forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			633 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			633 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// These classes implement wrappers around llvm::Value in order to
 | 
						|
// fully represent the range of values for C L- and R- values.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
 | 
						|
#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
 | 
						|
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "Address.h"
 | 
						|
#include "CodeGenTBAA.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  class Constant;
 | 
						|
  class MDNode;
 | 
						|
}
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace CodeGen {
 | 
						|
  class AggValueSlot;
 | 
						|
  class CodeGenFunction;
 | 
						|
  struct CGBitFieldInfo;
 | 
						|
 | 
						|
/// RValue - This trivial value class is used to represent the result of an
 | 
						|
/// expression that is evaluated.  It can be one of three things: either a
 | 
						|
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
 | 
						|
/// address of an aggregate value in memory.
 | 
						|
class RValue {
 | 
						|
  enum Flavor { Scalar, Complex, Aggregate };
 | 
						|
 | 
						|
  // The shift to make to an aggregate's alignment to make it look
 | 
						|
  // like a pointer.
 | 
						|
  enum { AggAlignShift = 4 };
 | 
						|
 | 
						|
  // Stores first value and flavor.
 | 
						|
  llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
 | 
						|
  // Stores second value and volatility.
 | 
						|
  llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
 | 
						|
 | 
						|
public:
 | 
						|
  bool isScalar() const { return V1.getInt() == Scalar; }
 | 
						|
  bool isComplex() const { return V1.getInt() == Complex; }
 | 
						|
  bool isAggregate() const { return V1.getInt() == Aggregate; }
 | 
						|
 | 
						|
  bool isVolatileQualified() const { return V2.getInt(); }
 | 
						|
 | 
						|
  /// getScalarVal() - Return the Value* of this scalar value.
 | 
						|
  llvm::Value *getScalarVal() const {
 | 
						|
    assert(isScalar() && "Not a scalar!");
 | 
						|
    return V1.getPointer();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getComplexVal - Return the real/imag components of this complex value.
 | 
						|
  ///
 | 
						|
  std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
 | 
						|
    return std::make_pair(V1.getPointer(), V2.getPointer());
 | 
						|
  }
 | 
						|
 | 
						|
  /// getAggregateAddr() - Return the Value* of the address of the aggregate.
 | 
						|
  Address getAggregateAddress() const {
 | 
						|
    assert(isAggregate() && "Not an aggregate!");
 | 
						|
    auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
 | 
						|
    return Address(V1.getPointer(), CharUnits::fromQuantity(align));
 | 
						|
  }
 | 
						|
  llvm::Value *getAggregatePointer() const {
 | 
						|
    assert(isAggregate() && "Not an aggregate!");
 | 
						|
    return V1.getPointer();
 | 
						|
  }
 | 
						|
 | 
						|
  static RValue getIgnored() {
 | 
						|
    // FIXME: should we make this a more explicit state?
 | 
						|
    return get(nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  static RValue get(llvm::Value *V) {
 | 
						|
    RValue ER;
 | 
						|
    ER.V1.setPointer(V);
 | 
						|
    ER.V1.setInt(Scalar);
 | 
						|
    ER.V2.setInt(false);
 | 
						|
    return ER;
 | 
						|
  }
 | 
						|
  static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
 | 
						|
    RValue ER;
 | 
						|
    ER.V1.setPointer(V1);
 | 
						|
    ER.V2.setPointer(V2);
 | 
						|
    ER.V1.setInt(Complex);
 | 
						|
    ER.V2.setInt(false);
 | 
						|
    return ER;
 | 
						|
  }
 | 
						|
  static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
 | 
						|
    return getComplex(C.first, C.second);
 | 
						|
  }
 | 
						|
  // FIXME: Aggregate rvalues need to retain information about whether they are
 | 
						|
  // volatile or not.  Remove default to find all places that probably get this
 | 
						|
  // wrong.
 | 
						|
  static RValue getAggregate(Address addr, bool isVolatile = false) {
 | 
						|
    RValue ER;
 | 
						|
    ER.V1.setPointer(addr.getPointer());
 | 
						|
    ER.V1.setInt(Aggregate);
 | 
						|
 | 
						|
    auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
 | 
						|
    ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
 | 
						|
    ER.V2.setInt(isVolatile);
 | 
						|
    return ER;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Does an ARC strong l-value have precise lifetime?
 | 
						|
enum ARCPreciseLifetime_t {
 | 
						|
  ARCImpreciseLifetime, ARCPreciseLifetime
 | 
						|
};
 | 
						|
 | 
						|
/// The source of the alignment of an l-value; an expression of
 | 
						|
/// confidence in the alignment actually matching the estimate.
 | 
						|
enum class AlignmentSource {
 | 
						|
  /// The l-value was an access to a declared entity or something
 | 
						|
  /// equivalently strong, like the address of an array allocated by a
 | 
						|
  /// language runtime.
 | 
						|
  Decl,
 | 
						|
 | 
						|
  /// The l-value was considered opaque, so the alignment was
 | 
						|
  /// determined from a type, but that type was an explicitly-aligned
 | 
						|
  /// typedef.
 | 
						|
  AttributedType,
 | 
						|
 | 
						|
  /// The l-value was considered opaque, so the alignment was
 | 
						|
  /// determined from a type.
 | 
						|
  Type
 | 
						|
};
 | 
						|
 | 
						|
/// Given that the base address has the given alignment source, what's
 | 
						|
/// our confidence in the alignment of the field?
 | 
						|
static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
 | 
						|
  // For now, we don't distinguish fields of opaque pointers from
 | 
						|
  // top-level declarations, but maybe we should.
 | 
						|
  return AlignmentSource::Decl;
 | 
						|
}
 | 
						|
 | 
						|
class LValueBaseInfo {
 | 
						|
  AlignmentSource AlignSource;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
 | 
						|
    : AlignSource(Source) {}
 | 
						|
  AlignmentSource getAlignmentSource() const { return AlignSource; }
 | 
						|
  void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
 | 
						|
 | 
						|
  void mergeForCast(const LValueBaseInfo &Info) {
 | 
						|
    setAlignmentSource(Info.getAlignmentSource());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// LValue - This represents an lvalue references.  Because C/C++ allow
 | 
						|
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
 | 
						|
/// bitrange.
 | 
						|
class LValue {
 | 
						|
  enum {
 | 
						|
    Simple,       // This is a normal l-value, use getAddress().
 | 
						|
    VectorElt,    // This is a vector element l-value (V[i]), use getVector*
 | 
						|
    BitField,     // This is a bitfield l-value, use getBitfield*.
 | 
						|
    ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
 | 
						|
    GlobalReg     // This is a register l-value, use getGlobalReg()
 | 
						|
  } LVType;
 | 
						|
 | 
						|
  llvm::Value *V;
 | 
						|
 | 
						|
  union {
 | 
						|
    // Index into a vector subscript: V[i]
 | 
						|
    llvm::Value *VectorIdx;
 | 
						|
 | 
						|
    // ExtVector element subset: V.xyx
 | 
						|
    llvm::Constant *VectorElts;
 | 
						|
 | 
						|
    // BitField start bit and size
 | 
						|
    const CGBitFieldInfo *BitFieldInfo;
 | 
						|
  };
 | 
						|
 | 
						|
  QualType Type;
 | 
						|
 | 
						|
  // 'const' is unused here
 | 
						|
  Qualifiers Quals;
 | 
						|
 | 
						|
  // The alignment to use when accessing this lvalue.  (For vector elements,
 | 
						|
  // this is the alignment of the whole vector.)
 | 
						|
  unsigned Alignment;
 | 
						|
 | 
						|
  // objective-c's ivar
 | 
						|
  bool Ivar:1;
 | 
						|
 | 
						|
  // objective-c's ivar is an array
 | 
						|
  bool ObjIsArray:1;
 | 
						|
 | 
						|
  // LValue is non-gc'able for any reason, including being a parameter or local
 | 
						|
  // variable.
 | 
						|
  bool NonGC: 1;
 | 
						|
 | 
						|
  // Lvalue is a global reference of an objective-c object
 | 
						|
  bool GlobalObjCRef : 1;
 | 
						|
 | 
						|
  // Lvalue is a thread local reference
 | 
						|
  bool ThreadLocalRef : 1;
 | 
						|
 | 
						|
  // Lvalue has ARC imprecise lifetime.  We store this inverted to try
 | 
						|
  // to make the default bitfield pattern all-zeroes.
 | 
						|
  bool ImpreciseLifetime : 1;
 | 
						|
 | 
						|
  // This flag shows if a nontemporal load/stores should be used when accessing
 | 
						|
  // this lvalue.
 | 
						|
  bool Nontemporal : 1;
 | 
						|
 | 
						|
  LValueBaseInfo BaseInfo;
 | 
						|
  TBAAAccessInfo TBAAInfo;
 | 
						|
 | 
						|
  Expr *BaseIvarExp;
 | 
						|
 | 
						|
private:
 | 
						|
  void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
 | 
						|
                  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
 | 
						|
    assert((!Alignment.isZero() || Type->isIncompleteType()) &&
 | 
						|
           "initializing l-value with zero alignment!");
 | 
						|
    this->Type = Type;
 | 
						|
    this->Quals = Quals;
 | 
						|
    const unsigned MaxAlign = 1U << 31;
 | 
						|
    this->Alignment = Alignment.getQuantity() <= MaxAlign
 | 
						|
                          ? Alignment.getQuantity()
 | 
						|
                          : MaxAlign;
 | 
						|
    assert(this->Alignment == Alignment.getQuantity() &&
 | 
						|
           "Alignment exceeds allowed max!");
 | 
						|
    this->BaseInfo = BaseInfo;
 | 
						|
    this->TBAAInfo = TBAAInfo;
 | 
						|
 | 
						|
    // Initialize Objective-C flags.
 | 
						|
    this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
 | 
						|
    this->ImpreciseLifetime = false;
 | 
						|
    this->Nontemporal = false;
 | 
						|
    this->ThreadLocalRef = false;
 | 
						|
    this->BaseIvarExp = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  bool isSimple() const { return LVType == Simple; }
 | 
						|
  bool isVectorElt() const { return LVType == VectorElt; }
 | 
						|
  bool isBitField() const { return LVType == BitField; }
 | 
						|
  bool isExtVectorElt() const { return LVType == ExtVectorElt; }
 | 
						|
  bool isGlobalReg() const { return LVType == GlobalReg; }
 | 
						|
 | 
						|
  bool isVolatileQualified() const { return Quals.hasVolatile(); }
 | 
						|
  bool isRestrictQualified() const { return Quals.hasRestrict(); }
 | 
						|
  unsigned getVRQualifiers() const {
 | 
						|
    return Quals.getCVRQualifiers() & ~Qualifiers::Const;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType getType() const { return Type; }
 | 
						|
 | 
						|
  Qualifiers::ObjCLifetime getObjCLifetime() const {
 | 
						|
    return Quals.getObjCLifetime();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isObjCIvar() const { return Ivar; }
 | 
						|
  void setObjCIvar(bool Value) { Ivar = Value; }
 | 
						|
 | 
						|
  bool isObjCArray() const { return ObjIsArray; }
 | 
						|
  void setObjCArray(bool Value) { ObjIsArray = Value; }
 | 
						|
 | 
						|
  bool isNonGC () const { return NonGC; }
 | 
						|
  void setNonGC(bool Value) { NonGC = Value; }
 | 
						|
 | 
						|
  bool isGlobalObjCRef() const { return GlobalObjCRef; }
 | 
						|
  void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
 | 
						|
 | 
						|
  bool isThreadLocalRef() const { return ThreadLocalRef; }
 | 
						|
  void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
 | 
						|
 | 
						|
  ARCPreciseLifetime_t isARCPreciseLifetime() const {
 | 
						|
    return ARCPreciseLifetime_t(!ImpreciseLifetime);
 | 
						|
  }
 | 
						|
  void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
 | 
						|
    ImpreciseLifetime = (value == ARCImpreciseLifetime);
 | 
						|
  }
 | 
						|
  bool isNontemporal() const { return Nontemporal; }
 | 
						|
  void setNontemporal(bool Value) { Nontemporal = Value; }
 | 
						|
 | 
						|
  bool isObjCWeak() const {
 | 
						|
    return Quals.getObjCGCAttr() == Qualifiers::Weak;
 | 
						|
  }
 | 
						|
  bool isObjCStrong() const {
 | 
						|
    return Quals.getObjCGCAttr() == Qualifiers::Strong;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isVolatile() const {
 | 
						|
    return Quals.hasVolatile();
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *getBaseIvarExp() const { return BaseIvarExp; }
 | 
						|
  void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
 | 
						|
 | 
						|
  TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
 | 
						|
  void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
 | 
						|
 | 
						|
  const Qualifiers &getQuals() const { return Quals; }
 | 
						|
  Qualifiers &getQuals() { return Quals; }
 | 
						|
 | 
						|
  LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
 | 
						|
 | 
						|
  CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
 | 
						|
  void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
 | 
						|
 | 
						|
  LValueBaseInfo getBaseInfo() const { return BaseInfo; }
 | 
						|
  void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
 | 
						|
 | 
						|
  // simple lvalue
 | 
						|
  llvm::Value *getPointer(CodeGenFunction &CGF) const {
 | 
						|
    assert(isSimple());
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  Address getAddress(CodeGenFunction &CGF) const {
 | 
						|
    return Address(getPointer(CGF), getAlignment());
 | 
						|
  }
 | 
						|
  void setAddress(Address address) {
 | 
						|
    assert(isSimple());
 | 
						|
    V = address.getPointer();
 | 
						|
    Alignment = address.getAlignment().getQuantity();
 | 
						|
  }
 | 
						|
 | 
						|
  // vector elt lvalue
 | 
						|
  Address getVectorAddress() const {
 | 
						|
    return Address(getVectorPointer(), getAlignment());
 | 
						|
  }
 | 
						|
  llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; }
 | 
						|
  llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
 | 
						|
 | 
						|
  // extended vector elements.
 | 
						|
  Address getExtVectorAddress() const {
 | 
						|
    return Address(getExtVectorPointer(), getAlignment());
 | 
						|
  }
 | 
						|
  llvm::Value *getExtVectorPointer() const {
 | 
						|
    assert(isExtVectorElt());
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  llvm::Constant *getExtVectorElts() const {
 | 
						|
    assert(isExtVectorElt());
 | 
						|
    return VectorElts;
 | 
						|
  }
 | 
						|
 | 
						|
  // bitfield lvalue
 | 
						|
  Address getBitFieldAddress() const {
 | 
						|
    return Address(getBitFieldPointer(), getAlignment());
 | 
						|
  }
 | 
						|
  llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
 | 
						|
  const CGBitFieldInfo &getBitFieldInfo() const {
 | 
						|
    assert(isBitField());
 | 
						|
    return *BitFieldInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  // global register lvalue
 | 
						|
  llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
 | 
						|
 | 
						|
  static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
 | 
						|
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
 | 
						|
    Qualifiers qs = type.getQualifiers();
 | 
						|
    qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
 | 
						|
 | 
						|
    LValue R;
 | 
						|
    R.LVType = Simple;
 | 
						|
    assert(address.getPointer()->getType()->isPointerTy());
 | 
						|
    R.V = address.getPointer();
 | 
						|
    R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
 | 
						|
                              QualType type, LValueBaseInfo BaseInfo,
 | 
						|
                              TBAAAccessInfo TBAAInfo) {
 | 
						|
    LValue R;
 | 
						|
    R.LVType = VectorElt;
 | 
						|
    R.V = vecAddress.getPointer();
 | 
						|
    R.VectorIdx = Idx;
 | 
						|
    R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
 | 
						|
                 BaseInfo, TBAAInfo);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
 | 
						|
                                 QualType type, LValueBaseInfo BaseInfo,
 | 
						|
                                 TBAAAccessInfo TBAAInfo) {
 | 
						|
    LValue R;
 | 
						|
    R.LVType = ExtVectorElt;
 | 
						|
    R.V = vecAddress.getPointer();
 | 
						|
    R.VectorElts = Elts;
 | 
						|
    R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
 | 
						|
                 BaseInfo, TBAAInfo);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create a new object to represent a bit-field access.
 | 
						|
  ///
 | 
						|
  /// \param Addr - The base address of the bit-field sequence this
 | 
						|
  /// bit-field refers to.
 | 
						|
  /// \param Info - The information describing how to perform the bit-field
 | 
						|
  /// access.
 | 
						|
  static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
 | 
						|
                             QualType type, LValueBaseInfo BaseInfo,
 | 
						|
                             TBAAAccessInfo TBAAInfo) {
 | 
						|
    LValue R;
 | 
						|
    R.LVType = BitField;
 | 
						|
    R.V = Addr.getPointer();
 | 
						|
    R.BitFieldInfo = &Info;
 | 
						|
    R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
 | 
						|
                 TBAAInfo);
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  static LValue MakeGlobalReg(Address Reg, QualType type) {
 | 
						|
    LValue R;
 | 
						|
    R.LVType = GlobalReg;
 | 
						|
    R.V = Reg.getPointer();
 | 
						|
    R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
 | 
						|
                 LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  RValue asAggregateRValue(CodeGenFunction &CGF) const {
 | 
						|
    return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// An aggregate value slot.
 | 
						|
class AggValueSlot {
 | 
						|
  /// The address.
 | 
						|
  llvm::Value *Addr;
 | 
						|
 | 
						|
  // Qualifiers
 | 
						|
  Qualifiers Quals;
 | 
						|
 | 
						|
  unsigned Alignment;
 | 
						|
 | 
						|
  /// DestructedFlag - This is set to true if some external code is
 | 
						|
  /// responsible for setting up a destructor for the slot.  Otherwise
 | 
						|
  /// the code which constructs it should push the appropriate cleanup.
 | 
						|
  bool DestructedFlag : 1;
 | 
						|
 | 
						|
  /// ObjCGCFlag - This is set to true if writing to the memory in the
 | 
						|
  /// slot might require calling an appropriate Objective-C GC
 | 
						|
  /// barrier.  The exact interaction here is unnecessarily mysterious.
 | 
						|
  bool ObjCGCFlag : 1;
 | 
						|
 | 
						|
  /// ZeroedFlag - This is set to true if the memory in the slot is
 | 
						|
  /// known to be zero before the assignment into it.  This means that
 | 
						|
  /// zero fields don't need to be set.
 | 
						|
  bool ZeroedFlag : 1;
 | 
						|
 | 
						|
  /// AliasedFlag - This is set to true if the slot might be aliased
 | 
						|
  /// and it's not undefined behavior to access it through such an
 | 
						|
  /// alias.  Note that it's always undefined behavior to access a C++
 | 
						|
  /// object that's under construction through an alias derived from
 | 
						|
  /// outside the construction process.
 | 
						|
  ///
 | 
						|
  /// This flag controls whether calls that produce the aggregate
 | 
						|
  /// value may be evaluated directly into the slot, or whether they
 | 
						|
  /// must be evaluated into an unaliased temporary and then memcpy'ed
 | 
						|
  /// over.  Since it's invalid in general to memcpy a non-POD C++
 | 
						|
  /// object, it's important that this flag never be set when
 | 
						|
  /// evaluating an expression which constructs such an object.
 | 
						|
  bool AliasedFlag : 1;
 | 
						|
 | 
						|
  /// This is set to true if the tail padding of this slot might overlap
 | 
						|
  /// another object that may have already been initialized (and whose
 | 
						|
  /// value must be preserved by this initialization). If so, we may only
 | 
						|
  /// store up to the dsize of the type. Otherwise we can widen stores to
 | 
						|
  /// the size of the type.
 | 
						|
  bool OverlapFlag : 1;
 | 
						|
 | 
						|
  /// If is set to true, sanitizer checks are already generated for this address
 | 
						|
  /// or not required. For instance, if this address represents an object
 | 
						|
  /// created in 'new' expression, sanitizer checks for memory is made as a part
 | 
						|
  /// of 'operator new' emission and object constructor should not generate
 | 
						|
  /// them.
 | 
						|
  bool SanitizerCheckedFlag : 1;
 | 
						|
 | 
						|
public:
 | 
						|
  enum IsAliased_t { IsNotAliased, IsAliased };
 | 
						|
  enum IsDestructed_t { IsNotDestructed, IsDestructed };
 | 
						|
  enum IsZeroed_t { IsNotZeroed, IsZeroed };
 | 
						|
  enum Overlap_t { DoesNotOverlap, MayOverlap };
 | 
						|
  enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
 | 
						|
  enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
 | 
						|
 | 
						|
  /// ignored - Returns an aggregate value slot indicating that the
 | 
						|
  /// aggregate value is being ignored.
 | 
						|
  static AggValueSlot ignored() {
 | 
						|
    return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
 | 
						|
                   DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
 | 
						|
  }
 | 
						|
 | 
						|
  /// forAddr - Make a slot for an aggregate value.
 | 
						|
  ///
 | 
						|
  /// \param quals - The qualifiers that dictate how the slot should
 | 
						|
  /// be initialied. Only 'volatile' and the Objective-C lifetime
 | 
						|
  /// qualifiers matter.
 | 
						|
  ///
 | 
						|
  /// \param isDestructed - true if something else is responsible
 | 
						|
  ///   for calling destructors on this object
 | 
						|
  /// \param needsGC - true if the slot is potentially located
 | 
						|
  ///   somewhere that ObjC GC calls should be emitted for
 | 
						|
  static AggValueSlot forAddr(Address addr,
 | 
						|
                              Qualifiers quals,
 | 
						|
                              IsDestructed_t isDestructed,
 | 
						|
                              NeedsGCBarriers_t needsGC,
 | 
						|
                              IsAliased_t isAliased,
 | 
						|
                              Overlap_t mayOverlap,
 | 
						|
                              IsZeroed_t isZeroed = IsNotZeroed,
 | 
						|
                       IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
 | 
						|
    AggValueSlot AV;
 | 
						|
    if (addr.isValid()) {
 | 
						|
      AV.Addr = addr.getPointer();
 | 
						|
      AV.Alignment = addr.getAlignment().getQuantity();
 | 
						|
    } else {
 | 
						|
      AV.Addr = nullptr;
 | 
						|
      AV.Alignment = 0;
 | 
						|
    }
 | 
						|
    AV.Quals = quals;
 | 
						|
    AV.DestructedFlag = isDestructed;
 | 
						|
    AV.ObjCGCFlag = needsGC;
 | 
						|
    AV.ZeroedFlag = isZeroed;
 | 
						|
    AV.AliasedFlag = isAliased;
 | 
						|
    AV.OverlapFlag = mayOverlap;
 | 
						|
    AV.SanitizerCheckedFlag = isChecked;
 | 
						|
    return AV;
 | 
						|
  }
 | 
						|
 | 
						|
  static AggValueSlot
 | 
						|
  forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
 | 
						|
            NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
 | 
						|
            Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
 | 
						|
            IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
 | 
						|
    return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
 | 
						|
                   isAliased, mayOverlap, isZeroed, isChecked);
 | 
						|
  }
 | 
						|
 | 
						|
  IsDestructed_t isExternallyDestructed() const {
 | 
						|
    return IsDestructed_t(DestructedFlag);
 | 
						|
  }
 | 
						|
  void setExternallyDestructed(bool destructed = true) {
 | 
						|
    DestructedFlag = destructed;
 | 
						|
  }
 | 
						|
 | 
						|
  Qualifiers getQualifiers() const { return Quals; }
 | 
						|
 | 
						|
  bool isVolatile() const {
 | 
						|
    return Quals.hasVolatile();
 | 
						|
  }
 | 
						|
 | 
						|
  void setVolatile(bool flag) {
 | 
						|
    if (flag)
 | 
						|
      Quals.addVolatile();
 | 
						|
    else
 | 
						|
      Quals.removeVolatile();
 | 
						|
  }
 | 
						|
 | 
						|
  Qualifiers::ObjCLifetime getObjCLifetime() const {
 | 
						|
    return Quals.getObjCLifetime();
 | 
						|
  }
 | 
						|
 | 
						|
  NeedsGCBarriers_t requiresGCollection() const {
 | 
						|
    return NeedsGCBarriers_t(ObjCGCFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *getPointer() const {
 | 
						|
    return Addr;
 | 
						|
  }
 | 
						|
 | 
						|
  Address getAddress() const {
 | 
						|
    return Address(Addr, getAlignment());
 | 
						|
  }
 | 
						|
 | 
						|
  bool isIgnored() const {
 | 
						|
    return Addr == nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits getAlignment() const {
 | 
						|
    return CharUnits::fromQuantity(Alignment);
 | 
						|
  }
 | 
						|
 | 
						|
  IsAliased_t isPotentiallyAliased() const {
 | 
						|
    return IsAliased_t(AliasedFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  Overlap_t mayOverlap() const {
 | 
						|
    return Overlap_t(OverlapFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  bool isSanitizerChecked() const {
 | 
						|
    return SanitizerCheckedFlag;
 | 
						|
  }
 | 
						|
 | 
						|
  RValue asRValue() const {
 | 
						|
    if (isIgnored()) {
 | 
						|
      return RValue::getIgnored();
 | 
						|
    } else {
 | 
						|
      return RValue::getAggregate(getAddress(), isVolatile());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void setZeroed(bool V = true) { ZeroedFlag = V; }
 | 
						|
  IsZeroed_t isZeroed() const {
 | 
						|
    return IsZeroed_t(ZeroedFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get the preferred size to use when storing a value to this slot. This
 | 
						|
  /// is the type size unless that might overlap another object, in which
 | 
						|
  /// case it's the dsize.
 | 
						|
  CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
 | 
						|
    return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first
 | 
						|
                        : Ctx.getTypeSizeInChars(Type);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // end namespace CodeGen
 | 
						|
}  // end namespace clang
 | 
						|
 | 
						|
#endif
 |