forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			157 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Generates code for built-in GPU calls which are not runtime-specific.
 | |
| // (Runtime-specific codegen lives in programming model specific files.)
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| static llvm::Function *GetVprintfDeclaration(llvm::Module &M) {
 | |
|   llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()),
 | |
|                             llvm::Type::getInt8PtrTy(M.getContext())};
 | |
|   llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get(
 | |
|       llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false);
 | |
| 
 | |
|   if (auto* F = M.getFunction("vprintf")) {
 | |
|     // Our CUDA system header declares vprintf with the right signature, so
 | |
|     // nobody else should have been able to declare vprintf with a bogus
 | |
|     // signature.
 | |
|     assert(F->getFunctionType() == VprintfFuncType);
 | |
|     return F;
 | |
|   }
 | |
| 
 | |
|   // vprintf doesn't already exist; create a declaration and insert it into the
 | |
|   // module.
 | |
|   return llvm::Function::Create(
 | |
|       VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M);
 | |
| }
 | |
| 
 | |
| // Transforms a call to printf into a call to the NVPTX vprintf syscall (which
 | |
| // isn't particularly special; it's invoked just like a regular function).
 | |
| // vprintf takes two args: A format string, and a pointer to a buffer containing
 | |
| // the varargs.
 | |
| //
 | |
| // For example, the call
 | |
| //
 | |
| //   printf("format string", arg1, arg2, arg3);
 | |
| //
 | |
| // is converted into something resembling
 | |
| //
 | |
| //   struct Tmp {
 | |
| //     Arg1 a1;
 | |
| //     Arg2 a2;
 | |
| //     Arg3 a3;
 | |
| //   };
 | |
| //   char* buf = alloca(sizeof(Tmp));
 | |
| //   *(Tmp*)buf = {a1, a2, a3};
 | |
| //   vprintf("format string", buf);
 | |
| //
 | |
| // buf is aligned to the max of {alignof(Arg1), ...}.  Furthermore, each of the
 | |
| // args is itself aligned to its preferred alignment.
 | |
| //
 | |
| // Note that by the time this function runs, E's args have already undergone the
 | |
| // standard C vararg promotion (short -> int, float -> double, etc.).
 | |
| RValue
 | |
| CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
 | |
|                                                ReturnValueSlot ReturnValue) {
 | |
|   assert(getTarget().getTriple().isNVPTX());
 | |
|   assert(E->getBuiltinCallee() == Builtin::BIprintf);
 | |
|   assert(E->getNumArgs() >= 1); // printf always has at least one arg.
 | |
| 
 | |
|   const llvm::DataLayout &DL = CGM.getDataLayout();
 | |
|   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
 | |
| 
 | |
|   CallArgList Args;
 | |
|   EmitCallArgs(Args,
 | |
|                E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
 | |
|                E->arguments(), E->getDirectCallee(),
 | |
|                /* ParamsToSkip = */ 0);
 | |
| 
 | |
|   // We don't know how to emit non-scalar varargs.
 | |
|   if (std::any_of(Args.begin() + 1, Args.end(), [&](const CallArg &A) {
 | |
|         return !A.getRValue(*this).isScalar();
 | |
|       })) {
 | |
|     CGM.ErrorUnsupported(E, "non-scalar arg to printf");
 | |
|     return RValue::get(llvm::ConstantInt::get(IntTy, 0));
 | |
|   }
 | |
| 
 | |
|   // Construct and fill the args buffer that we'll pass to vprintf.
 | |
|   llvm::Value *BufferPtr;
 | |
|   if (Args.size() <= 1) {
 | |
|     // If there are no args, pass a null pointer to vprintf.
 | |
|     BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx));
 | |
|   } else {
 | |
|     llvm::SmallVector<llvm::Type *, 8> ArgTypes;
 | |
|     for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I)
 | |
|       ArgTypes.push_back(Args[I].getRValue(*this).getScalarVal()->getType());
 | |
| 
 | |
|     // Using llvm::StructType is correct only because printf doesn't accept
 | |
|     // aggregates.  If we had to handle aggregates here, we'd have to manually
 | |
|     // compute the offsets within the alloca -- we wouldn't be able to assume
 | |
|     // that the alignment of the llvm type was the same as the alignment of the
 | |
|     // clang type.
 | |
|     llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args");
 | |
|     llvm::Value *Alloca = CreateTempAlloca(AllocaTy);
 | |
| 
 | |
|     for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) {
 | |
|       llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1);
 | |
|       llvm::Value *Arg = Args[I].getRValue(*this).getScalarVal();
 | |
|       Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlign(Arg->getType()));
 | |
|     }
 | |
|     BufferPtr = Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx));
 | |
|   }
 | |
| 
 | |
|   // Invoke vprintf and return.
 | |
|   llvm::Function* VprintfFunc = GetVprintfDeclaration(CGM.getModule());
 | |
|   return RValue::get(Builder.CreateCall(
 | |
|       VprintfFunc, {Args[0].getRValue(*this).getScalarVal(), BufferPtr}));
 | |
| }
 | |
| 
 | |
| RValue
 | |
| CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
 | |
|                                                 ReturnValueSlot ReturnValue) {
 | |
|   assert(getTarget().getTriple().getArch() == llvm::Triple::amdgcn);
 | |
|   assert(E->getBuiltinCallee() == Builtin::BIprintf ||
 | |
|          E->getBuiltinCallee() == Builtin::BI__builtin_printf);
 | |
|   assert(E->getNumArgs() >= 1); // printf always has at least one arg.
 | |
| 
 | |
|   CallArgList CallArgs;
 | |
|   EmitCallArgs(CallArgs,
 | |
|                E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
 | |
|                E->arguments(), E->getDirectCallee(),
 | |
|                /* ParamsToSkip = */ 0);
 | |
| 
 | |
|   SmallVector<llvm::Value *, 8> Args;
 | |
|   for (auto A : CallArgs) {
 | |
|     // We don't know how to emit non-scalar varargs.
 | |
|     if (!A.getRValue(*this).isScalar()) {
 | |
|       CGM.ErrorUnsupported(E, "non-scalar arg to printf");
 | |
|       return RValue::get(llvm::ConstantInt::get(IntTy, -1));
 | |
|     }
 | |
| 
 | |
|     llvm::Value *Arg = A.getRValue(*this).getScalarVal();
 | |
|     Args.push_back(Arg);
 | |
|   }
 | |
| 
 | |
|   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
 | |
|   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
 | |
|   auto Printf = llvm::emitAMDGPUPrintfCall(IRB, Args);
 | |
|   Builder.SetInsertPoint(IRB.GetInsertBlock(), IRB.GetInsertPoint());
 | |
|   return RValue::get(Printf);
 | |
| }
 |