forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			865 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			865 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of the abstract lowering for the Swift calling convention.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/CodeGen/SwiftCallingConv.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "TargetInfo.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| using namespace swiftcall;
 | |
| 
 | |
| static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
 | |
|   return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
 | |
| }
 | |
| 
 | |
| static bool isPowerOf2(unsigned n) {
 | |
|   return n == (n & -n);
 | |
| }
 | |
| 
 | |
| /// Given two types with the same size, try to find a common type.
 | |
| static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
 | |
|   assert(first != second);
 | |
| 
 | |
|   // Allow pointers to merge with integers, but prefer the integer type.
 | |
|   if (first->isIntegerTy()) {
 | |
|     if (second->isPointerTy()) return first;
 | |
|   } else if (first->isPointerTy()) {
 | |
|     if (second->isIntegerTy()) return second;
 | |
|     if (second->isPointerTy()) return first;
 | |
| 
 | |
|   // Allow two vectors to be merged (given that they have the same size).
 | |
|   // This assumes that we never have two different vector register sets.
 | |
|   } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
 | |
|     if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
 | |
|       if (auto commonTy = getCommonType(firstVecTy->getElementType(),
 | |
|                                         secondVecTy->getElementType())) {
 | |
|         return (commonTy == firstVecTy->getElementType() ? first : second);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
 | |
|   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
 | |
| }
 | |
| 
 | |
| static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
 | |
|   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
 | |
|   // Deal with various aggregate types as special cases:
 | |
| 
 | |
|   // Record types.
 | |
|   if (auto recType = type->getAs<RecordType>()) {
 | |
|     addTypedData(recType->getDecl(), begin);
 | |
| 
 | |
|   // Array types.
 | |
|   } else if (type->isArrayType()) {
 | |
|     // Incomplete array types (flexible array members?) don't provide
 | |
|     // data to lay out, and the other cases shouldn't be possible.
 | |
|     auto arrayType = CGM.getContext().getAsConstantArrayType(type);
 | |
|     if (!arrayType) return;
 | |
| 
 | |
|     QualType eltType = arrayType->getElementType();
 | |
|     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
 | |
|     for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
 | |
|       addTypedData(eltType, begin + i * eltSize);
 | |
|     }
 | |
| 
 | |
|   // Complex types.
 | |
|   } else if (auto complexType = type->getAs<ComplexType>()) {
 | |
|     auto eltType = complexType->getElementType();
 | |
|     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
 | |
|     auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
 | |
|     addTypedData(eltLLVMType, begin, begin + eltSize);
 | |
|     addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
 | |
| 
 | |
|   // Member pointer types.
 | |
|   } else if (type->getAs<MemberPointerType>()) {
 | |
|     // Just add it all as opaque.
 | |
|     addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
 | |
| 
 | |
|   // Everything else is scalar and should not convert as an LLVM aggregate.
 | |
|   } else {
 | |
|     // We intentionally convert as !ForMem because we want to preserve
 | |
|     // that a type was an i1.
 | |
|     auto llvmType = CGM.getTypes().ConvertType(type);
 | |
|     addTypedData(llvmType, begin);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
 | |
|   addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
 | |
|                                     const ASTRecordLayout &layout) {
 | |
|   // Unions are a special case.
 | |
|   if (record->isUnion()) {
 | |
|     for (auto field : record->fields()) {
 | |
|       if (field->isBitField()) {
 | |
|         addBitFieldData(field, begin, 0);
 | |
|       } else {
 | |
|         addTypedData(field->getType(), begin);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Note that correctness does not rely on us adding things in
 | |
|   // their actual order of layout; it's just somewhat more efficient
 | |
|   // for the builder.
 | |
| 
 | |
|   // With that in mind, add "early" C++ data.
 | |
|   auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
 | |
|   if (cxxRecord) {
 | |
|     //   - a v-table pointer, if the class adds its own
 | |
|     if (layout.hasOwnVFPtr()) {
 | |
|       addTypedData(CGM.Int8PtrTy, begin);
 | |
|     }
 | |
| 
 | |
|     //   - non-virtual bases
 | |
|     for (auto &baseSpecifier : cxxRecord->bases()) {
 | |
|       if (baseSpecifier.isVirtual()) continue;
 | |
| 
 | |
|       auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
 | |
|       addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
 | |
|     }
 | |
| 
 | |
|     //   - a vbptr if the class adds its own
 | |
|     if (layout.hasOwnVBPtr()) {
 | |
|       addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add fields.
 | |
|   for (auto field : record->fields()) {
 | |
|     auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
 | |
|     if (field->isBitField()) {
 | |
|       addBitFieldData(field, begin, fieldOffsetInBits);
 | |
|     } else {
 | |
|       addTypedData(field->getType(),
 | |
|               begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add "late" C++ data:
 | |
|   if (cxxRecord) {
 | |
|     //   - virtual bases
 | |
|     for (auto &vbaseSpecifier : cxxRecord->vbases()) {
 | |
|       auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
 | |
|       addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
 | |
|                                        CharUnits recordBegin,
 | |
|                                        uint64_t bitfieldBitBegin) {
 | |
|   assert(bitfield->isBitField());
 | |
|   auto &ctx = CGM.getContext();
 | |
|   auto width = bitfield->getBitWidthValue(ctx);
 | |
| 
 | |
|   // We can ignore zero-width bit-fields.
 | |
|   if (width == 0) return;
 | |
| 
 | |
|   // toCharUnitsFromBits rounds down.
 | |
|   CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
 | |
| 
 | |
|   // Find the offset of the last byte that is partially occupied by the
 | |
|   // bit-field; since we otherwise expect exclusive ends, the end is the
 | |
|   // next byte.
 | |
|   uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
 | |
|   CharUnits bitfieldByteEnd =
 | |
|     ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
 | |
|   addOpaqueData(recordBegin + bitfieldByteBegin,
 | |
|                 recordBegin + bitfieldByteEnd);
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
 | |
|   assert(type && "didn't provide type for typed data");
 | |
|   addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addTypedData(llvm::Type *type,
 | |
|                                     CharUnits begin, CharUnits end) {
 | |
|   assert(type && "didn't provide type for typed data");
 | |
|   assert(getTypeStoreSize(CGM, type) == end - begin);
 | |
| 
 | |
|   // Legalize vector types.
 | |
|   if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
 | |
|     SmallVector<llvm::Type*, 4> componentTys;
 | |
|     legalizeVectorType(CGM, end - begin, vecTy, componentTys);
 | |
|     assert(componentTys.size() >= 1);
 | |
| 
 | |
|     // Walk the initial components.
 | |
|     for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
 | |
|       llvm::Type *componentTy = componentTys[i];
 | |
|       auto componentSize = getTypeStoreSize(CGM, componentTy);
 | |
|       assert(componentSize < end - begin);
 | |
|       addLegalTypedData(componentTy, begin, begin + componentSize);
 | |
|       begin += componentSize;
 | |
|     }
 | |
| 
 | |
|     return addLegalTypedData(componentTys.back(), begin, end);
 | |
|   }
 | |
| 
 | |
|   // Legalize integer types.
 | |
|   if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
 | |
|     if (!isLegalIntegerType(CGM, intTy))
 | |
|       return addOpaqueData(begin, end);
 | |
|   }
 | |
| 
 | |
|   // All other types should be legal.
 | |
|   return addLegalTypedData(type, begin, end);
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
 | |
|                                          CharUnits begin, CharUnits end) {
 | |
|   // Require the type to be naturally aligned.
 | |
|   if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
 | |
| 
 | |
|     // Try splitting vector types.
 | |
|     if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
 | |
|       auto split = splitLegalVectorType(CGM, end - begin, vecTy);
 | |
|       auto eltTy = split.first;
 | |
|       auto numElts = split.second;
 | |
| 
 | |
|       auto eltSize = (end - begin) / numElts;
 | |
|       assert(eltSize == getTypeStoreSize(CGM, eltTy));
 | |
|       for (size_t i = 0, e = numElts; i != e; ++i) {
 | |
|         addLegalTypedData(eltTy, begin, begin + eltSize);
 | |
|         begin += eltSize;
 | |
|       }
 | |
|       assert(begin == end);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     return addOpaqueData(begin, end);
 | |
|   }
 | |
| 
 | |
|   addEntry(type, begin, end);
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::addEntry(llvm::Type *type,
 | |
|                                 CharUnits begin, CharUnits end) {
 | |
|   assert((!type ||
 | |
|           (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
 | |
|          "cannot add aggregate-typed data");
 | |
|   assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
 | |
| 
 | |
|   // Fast path: we can just add entries to the end.
 | |
|   if (Entries.empty() || Entries.back().End <= begin) {
 | |
|     Entries.push_back({begin, end, type});
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Find the first existing entry that ends after the start of the new data.
 | |
|   // TODO: do a binary search if Entries is big enough for it to matter.
 | |
|   size_t index = Entries.size() - 1;
 | |
|   while (index != 0) {
 | |
|     if (Entries[index - 1].End <= begin) break;
 | |
|     --index;
 | |
|   }
 | |
| 
 | |
|   // The entry ends after the start of the new data.
 | |
|   // If the entry starts after the end of the new data, there's no conflict.
 | |
|   if (Entries[index].Begin >= end) {
 | |
|     // This insertion is potentially O(n), but the way we generally build
 | |
|     // these layouts makes that unlikely to matter: we'd need a union of
 | |
|     // several very large types.
 | |
|     Entries.insert(Entries.begin() + index, {begin, end, type});
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the ranges overlap.  The new range might also overlap
 | |
|   // with later ranges.
 | |
| restartAfterSplit:
 | |
| 
 | |
|   // Simplest case: an exact overlap.
 | |
|   if (Entries[index].Begin == begin && Entries[index].End == end) {
 | |
|     // If the types match exactly, great.
 | |
|     if (Entries[index].Type == type) return;
 | |
| 
 | |
|     // If either type is opaque, make the entry opaque and return.
 | |
|     if (Entries[index].Type == nullptr) {
 | |
|       return;
 | |
|     } else if (type == nullptr) {
 | |
|       Entries[index].Type = nullptr;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If they disagree in an ABI-agnostic way, just resolve the conflict
 | |
|     // arbitrarily.
 | |
|     if (auto entryType = getCommonType(Entries[index].Type, type)) {
 | |
|       Entries[index].Type = entryType;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, make the entry opaque.
 | |
|     Entries[index].Type = nullptr;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, we have an overlapping conflict of some sort.
 | |
| 
 | |
|   // If we have a vector type, split it.
 | |
|   if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
 | |
|     auto eltTy = vecTy->getElementType();
 | |
|     CharUnits eltSize = (end - begin) / vecTy->getNumElements();
 | |
|     assert(eltSize == getTypeStoreSize(CGM, eltTy));
 | |
|     for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
 | |
|       addEntry(eltTy, begin, begin + eltSize);
 | |
|       begin += eltSize;
 | |
|     }
 | |
|     assert(begin == end);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the entry is a vector type, split it and try again.
 | |
|   if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
 | |
|     splitVectorEntry(index);
 | |
|     goto restartAfterSplit;
 | |
|   }
 | |
| 
 | |
|   // Okay, we have no choice but to make the existing entry opaque.
 | |
| 
 | |
|   Entries[index].Type = nullptr;
 | |
| 
 | |
|   // Stretch the start of the entry to the beginning of the range.
 | |
|   if (begin < Entries[index].Begin) {
 | |
|     Entries[index].Begin = begin;
 | |
|     assert(index == 0 || begin >= Entries[index - 1].End);
 | |
|   }
 | |
| 
 | |
|   // Stretch the end of the entry to the end of the range; but if we run
 | |
|   // into the start of the next entry, just leave the range there and repeat.
 | |
|   while (end > Entries[index].End) {
 | |
|     assert(Entries[index].Type == nullptr);
 | |
| 
 | |
|     // If the range doesn't overlap the next entry, we're done.
 | |
|     if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
 | |
|       Entries[index].End = end;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, stretch to the start of the next entry.
 | |
|     Entries[index].End = Entries[index + 1].Begin;
 | |
| 
 | |
|     // Continue with the next entry.
 | |
|     index++;
 | |
| 
 | |
|     // This entry needs to be made opaque if it is not already.
 | |
|     if (Entries[index].Type == nullptr)
 | |
|       continue;
 | |
| 
 | |
|     // Split vector entries unless we completely subsume them.
 | |
|     if (Entries[index].Type->isVectorTy() &&
 | |
|         end < Entries[index].End) {
 | |
|       splitVectorEntry(index);
 | |
|     }
 | |
| 
 | |
|     // Make the entry opaque.
 | |
|     Entries[index].Type = nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Replace the entry of vector type at offset 'index' with a sequence
 | |
| /// of its component vectors.
 | |
| void SwiftAggLowering::splitVectorEntry(unsigned index) {
 | |
|   auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
 | |
|   auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
 | |
| 
 | |
|   auto eltTy = split.first;
 | |
|   CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
 | |
|   auto numElts = split.second;
 | |
|   Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
 | |
| 
 | |
|   CharUnits begin = Entries[index].Begin;
 | |
|   for (unsigned i = 0; i != numElts; ++i) {
 | |
|     Entries[index].Type = eltTy;
 | |
|     Entries[index].Begin = begin;
 | |
|     Entries[index].End = begin + eltSize;
 | |
|     begin += eltSize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given a power-of-two unit size, return the offset of the aligned unit
 | |
| /// of that size which contains the given offset.
 | |
| ///
 | |
| /// In other words, round down to the nearest multiple of the unit size.
 | |
| static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
 | |
|   assert(isPowerOf2(unitSize.getQuantity()));
 | |
|   auto unitMask = ~(unitSize.getQuantity() - 1);
 | |
|   return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
 | |
| }
 | |
| 
 | |
| static bool areBytesInSameUnit(CharUnits first, CharUnits second,
 | |
|                                CharUnits chunkSize) {
 | |
|   return getOffsetAtStartOfUnit(first, chunkSize)
 | |
|       == getOffsetAtStartOfUnit(second, chunkSize);
 | |
| }
 | |
| 
 | |
| static bool isMergeableEntryType(llvm::Type *type) {
 | |
|   // Opaquely-typed memory is always mergeable.
 | |
|   if (type == nullptr) return true;
 | |
| 
 | |
|   // Pointers and integers are always mergeable.  In theory we should not
 | |
|   // merge pointers, but (1) it doesn't currently matter in practice because
 | |
|   // the chunk size is never greater than the size of a pointer and (2)
 | |
|   // Swift IRGen uses integer types for a lot of things that are "really"
 | |
|   // just storing pointers (like Optional<SomePointer>).  If we ever have a
 | |
|   // target that would otherwise combine pointers, we should put some effort
 | |
|   // into fixing those cases in Swift IRGen and then call out pointer types
 | |
|   // here.
 | |
| 
 | |
|   // Floating-point and vector types should never be merged.
 | |
|   // Most such types are too large and highly-aligned to ever trigger merging
 | |
|   // in practice, but it's important for the rule to cover at least 'half'
 | |
|   // and 'float', as well as things like small vectors of 'i1' or 'i8'.
 | |
|   return (!type->isFloatingPointTy() && !type->isVectorTy());
 | |
| }
 | |
| 
 | |
| bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
 | |
|                                           const StorageEntry &second,
 | |
|                                           CharUnits chunkSize) {
 | |
|   // Only merge entries that overlap the same chunk.  We test this first
 | |
|   // despite being a bit more expensive because this is the condition that
 | |
|   // tends to prevent merging.
 | |
|   if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
 | |
|                           chunkSize))
 | |
|     return false;
 | |
| 
 | |
|   return (isMergeableEntryType(first.Type) &&
 | |
|           isMergeableEntryType(second.Type));
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::finish() {
 | |
|   if (Entries.empty()) {
 | |
|     Finished = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We logically split the layout down into a series of chunks of this size,
 | |
|   // which is generally the size of a pointer.
 | |
|   const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
 | |
| 
 | |
|   // First pass: if two entries should be merged, make them both opaque
 | |
|   // and stretch one to meet the next.
 | |
|   // Also, remember if there are any opaque entries.
 | |
|   bool hasOpaqueEntries = (Entries[0].Type == nullptr);
 | |
|   for (size_t i = 1, e = Entries.size(); i != e; ++i) {
 | |
|     if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
 | |
|       Entries[i - 1].Type = nullptr;
 | |
|       Entries[i].Type = nullptr;
 | |
|       Entries[i - 1].End = Entries[i].Begin;
 | |
|       hasOpaqueEntries = true;
 | |
| 
 | |
|     } else if (Entries[i].Type == nullptr) {
 | |
|       hasOpaqueEntries = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The rest of the algorithm leaves non-opaque entries alone, so if we
 | |
|   // have no opaque entries, we're done.
 | |
|   if (!hasOpaqueEntries) {
 | |
|     Finished = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, move the entries to a temporary and rebuild Entries.
 | |
|   auto orig = std::move(Entries);
 | |
|   assert(Entries.empty());
 | |
| 
 | |
|   for (size_t i = 0, e = orig.size(); i != e; ++i) {
 | |
|     // Just copy over non-opaque entries.
 | |
|     if (orig[i].Type != nullptr) {
 | |
|       Entries.push_back(orig[i]);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Scan forward to determine the full extent of the next opaque range.
 | |
|     // We know from the first pass that only contiguous ranges will overlap
 | |
|     // the same aligned chunk.
 | |
|     auto begin = orig[i].Begin;
 | |
|     auto end = orig[i].End;
 | |
|     while (i + 1 != e &&
 | |
|            orig[i + 1].Type == nullptr &&
 | |
|            end == orig[i + 1].Begin) {
 | |
|       end = orig[i + 1].End;
 | |
|       i++;
 | |
|     }
 | |
| 
 | |
|     // Add an entry per intersected chunk.
 | |
|     do {
 | |
|       // Find the smallest aligned storage unit in the maximal aligned
 | |
|       // storage unit containing 'begin' that contains all the bytes in
 | |
|       // the intersection between the range and this chunk.
 | |
|       CharUnits localBegin = begin;
 | |
|       CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
 | |
|       CharUnits chunkEnd = chunkBegin + chunkSize;
 | |
|       CharUnits localEnd = std::min(end, chunkEnd);
 | |
| 
 | |
|       // Just do a simple loop over ever-increasing unit sizes.
 | |
|       CharUnits unitSize = CharUnits::One();
 | |
|       CharUnits unitBegin, unitEnd;
 | |
|       for (; ; unitSize *= 2) {
 | |
|         assert(unitSize <= chunkSize);
 | |
|         unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
 | |
|         unitEnd = unitBegin + unitSize;
 | |
|         if (unitEnd >= localEnd) break;
 | |
|       }
 | |
| 
 | |
|       // Add an entry for this unit.
 | |
|       auto entryTy =
 | |
|         llvm::IntegerType::get(CGM.getLLVMContext(),
 | |
|                                CGM.getContext().toBits(unitSize));
 | |
|       Entries.push_back({unitBegin, unitEnd, entryTy});
 | |
| 
 | |
|       // The next chunk starts where this chunk left off.
 | |
|       begin = localEnd;
 | |
|     } while (begin != end);
 | |
|   }
 | |
| 
 | |
|   // Okay, finally finished.
 | |
|   Finished = true;
 | |
| }
 | |
| 
 | |
| void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
 | |
|   assert(Finished && "haven't yet finished lowering");
 | |
| 
 | |
|   for (auto &entry : Entries) {
 | |
|     callback(entry.Begin, entry.End, entry.Type);
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<llvm::StructType*, llvm::Type*>
 | |
| SwiftAggLowering::getCoerceAndExpandTypes() const {
 | |
|   assert(Finished && "haven't yet finished lowering");
 | |
| 
 | |
|   auto &ctx = CGM.getLLVMContext();
 | |
| 
 | |
|   if (Entries.empty()) {
 | |
|     auto type = llvm::StructType::get(ctx);
 | |
|     return { type, type };
 | |
|   }
 | |
| 
 | |
|   SmallVector<llvm::Type*, 8> elts;
 | |
|   CharUnits lastEnd = CharUnits::Zero();
 | |
|   bool hasPadding = false;
 | |
|   bool packed = false;
 | |
|   for (auto &entry : Entries) {
 | |
|     if (entry.Begin != lastEnd) {
 | |
|       auto paddingSize = entry.Begin - lastEnd;
 | |
|       assert(!paddingSize.isNegative());
 | |
| 
 | |
|       auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
 | |
|                                           paddingSize.getQuantity());
 | |
|       elts.push_back(padding);
 | |
|       hasPadding = true;
 | |
|     }
 | |
| 
 | |
|     if (!packed && !entry.Begin.isMultipleOf(
 | |
|           CharUnits::fromQuantity(
 | |
|             CGM.getDataLayout().getABITypeAlignment(entry.Type))))
 | |
|       packed = true;
 | |
| 
 | |
|     elts.push_back(entry.Type);
 | |
| 
 | |
|     lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
 | |
|     assert(entry.End <= lastEnd);
 | |
|   }
 | |
| 
 | |
|   // We don't need to adjust 'packed' to deal with possible tail padding
 | |
|   // because we never do that kind of access through the coercion type.
 | |
|   auto coercionType = llvm::StructType::get(ctx, elts, packed);
 | |
| 
 | |
|   llvm::Type *unpaddedType = coercionType;
 | |
|   if (hasPadding) {
 | |
|     elts.clear();
 | |
|     for (auto &entry : Entries) {
 | |
|       elts.push_back(entry.Type);
 | |
|     }
 | |
|     if (elts.size() == 1) {
 | |
|       unpaddedType = elts[0];
 | |
|     } else {
 | |
|       unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
 | |
|     }
 | |
|   } else if (Entries.size() == 1) {
 | |
|     unpaddedType = Entries[0].Type;
 | |
|   }
 | |
| 
 | |
|   return { coercionType, unpaddedType };
 | |
| }
 | |
| 
 | |
| bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
 | |
|   assert(Finished && "haven't yet finished lowering");
 | |
| 
 | |
|   // Empty types don't need to be passed indirectly.
 | |
|   if (Entries.empty()) return false;
 | |
| 
 | |
|   // Avoid copying the array of types when there's just a single element.
 | |
|   if (Entries.size() == 1) {
 | |
|     return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
 | |
|                                                            Entries.back().Type,
 | |
|                                                              asReturnValue);
 | |
|   }
 | |
| 
 | |
|   SmallVector<llvm::Type*, 8> componentTys;
 | |
|   componentTys.reserve(Entries.size());
 | |
|   for (auto &entry : Entries) {
 | |
|     componentTys.push_back(entry.Type);
 | |
|   }
 | |
|   return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
 | |
|                                                            asReturnValue);
 | |
| }
 | |
| 
 | |
| bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
 | |
|                                      ArrayRef<llvm::Type*> componentTys,
 | |
|                                      bool asReturnValue) {
 | |
|   return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
 | |
|                                                            asReturnValue);
 | |
| }
 | |
| 
 | |
| CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
 | |
|   // Currently always the size of an ordinary pointer.
 | |
|   return CGM.getContext().toCharUnitsFromBits(
 | |
|            CGM.getContext().getTargetInfo().getPointerWidth(0));
 | |
| }
 | |
| 
 | |
| CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
 | |
|   // For Swift's purposes, this is always just the store size of the type
 | |
|   // rounded up to a power of 2.
 | |
|   auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
 | |
|   if (!isPowerOf2(size)) {
 | |
|     size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
 | |
|   }
 | |
|   assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
 | |
|   return CharUnits::fromQuantity(size);
 | |
| }
 | |
| 
 | |
| bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
 | |
|                                    llvm::IntegerType *intTy) {
 | |
|   auto size = intTy->getBitWidth();
 | |
|   switch (size) {
 | |
|   case 1:
 | |
|   case 8:
 | |
|   case 16:
 | |
|   case 32:
 | |
|   case 64:
 | |
|     // Just assume that the above are always legal.
 | |
|     return true;
 | |
| 
 | |
|   case 128:
 | |
|     return CGM.getContext().getTargetInfo().hasInt128Type();
 | |
| 
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
 | |
|                                   llvm::VectorType *vectorTy) {
 | |
|   return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
 | |
|                            vectorTy->getNumElements());
 | |
| }
 | |
| 
 | |
| bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
 | |
|                                   llvm::Type *eltTy, unsigned numElts) {
 | |
|   assert(numElts > 1 && "illegal vector length");
 | |
|   return getSwiftABIInfo(CGM)
 | |
|            .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
 | |
| }
 | |
| 
 | |
| std::pair<llvm::Type*, unsigned>
 | |
| swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
 | |
|                                 llvm::VectorType *vectorTy) {
 | |
|   auto numElts = vectorTy->getNumElements();
 | |
|   auto eltTy = vectorTy->getElementType();
 | |
| 
 | |
|   // Try to split the vector type in half.
 | |
|   if (numElts >= 4 && isPowerOf2(numElts)) {
 | |
|     if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
 | |
|       return {llvm::VectorType::get(eltTy, numElts / 2), 2};
 | |
|   }
 | |
| 
 | |
|   return {eltTy, numElts};
 | |
| }
 | |
| 
 | |
| void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
 | |
|                                    llvm::VectorType *origVectorTy,
 | |
|                              llvm::SmallVectorImpl<llvm::Type*> &components) {
 | |
|   // If it's already a legal vector type, use it.
 | |
|   if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
 | |
|     components.push_back(origVectorTy);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Try to split the vector into legal subvectors.
 | |
|   auto numElts = origVectorTy->getNumElements();
 | |
|   auto eltTy = origVectorTy->getElementType();
 | |
|   assert(numElts != 1);
 | |
| 
 | |
|   // The largest size that we're still considering making subvectors of.
 | |
|   // Always a power of 2.
 | |
|   unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
 | |
|   unsigned candidateNumElts = 1U << logCandidateNumElts;
 | |
|   assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
 | |
| 
 | |
|   // Minor optimization: don't check the legality of this exact size twice.
 | |
|   if (candidateNumElts == numElts) {
 | |
|     logCandidateNumElts--;
 | |
|     candidateNumElts >>= 1;
 | |
|   }
 | |
| 
 | |
|   CharUnits eltSize = (origVectorSize / numElts);
 | |
|   CharUnits candidateSize = eltSize * candidateNumElts;
 | |
| 
 | |
|   // The sensibility of this algorithm relies on the fact that we never
 | |
|   // have a legal non-power-of-2 vector size without having the power of 2
 | |
|   // also be legal.
 | |
|   while (logCandidateNumElts > 0) {
 | |
|     assert(candidateNumElts == 1U << logCandidateNumElts);
 | |
|     assert(candidateNumElts <= numElts);
 | |
|     assert(candidateSize == eltSize * candidateNumElts);
 | |
| 
 | |
|     // Skip illegal vector sizes.
 | |
|     if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
 | |
|       logCandidateNumElts--;
 | |
|       candidateNumElts /= 2;
 | |
|       candidateSize /= 2;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Add the right number of vectors of this size.
 | |
|     auto numVecs = numElts >> logCandidateNumElts;
 | |
|     components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
 | |
|     numElts -= (numVecs << logCandidateNumElts);
 | |
| 
 | |
|     if (numElts == 0) return;
 | |
| 
 | |
|     // It's possible that the number of elements remaining will be legal.
 | |
|     // This can happen with e.g. <7 x float> when <3 x float> is legal.
 | |
|     // This only needs to be separately checked if it's not a power of 2.
 | |
|     if (numElts > 2 && !isPowerOf2(numElts) &&
 | |
|         isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
 | |
|       components.push_back(llvm::VectorType::get(eltTy, numElts));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Bring vecSize down to something no larger than numElts.
 | |
|     do {
 | |
|       logCandidateNumElts--;
 | |
|       candidateNumElts /= 2;
 | |
|       candidateSize /= 2;
 | |
|     } while (candidateNumElts > numElts);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, just append a bunch of individual elements.
 | |
|   components.append(numElts, eltTy);
 | |
| }
 | |
| 
 | |
| bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
 | |
|                                          const RecordDecl *record) {
 | |
|   // FIXME: should we not rely on the standard computation in Sema, just in
 | |
|   // case we want to diverge from the platform ABI (e.g. on targets where
 | |
|   // that uses the MSVC rule)?
 | |
|   return !record->canPassInRegisters();
 | |
| }
 | |
| 
 | |
| static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
 | |
|                                        bool forReturn,
 | |
|                                        CharUnits alignmentForIndirect) {
 | |
|   if (lowering.empty()) {
 | |
|     return ABIArgInfo::getIgnore();
 | |
|   } else if (lowering.shouldPassIndirectly(forReturn)) {
 | |
|     return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
 | |
|   } else {
 | |
|     auto types = lowering.getCoerceAndExpandTypes();
 | |
|     return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
 | |
|                                bool forReturn) {
 | |
|   if (auto recordType = dyn_cast<RecordType>(type)) {
 | |
|     auto record = recordType->getDecl();
 | |
|     auto &layout = CGM.getContext().getASTRecordLayout(record);
 | |
| 
 | |
|     if (mustPassRecordIndirectly(CGM, record))
 | |
|       return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
 | |
| 
 | |
|     SwiftAggLowering lowering(CGM);
 | |
|     lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
 | |
|     lowering.finish();
 | |
| 
 | |
|     return classifyExpandedType(lowering, forReturn, layout.getAlignment());
 | |
|   }
 | |
| 
 | |
|   // Just assume that all of our target ABIs can support returning at least
 | |
|   // two integer or floating-point values.
 | |
|   if (isa<ComplexType>(type)) {
 | |
|     return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
 | |
|   }
 | |
| 
 | |
|   // Vector types may need to be legalized.
 | |
|   if (isa<VectorType>(type)) {
 | |
|     SwiftAggLowering lowering(CGM);
 | |
|     lowering.addTypedData(type, CharUnits::Zero());
 | |
|     lowering.finish();
 | |
| 
 | |
|     CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
 | |
|     return classifyExpandedType(lowering, forReturn, alignment);
 | |
|   }
 | |
| 
 | |
|   // Member pointer types need to be expanded, but it's a simple form of
 | |
|   // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
 | |
|   // true for this to work.
 | |
| 
 | |
|   // 'void' needs to be ignored.
 | |
|   if (type->isVoidType()) {
 | |
|     return ABIArgInfo::getIgnore();
 | |
|   }
 | |
| 
 | |
|   // Everything else can be passed directly.
 | |
|   return ABIArgInfo::getDirect();
 | |
| }
 | |
| 
 | |
| ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
 | |
|   return classifyType(CGM, type, /*forReturn*/ true);
 | |
| }
 | |
| 
 | |
| ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
 | |
|                                            CanQualType type) {
 | |
|   return classifyType(CGM, type, /*forReturn*/ false);
 | |
| }
 | |
| 
 | |
| void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
 | |
|   auto &retInfo = FI.getReturnInfo();
 | |
|   retInfo = classifyReturnType(CGM, FI.getReturnType());
 | |
| 
 | |
|   for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
 | |
|     auto &argInfo = FI.arg_begin()[i];
 | |
|     argInfo.info = classifyArgumentType(CGM, argInfo.type);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Is swifterror lowered to a register by the target ABI.
 | |
| bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
 | |
|   return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
 | |
| }
 |