function<AssumptionCache &()> LookupAssumptionCache_,
 | 
						|
    std::function<DominatorTree &()> LookupDomTree_) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  MD = MD_;
 | 
						|
  TLI = TLI_;
 | 
						|
  LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
 | 
						|
  LookupAssumptionCache = std::move(LookupAssumptionCache_);
 | 
						|
  LookupDomTree = std::move(LookupDomTree_);
 | 
						|
 | 
						|
  // If we don't have at least memset and memcpy, there is little point of doing
 | 
						|
  // anything here.  These are required by a freestanding implementation, so if
 | 
						|
  // even they are disabled, there is no point in trying hard.
 | 
						|
  if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    if (!iterateOnFunction(F))
 | 
						|
      break;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  MD = nullptr;
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// This is the main transformation entry point for a function.
 | 
						|
bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | 
						|
  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
 | 
						|
  auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
 | 
						|
    return getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  };
 | 
						|
  auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
 | 
						|
    return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  };
 | 
						|
  auto LookupDomTree = [this]() -> DominatorTree & {
 | 
						|
    return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  };
 | 
						|
 | 
						|
  return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
 | 
						|
                      LookupDomTree);
 | 
						|
}
 |