forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1445 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1445 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file This file defines CallEvent and its subclasses, which represent path-
 | |
| /// sensitive instances of different kinds of function and method calls
 | |
| /// (C, C++, and Objective-C).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclBase.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/ParentMap.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "clang/Analysis/AnalysisDeclContext.h"
 | |
| #include "clang/Analysis/CFG.h"
 | |
| #include "clang/Analysis/CFGStmtMap.h"
 | |
| #include "clang/Analysis/PathDiagnostic.h"
 | |
| #include "clang/Analysis/ProgramPoint.h"
 | |
| #include "clang/Basic/IdentifierTable.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "clang/Basic/SourceLocation.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/Specifiers.h"
 | |
| #include "clang/CrossTU/CrossTranslationUnit.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/PointerIntPair.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <utility>
 | |
| 
 | |
| #define DEBUG_TYPE "static-analyzer-call-event"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| 
 | |
| QualType CallEvent::getResultType() const {
 | |
|   ASTContext &Ctx = getState()->getStateManager().getContext();
 | |
|   const Expr *E = getOriginExpr();
 | |
|   if (!E)
 | |
|     return Ctx.VoidTy;
 | |
|   assert(E);
 | |
| 
 | |
|   QualType ResultTy = E->getType();
 | |
| 
 | |
|   // A function that returns a reference to 'int' will have a result type
 | |
|   // of simply 'int'. Check the origin expr's value kind to recover the
 | |
|   // proper type.
 | |
|   switch (E->getValueKind()) {
 | |
|   case VK_LValue:
 | |
|     ResultTy = Ctx.getLValueReferenceType(ResultTy);
 | |
|     break;
 | |
|   case VK_XValue:
 | |
|     ResultTy = Ctx.getRValueReferenceType(ResultTy);
 | |
|     break;
 | |
|   case VK_RValue:
 | |
|     // No adjustment is necessary.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ResultTy;
 | |
| }
 | |
| 
 | |
| static bool isCallback(QualType T) {
 | |
|   // If a parameter is a block or a callback, assume it can modify pointer.
 | |
|   if (T->isBlockPointerType() ||
 | |
|       T->isFunctionPointerType() ||
 | |
|       T->isObjCSelType())
 | |
|     return true;
 | |
| 
 | |
|   // Check if a callback is passed inside a struct (for both, struct passed by
 | |
|   // reference and by value). Dig just one level into the struct for now.
 | |
| 
 | |
|   if (T->isAnyPointerType() || T->isReferenceType())
 | |
|     T = T->getPointeeType();
 | |
| 
 | |
|   if (const RecordType *RT = T->getAsStructureType()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     for (const auto *I : RD->fields()) {
 | |
|       QualType FieldT = I->getType();
 | |
|       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isVoidPointerToNonConst(QualType T) {
 | |
|   if (const auto *PT = T->getAs<PointerType>()) {
 | |
|     QualType PointeeTy = PT->getPointeeType();
 | |
|     if (PointeeTy.isConstQualified())
 | |
|       return false;
 | |
|     return PointeeTy->isVoidType();
 | |
|   } else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
 | |
|   unsigned NumOfArgs = getNumArgs();
 | |
| 
 | |
|   // If calling using a function pointer, assume the function does not
 | |
|   // satisfy the callback.
 | |
|   // TODO: We could check the types of the arguments here.
 | |
|   if (!getDecl())
 | |
|     return false;
 | |
| 
 | |
|   unsigned Idx = 0;
 | |
|   for (CallEvent::param_type_iterator I = param_type_begin(),
 | |
|                                       E = param_type_end();
 | |
|        I != E && Idx < NumOfArgs; ++I, ++Idx) {
 | |
|     // If the parameter is 0, it's harmless.
 | |
|     if (getArgSVal(Idx).isZeroConstant())
 | |
|       continue;
 | |
| 
 | |
|     if (Condition(*I))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallEvent::hasNonZeroCallbackArg() const {
 | |
|   return hasNonNullArgumentsWithType(isCallback);
 | |
| }
 | |
| 
 | |
| bool CallEvent::hasVoidPointerToNonConstArg() const {
 | |
|   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
 | |
| }
 | |
| 
 | |
| bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
 | |
|   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
 | |
|   if (!FD)
 | |
|     return false;
 | |
| 
 | |
|   return CheckerContext::isCLibraryFunction(FD, FunctionName);
 | |
| }
 | |
| 
 | |
| AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
 | |
|   const Decl *D = getDecl();
 | |
|   if (!D)
 | |
|     return nullptr;
 | |
| 
 | |
|   // TODO: For now we skip functions without definitions, even if we have
 | |
|   // our own getDecl(), because it's hard to find out which re-declaration
 | |
|   // is going to be used, and usually clients don't really care about this
 | |
|   // situation because there's a loss of precision anyway because we cannot
 | |
|   // inline the call.
 | |
|   RuntimeDefinition RD = getRuntimeDefinition();
 | |
|   if (!RD.getDecl())
 | |
|     return nullptr;
 | |
| 
 | |
|   AnalysisDeclContext *ADC =
 | |
|       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
 | |
| 
 | |
|   // TODO: For now we skip virtual functions, because this also rises
 | |
|   // the problem of which decl to use, but now it's across different classes.
 | |
|   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
 | |
|     return nullptr;
 | |
| 
 | |
|   return ADC;
 | |
| }
 | |
| 
 | |
| const StackFrameContext *
 | |
| CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
 | |
|   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
 | |
|   if (!ADC)
 | |
|     return nullptr;
 | |
| 
 | |
|   const Expr *E = getOriginExpr();
 | |
|   if (!E)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Recover CFG block via reverse lookup.
 | |
|   // TODO: If we were to keep CFG element information as part of the CallEvent
 | |
|   // instead of doing this reverse lookup, we would be able to build the stack
 | |
|   // frame for non-expression-based calls, and also we wouldn't need the reverse
 | |
|   // lookup.
 | |
|   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
 | |
|   const CFGBlock *B = Map->getBlock(E);
 | |
|   assert(B);
 | |
| 
 | |
|   // Also recover CFG index by scanning the CFG block.
 | |
|   unsigned Idx = 0, Sz = B->size();
 | |
|   for (; Idx < Sz; ++Idx)
 | |
|     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
 | |
|       if (StmtElem->getStmt() == E)
 | |
|         break;
 | |
|   assert(Idx < Sz);
 | |
| 
 | |
|   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
 | |
| }
 | |
| 
 | |
| const VarRegion *CallEvent::getParameterLocation(unsigned Index,
 | |
|                                                  unsigned BlockCount) const {
 | |
|   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
 | |
|   // We cannot construct a VarRegion without a stack frame.
 | |
|   if (!SFC)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Retrieve parameters of the definition, which are different from
 | |
|   // CallEvent's parameters() because getDecl() isn't necessarily
 | |
|   // the definition. SFC contains the definition that would be used
 | |
|   // during analysis.
 | |
|   const Decl *D = SFC->getDecl();
 | |
| 
 | |
|   // TODO: Refactor into a virtual method of CallEvent, like parameters().
 | |
|   const ParmVarDecl *PVD = nullptr;
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | |
|     PVD = FD->parameters()[Index];
 | |
|   else if (const auto *BD = dyn_cast<BlockDecl>(D))
 | |
|     PVD = BD->parameters()[Index];
 | |
|   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | |
|     PVD = MD->parameters()[Index];
 | |
|   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
 | |
|     PVD = CD->parameters()[Index];
 | |
|   assert(PVD && "Unexpected Decl kind!");
 | |
| 
 | |
|   const VarRegion *VR =
 | |
|       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
 | |
| 
 | |
|   // This sanity check would fail if our parameter declaration doesn't
 | |
|   // correspond to the stack frame's function declaration.
 | |
|   assert(VR->getStackFrame() == SFC);
 | |
| 
 | |
|   return VR;
 | |
| }
 | |
| 
 | |
| /// Returns true if a type is a pointer-to-const or reference-to-const
 | |
| /// with no further indirection.
 | |
| static bool isPointerToConst(QualType Ty) {
 | |
|   QualType PointeeTy = Ty->getPointeeType();
 | |
|   if (PointeeTy == QualType())
 | |
|     return false;
 | |
|   if (!PointeeTy.isConstQualified())
 | |
|     return false;
 | |
|   if (PointeeTy->isAnyPointerType())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Try to retrieve the function declaration and find the function parameter
 | |
| // types which are pointers/references to a non-pointer const.
 | |
| // We will not invalidate the corresponding argument regions.
 | |
| static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
 | |
|                                  const CallEvent &Call) {
 | |
|   unsigned Idx = 0;
 | |
|   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
 | |
|                                       E = Call.param_type_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     if (isPointerToConst(*I))
 | |
|       PreserveArgs.insert(Idx);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
 | |
|                                              ProgramStateRef Orig) const {
 | |
|   ProgramStateRef Result = (Orig ? Orig : getState());
 | |
| 
 | |
|   // Don't invalidate anything if the callee is marked pure/const.
 | |
|   if (const Decl *callee = getDecl())
 | |
|     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
 | |
|       return Result;
 | |
| 
 | |
|   SmallVector<SVal, 8> ValuesToInvalidate;
 | |
|   RegionAndSymbolInvalidationTraits ETraits;
 | |
| 
 | |
|   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
 | |
| 
 | |
|   // Indexes of arguments whose values will be preserved by the call.
 | |
|   llvm::SmallSet<unsigned, 4> PreserveArgs;
 | |
|   if (!argumentsMayEscape())
 | |
|     findPtrToConstParams(PreserveArgs, *this);
 | |
| 
 | |
|   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
 | |
|     // Mark this region for invalidation.  We batch invalidate regions
 | |
|     // below for efficiency.
 | |
|     if (PreserveArgs.count(Idx))
 | |
|       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
 | |
|         ETraits.setTrait(MR->getBaseRegion(),
 | |
|                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
 | |
|         // TODO: Factor this out + handle the lower level const pointers.
 | |
| 
 | |
|     ValuesToInvalidate.push_back(getArgSVal(Idx));
 | |
| 
 | |
|     // If a function accepts an object by argument (which would of course be a
 | |
|     // temporary that isn't lifetime-extended), invalidate the object itself,
 | |
|     // not only other objects reachable from it. This is necessary because the
 | |
|     // destructor has access to the temporary object after the call.
 | |
|     // TODO: Support placement arguments once we start
 | |
|     // constructing them directly.
 | |
|     // TODO: This is unnecessary when there's no destructor, but that's
 | |
|     // currently hard to figure out.
 | |
|     if (getKind() != CE_CXXAllocator)
 | |
|       if (isArgumentConstructedDirectly(Idx))
 | |
|         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
 | |
|           if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
 | |
|             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
 | |
|   }
 | |
| 
 | |
|   // Invalidate designated regions using the batch invalidation API.
 | |
|   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
 | |
|   //  global variables.
 | |
|   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
 | |
|                                    BlockCount, getLocationContext(),
 | |
|                                    /*CausedByPointerEscape*/ true,
 | |
|                                    /*Symbols=*/nullptr, this, &ETraits);
 | |
| }
 | |
| 
 | |
| ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
 | |
|                                         const ProgramPointTag *Tag) const {
 | |
|   if (const Expr *E = getOriginExpr()) {
 | |
|     if (IsPreVisit)
 | |
|       return PreStmt(E, getLocationContext(), Tag);
 | |
|     return PostStmt(E, getLocationContext(), Tag);
 | |
|   }
 | |
| 
 | |
|   const Decl *D = getDecl();
 | |
|   assert(D && "Cannot get a program point without a statement or decl");
 | |
| 
 | |
|   SourceLocation Loc = getSourceRange().getBegin();
 | |
|   if (IsPreVisit)
 | |
|     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
 | |
|   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
 | |
| }
 | |
| 
 | |
| bool CallEvent::isCalled(const CallDescription &CD) const {
 | |
|   // FIXME: Add ObjC Message support.
 | |
|   if (getKind() == CE_ObjCMessage)
 | |
|     return false;
 | |
| 
 | |
|   const IdentifierInfo *II = getCalleeIdentifier();
 | |
|   if (!II)
 | |
|     return false;
 | |
|   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
 | |
|   if (!FD)
 | |
|     return false;
 | |
| 
 | |
|   if (CD.Flags & CDF_MaybeBuiltin) {
 | |
|     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
 | |
|            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
 | |
|            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
 | |
|   }
 | |
| 
 | |
|   if (!CD.IsLookupDone) {
 | |
|     CD.IsLookupDone = true;
 | |
|     CD.II = &getState()->getStateManager().getContext().Idents.get(
 | |
|         CD.getFunctionName());
 | |
|   }
 | |
| 
 | |
|   if (II != CD.II)
 | |
|     return false;
 | |
| 
 | |
|   // If CallDescription provides prefix names, use them to improve matching
 | |
|   // accuracy.
 | |
|   if (CD.QualifiedName.size() > 1 && FD) {
 | |
|     const DeclContext *Ctx = FD->getDeclContext();
 | |
|     // See if we'll be able to match them all.
 | |
|     size_t NumUnmatched = CD.QualifiedName.size() - 1;
 | |
|     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
 | |
|       if (NumUnmatched == 0)
 | |
|         break;
 | |
| 
 | |
|       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
 | |
|         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
 | |
|           --NumUnmatched;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
 | |
|         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
 | |
|           --NumUnmatched;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NumUnmatched > 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
 | |
|          (!CD.RequiredParams || CD.RequiredParams == parameters().size());
 | |
| }
 | |
| 
 | |
| SVal CallEvent::getArgSVal(unsigned Index) const {
 | |
|   const Expr *ArgE = getArgExpr(Index);
 | |
|   if (!ArgE)
 | |
|     return UnknownVal();
 | |
|   return getSVal(ArgE);
 | |
| }
 | |
| 
 | |
| SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
 | |
|   const Expr *ArgE = getArgExpr(Index);
 | |
|   if (!ArgE)
 | |
|     return {};
 | |
|   return ArgE->getSourceRange();
 | |
| }
 | |
| 
 | |
| SVal CallEvent::getReturnValue() const {
 | |
|   const Expr *E = getOriginExpr();
 | |
|   if (!E)
 | |
|     return UndefinedVal();
 | |
|   return getSVal(E);
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
 | |
| 
 | |
| void CallEvent::dump(raw_ostream &Out) const {
 | |
|   ASTContext &Ctx = getState()->getStateManager().getContext();
 | |
|   if (const Expr *E = getOriginExpr()) {
 | |
|     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
 | |
|     Out << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const Decl *D = getDecl()) {
 | |
|     Out << "Call to ";
 | |
|     D->print(Out, Ctx.getPrintingPolicy());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // FIXME: a string representation of the kind would be nice.
 | |
|   Out << "Unknown call (type " << getKind() << ")";
 | |
| }
 | |
| 
 | |
| bool CallEvent::isCallStmt(const Stmt *S) {
 | |
|   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
 | |
|                           || isa<CXXConstructExpr>(S)
 | |
|                           || isa<CXXNewExpr>(S);
 | |
| }
 | |
| 
 | |
| QualType CallEvent::getDeclaredResultType(const Decl *D) {
 | |
|   assert(D);
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | |
|     return FD->getReturnType();
 | |
|   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | |
|     return MD->getReturnType();
 | |
|   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
 | |
|     // Blocks are difficult because the return type may not be stored in the
 | |
|     // BlockDecl itself. The AST should probably be enhanced, but for now we
 | |
|     // just do what we can.
 | |
|     // If the block is declared without an explicit argument list, the
 | |
|     // signature-as-written just includes the return type, not the entire
 | |
|     // function type.
 | |
|     // FIXME: All blocks should have signatures-as-written, even if the return
 | |
|     // type is inferred. (That's signified with a dependent result type.)
 | |
|     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
 | |
|       QualType Ty = TSI->getType();
 | |
|       if (const FunctionType *FT = Ty->getAs<FunctionType>())
 | |
|         Ty = FT->getReturnType();
 | |
|       if (!Ty->isDependentType())
 | |
|         return Ty;
 | |
|     }
 | |
| 
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown callable kind");
 | |
| }
 | |
| 
 | |
| bool CallEvent::isVariadic(const Decl *D) {
 | |
|   assert(D);
 | |
| 
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | |
|     return FD->isVariadic();
 | |
|   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | |
|     return MD->isVariadic();
 | |
|   if (const auto *BD = dyn_cast<BlockDecl>(D))
 | |
|     return BD->isVariadic();
 | |
| 
 | |
|   llvm_unreachable("unknown callable kind");
 | |
| }
 | |
| 
 | |
| static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
 | |
|                                          CallEvent::BindingsTy &Bindings,
 | |
|                                          SValBuilder &SVB,
 | |
|                                          const CallEvent &Call,
 | |
|                                          ArrayRef<ParmVarDecl*> parameters) {
 | |
|   MemRegionManager &MRMgr = SVB.getRegionManager();
 | |
| 
 | |
|   // If the function has fewer parameters than the call has arguments, we simply
 | |
|   // do not bind any values to them.
 | |
|   unsigned NumArgs = Call.getNumArgs();
 | |
|   unsigned Idx = 0;
 | |
|   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
 | |
|   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
 | |
|     const ParmVarDecl *ParamDecl = *I;
 | |
|     assert(ParamDecl && "Formal parameter has no decl?");
 | |
| 
 | |
|     // TODO: Support allocator calls.
 | |
|     if (Call.getKind() != CE_CXXAllocator)
 | |
|       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
 | |
|         continue;
 | |
| 
 | |
|     // TODO: Allocators should receive the correct size and possibly alignment,
 | |
|     // determined in compile-time but not represented as arg-expressions,
 | |
|     // which makes getArgSVal() fail and return UnknownVal.
 | |
|     SVal ArgVal = Call.getArgSVal(Idx);
 | |
|     if (!ArgVal.isUnknown()) {
 | |
|       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
 | |
|       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Variadic arguments are not handled at all right now.
 | |
| }
 | |
| 
 | |
| ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
 | |
|   const FunctionDecl *D = getDecl();
 | |
|   if (!D)
 | |
|     return None;
 | |
|   return D->parameters();
 | |
| }
 | |
| 
 | |
| RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
 | |
|   const FunctionDecl *FD = getDecl();
 | |
|   if (!FD)
 | |
|     return {};
 | |
| 
 | |
|   // Note that the AnalysisDeclContext will have the FunctionDecl with
 | |
|   // the definition (if one exists).
 | |
|   AnalysisDeclContext *AD =
 | |
|     getLocationContext()->getAnalysisDeclContext()->
 | |
|     getManager()->getContext(FD);
 | |
|   bool IsAutosynthesized;
 | |
|   Stmt* Body = AD->getBody(IsAutosynthesized);
 | |
|   LLVM_DEBUG({
 | |
|     if (IsAutosynthesized)
 | |
|       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
 | |
|                    << "\n";
 | |
|   });
 | |
|   if (Body) {
 | |
|     const Decl* Decl = AD->getDecl();
 | |
|     return RuntimeDefinition(Decl);
 | |
|   }
 | |
| 
 | |
|   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
 | |
|   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
 | |
| 
 | |
|   // Try to get CTU definition only if CTUDir is provided.
 | |
|   if (!Opts.IsNaiveCTUEnabled)
 | |
|     return {};
 | |
| 
 | |
|   cross_tu::CrossTranslationUnitContext &CTUCtx =
 | |
|       *Engine.getCrossTranslationUnitContext();
 | |
|   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
 | |
|       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
 | |
|                                   Opts.DisplayCTUProgress);
 | |
| 
 | |
|   if (!CTUDeclOrError) {
 | |
|     handleAllErrors(CTUDeclOrError.takeError(),
 | |
|                     [&](const cross_tu::IndexError &IE) {
 | |
|                       CTUCtx.emitCrossTUDiagnostics(IE);
 | |
|                     });
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   return RuntimeDefinition(*CTUDeclOrError);
 | |
| }
 | |
| 
 | |
| void AnyFunctionCall::getInitialStackFrameContents(
 | |
|                                         const StackFrameContext *CalleeCtx,
 | |
|                                         BindingsTy &Bindings) const {
 | |
|   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
 | |
|   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | |
|   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
 | |
|                                D->parameters());
 | |
| }
 | |
| 
 | |
| bool AnyFunctionCall::argumentsMayEscape() const {
 | |
|   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
 | |
|     return true;
 | |
| 
 | |
|   const FunctionDecl *D = getDecl();
 | |
|   if (!D)
 | |
|     return true;
 | |
| 
 | |
|   const IdentifierInfo *II = D->getIdentifier();
 | |
|   if (!II)
 | |
|     return false;
 | |
| 
 | |
|   // This set of "escaping" APIs is
 | |
| 
 | |
|   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
 | |
|   //   value into thread local storage. The value can later be retrieved with
 | |
|   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
 | |
|   //   parameter is 'const void *', the region escapes through the call.
 | |
|   if (II->isStr("pthread_setspecific"))
 | |
|     return true;
 | |
| 
 | |
|   // - xpc_connection_set_context stores a value which can be retrieved later
 | |
|   //   with xpc_connection_get_context.
 | |
|   if (II->isStr("xpc_connection_set_context"))
 | |
|     return true;
 | |
| 
 | |
|   // - funopen - sets a buffer for future IO calls.
 | |
|   if (II->isStr("funopen"))
 | |
|     return true;
 | |
| 
 | |
|   // - __cxa_demangle - can reallocate memory and can return the pointer to
 | |
|   // the input buffer.
 | |
|   if (II->isStr("__cxa_demangle"))
 | |
|     return true;
 | |
| 
 | |
|   StringRef FName = II->getName();
 | |
| 
 | |
|   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
 | |
|   //   buffer even if it is const.
 | |
|   if (FName.endswith("NoCopy"))
 | |
|     return true;
 | |
| 
 | |
|   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
 | |
|   //   be deallocated by NSMapRemove.
 | |
|   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
 | |
|     return true;
 | |
| 
 | |
|   // - Many CF containers allow objects to escape through custom
 | |
|   //   allocators/deallocators upon container construction. (PR12101)
 | |
|   if (FName.startswith("CF") || FName.startswith("CG")) {
 | |
|     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
 | |
|            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
 | |
|            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
 | |
|            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
 | |
|            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
 | |
|            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const FunctionDecl *SimpleFunctionCall::getDecl() const {
 | |
|   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
 | |
|   if (D)
 | |
|     return D;
 | |
| 
 | |
|   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
 | |
| }
 | |
| 
 | |
| const FunctionDecl *CXXInstanceCall::getDecl() const {
 | |
|   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
 | |
|   if (!CE)
 | |
|     return AnyFunctionCall::getDecl();
 | |
| 
 | |
|   const FunctionDecl *D = CE->getDirectCallee();
 | |
|   if (D)
 | |
|     return D;
 | |
| 
 | |
|   return getSVal(CE->getCallee()).getAsFunctionDecl();
 | |
| }
 | |
| 
 | |
| void CXXInstanceCall::getExtraInvalidatedValues(
 | |
|     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
 | |
|   SVal ThisVal = getCXXThisVal();
 | |
|   Values.push_back(ThisVal);
 | |
| 
 | |
|   // Don't invalidate if the method is const and there are no mutable fields.
 | |
|   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
 | |
|     if (!D->isConst())
 | |
|       return;
 | |
|     // Get the record decl for the class of 'This'. D->getParent() may return a
 | |
|     // base class decl, rather than the class of the instance which needs to be
 | |
|     // checked for mutable fields.
 | |
|     // TODO: We might as well look at the dynamic type of the object.
 | |
|     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
 | |
|     QualType T = Ex->getType();
 | |
|     if (T->isPointerType()) // Arrow or implicit-this syntax?
 | |
|       T = T->getPointeeType();
 | |
|     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
 | |
|     assert(ParentRecord);
 | |
|     if (ParentRecord->hasMutableFields())
 | |
|       return;
 | |
|     // Preserve CXXThis.
 | |
|     const MemRegion *ThisRegion = ThisVal.getAsRegion();
 | |
|     if (!ThisRegion)
 | |
|       return;
 | |
| 
 | |
|     ETraits->setTrait(ThisRegion->getBaseRegion(),
 | |
|                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SVal CXXInstanceCall::getCXXThisVal() const {
 | |
|   const Expr *Base = getCXXThisExpr();
 | |
|   // FIXME: This doesn't handle an overloaded ->* operator.
 | |
|   if (!Base)
 | |
|     return UnknownVal();
 | |
| 
 | |
|   SVal ThisVal = getSVal(Base);
 | |
|   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
 | |
|   return ThisVal;
 | |
| }
 | |
| 
 | |
| RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
 | |
|   // Do we have a decl at all?
 | |
|   const Decl *D = getDecl();
 | |
|   if (!D)
 | |
|     return {};
 | |
| 
 | |
|   // If the method is non-virtual, we know we can inline it.
 | |
|   const auto *MD = cast<CXXMethodDecl>(D);
 | |
|   if (!MD->isVirtual())
 | |
|     return AnyFunctionCall::getRuntimeDefinition();
 | |
| 
 | |
|   // Do we know the implicit 'this' object being called?
 | |
|   const MemRegion *R = getCXXThisVal().getAsRegion();
 | |
|   if (!R)
 | |
|     return {};
 | |
| 
 | |
|   // Do we know anything about the type of 'this'?
 | |
|   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
 | |
|   if (!DynType.isValid())
 | |
|     return {};
 | |
| 
 | |
|   // Is the type a C++ class? (This is mostly a defensive check.)
 | |
|   QualType RegionType = DynType.getType()->getPointeeType();
 | |
|   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
 | |
| 
 | |
|   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
 | |
|   if (!RD || !RD->hasDefinition())
 | |
|     return {};
 | |
| 
 | |
|   // Find the decl for this method in that class.
 | |
|   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
 | |
|   if (!Result) {
 | |
|     // We might not even get the original statically-resolved method due to
 | |
|     // some particularly nasty casting (e.g. casts to sister classes).
 | |
|     // However, we should at least be able to search up and down our own class
 | |
|     // hierarchy, and some real bugs have been caught by checking this.
 | |
|     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
 | |
| 
 | |
|     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
 | |
|     // the static type. However, because we currently don't update
 | |
|     // DynamicTypeInfo when an object is cast, we can't actually be sure the
 | |
|     // DynamicTypeInfo is up to date. This assert should be re-enabled once
 | |
|     // this is fixed. <rdar://problem/12287087>
 | |
|     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
 | |
| 
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   // Does the decl that we found have an implementation?
 | |
|   const FunctionDecl *Definition;
 | |
|   if (!Result->hasBody(Definition)) {
 | |
|     if (!DynType.canBeASubClass())
 | |
|       return AnyFunctionCall::getRuntimeDefinition();
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   // We found a definition. If we're not sure that this devirtualization is
 | |
|   // actually what will happen at runtime, make sure to provide the region so
 | |
|   // that ExprEngine can decide what to do with it.
 | |
|   if (DynType.canBeASubClass())
 | |
|     return RuntimeDefinition(Definition, R->StripCasts());
 | |
|   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
 | |
| }
 | |
| 
 | |
| void CXXInstanceCall::getInitialStackFrameContents(
 | |
|                                             const StackFrameContext *CalleeCtx,
 | |
|                                             BindingsTy &Bindings) const {
 | |
|   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
 | |
| 
 | |
|   // Handle the binding of 'this' in the new stack frame.
 | |
|   SVal ThisVal = getCXXThisVal();
 | |
|   if (!ThisVal.isUnknown()) {
 | |
|     ProgramStateManager &StateMgr = getState()->getStateManager();
 | |
|     SValBuilder &SVB = StateMgr.getSValBuilder();
 | |
| 
 | |
|     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | |
|     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
 | |
| 
 | |
|     // If we devirtualized to a different member function, we need to make sure
 | |
|     // we have the proper layering of CXXBaseObjectRegions.
 | |
|     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
 | |
|       ASTContext &Ctx = SVB.getContext();
 | |
|       const CXXRecordDecl *Class = MD->getParent();
 | |
|       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
 | |
| 
 | |
|       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
 | |
|       bool Failed;
 | |
|       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
 | |
|       if (Failed) {
 | |
|         // We might have suffered some sort of placement new earlier, so
 | |
|         // we're constructing in a completely unexpected storage.
 | |
|         // Fall back to a generic pointer cast for this-value.
 | |
|         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
 | |
|         const CXXRecordDecl *StaticClass = StaticMD->getParent();
 | |
|         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
 | |
|         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!ThisVal.isUnknown())
 | |
|       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
 | |
|   }
 | |
| }
 | |
| 
 | |
| const Expr *CXXMemberCall::getCXXThisExpr() const {
 | |
|   return getOriginExpr()->getImplicitObjectArgument();
 | |
| }
 | |
| 
 | |
| RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
 | |
|   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
 | |
|   // id-expression in the class member access expression is a qualified-id,
 | |
|   // that function is called. Otherwise, its final overrider in the dynamic type
 | |
|   // of the object expression is called.
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
 | |
|     if (ME->hasQualifier())
 | |
|       return AnyFunctionCall::getRuntimeDefinition();
 | |
| 
 | |
|   return CXXInstanceCall::getRuntimeDefinition();
 | |
| }
 | |
| 
 | |
| const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
 | |
|   return getOriginExpr()->getArg(0);
 | |
| }
 | |
| 
 | |
| const BlockDataRegion *BlockCall::getBlockRegion() const {
 | |
|   const Expr *Callee = getOriginExpr()->getCallee();
 | |
|   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
 | |
| 
 | |
|   return dyn_cast_or_null<BlockDataRegion>(DataReg);
 | |
| }
 | |
| 
 | |
| ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
 | |
|   const BlockDecl *D = getDecl();
 | |
|   if (!D)
 | |
|     return None;
 | |
|   return D->parameters();
 | |
| }
 | |
| 
 | |
| void BlockCall::getExtraInvalidatedValues(ValueList &Values,
 | |
|                   RegionAndSymbolInvalidationTraits *ETraits) const {
 | |
|   // FIXME: This also needs to invalidate captured globals.
 | |
|   if (const MemRegion *R = getBlockRegion())
 | |
|     Values.push_back(loc::MemRegionVal(R));
 | |
| }
 | |
| 
 | |
| void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 | |
|                                              BindingsTy &Bindings) const {
 | |
|   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | |
|   ArrayRef<ParmVarDecl*> Params;
 | |
|   if (isConversionFromLambda()) {
 | |
|     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | |
|     Params = LambdaOperatorDecl->parameters();
 | |
| 
 | |
|     // For blocks converted from a C++ lambda, the callee declaration is the
 | |
|     // operator() method on the lambda so we bind "this" to
 | |
|     // the lambda captured by the block.
 | |
|     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
 | |
|     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
 | |
|     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
 | |
|     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
 | |
|   } else {
 | |
|     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
 | |
|   }
 | |
| 
 | |
|   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
 | |
|                                Params);
 | |
| }
 | |
| 
 | |
| SVal CXXConstructorCall::getCXXThisVal() const {
 | |
|   if (Data)
 | |
|     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
 | |
|                            RegionAndSymbolInvalidationTraits *ETraits) const {
 | |
|   if (Data) {
 | |
|     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
 | |
|     if (SymbolRef Sym = MV.getAsSymbol(true))
 | |
|       ETraits->setTrait(Sym,
 | |
|                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
 | |
|     Values.push_back(MV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXConstructorCall::getInitialStackFrameContents(
 | |
|                                              const StackFrameContext *CalleeCtx,
 | |
|                                              BindingsTy &Bindings) const {
 | |
|   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
 | |
| 
 | |
|   SVal ThisVal = getCXXThisVal();
 | |
|   if (!ThisVal.isUnknown()) {
 | |
|     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | |
|     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | |
|     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
 | |
|     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
 | |
|   }
 | |
| }
 | |
| 
 | |
| SVal CXXDestructorCall::getCXXThisVal() const {
 | |
|   if (Data)
 | |
|     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
 | |
|   // Base destructors are always called non-virtually.
 | |
|   // Skip CXXInstanceCall's devirtualization logic in this case.
 | |
|   if (isBaseDestructor())
 | |
|     return AnyFunctionCall::getRuntimeDefinition();
 | |
| 
 | |
|   return CXXInstanceCall::getRuntimeDefinition();
 | |
| }
 | |
| 
 | |
| ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
 | |
|   const ObjCMethodDecl *D = getDecl();
 | |
|   if (!D)
 | |
|     return None;
 | |
|   return D->parameters();
 | |
| }
 | |
| 
 | |
| void ObjCMethodCall::getExtraInvalidatedValues(
 | |
|     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
 | |
| 
 | |
|   // If the method call is a setter for property known to be backed by
 | |
|   // an instance variable, don't invalidate the entire receiver, just
 | |
|   // the storage for that instance variable.
 | |
|   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
 | |
|     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
 | |
|       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
 | |
|       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
 | |
|         ETraits->setTrait(
 | |
|           IvarRegion,
 | |
|           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
 | |
|         ETraits->setTrait(
 | |
|           IvarRegion,
 | |
|           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
 | |
|         Values.push_back(IvarLVal);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Values.push_back(getReceiverSVal());
 | |
| }
 | |
| 
 | |
| SVal ObjCMethodCall::getSelfSVal() const {
 | |
|   const LocationContext *LCtx = getLocationContext();
 | |
|   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
 | |
|   if (!SelfDecl)
 | |
|     return SVal();
 | |
|   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
 | |
| }
 | |
| 
 | |
| SVal ObjCMethodCall::getReceiverSVal() const {
 | |
|   // FIXME: Is this the best way to handle class receivers?
 | |
|   if (!isInstanceMessage())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
 | |
|     return getSVal(RecE);
 | |
| 
 | |
|   // An instance message with no expression means we are sending to super.
 | |
|   // In this case the object reference is the same as 'self'.
 | |
|   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
 | |
|   SVal SelfVal = getSelfSVal();
 | |
|   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
 | |
|   return SelfVal;
 | |
| }
 | |
| 
 | |
| bool ObjCMethodCall::isReceiverSelfOrSuper() const {
 | |
|   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
 | |
|       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
 | |
|       return true;
 | |
| 
 | |
|   if (!isInstanceMessage())
 | |
|     return false;
 | |
| 
 | |
|   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
 | |
| 
 | |
|   return (RecVal == getSelfSVal());
 | |
| }
 | |
| 
 | |
| SourceRange ObjCMethodCall::getSourceRange() const {
 | |
|   switch (getMessageKind()) {
 | |
|   case OCM_Message:
 | |
|     return getOriginExpr()->getSourceRange();
 | |
|   case OCM_PropertyAccess:
 | |
|   case OCM_Subscript:
 | |
|     return getContainingPseudoObjectExpr()->getSourceRange();
 | |
|   }
 | |
|   llvm_unreachable("unknown message kind");
 | |
| }
 | |
| 
 | |
| using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
 | |
| 
 | |
| const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
 | |
|   assert(Data && "Lazy lookup not yet performed.");
 | |
|   assert(getMessageKind() != OCM_Message && "Explicit message send.");
 | |
|   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
 | |
| }
 | |
| 
 | |
| static const Expr *
 | |
| getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
 | |
|   const Expr *Syntactic = POE->getSyntacticForm();
 | |
| 
 | |
|   // This handles the funny case of assigning to the result of a getter.
 | |
|   // This can happen if the getter returns a non-const reference.
 | |
|   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
 | |
|     Syntactic = BO->getLHS();
 | |
| 
 | |
|   return Syntactic;
 | |
| }
 | |
| 
 | |
| ObjCMessageKind ObjCMethodCall::getMessageKind() const {
 | |
|   if (!Data) {
 | |
|     // Find the parent, ignoring implicit casts.
 | |
|     const ParentMap &PM = getLocationContext()->getParentMap();
 | |
|     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
 | |
| 
 | |
|     // Check if parent is a PseudoObjectExpr.
 | |
|     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
 | |
|       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
 | |
| 
 | |
|       ObjCMessageKind K;
 | |
|       switch (Syntactic->getStmtClass()) {
 | |
|       case Stmt::ObjCPropertyRefExprClass:
 | |
|         K = OCM_PropertyAccess;
 | |
|         break;
 | |
|       case Stmt::ObjCSubscriptRefExprClass:
 | |
|         K = OCM_Subscript;
 | |
|         break;
 | |
|       default:
 | |
|         // FIXME: Can this ever happen?
 | |
|         K = OCM_Message;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (K != OCM_Message) {
 | |
|         const_cast<ObjCMethodCall *>(this)->Data
 | |
|           = ObjCMessageDataTy(POE, K).getOpaqueValue();
 | |
|         assert(getMessageKind() == K);
 | |
|         return K;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const_cast<ObjCMethodCall *>(this)->Data
 | |
|       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
 | |
|     assert(getMessageKind() == OCM_Message);
 | |
|     return OCM_Message;
 | |
|   }
 | |
| 
 | |
|   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
 | |
|   if (!Info.getPointer())
 | |
|     return OCM_Message;
 | |
|   return static_cast<ObjCMessageKind>(Info.getInt());
 | |
| }
 | |
| 
 | |
| const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
 | |
|   // Look for properties accessed with property syntax (foo.bar = ...)
 | |
|   if (getMessageKind() == OCM_PropertyAccess) {
 | |
|     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
 | |
|     assert(POE && "Property access without PseudoObjectExpr?");
 | |
| 
 | |
|     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
 | |
|     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
 | |
| 
 | |
|     if (RefExpr->isExplicitProperty())
 | |
|       return RefExpr->getExplicitProperty();
 | |
|   }
 | |
| 
 | |
|   // Look for properties accessed with method syntax ([foo setBar:...]).
 | |
|   const ObjCMethodDecl *MD = getDecl();
 | |
|   if (!MD || !MD->isPropertyAccessor())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Note: This is potentially quite slow.
 | |
|   return MD->findPropertyDecl();
 | |
| }
 | |
| 
 | |
| bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
 | |
|                                              Selector Sel) const {
 | |
|   assert(IDecl);
 | |
|   AnalysisManager &AMgr =
 | |
|       getState()->getStateManager().getOwningEngine().getAnalysisManager();
 | |
|   // If the class interface is declared inside the main file, assume it is not
 | |
|   // subcassed.
 | |
|   // TODO: It could actually be subclassed if the subclass is private as well.
 | |
|   // This is probably very rare.
 | |
|   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
 | |
|   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
 | |
|     return false;
 | |
| 
 | |
|   // Assume that property accessors are not overridden.
 | |
|   if (getMessageKind() == OCM_PropertyAccess)
 | |
|     return false;
 | |
| 
 | |
|   // We assume that if the method is public (declared outside of main file) or
 | |
|   // has a parent which publicly declares the method, the method could be
 | |
|   // overridden in a subclass.
 | |
| 
 | |
|   // Find the first declaration in the class hierarchy that declares
 | |
|   // the selector.
 | |
|   ObjCMethodDecl *D = nullptr;
 | |
|   while (true) {
 | |
|     D = IDecl->lookupMethod(Sel, true);
 | |
| 
 | |
|     // Cannot find a public definition.
 | |
|     if (!D)
 | |
|       return false;
 | |
| 
 | |
|     // If outside the main file,
 | |
|     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
 | |
|       return true;
 | |
| 
 | |
|     if (D->isOverriding()) {
 | |
|       // Search in the superclass on the next iteration.
 | |
|       IDecl = D->getClassInterface();
 | |
|       if (!IDecl)
 | |
|         return false;
 | |
| 
 | |
|       IDecl = IDecl->getSuperClass();
 | |
|       if (!IDecl)
 | |
|         return false;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   llvm_unreachable("The while loop should always terminate.");
 | |
| }
 | |
| 
 | |
| static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
 | |
|   if (!MD)
 | |
|     return MD;
 | |
| 
 | |
|   // Find the redeclaration that defines the method.
 | |
|   if (!MD->hasBody()) {
 | |
|     for (auto I : MD->redecls())
 | |
|       if (I->hasBody())
 | |
|         MD = cast<ObjCMethodDecl>(I);
 | |
|   }
 | |
|   return MD;
 | |
| }
 | |
| 
 | |
| static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
 | |
|   const Expr* InstRec = ME->getInstanceReceiver();
 | |
|   if (!InstRec)
 | |
|     return false;
 | |
|   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
 | |
| 
 | |
|   // Check that receiver is called 'self'.
 | |
|   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
 | |
|       !InstRecIg->getFoundDecl()->getName().equals("self"))
 | |
|     return false;
 | |
| 
 | |
|   // Check that the method name is 'class'.
 | |
|   if (ME->getSelector().getNumArgs() != 0 ||
 | |
|       !ME->getSelector().getNameForSlot(0).equals("class"))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
 | |
|   const ObjCMessageExpr *E = getOriginExpr();
 | |
|   assert(E);
 | |
|   Selector Sel = E->getSelector();
 | |
| 
 | |
|   if (E->isInstanceMessage()) {
 | |
|     // Find the receiver type.
 | |
|     const ObjCObjectPointerType *ReceiverT = nullptr;
 | |
|     bool CanBeSubClassed = false;
 | |
|     QualType SupersType = E->getSuperType();
 | |
|     const MemRegion *Receiver = nullptr;
 | |
| 
 | |
|     if (!SupersType.isNull()) {
 | |
|       // The receiver is guaranteed to be 'super' in this case.
 | |
|       // Super always means the type of immediate predecessor to the method
 | |
|       // where the call occurs.
 | |
|       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
 | |
|     } else {
 | |
|       Receiver = getReceiverSVal().getAsRegion();
 | |
|       if (!Receiver)
 | |
|         return {};
 | |
| 
 | |
|       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
 | |
|       if (!DTI.isValid()) {
 | |
|         assert(isa<AllocaRegion>(Receiver) &&
 | |
|                "Unhandled untyped region class!");
 | |
|         return {};
 | |
|       }
 | |
| 
 | |
|       QualType DynType = DTI.getType();
 | |
|       CanBeSubClassed = DTI.canBeASubClass();
 | |
|       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
 | |
| 
 | |
|       if (ReceiverT && CanBeSubClassed)
 | |
|         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
 | |
|           if (!canBeOverridenInSubclass(IDecl, Sel))
 | |
|             CanBeSubClassed = false;
 | |
|     }
 | |
| 
 | |
|     // Handle special cases of '[self classMethod]' and
 | |
|     // '[[self class] classMethod]', which are treated by the compiler as
 | |
|     // instance (not class) messages. We will statically dispatch to those.
 | |
|     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
 | |
|       // For [self classMethod], return the compiler visible declaration.
 | |
|       if (PT->getObjectType()->isObjCClass() &&
 | |
|           Receiver == getSelfSVal().getAsRegion())
 | |
|         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
 | |
| 
 | |
|       // Similarly, handle [[self class] classMethod].
 | |
|       // TODO: We are currently doing a syntactic match for this pattern with is
 | |
|       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
 | |
|       // shows. A better way would be to associate the meta type with the symbol
 | |
|       // using the dynamic type info tracking and use it here. We can add a new
 | |
|       // SVal for ObjC 'Class' values that know what interface declaration they
 | |
|       // come from. Then 'self' in a class method would be filled in with
 | |
|       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
 | |
|       // do proper dynamic dispatch for class methods just like we do for
 | |
|       // instance methods now.
 | |
|       if (E->getInstanceReceiver())
 | |
|         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
 | |
|           if (isCallToSelfClass(M))
 | |
|             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
 | |
|     }
 | |
| 
 | |
|     // Lookup the instance method implementation.
 | |
|     if (ReceiverT)
 | |
|       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
 | |
|         // Repeatedly calling lookupPrivateMethod() is expensive, especially
 | |
|         // when in many cases it returns null.  We cache the results so
 | |
|         // that repeated queries on the same ObjCIntefaceDecl and Selector
 | |
|         // don't incur the same cost.  On some test cases, we can see the
 | |
|         // same query being issued thousands of times.
 | |
|         //
 | |
|         // NOTE: This cache is essentially a "global" variable, but it
 | |
|         // only gets lazily created when we get here.  The value of the
 | |
|         // cache probably comes from it being global across ExprEngines,
 | |
|         // where the same queries may get issued.  If we are worried about
 | |
|         // concurrency, or possibly loading/unloading ASTs, etc., we may
 | |
|         // need to revisit this someday.  In terms of memory, this table
 | |
|         // stays around until clang quits, which also may be bad if we
 | |
|         // need to release memory.
 | |
|         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
 | |
|         using PrivateMethodCache =
 | |
|             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
 | |
| 
 | |
|         static PrivateMethodCache PMC;
 | |
|         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
 | |
| 
 | |
|         // Query lookupPrivateMethod() if the cache does not hit.
 | |
|         if (!Val.hasValue()) {
 | |
|           Val = IDecl->lookupPrivateMethod(Sel);
 | |
| 
 | |
|           // If the method is a property accessor, we should try to "inline" it
 | |
|           // even if we don't actually have an implementation.
 | |
|           if (!*Val)
 | |
|             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
 | |
|               if (CompileTimeMD->isPropertyAccessor()) {
 | |
|                 if (!CompileTimeMD->getSelfDecl() &&
 | |
|                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
 | |
|                   // If the method is an accessor in a category, and it doesn't
 | |
|                   // have a self declaration, first
 | |
|                   // try to find the method in a class extension. This
 | |
|                   // works around a bug in Sema where multiple accessors
 | |
|                   // are synthesized for properties in class
 | |
|                   // extensions that are redeclared in a category and the
 | |
|                   // the implicit parameters are not filled in for
 | |
|                   // the method on the category.
 | |
|                   // This ensures we find the accessor in the extension, which
 | |
|                   // has the implicit parameters filled in.
 | |
|                   auto *ID = CompileTimeMD->getClassInterface();
 | |
|                   for (auto *CatDecl : ID->visible_extensions()) {
 | |
|                     Val = CatDecl->getMethod(Sel,
 | |
|                                              CompileTimeMD->isInstanceMethod());
 | |
|                     if (*Val)
 | |
|                       break;
 | |
|                   }
 | |
|                 }
 | |
|                 if (!*Val)
 | |
|                   Val = IDecl->lookupInstanceMethod(Sel);
 | |
|               }
 | |
|         }
 | |
| 
 | |
|         const ObjCMethodDecl *MD = Val.getValue();
 | |
|         if (MD && !MD->hasBody())
 | |
|           MD = MD->getCanonicalDecl();
 | |
|         if (CanBeSubClassed)
 | |
|           return RuntimeDefinition(MD, Receiver);
 | |
|         else
 | |
|           return RuntimeDefinition(MD, nullptr);
 | |
|       }
 | |
|   } else {
 | |
|     // This is a class method.
 | |
|     // If we have type info for the receiver class, we are calling via
 | |
|     // class name.
 | |
|     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
 | |
|       // Find/Return the method implementation.
 | |
|       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| bool ObjCMethodCall::argumentsMayEscape() const {
 | |
|   if (isInSystemHeader() && !isInstanceMessage()) {
 | |
|     Selector Sel = getSelector();
 | |
|     if (Sel.getNumArgs() == 1 &&
 | |
|         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return CallEvent::argumentsMayEscape();
 | |
| }
 | |
| 
 | |
| void ObjCMethodCall::getInitialStackFrameContents(
 | |
|                                              const StackFrameContext *CalleeCtx,
 | |
|                                              BindingsTy &Bindings) const {
 | |
|   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
 | |
|   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | |
|   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
 | |
|                                D->parameters());
 | |
| 
 | |
|   SVal SelfVal = getReceiverSVal();
 | |
|   if (!SelfVal.isUnknown()) {
 | |
|     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
 | |
|     MemRegionManager &MRMgr = SVB.getRegionManager();
 | |
|     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
 | |
|     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
 | |
|   }
 | |
| }
 | |
| 
 | |
| CallEventRef<>
 | |
| CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
 | |
|                                 const LocationContext *LCtx) {
 | |
|   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
 | |
|     return create<CXXMemberCall>(MCE, State, LCtx);
 | |
| 
 | |
|   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
 | |
|     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
 | |
|     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
 | |
|       if (MD->isInstance())
 | |
|         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
 | |
| 
 | |
|   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
 | |
|     return create<BlockCall>(CE, State, LCtx);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it's a normal function call, static member function call, or
 | |
|   // something we can't reason about.
 | |
|   return create<SimpleFunctionCall>(CE, State, LCtx);
 | |
| }
 | |
| 
 | |
| CallEventRef<>
 | |
| CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
 | |
|                             ProgramStateRef State) {
 | |
|   const LocationContext *ParentCtx = CalleeCtx->getParent();
 | |
|   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
 | |
|   assert(CallerCtx && "This should not be used for top-level stack frames");
 | |
| 
 | |
|   const Stmt *CallSite = CalleeCtx->getCallSite();
 | |
| 
 | |
|   if (CallSite) {
 | |
|     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
 | |
|       return Out;
 | |
| 
 | |
|     // All other cases are handled by getCall.
 | |
|     assert(isa<CXXConstructExpr>(CallSite) &&
 | |
|            "This is not an inlineable statement");
 | |
| 
 | |
|     SValBuilder &SVB = State->getStateManager().getSValBuilder();
 | |
|     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | |
|     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
 | |
|     SVal ThisVal = State->getSVal(ThisPtr);
 | |
| 
 | |
|     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
 | |
|                                  ThisVal.getAsRegion(), State, CallerCtx);
 | |
|   }
 | |
| 
 | |
|   // Fall back to the CFG. The only thing we haven't handled yet is
 | |
|   // destructors, though this could change in the future.
 | |
|   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
 | |
|   CFGElement E = (*B)[CalleeCtx->getIndex()];
 | |
|   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
 | |
|          "All other CFG elements should have exprs");
 | |
| 
 | |
|   SValBuilder &SVB = State->getStateManager().getSValBuilder();
 | |
|   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
 | |
|   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
 | |
|   SVal ThisVal = State->getSVal(ThisPtr);
 | |
| 
 | |
|   const Stmt *Trigger;
 | |
|   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
 | |
|     Trigger = AutoDtor->getTriggerStmt();
 | |
|   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
 | |
|     Trigger = DeleteDtor->getDeleteExpr();
 | |
|   else
 | |
|     Trigger = Dtor->getBody();
 | |
| 
 | |
|   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
 | |
|                               E.getAs<CFGBaseDtor>().hasValue(), State,
 | |
|                               CallerCtx);
 | |
| }
 | |
| 
 | |
| CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
 | |
|                                          const LocationContext *LC) {
 | |
|   if (const auto *CE = dyn_cast<CallExpr>(S)) {
 | |
|     return getSimpleCall(CE, State, LC);
 | |
|   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
 | |
|     return getCXXAllocatorCall(NE, State, LC);
 | |
|   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
 | |
|     return getObjCMethodCall(ME, State, LC);
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 |