forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			807 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			807 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- RewriteRope.cpp - Rope specialized for rewriter --------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements the RewriteRope class, which is a powerful string.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Rewrite/Core/RewriteRope.h"
 | 
						|
#include "clang/Basic/LLVM.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstring>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// RewriteRope is a "strong" string class, designed to make insertions and
 | 
						|
/// deletions in the middle of the string nearly constant time (really, they are
 | 
						|
/// O(log N), but with a very low constant factor).
 | 
						|
///
 | 
						|
/// The implementation of this datastructure is a conceptual linear sequence of
 | 
						|
/// RopePiece elements.  Each RopePiece represents a view on a separately
 | 
						|
/// allocated and reference counted string.  This means that splitting a very
 | 
						|
/// long string can be done in constant time by splitting a RopePiece that
 | 
						|
/// references the whole string into two rope pieces that reference each half.
 | 
						|
/// Once split, another string can be inserted in between the two halves by
 | 
						|
/// inserting a RopePiece in between the two others.  All of this is very
 | 
						|
/// inexpensive: it takes time proportional to the number of RopePieces, not the
 | 
						|
/// length of the strings they represent.
 | 
						|
///
 | 
						|
/// While a linear sequences of RopePieces is the conceptual model, the actual
 | 
						|
/// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
 | 
						|
/// is a tree that keeps the values in the leaves and has where each node
 | 
						|
/// contains a reasonable number of pointers to children/values) allows us to
 | 
						|
/// maintain efficient operation when the RewriteRope contains a *huge* number
 | 
						|
/// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
 | 
						|
/// the RopePiece corresponding to some offset very efficiently, and it
 | 
						|
/// automatically balances itself on insertions of RopePieces (which can happen
 | 
						|
/// for both insertions and erases of string ranges).
 | 
						|
///
 | 
						|
/// The one wrinkle on the theory is that we don't attempt to keep the tree
 | 
						|
/// properly balanced when erases happen.  Erases of string data can both insert
 | 
						|
/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
 | 
						|
/// which results in two rope pieces, which is just like an insert) or it can
 | 
						|
/// reduce the number of RopePieces maintained by the B+Tree.  In the case when
 | 
						|
/// the number of RopePieces is reduced, we don't attempt to maintain the
 | 
						|
/// standard 'invariant' that each node in the tree contains at least
 | 
						|
/// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
 | 
						|
/// matter.
 | 
						|
///
 | 
						|
/// The implementation below is primarily implemented in terms of three classes:
 | 
						|
///   RopePieceBTreeNode - Common base class for:
 | 
						|
///
 | 
						|
///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
 | 
						|
///          nodes.  This directly represents a chunk of the string with those
 | 
						|
///          RopePieces concatenated.
 | 
						|
///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
 | 
						|
///          up to '2*WidthFactor' other nodes in the tree.
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RopePieceBTreeNode Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
  /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
 | 
						|
  /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
 | 
						|
  /// and a flag that determines which subclass the instance is.  Also
 | 
						|
  /// important, this node knows the full extend of the node, including any
 | 
						|
  /// children that it has.  This allows efficient skipping over entire subtrees
 | 
						|
  /// when looking for an offset in the BTree.
 | 
						|
  class RopePieceBTreeNode {
 | 
						|
  protected:
 | 
						|
    /// WidthFactor - This controls the number of K/V slots held in the BTree:
 | 
						|
    /// how wide it is.  Each level of the BTree is guaranteed to have at least
 | 
						|
    /// 'WidthFactor' elements in it (either ropepieces or children), (except
 | 
						|
    /// the root, which may have less) and may have at most 2*WidthFactor
 | 
						|
    /// elements.
 | 
						|
    enum { WidthFactor = 8 };
 | 
						|
 | 
						|
    /// Size - This is the number of bytes of file this node (including any
 | 
						|
    /// potential children) covers.
 | 
						|
    unsigned Size = 0;
 | 
						|
 | 
						|
    /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
 | 
						|
    /// is an instance of RopePieceBTreeInterior.
 | 
						|
    bool IsLeaf;
 | 
						|
 | 
						|
    RopePieceBTreeNode(bool isLeaf) : IsLeaf(isLeaf) {}
 | 
						|
    ~RopePieceBTreeNode() = default;
 | 
						|
 | 
						|
  public:
 | 
						|
    bool isLeaf() const { return IsLeaf; }
 | 
						|
    unsigned size() const { return Size; }
 | 
						|
 | 
						|
    void Destroy();
 | 
						|
 | 
						|
    /// split - Split the range containing the specified offset so that we are
 | 
						|
    /// guaranteed that there is a place to do an insertion at the specified
 | 
						|
    /// offset.  The offset is relative, so "0" is the start of the node.
 | 
						|
    ///
 | 
						|
    /// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
    /// node is returned and must be inserted into a parent.
 | 
						|
    RopePieceBTreeNode *split(unsigned Offset);
 | 
						|
 | 
						|
    /// insert - Insert the specified ropepiece into this tree node at the
 | 
						|
    /// specified offset.  The offset is relative, so "0" is the start of the
 | 
						|
    /// node.
 | 
						|
    ///
 | 
						|
    /// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
    /// node is returned and must be inserted into a parent.
 | 
						|
    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
 | 
						|
 | 
						|
    /// erase - Remove NumBytes from this node at the specified offset.  We are
 | 
						|
    /// guaranteed that there is a split at Offset.
 | 
						|
    void erase(unsigned Offset, unsigned NumBytes);
 | 
						|
  };
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RopePieceBTreeLeaf Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
  /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
 | 
						|
  /// nodes.  This directly represents a chunk of the string with those
 | 
						|
  /// RopePieces concatenated.  Since this is a B+Tree, all values (in this case
 | 
						|
  /// instances of RopePiece) are stored in leaves like this.  To make iteration
 | 
						|
  /// over the leaves efficient, they maintain a singly linked list through the
 | 
						|
  /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
 | 
						|
  /// time for all increments.
 | 
						|
  class RopePieceBTreeLeaf : public RopePieceBTreeNode {
 | 
						|
    /// NumPieces - This holds the number of rope pieces currently active in the
 | 
						|
    /// Pieces array.
 | 
						|
    unsigned char NumPieces = 0;
 | 
						|
 | 
						|
    /// Pieces - This tracks the file chunks currently in this leaf.
 | 
						|
    RopePiece Pieces[2*WidthFactor];
 | 
						|
 | 
						|
    /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
 | 
						|
    /// efficient in-order forward iteration of the tree without traversal.
 | 
						|
    RopePieceBTreeLeaf **PrevLeaf = nullptr;
 | 
						|
    RopePieceBTreeLeaf *NextLeaf = nullptr;
 | 
						|
 | 
						|
  public:
 | 
						|
    RopePieceBTreeLeaf() : RopePieceBTreeNode(true) {}
 | 
						|
 | 
						|
    ~RopePieceBTreeLeaf() {
 | 
						|
      if (PrevLeaf || NextLeaf)
 | 
						|
        removeFromLeafInOrder();
 | 
						|
      clear();
 | 
						|
    }
 | 
						|
 | 
						|
    bool isFull() const { return NumPieces == 2*WidthFactor; }
 | 
						|
 | 
						|
    /// clear - Remove all rope pieces from this leaf.
 | 
						|
    void clear() {
 | 
						|
      while (NumPieces)
 | 
						|
        Pieces[--NumPieces] = RopePiece();
 | 
						|
      Size = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNumPieces() const { return NumPieces; }
 | 
						|
 | 
						|
    const RopePiece &getPiece(unsigned i) const {
 | 
						|
      assert(i < getNumPieces() && "Invalid piece ID");
 | 
						|
      return Pieces[i];
 | 
						|
    }
 | 
						|
 | 
						|
    const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
 | 
						|
 | 
						|
    void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
 | 
						|
      assert(!PrevLeaf && !NextLeaf && "Already in ordering");
 | 
						|
 | 
						|
      NextLeaf = Node->NextLeaf;
 | 
						|
      if (NextLeaf)
 | 
						|
        NextLeaf->PrevLeaf = &NextLeaf;
 | 
						|
      PrevLeaf = &Node->NextLeaf;
 | 
						|
      Node->NextLeaf = this;
 | 
						|
    }
 | 
						|
 | 
						|
    void removeFromLeafInOrder() {
 | 
						|
      if (PrevLeaf) {
 | 
						|
        *PrevLeaf = NextLeaf;
 | 
						|
        if (NextLeaf)
 | 
						|
          NextLeaf->PrevLeaf = PrevLeaf;
 | 
						|
      } else if (NextLeaf) {
 | 
						|
        NextLeaf->PrevLeaf = nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
 | 
						|
    /// summing the size of all RopePieces.
 | 
						|
    void FullRecomputeSizeLocally() {
 | 
						|
      Size = 0;
 | 
						|
      for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
 | 
						|
        Size += getPiece(i).size();
 | 
						|
    }
 | 
						|
 | 
						|
    /// split - Split the range containing the specified offset so that we are
 | 
						|
    /// guaranteed that there is a place to do an insertion at the specified
 | 
						|
    /// offset.  The offset is relative, so "0" is the start of the node.
 | 
						|
    ///
 | 
						|
    /// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
    /// node is returned and must be inserted into a parent.
 | 
						|
    RopePieceBTreeNode *split(unsigned Offset);
 | 
						|
 | 
						|
    /// insert - Insert the specified ropepiece into this tree node at the
 | 
						|
    /// specified offset.  The offset is relative, so "0" is the start of the
 | 
						|
    /// node.
 | 
						|
    ///
 | 
						|
    /// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
    /// node is returned and must be inserted into a parent.
 | 
						|
    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
 | 
						|
 | 
						|
    /// erase - Remove NumBytes from this node at the specified offset.  We are
 | 
						|
    /// guaranteed that there is a split at Offset.
 | 
						|
    void erase(unsigned Offset, unsigned NumBytes);
 | 
						|
 | 
						|
    static bool classof(const RopePieceBTreeNode *N) {
 | 
						|
      return N->isLeaf();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// split - Split the range containing the specified offset so that we are
 | 
						|
/// guaranteed that there is a place to do an insertion at the specified
 | 
						|
/// offset.  The offset is relative, so "0" is the start of the node.
 | 
						|
///
 | 
						|
/// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
/// node is returned and must be inserted into a parent.
 | 
						|
RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
 | 
						|
  // Find the insertion point.  We are guaranteed that there is a split at the
 | 
						|
  // specified offset so find it.
 | 
						|
  if (Offset == 0 || Offset == size()) {
 | 
						|
    // Fastpath for a common case.  There is already a splitpoint at the end.
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the piece that this offset lands in.
 | 
						|
  unsigned PieceOffs = 0;
 | 
						|
  unsigned i = 0;
 | 
						|
  while (Offset >= PieceOffs+Pieces[i].size()) {
 | 
						|
    PieceOffs += Pieces[i].size();
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is already a split point at the specified offset, just return
 | 
						|
  // success.
 | 
						|
  if (PieceOffs == Offset)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
 | 
						|
  // to being Piece relative.
 | 
						|
  unsigned IntraPieceOffset = Offset-PieceOffs;
 | 
						|
 | 
						|
  // We do this by shrinking the RopePiece and then doing an insert of the tail.
 | 
						|
  RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
 | 
						|
                 Pieces[i].EndOffs);
 | 
						|
  Size -= Pieces[i].size();
 | 
						|
  Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
 | 
						|
  Size += Pieces[i].size();
 | 
						|
 | 
						|
  return insert(Offset, Tail);
 | 
						|
}
 | 
						|
 | 
						|
/// insert - Insert the specified RopePiece into this tree node at the
 | 
						|
/// specified offset.  The offset is relative, so "0" is the start of the node.
 | 
						|
///
 | 
						|
/// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
/// node is returned and must be inserted into a parent.
 | 
						|
RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
 | 
						|
                                               const RopePiece &R) {
 | 
						|
  // If this node is not full, insert the piece.
 | 
						|
  if (!isFull()) {
 | 
						|
    // Find the insertion point.  We are guaranteed that there is a split at the
 | 
						|
    // specified offset so find it.
 | 
						|
    unsigned i = 0, e = getNumPieces();
 | 
						|
    if (Offset == size()) {
 | 
						|
      // Fastpath for a common case.
 | 
						|
      i = e;
 | 
						|
    } else {
 | 
						|
      unsigned SlotOffs = 0;
 | 
						|
      for (; Offset > SlotOffs; ++i)
 | 
						|
        SlotOffs += getPiece(i).size();
 | 
						|
      assert(SlotOffs == Offset && "Split didn't occur before insertion!");
 | 
						|
    }
 | 
						|
 | 
						|
    // For an insertion into a non-full leaf node, just insert the value in
 | 
						|
    // its sorted position.  This requires moving later values over.
 | 
						|
    for (; i != e; --e)
 | 
						|
      Pieces[e] = Pieces[e-1];
 | 
						|
    Pieces[i] = R;
 | 
						|
    ++NumPieces;
 | 
						|
    Size += R.size();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this is leaf is full, split it in two halves.  Since this
 | 
						|
  // node is full, it contains 2*WidthFactor values.  We move the first
 | 
						|
  // 'WidthFactor' values to the LHS child (which we leave in this node) and
 | 
						|
  // move the last 'WidthFactor' values into the RHS child.
 | 
						|
 | 
						|
  // Create the new node.
 | 
						|
  RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
 | 
						|
 | 
						|
  // Move over the last 'WidthFactor' values from here to NewNode.
 | 
						|
  std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
 | 
						|
            &NewNode->Pieces[0]);
 | 
						|
  // Replace old pieces with null RopePieces to drop refcounts.
 | 
						|
  std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
 | 
						|
 | 
						|
  // Decrease the number of values in the two nodes.
 | 
						|
  NewNode->NumPieces = NumPieces = WidthFactor;
 | 
						|
 | 
						|
  // Recompute the two nodes' size.
 | 
						|
  NewNode->FullRecomputeSizeLocally();
 | 
						|
  FullRecomputeSizeLocally();
 | 
						|
 | 
						|
  // Update the list of leaves.
 | 
						|
  NewNode->insertAfterLeafInOrder(this);
 | 
						|
 | 
						|
  // These insertions can't fail.
 | 
						|
  if (this->size() >= Offset)
 | 
						|
    this->insert(Offset, R);
 | 
						|
  else
 | 
						|
    NewNode->insert(Offset - this->size(), R);
 | 
						|
  return NewNode;
 | 
						|
}
 | 
						|
 | 
						|
/// erase - Remove NumBytes from this node at the specified offset.  We are
 | 
						|
/// guaranteed that there is a split at Offset.
 | 
						|
void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
 | 
						|
  // Since we are guaranteed that there is a split at Offset, we start by
 | 
						|
  // finding the Piece that starts there.
 | 
						|
  unsigned PieceOffs = 0;
 | 
						|
  unsigned i = 0;
 | 
						|
  for (; Offset > PieceOffs; ++i)
 | 
						|
    PieceOffs += getPiece(i).size();
 | 
						|
  assert(PieceOffs == Offset && "Split didn't occur before erase!");
 | 
						|
 | 
						|
  unsigned StartPiece = i;
 | 
						|
 | 
						|
  // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
 | 
						|
  // all of them.
 | 
						|
  for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
 | 
						|
    PieceOffs += getPiece(i).size();
 | 
						|
 | 
						|
  // If we exactly include the last one, include it in the region to delete.
 | 
						|
  if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
 | 
						|
    PieceOffs += getPiece(i).size();
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we completely cover some RopePieces, erase them now.
 | 
						|
  if (i != StartPiece) {
 | 
						|
    unsigned NumDeleted = i-StartPiece;
 | 
						|
    for (; i != getNumPieces(); ++i)
 | 
						|
      Pieces[i-NumDeleted] = Pieces[i];
 | 
						|
 | 
						|
    // Drop references to dead rope pieces.
 | 
						|
    std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
 | 
						|
              RopePiece());
 | 
						|
    NumPieces -= NumDeleted;
 | 
						|
 | 
						|
    unsigned CoverBytes = PieceOffs-Offset;
 | 
						|
    NumBytes -= CoverBytes;
 | 
						|
    Size -= CoverBytes;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we completely removed some stuff, we could be done.
 | 
						|
  if (NumBytes == 0) return;
 | 
						|
 | 
						|
  // Okay, now might be erasing part of some Piece.  If this is the case, then
 | 
						|
  // move the start point of the piece.
 | 
						|
  assert(getPiece(StartPiece).size() > NumBytes);
 | 
						|
  Pieces[StartPiece].StartOffs += NumBytes;
 | 
						|
 | 
						|
  // The size of this node just shrunk by NumBytes.
 | 
						|
  Size -= NumBytes;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RopePieceBTreeInterior Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
 | 
						|
  /// which holds up to 2*WidthFactor pointers to child nodes.
 | 
						|
  class RopePieceBTreeInterior : public RopePieceBTreeNode {
 | 
						|
    /// NumChildren - This holds the number of children currently active in the
 | 
						|
    /// Children array.
 | 
						|
    unsigned char NumChildren = 0;
 | 
						|
 | 
						|
    RopePieceBTreeNode *Children[2*WidthFactor];
 | 
						|
 | 
						|
  public:
 | 
						|
    RopePieceBTreeInterior() : RopePieceBTreeNode(false) {}
 | 
						|
 | 
						|
    RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
 | 
						|
        : RopePieceBTreeNode(false) {
 | 
						|
      Children[0] = LHS;
 | 
						|
      Children[1] = RHS;
 | 
						|
      NumChildren = 2;
 | 
						|
      Size = LHS->size() + RHS->size();
 | 
						|
    }
 | 
						|
 | 
						|
    ~RopePieceBTreeInterior() {
 | 
						|
      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
        Children[i]->Destroy();
 | 
						|
    }
 | 
						|
 | 
						|
    bool isFull() const { return NumChildren == 2*WidthFactor; }
 | 
						|
 | 
						|
    unsigned getNumChildren() const { return NumChildren; }
 | 
						|
 | 
						|
    const RopePieceBTreeNode *getChild(unsigned i) const {
 | 
						|
      assert(i < NumChildren && "invalid child #");
 | 
						|
      return Children[i];
 | 
						|
    }
 | 
						|
 | 
						|
    RopePieceBTreeNode *getChild(unsigned i) {
 | 
						|
      assert(i < NumChildren && "invalid child #");
 | 
						|
      return Children[i];
 | 
						|
    }
 | 
						|
 | 
						|
    /// FullRecomputeSizeLocally - Recompute the Size field of this node by
 | 
						|
    /// summing up the sizes of the child nodes.
 | 
						|
    void FullRecomputeSizeLocally() {
 | 
						|
      Size = 0;
 | 
						|
      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
        Size += getChild(i)->size();
 | 
						|
    }
 | 
						|
 | 
						|
    /// split - Split the range containing the specified offset so that we are
 | 
						|
    /// guaranteed that there is a place to do an insertion at the specified
 | 
						|
    /// offset.  The offset is relative, so "0" is the start of the node.
 | 
						|
    ///
 | 
						|
    /// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
    /// node is returned and must be inserted into a parent.
 | 
						|
    RopePieceBTreeNode *split(unsigned Offset);
 | 
						|
 | 
						|
    /// insert - Insert the specified ropepiece into this tree node at the
 | 
						|
    /// specified offset.  The offset is relative, so "0" is the start of the
 | 
						|
    /// node.
 | 
						|
    ///
 | 
						|
    /// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
    /// node is returned and must be inserted into a parent.
 | 
						|
    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
 | 
						|
 | 
						|
    /// HandleChildPiece - A child propagated an insertion result up to us.
 | 
						|
    /// Insert the new child, and/or propagate the result further up the tree.
 | 
						|
    RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
 | 
						|
 | 
						|
    /// erase - Remove NumBytes from this node at the specified offset.  We are
 | 
						|
    /// guaranteed that there is a split at Offset.
 | 
						|
    void erase(unsigned Offset, unsigned NumBytes);
 | 
						|
 | 
						|
    static bool classof(const RopePieceBTreeNode *N) {
 | 
						|
      return !N->isLeaf();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// split - Split the range containing the specified offset so that we are
 | 
						|
/// guaranteed that there is a place to do an insertion at the specified
 | 
						|
/// offset.  The offset is relative, so "0" is the start of the node.
 | 
						|
///
 | 
						|
/// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
/// node is returned and must be inserted into a parent.
 | 
						|
RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
 | 
						|
  // Figure out which child to split.
 | 
						|
  if (Offset == 0 || Offset == size())
 | 
						|
    return nullptr; // If we have an exact offset, we're already split.
 | 
						|
 | 
						|
  unsigned ChildOffset = 0;
 | 
						|
  unsigned i = 0;
 | 
						|
  for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
 | 
						|
    ChildOffset += getChild(i)->size();
 | 
						|
 | 
						|
  // If already split there, we're done.
 | 
						|
  if (ChildOffset == Offset)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Otherwise, recursively split the child.
 | 
						|
  if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
 | 
						|
    return HandleChildPiece(i, RHS);
 | 
						|
  return nullptr; // Done!
 | 
						|
}
 | 
						|
 | 
						|
/// insert - Insert the specified ropepiece into this tree node at the
 | 
						|
/// specified offset.  The offset is relative, so "0" is the start of the
 | 
						|
/// node.
 | 
						|
///
 | 
						|
/// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
/// node is returned and must be inserted into a parent.
 | 
						|
RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
 | 
						|
                                                   const RopePiece &R) {
 | 
						|
  // Find the insertion point.  We are guaranteed that there is a split at the
 | 
						|
  // specified offset so find it.
 | 
						|
  unsigned i = 0, e = getNumChildren();
 | 
						|
 | 
						|
  unsigned ChildOffs = 0;
 | 
						|
  if (Offset == size()) {
 | 
						|
    // Fastpath for a common case.  Insert at end of last child.
 | 
						|
    i = e-1;
 | 
						|
    ChildOffs = size()-getChild(i)->size();
 | 
						|
  } else {
 | 
						|
    for (; Offset > ChildOffs+getChild(i)->size(); ++i)
 | 
						|
      ChildOffs += getChild(i)->size();
 | 
						|
  }
 | 
						|
 | 
						|
  Size += R.size();
 | 
						|
 | 
						|
  // Insert at the end of this child.
 | 
						|
  if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
 | 
						|
    return HandleChildPiece(i, RHS);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleChildPiece - A child propagated an insertion result up to us.
 | 
						|
/// Insert the new child, and/or propagate the result further up the tree.
 | 
						|
RopePieceBTreeNode *
 | 
						|
RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
 | 
						|
  // Otherwise the child propagated a subtree up to us as a new child.  See if
 | 
						|
  // we have space for it here.
 | 
						|
  if (!isFull()) {
 | 
						|
    // Insert RHS after child 'i'.
 | 
						|
    if (i + 1 != getNumChildren())
 | 
						|
      memmove(&Children[i+2], &Children[i+1],
 | 
						|
              (getNumChildren()-i-1)*sizeof(Children[0]));
 | 
						|
    Children[i+1] = RHS;
 | 
						|
    ++NumChildren;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, this node is full.  Split it in half, moving WidthFactor children to
 | 
						|
  // a newly allocated interior node.
 | 
						|
 | 
						|
  // Create the new node.
 | 
						|
  RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
 | 
						|
 | 
						|
  // Move over the last 'WidthFactor' values from here to NewNode.
 | 
						|
  memcpy(&NewNode->Children[0], &Children[WidthFactor],
 | 
						|
         WidthFactor*sizeof(Children[0]));
 | 
						|
 | 
						|
  // Decrease the number of values in the two nodes.
 | 
						|
  NewNode->NumChildren = NumChildren = WidthFactor;
 | 
						|
 | 
						|
  // Finally, insert the two new children in the side the can (now) hold them.
 | 
						|
  // These insertions can't fail.
 | 
						|
  if (i < WidthFactor)
 | 
						|
    this->HandleChildPiece(i, RHS);
 | 
						|
  else
 | 
						|
    NewNode->HandleChildPiece(i-WidthFactor, RHS);
 | 
						|
 | 
						|
  // Recompute the two nodes' size.
 | 
						|
  NewNode->FullRecomputeSizeLocally();
 | 
						|
  FullRecomputeSizeLocally();
 | 
						|
  return NewNode;
 | 
						|
}
 | 
						|
 | 
						|
/// erase - Remove NumBytes from this node at the specified offset.  We are
 | 
						|
/// guaranteed that there is a split at Offset.
 | 
						|
void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
 | 
						|
  // This will shrink this node by NumBytes.
 | 
						|
  Size -= NumBytes;
 | 
						|
 | 
						|
  // Find the first child that overlaps with Offset.
 | 
						|
  unsigned i = 0;
 | 
						|
  for (; Offset >= getChild(i)->size(); ++i)
 | 
						|
    Offset -= getChild(i)->size();
 | 
						|
 | 
						|
  // Propagate the delete request into overlapping children, or completely
 | 
						|
  // delete the children as appropriate.
 | 
						|
  while (NumBytes) {
 | 
						|
    RopePieceBTreeNode *CurChild = getChild(i);
 | 
						|
 | 
						|
    // If we are deleting something contained entirely in the child, pass on the
 | 
						|
    // request.
 | 
						|
    if (Offset+NumBytes < CurChild->size()) {
 | 
						|
      CurChild->erase(Offset, NumBytes);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this deletion request starts somewhere in the middle of the child, it
 | 
						|
    // must be deleting to the end of the child.
 | 
						|
    if (Offset) {
 | 
						|
      unsigned BytesFromChild = CurChild->size()-Offset;
 | 
						|
      CurChild->erase(Offset, BytesFromChild);
 | 
						|
      NumBytes -= BytesFromChild;
 | 
						|
      // Start at the beginning of the next child.
 | 
						|
      Offset = 0;
 | 
						|
      ++i;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the deletion request completely covers the child, delete it and move
 | 
						|
    // the rest down.
 | 
						|
    NumBytes -= CurChild->size();
 | 
						|
    CurChild->Destroy();
 | 
						|
    --NumChildren;
 | 
						|
    if (i != getNumChildren())
 | 
						|
      memmove(&Children[i], &Children[i+1],
 | 
						|
              (getNumChildren()-i)*sizeof(Children[0]));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RopePieceBTreeNode Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void RopePieceBTreeNode::Destroy() {
 | 
						|
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
 | 
						|
    delete Leaf;
 | 
						|
  else
 | 
						|
    delete cast<RopePieceBTreeInterior>(this);
 | 
						|
}
 | 
						|
 | 
						|
/// split - Split the range containing the specified offset so that we are
 | 
						|
/// guaranteed that there is a place to do an insertion at the specified
 | 
						|
/// offset.  The offset is relative, so "0" is the start of the node.
 | 
						|
///
 | 
						|
/// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
/// node is returned and must be inserted into a parent.
 | 
						|
RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
 | 
						|
  assert(Offset <= size() && "Invalid offset to split!");
 | 
						|
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
 | 
						|
    return Leaf->split(Offset);
 | 
						|
  return cast<RopePieceBTreeInterior>(this)->split(Offset);
 | 
						|
}
 | 
						|
 | 
						|
/// insert - Insert the specified ropepiece into this tree node at the
 | 
						|
/// specified offset.  The offset is relative, so "0" is the start of the
 | 
						|
/// node.
 | 
						|
///
 | 
						|
/// If there is no space in this subtree for the extra piece, the extra tree
 | 
						|
/// node is returned and must be inserted into a parent.
 | 
						|
RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
 | 
						|
                                               const RopePiece &R) {
 | 
						|
  assert(Offset <= size() && "Invalid offset to insert!");
 | 
						|
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
 | 
						|
    return Leaf->insert(Offset, R);
 | 
						|
  return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
 | 
						|
}
 | 
						|
 | 
						|
/// erase - Remove NumBytes from this node at the specified offset.  We are
 | 
						|
/// guaranteed that there is a split at Offset.
 | 
						|
void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
 | 
						|
  assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
 | 
						|
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
 | 
						|
    return Leaf->erase(Offset, NumBytes);
 | 
						|
  return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RopePieceBTreeIterator Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static const RopePieceBTreeLeaf *getCN(const void *P) {
 | 
						|
  return static_cast<const RopePieceBTreeLeaf*>(P);
 | 
						|
}
 | 
						|
 | 
						|
// begin iterator.
 | 
						|
RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
 | 
						|
  const auto *N = static_cast<const RopePieceBTreeNode *>(n);
 | 
						|
 | 
						|
  // Walk down the left side of the tree until we get to a leaf.
 | 
						|
  while (const auto *IN = dyn_cast<RopePieceBTreeInterior>(N))
 | 
						|
    N = IN->getChild(0);
 | 
						|
 | 
						|
  // We must have at least one leaf.
 | 
						|
  CurNode = cast<RopePieceBTreeLeaf>(N);
 | 
						|
 | 
						|
  // If we found a leaf that happens to be empty, skip over it until we get
 | 
						|
  // to something full.
 | 
						|
  while (CurNode && getCN(CurNode)->getNumPieces() == 0)
 | 
						|
    CurNode = getCN(CurNode)->getNextLeafInOrder();
 | 
						|
 | 
						|
  if (CurNode)
 | 
						|
    CurPiece = &getCN(CurNode)->getPiece(0);
 | 
						|
  else  // Empty tree, this is an end() iterator.
 | 
						|
    CurPiece = nullptr;
 | 
						|
  CurChar = 0;
 | 
						|
}
 | 
						|
 | 
						|
void RopePieceBTreeIterator::MoveToNextPiece() {
 | 
						|
  if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
 | 
						|
    CurChar = 0;
 | 
						|
    ++CurPiece;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the next non-empty leaf node.
 | 
						|
  do
 | 
						|
    CurNode = getCN(CurNode)->getNextLeafInOrder();
 | 
						|
  while (CurNode && getCN(CurNode)->getNumPieces() == 0);
 | 
						|
 | 
						|
  if (CurNode)
 | 
						|
    CurPiece = &getCN(CurNode)->getPiece(0);
 | 
						|
  else // Hit end().
 | 
						|
    CurPiece = nullptr;
 | 
						|
  CurChar = 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RopePieceBTree Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static RopePieceBTreeNode *getRoot(void *P) {
 | 
						|
  return static_cast<RopePieceBTreeNode*>(P);
 | 
						|
}
 | 
						|
 | 
						|
RopePieceBTree::RopePieceBTree() {
 | 
						|
  Root = new RopePieceBTreeLeaf();
 | 
						|
}
 | 
						|
 | 
						|
RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
 | 
						|
  assert(RHS.empty() && "Can't copy non-empty tree yet");
 | 
						|
  Root = new RopePieceBTreeLeaf();
 | 
						|
}
 | 
						|
 | 
						|
RopePieceBTree::~RopePieceBTree() {
 | 
						|
  getRoot(Root)->Destroy();
 | 
						|
}
 | 
						|
 | 
						|
unsigned RopePieceBTree::size() const {
 | 
						|
  return getRoot(Root)->size();
 | 
						|
}
 | 
						|
 | 
						|
void RopePieceBTree::clear() {
 | 
						|
  if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
 | 
						|
    Leaf->clear();
 | 
						|
  else {
 | 
						|
    getRoot(Root)->Destroy();
 | 
						|
    Root = new RopePieceBTreeLeaf();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
 | 
						|
  // #1. Split at Offset.
 | 
						|
  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
 | 
						|
    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
 | 
						|
 | 
						|
  // #2. Do the insertion.
 | 
						|
  if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
 | 
						|
    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
 | 
						|
}
 | 
						|
 | 
						|
void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
 | 
						|
  // #1. Split at Offset.
 | 
						|
  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
 | 
						|
    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
 | 
						|
 | 
						|
  // #2. Do the erasing.
 | 
						|
  getRoot(Root)->erase(Offset, NumBytes);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RewriteRope Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// MakeRopeString - This copies the specified byte range into some instance of
 | 
						|
/// RopeRefCountString, and return a RopePiece that represents it.  This uses
 | 
						|
/// the AllocBuffer object to aggregate requests for small strings into one
 | 
						|
/// allocation instead of doing tons of tiny allocations.
 | 
						|
RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
 | 
						|
  unsigned Len = End-Start;
 | 
						|
  assert(Len && "Zero length RopePiece is invalid!");
 | 
						|
 | 
						|
  // If we have space for this string in the current alloc buffer, use it.
 | 
						|
  if (AllocOffs+Len <= AllocChunkSize) {
 | 
						|
    memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
 | 
						|
    AllocOffs += Len;
 | 
						|
    return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't have enough room because this specific allocation is huge,
 | 
						|
  // just allocate a new rope piece for it alone.
 | 
						|
  if (Len > AllocChunkSize) {
 | 
						|
    unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
 | 
						|
    auto *Res = reinterpret_cast<RopeRefCountString *>(new char[Size]);
 | 
						|
    Res->RefCount = 0;
 | 
						|
    memcpy(Res->Data, Start, End-Start);
 | 
						|
    return RopePiece(Res, 0, End-Start);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this was a small request but we just don't have space for it
 | 
						|
  // Make a new chunk and share it with later allocations.
 | 
						|
 | 
						|
  unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
 | 
						|
  auto *Res = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
 | 
						|
  Res->RefCount = 0;
 | 
						|
  memcpy(Res->Data, Start, Len);
 | 
						|
  AllocBuffer = Res;
 | 
						|
  AllocOffs = Len;
 | 
						|
 | 
						|
  return RopePiece(AllocBuffer, 0, Len);
 | 
						|
}
 |