forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3784 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3784 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// DependenceAnalysis is an LLVM pass that analyses dependences between memory
 | 
						|
// accesses. Currently, it is an (incomplete) implementation of the approach
 | 
						|
// described in
 | 
						|
//
 | 
						|
//            Practical Dependence Testing
 | 
						|
//            Goff, Kennedy, Tseng
 | 
						|
//            PLDI 1991
 | 
						|
//
 | 
						|
// There's a single entry point that analyzes the dependence between a pair
 | 
						|
// of memory references in a function, returning either NULL, for no dependence,
 | 
						|
// or a more-or-less detailed description of the dependence between them.
 | 
						|
//
 | 
						|
// Currently, the implementation cannot propagate constraints between
 | 
						|
// coupled RDIV subscripts and lacks a multi-subscript MIV test.
 | 
						|
// Both of these are conservative weaknesses;
 | 
						|
// that is, not a source of correctness problems.
 | 
						|
//
 | 
						|
// The implementation depends on the GEP instruction to
 | 
						|
// differentiate subscripts. Since Clang linearizes subscripts
 | 
						|
// for most arrays, we give up some precision (though the existing MIV tests
 | 
						|
// will help). We trust that the GEP instruction will eventually be extended.
 | 
						|
// In the meantime, we should explore Maslov's ideas about delinearization.
 | 
						|
//
 | 
						|
// We should pay some careful attention to the possibility of integer overflow
 | 
						|
// in the implementation of the various tests. This could happen with Add,
 | 
						|
// Subtract, or Multiply, with both APInt's and SCEV's.
 | 
						|
//
 | 
						|
// Some non-linear subscript pairs can be handled by the GCD test
 | 
						|
// (and perhaps other tests).
 | 
						|
// Should explore how often these things occur.
 | 
						|
//
 | 
						|
// Finally, it seems like certain test cases expose weaknesses in the SCEV
 | 
						|
// simplification, especially in the handling of sign and zero extensions.
 | 
						|
// It could be useful to spend time exploring these.
 | 
						|
//
 | 
						|
// Please note that this is work in progress and the interface is subject to
 | 
						|
// change.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                                                            //
 | 
						|
//                   In memory of Ken Kennedy, 1945 - 2007                    //
 | 
						|
//                                                                            //
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "da"
 | 
						|
 | 
						|
#include "llvm/Analysis/DependenceAnalysis.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// statistics
 | 
						|
 | 
						|
STATISTIC(TotalArrayPairs, "Array pairs tested");
 | 
						|
STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
 | 
						|
STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
 | 
						|
STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
 | 
						|
STATISTIC(ZIVapplications, "ZIV applications");
 | 
						|
STATISTIC(ZIVindependence, "ZIV independence");
 | 
						|
STATISTIC(StrongSIVapplications, "Strong SIV applications");
 | 
						|
STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
 | 
						|
STATISTIC(StrongSIVindependence, "Strong SIV independence");
 | 
						|
STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
 | 
						|
STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
 | 
						|
STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
 | 
						|
STATISTIC(ExactSIVapplications, "Exact SIV applications");
 | 
						|
STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
 | 
						|
STATISTIC(ExactSIVindependence, "Exact SIV independence");
 | 
						|
STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
 | 
						|
STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
 | 
						|
STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
 | 
						|
STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
 | 
						|
STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
 | 
						|
STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
 | 
						|
STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
 | 
						|
STATISTIC(DeltaApplications, "Delta applications");
 | 
						|
STATISTIC(DeltaSuccesses, "Delta successes");
 | 
						|
STATISTIC(DeltaIndependence, "Delta independence");
 | 
						|
STATISTIC(DeltaPropagations, "Delta propagations");
 | 
						|
STATISTIC(GCDapplications, "GCD applications");
 | 
						|
STATISTIC(GCDsuccesses, "GCD successes");
 | 
						|
STATISTIC(GCDindependence, "GCD independence");
 | 
						|
STATISTIC(BanerjeeApplications, "Banerjee applications");
 | 
						|
STATISTIC(BanerjeeIndependence, "Banerjee independence");
 | 
						|
STATISTIC(BanerjeeSuccesses, "Banerjee successes");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// basics
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
 | 
						|
                      "Dependence Analysis", true, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(DependenceAnalysis, "da",
 | 
						|
                    "Dependence Analysis", true, true)
 | 
						|
 | 
						|
char DependenceAnalysis::ID = 0;
 | 
						|
 | 
						|
 | 
						|
FunctionPass *llvm::createDependenceAnalysisPass() {
 | 
						|
  return new DependenceAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool DependenceAnalysis::runOnFunction(Function &F) {
 | 
						|
  this->F = &F;
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::releaseMemory() {
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequiredTransitive<AliasAnalysis>();
 | 
						|
  AU.addRequiredTransitive<ScalarEvolution>();
 | 
						|
  AU.addRequiredTransitive<LoopInfo>();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Used to test the dependence analyzer.
 | 
						|
// Looks through the function, noting loads and stores.
 | 
						|
// Calls depends() on every possible pair and prints out the result.
 | 
						|
// Ignores all other instructions.
 | 
						|
static
 | 
						|
void dumpExampleDependence(raw_ostream &OS, Function *F,
 | 
						|
                           DependenceAnalysis *DA) {
 | 
						|
  for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
 | 
						|
       SrcI != SrcE; ++SrcI) {
 | 
						|
    if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
 | 
						|
      for (inst_iterator DstI = SrcI, DstE = inst_end(F);
 | 
						|
           DstI != DstE; ++DstI) {
 | 
						|
        if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
 | 
						|
          OS << "da analyze - ";
 | 
						|
          if (Dependence *D = DA->depends(&*SrcI, &*DstI, true)) {
 | 
						|
            D->dump(OS);
 | 
						|
            for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
 | 
						|
              if (D->isSplitable(Level)) {
 | 
						|
                OS << "da analyze - split level = " << Level;
 | 
						|
                OS << ", iteration = " << *DA->getSplitIteration(D, Level);
 | 
						|
                OS << "!\n";
 | 
						|
              }
 | 
						|
            }
 | 
						|
            delete D;
 | 
						|
          }
 | 
						|
          else
 | 
						|
            OS << "none!\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
 | 
						|
  dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Dependence methods
 | 
						|
 | 
						|
// Returns true if this is an input dependence.
 | 
						|
bool Dependence::isInput() const {
 | 
						|
  return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if this is an output dependence.
 | 
						|
bool Dependence::isOutput() const {
 | 
						|
  return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if this is an flow (aka true)  dependence.
 | 
						|
bool Dependence::isFlow() const {
 | 
						|
  return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if this is an anti dependence.
 | 
						|
bool Dependence::isAnti() const {
 | 
						|
  return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if a particular level is scalar; that is,
 | 
						|
// if no subscript in the source or destination mention the induction
 | 
						|
// variable associated with the loop at this level.
 | 
						|
// Leave this out of line, so it will serve as a virtual method anchor
 | 
						|
bool Dependence::isScalar(unsigned level) const {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// FullDependence methods
 | 
						|
 | 
						|
FullDependence::FullDependence(const Instruction *Source,
 | 
						|
                               const Instruction *Destination,
 | 
						|
                               bool PossiblyLoopIndependent,
 | 
						|
                               unsigned CommonLevels) :
 | 
						|
  Dependence(Source, Destination),
 | 
						|
  Levels(CommonLevels),
 | 
						|
  LoopIndependent(PossiblyLoopIndependent) {
 | 
						|
  Consistent = true;
 | 
						|
  DV = CommonLevels ? new DVEntry[CommonLevels] : NULL;
 | 
						|
}
 | 
						|
 | 
						|
// The rest are simple getters that hide the implementation.
 | 
						|
 | 
						|
// getDirection - Returns the direction associated with a particular level.
 | 
						|
unsigned FullDependence::getDirection(unsigned Level) const {
 | 
						|
  assert(0 < Level && Level <= Levels && "Level out of range");
 | 
						|
  return DV[Level - 1].Direction;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns the distance (or NULL) associated with a particular level.
 | 
						|
const SCEV *FullDependence::getDistance(unsigned Level) const {
 | 
						|
  assert(0 < Level && Level <= Levels && "Level out of range");
 | 
						|
  return DV[Level - 1].Distance;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if a particular level is scalar; that is,
 | 
						|
// if no subscript in the source or destination mention the induction
 | 
						|
// variable associated with the loop at this level.
 | 
						|
bool FullDependence::isScalar(unsigned Level) const {
 | 
						|
  assert(0 < Level && Level <= Levels && "Level out of range");
 | 
						|
  return DV[Level - 1].Scalar;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if peeling the first iteration from this loop
 | 
						|
// will break this dependence.
 | 
						|
bool FullDependence::isPeelFirst(unsigned Level) const {
 | 
						|
  assert(0 < Level && Level <= Levels && "Level out of range");
 | 
						|
  return DV[Level - 1].PeelFirst;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if peeling the last iteration from this loop
 | 
						|
// will break this dependence.
 | 
						|
bool FullDependence::isPeelLast(unsigned Level) const {
 | 
						|
  assert(0 < Level && Level <= Levels && "Level out of range");
 | 
						|
  return DV[Level - 1].PeelLast;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if splitting this loop will break the dependence.
 | 
						|
bool FullDependence::isSplitable(unsigned Level) const {
 | 
						|
  assert(0 < Level && Level <= Levels && "Level out of range");
 | 
						|
  return DV[Level - 1].Splitable;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// DependenceAnalysis::Constraint methods
 | 
						|
 | 
						|
// If constraint is a point <X, Y>, returns X.
 | 
						|
// Otherwise assert.
 | 
						|
const SCEV *DependenceAnalysis::Constraint::getX() const {
 | 
						|
  assert(Kind == Point && "Kind should be Point");
 | 
						|
  return A;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// If constraint is a point <X, Y>, returns Y.
 | 
						|
// Otherwise assert.
 | 
						|
const SCEV *DependenceAnalysis::Constraint::getY() const {
 | 
						|
  assert(Kind == Point && "Kind should be Point");
 | 
						|
  return B;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// If constraint is a line AX + BY = C, returns A.
 | 
						|
// Otherwise assert.
 | 
						|
const SCEV *DependenceAnalysis::Constraint::getA() const {
 | 
						|
  assert((Kind == Line || Kind == Distance) &&
 | 
						|
         "Kind should be Line (or Distance)");
 | 
						|
  return A;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// If constraint is a line AX + BY = C, returns B.
 | 
						|
// Otherwise assert.
 | 
						|
const SCEV *DependenceAnalysis::Constraint::getB() const {
 | 
						|
  assert((Kind == Line || Kind == Distance) &&
 | 
						|
         "Kind should be Line (or Distance)");
 | 
						|
  return B;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// If constraint is a line AX + BY = C, returns C.
 | 
						|
// Otherwise assert.
 | 
						|
const SCEV *DependenceAnalysis::Constraint::getC() const {
 | 
						|
  assert((Kind == Line || Kind == Distance) &&
 | 
						|
         "Kind should be Line (or Distance)");
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// If constraint is a distance, returns D.
 | 
						|
// Otherwise assert.
 | 
						|
const SCEV *DependenceAnalysis::Constraint::getD() const {
 | 
						|
  assert(Kind == Distance && "Kind should be Distance");
 | 
						|
  return SE->getNegativeSCEV(C);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns the loop associated with this constraint.
 | 
						|
const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
 | 
						|
  assert((Kind == Distance || Kind == Line || Kind == Point) &&
 | 
						|
         "Kind should be Distance, Line, or Point");
 | 
						|
  return AssociatedLoop;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
 | 
						|
                                              const SCEV *Y,
 | 
						|
                                              const Loop *CurLoop) {
 | 
						|
  Kind = Point;
 | 
						|
  A = X;
 | 
						|
  B = Y;
 | 
						|
  AssociatedLoop = CurLoop;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
 | 
						|
                                             const SCEV *BB,
 | 
						|
                                             const SCEV *CC,
 | 
						|
                                             const Loop *CurLoop) {
 | 
						|
  Kind = Line;
 | 
						|
  A = AA;
 | 
						|
  B = BB;
 | 
						|
  C = CC;
 | 
						|
  AssociatedLoop = CurLoop;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
 | 
						|
                                                 const Loop *CurLoop) {
 | 
						|
  Kind = Distance;
 | 
						|
  A = SE->getConstant(D->getType(), 1);
 | 
						|
  B = SE->getNegativeSCEV(A);
 | 
						|
  C = SE->getNegativeSCEV(D);
 | 
						|
  AssociatedLoop = CurLoop;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::Constraint::setEmpty() {
 | 
						|
  Kind = Empty;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
 | 
						|
  SE = NewSE;
 | 
						|
  Kind = Any;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// For debugging purposes. Dumps the constraint out to OS.
 | 
						|
void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
 | 
						|
  if (isEmpty())
 | 
						|
    OS << " Empty\n";
 | 
						|
  else if (isAny())
 | 
						|
    OS << " Any\n";
 | 
						|
  else if (isPoint())
 | 
						|
    OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
 | 
						|
  else if (isDistance())
 | 
						|
    OS << " Distance is " << *getD() <<
 | 
						|
      " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
 | 
						|
  else if (isLine())
 | 
						|
    OS << " Line is " << *getA() << "*X + " <<
 | 
						|
      *getB() << "*Y = " << *getC() << "\n";
 | 
						|
  else
 | 
						|
    llvm_unreachable("unknown constraint type in Constraint::dump");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Updates X with the intersection
 | 
						|
// of the Constraints X and Y. Returns true if X has changed.
 | 
						|
// Corresponds to Figure 4 from the paper
 | 
						|
//
 | 
						|
//            Practical Dependence Testing
 | 
						|
//            Goff, Kennedy, Tseng
 | 
						|
//            PLDI 1991
 | 
						|
bool DependenceAnalysis::intersectConstraints(Constraint *X,
 | 
						|
                                              const Constraint *Y) {
 | 
						|
  ++DeltaApplications;
 | 
						|
  DEBUG(dbgs() << "\tintersect constraints\n");
 | 
						|
  DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
 | 
						|
  DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
 | 
						|
  assert(!Y->isPoint() && "Y must not be a Point");
 | 
						|
  if (X->isAny()) {
 | 
						|
    if (Y->isAny())
 | 
						|
      return false;
 | 
						|
    *X = *Y;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (X->isEmpty())
 | 
						|
    return false;
 | 
						|
  if (Y->isEmpty()) {
 | 
						|
    X->setEmpty();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (X->isDistance() && Y->isDistance()) {
 | 
						|
    DEBUG(dbgs() << "\t    intersect 2 distances\n");
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
 | 
						|
      return false;
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
 | 
						|
      X->setEmpty();
 | 
						|
      ++DeltaSuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Hmmm, interesting situation.
 | 
						|
    // I guess if either is constant, keep it and ignore the other.
 | 
						|
    if (isa<SCEVConstant>(Y->getD())) {
 | 
						|
      *X = *Y;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // At this point, the pseudo-code in Figure 4 of the paper
 | 
						|
  // checks if (X->isPoint() && Y->isPoint()).
 | 
						|
  // This case can't occur in our implementation,
 | 
						|
  // since a Point can only arise as the result of intersecting
 | 
						|
  // two Line constraints, and the right-hand value, Y, is never
 | 
						|
  // the result of an intersection.
 | 
						|
  assert(!(X->isPoint() && Y->isPoint()) &&
 | 
						|
         "We shouldn't ever see X->isPoint() && Y->isPoint()");
 | 
						|
 | 
						|
  if (X->isLine() && Y->isLine()) {
 | 
						|
    DEBUG(dbgs() << "\t    intersect 2 lines\n");
 | 
						|
    const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
 | 
						|
    const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
 | 
						|
      // slopes are equal, so lines are parallel
 | 
						|
      DEBUG(dbgs() << "\t\tsame slope\n");
 | 
						|
      Prod1 = SE->getMulExpr(X->getC(), Y->getB());
 | 
						|
      Prod2 = SE->getMulExpr(X->getB(), Y->getC());
 | 
						|
      if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
 | 
						|
        return false;
 | 
						|
      if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
 | 
						|
        X->setEmpty();
 | 
						|
        ++DeltaSuccesses;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
 | 
						|
      // slopes differ, so lines intersect
 | 
						|
      DEBUG(dbgs() << "\t\tdifferent slopes\n");
 | 
						|
      const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
 | 
						|
      const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
 | 
						|
      const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
 | 
						|
      const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
 | 
						|
      const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
 | 
						|
      const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
 | 
						|
      const SCEVConstant *C1A2_C2A1 =
 | 
						|
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
 | 
						|
      const SCEVConstant *C1B2_C2B1 =
 | 
						|
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
 | 
						|
      const SCEVConstant *A1B2_A2B1 =
 | 
						|
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
 | 
						|
      const SCEVConstant *A2B1_A1B2 =
 | 
						|
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
 | 
						|
      if (!C1B2_C2B1 || !C1A2_C2A1 ||
 | 
						|
          !A1B2_A2B1 || !A2B1_A1B2)
 | 
						|
        return false;
 | 
						|
      APInt Xtop = C1B2_C2B1->getValue()->getValue();
 | 
						|
      APInt Xbot = A1B2_A2B1->getValue()->getValue();
 | 
						|
      APInt Ytop = C1A2_C2A1->getValue()->getValue();
 | 
						|
      APInt Ybot = A2B1_A1B2->getValue()->getValue();
 | 
						|
      DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
 | 
						|
      DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
 | 
						|
      DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
 | 
						|
      DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
 | 
						|
      APInt Xq = Xtop; // these need to be initialized, even
 | 
						|
      APInt Xr = Xtop; // though they're just going to be overwritten
 | 
						|
      APInt::sdivrem(Xtop, Xbot, Xq, Xr);
 | 
						|
      APInt Yq = Ytop;
 | 
						|
      APInt Yr = Ytop;;
 | 
						|
      APInt::sdivrem(Ytop, Ybot, Yq, Yr);
 | 
						|
      if (Xr != 0 || Yr != 0) {
 | 
						|
        X->setEmpty();
 | 
						|
        ++DeltaSuccesses;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
 | 
						|
      if (Xq.slt(0) || Yq.slt(0)) {
 | 
						|
        X->setEmpty();
 | 
						|
        ++DeltaSuccesses;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (const SCEVConstant *CUB =
 | 
						|
          collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
 | 
						|
        APInt UpperBound = CUB->getValue()->getValue();
 | 
						|
        DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
 | 
						|
        if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
 | 
						|
          X->setEmpty();
 | 
						|
          ++DeltaSuccesses;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      X->setPoint(SE->getConstant(Xq),
 | 
						|
                  SE->getConstant(Yq),
 | 
						|
                  X->getAssociatedLoop());
 | 
						|
      ++DeltaSuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // if (X->isLine() && Y->isPoint()) This case can't occur.
 | 
						|
  assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
 | 
						|
 | 
						|
  if (X->isPoint() && Y->isLine()) {
 | 
						|
    DEBUG(dbgs() << "\t    intersect Point and Line\n");
 | 
						|
    const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
 | 
						|
    const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
 | 
						|
    const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
 | 
						|
      return false;
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
 | 
						|
      X->setEmpty();
 | 
						|
      ++DeltaSuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("shouldn't reach the end of Constraint intersection");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// DependenceAnalysis methods
 | 
						|
 | 
						|
// For debugging purposes. Dumps a dependence to OS.
 | 
						|
void Dependence::dump(raw_ostream &OS) const {
 | 
						|
  bool Splitable = false;
 | 
						|
  if (isConfused())
 | 
						|
    OS << "confused";
 | 
						|
  else {
 | 
						|
    if (isConsistent())
 | 
						|
      OS << "consistent ";
 | 
						|
    if (isFlow())
 | 
						|
      OS << "flow";
 | 
						|
    else if (isOutput())
 | 
						|
      OS << "output";
 | 
						|
    else if (isAnti())
 | 
						|
      OS << "anti";
 | 
						|
    else if (isInput())
 | 
						|
      OS << "input";
 | 
						|
    unsigned Levels = getLevels();
 | 
						|
    if (Levels) {
 | 
						|
      OS << " [";
 | 
						|
      for (unsigned II = 1; II <= Levels; ++II) {
 | 
						|
        if (isSplitable(II))
 | 
						|
          Splitable = true;
 | 
						|
        if (isPeelFirst(II))
 | 
						|
          OS << 'p';
 | 
						|
        const SCEV *Distance = getDistance(II);
 | 
						|
        if (Distance)
 | 
						|
          OS << *Distance;
 | 
						|
        else if (isScalar(II))
 | 
						|
          OS << "S";
 | 
						|
        else {
 | 
						|
          unsigned Direction = getDirection(II);
 | 
						|
          if (Direction == DVEntry::ALL)
 | 
						|
            OS << "*";
 | 
						|
          else {
 | 
						|
            if (Direction & DVEntry::LT)
 | 
						|
              OS << "<";
 | 
						|
            if (Direction & DVEntry::EQ)
 | 
						|
              OS << "=";
 | 
						|
            if (Direction & DVEntry::GT)
 | 
						|
              OS << ">";
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (isPeelLast(II))
 | 
						|
          OS << 'p';
 | 
						|
        if (II < Levels)
 | 
						|
          OS << " ";
 | 
						|
      }
 | 
						|
      if (isLoopIndependent())
 | 
						|
        OS << "|<";
 | 
						|
      OS << "]";
 | 
						|
      if (Splitable)
 | 
						|
        OS << " splitable";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << "!\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static
 | 
						|
AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
 | 
						|
                                                  const Value *A,
 | 
						|
                                                  const Value *B) {
 | 
						|
  const Value *AObj = GetUnderlyingObject(A);
 | 
						|
  const Value *BObj = GetUnderlyingObject(B);
 | 
						|
  return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
 | 
						|
                   BObj, AA->getTypeStoreSize(BObj->getType()));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if the load or store can be analyzed. Atomic and volatile
 | 
						|
// operations have properties which this analysis does not understand.
 | 
						|
static
 | 
						|
bool isLoadOrStore(const Instruction *I) {
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->isUnordered();
 | 
						|
  else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->isUnordered();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static
 | 
						|
const Value *getPointerOperand(const Instruction *I) {
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->getPointerOperand();
 | 
						|
  if (const StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->getPointerOperand();
 | 
						|
  llvm_unreachable("Value is not load or store instruction");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Examines the loop nesting of the Src and Dst
 | 
						|
// instructions and establishes their shared loops. Sets the variables
 | 
						|
// CommonLevels, SrcLevels, and MaxLevels.
 | 
						|
// The source and destination instructions needn't be contained in the same
 | 
						|
// loop. The routine establishNestingLevels finds the level of most deeply
 | 
						|
// nested loop that contains them both, CommonLevels. An instruction that's
 | 
						|
// not contained in a loop is at level = 0. MaxLevels is equal to the level
 | 
						|
// of the source plus the level of the destination, minus CommonLevels.
 | 
						|
// This lets us allocate vectors MaxLevels in length, with room for every
 | 
						|
// distinct loop referenced in both the source and destination subscripts.
 | 
						|
// The variable SrcLevels is the nesting depth of the source instruction.
 | 
						|
// It's used to help calculate distinct loops referenced by the destination.
 | 
						|
// Here's the map from loops to levels:
 | 
						|
//            0 - unused
 | 
						|
//            1 - outermost common loop
 | 
						|
//          ... - other common loops
 | 
						|
// CommonLevels - innermost common loop
 | 
						|
//          ... - loops containing Src but not Dst
 | 
						|
//    SrcLevels - innermost loop containing Src but not Dst
 | 
						|
//          ... - loops containing Dst but not Src
 | 
						|
//    MaxLevels - innermost loops containing Dst but not Src
 | 
						|
// Consider the follow code fragment:
 | 
						|
//   for (a = ...) {
 | 
						|
//     for (b = ...) {
 | 
						|
//       for (c = ...) {
 | 
						|
//         for (d = ...) {
 | 
						|
//           A[] = ...;
 | 
						|
//         }
 | 
						|
//       }
 | 
						|
//       for (e = ...) {
 | 
						|
//         for (f = ...) {
 | 
						|
//           for (g = ...) {
 | 
						|
//             ... = A[];
 | 
						|
//           }
 | 
						|
//         }
 | 
						|
//       }
 | 
						|
//     }
 | 
						|
//   }
 | 
						|
// If we're looking at the possibility of a dependence between the store
 | 
						|
// to A (the Src) and the load from A (the Dst), we'll note that they
 | 
						|
// have 2 loops in common, so CommonLevels will equal 2 and the direction
 | 
						|
// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
 | 
						|
// A map from loop names to loop numbers would look like
 | 
						|
//     a - 1
 | 
						|
//     b - 2 = CommonLevels
 | 
						|
//     c - 3
 | 
						|
//     d - 4 = SrcLevels
 | 
						|
//     e - 5
 | 
						|
//     f - 6
 | 
						|
//     g - 7 = MaxLevels
 | 
						|
void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
 | 
						|
                                                const Instruction *Dst) {
 | 
						|
  const BasicBlock *SrcBlock = Src->getParent();
 | 
						|
  const BasicBlock *DstBlock = Dst->getParent();
 | 
						|
  unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
 | 
						|
  unsigned DstLevel = LI->getLoopDepth(DstBlock);
 | 
						|
  const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
 | 
						|
  const Loop *DstLoop = LI->getLoopFor(DstBlock);
 | 
						|
  SrcLevels = SrcLevel;
 | 
						|
  MaxLevels = SrcLevel + DstLevel;
 | 
						|
  while (SrcLevel > DstLevel) {
 | 
						|
    SrcLoop = SrcLoop->getParentLoop();
 | 
						|
    SrcLevel--;
 | 
						|
  }
 | 
						|
  while (DstLevel > SrcLevel) {
 | 
						|
    DstLoop = DstLoop->getParentLoop();
 | 
						|
    DstLevel--;
 | 
						|
  }
 | 
						|
  while (SrcLoop != DstLoop) {
 | 
						|
    SrcLoop = SrcLoop->getParentLoop();
 | 
						|
    DstLoop = DstLoop->getParentLoop();
 | 
						|
    SrcLevel--;
 | 
						|
  }
 | 
						|
  CommonLevels = SrcLevel;
 | 
						|
  MaxLevels -= CommonLevels;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Given one of the loops containing the source, return
 | 
						|
// its level index in our numbering scheme.
 | 
						|
unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
 | 
						|
  return SrcLoop->getLoopDepth();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Given one of the loops containing the destination,
 | 
						|
// return its level index in our numbering scheme.
 | 
						|
unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
 | 
						|
  unsigned D = DstLoop->getLoopDepth();
 | 
						|
  if (D > CommonLevels)
 | 
						|
    return D - CommonLevels + SrcLevels;
 | 
						|
  else
 | 
						|
    return D;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true if Expression is loop invariant in LoopNest.
 | 
						|
bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
 | 
						|
                                         const Loop *LoopNest) const {
 | 
						|
  if (!LoopNest)
 | 
						|
    return true;
 | 
						|
  return SE->isLoopInvariant(Expression, LoopNest) &&
 | 
						|
    isLoopInvariant(Expression, LoopNest->getParentLoop());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// Finds the set of loops from the LoopNest that
 | 
						|
// have a level <= CommonLevels and are referred to by the SCEV Expression.
 | 
						|
void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
 | 
						|
                                            const Loop *LoopNest,
 | 
						|
                                            SmallBitVector &Loops) const {
 | 
						|
  while (LoopNest) {
 | 
						|
    unsigned Level = LoopNest->getLoopDepth();
 | 
						|
    if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
 | 
						|
      Loops.set(Level);
 | 
						|
    LoopNest = LoopNest->getParentLoop();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// removeMatchingExtensions - Examines a subscript pair.
 | 
						|
// If the source and destination are identically sign (or zero)
 | 
						|
// extended, it strips off the extension in an effect to simplify
 | 
						|
// the actual analysis.
 | 
						|
void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
 | 
						|
  const SCEV *Src = Pair->Src;
 | 
						|
  const SCEV *Dst = Pair->Dst;
 | 
						|
  if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
 | 
						|
      (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
 | 
						|
    const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
 | 
						|
    const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
 | 
						|
    if (SrcCast->getType() == DstCast->getType()) {
 | 
						|
      Pair->Src = SrcCast->getOperand();
 | 
						|
      Pair->Dst = DstCast->getOperand();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Examine the scev and return true iff it's linear.
 | 
						|
// Collect any loops mentioned in the set of "Loops".
 | 
						|
bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
 | 
						|
                                           const Loop *LoopNest,
 | 
						|
                                           SmallBitVector &Loops) {
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
 | 
						|
  if (!AddRec)
 | 
						|
    return isLoopInvariant(Src, LoopNest);
 | 
						|
  const SCEV *Start = AddRec->getStart();
 | 
						|
  const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | 
						|
  if (!isLoopInvariant(Step, LoopNest))
 | 
						|
    return false;
 | 
						|
  Loops.set(mapSrcLoop(AddRec->getLoop()));
 | 
						|
  return checkSrcSubscript(Start, LoopNest, Loops);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// Examine the scev and return true iff it's linear.
 | 
						|
// Collect any loops mentioned in the set of "Loops".
 | 
						|
bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
 | 
						|
                                           const Loop *LoopNest,
 | 
						|
                                           SmallBitVector &Loops) {
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
 | 
						|
  if (!AddRec)
 | 
						|
    return isLoopInvariant(Dst, LoopNest);
 | 
						|
  const SCEV *Start = AddRec->getStart();
 | 
						|
  const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | 
						|
  if (!isLoopInvariant(Step, LoopNest))
 | 
						|
    return false;
 | 
						|
  Loops.set(mapDstLoop(AddRec->getLoop()));
 | 
						|
  return checkDstSubscript(Start, LoopNest, Loops);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Examines the subscript pair (the Src and Dst SCEVs)
 | 
						|
// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
 | 
						|
// Collects the associated loops in a set.
 | 
						|
DependenceAnalysis::Subscript::ClassificationKind
 | 
						|
DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
 | 
						|
                                 const SCEV *Dst, const Loop *DstLoopNest,
 | 
						|
                                 SmallBitVector &Loops) {
 | 
						|
  SmallBitVector SrcLoops(MaxLevels + 1);
 | 
						|
  SmallBitVector DstLoops(MaxLevels + 1);
 | 
						|
  if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
 | 
						|
    return Subscript::NonLinear;
 | 
						|
  if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
 | 
						|
    return Subscript::NonLinear;
 | 
						|
  Loops = SrcLoops;
 | 
						|
  Loops |= DstLoops;
 | 
						|
  unsigned N = Loops.count();
 | 
						|
  if (N == 0)
 | 
						|
    return Subscript::ZIV;
 | 
						|
  if (N == 1)
 | 
						|
    return Subscript::SIV;
 | 
						|
  if (N == 2 && (SrcLoops.count() == 0 ||
 | 
						|
                 DstLoops.count() == 0 ||
 | 
						|
                 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
 | 
						|
    return Subscript::RDIV;
 | 
						|
  return Subscript::MIV;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// A wrapper around SCEV::isKnownPredicate.
 | 
						|
// Looks for cases where we're interested in comparing for equality.
 | 
						|
// If both X and Y have been identically sign or zero extended,
 | 
						|
// it strips off the (confusing) extensions before invoking
 | 
						|
// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
 | 
						|
// will be similarly updated.
 | 
						|
//
 | 
						|
// If SCEV::isKnownPredicate can't prove the predicate,
 | 
						|
// we try simple subtraction, which seems to help in some cases
 | 
						|
// involving symbolics.
 | 
						|
bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
 | 
						|
                                          const SCEV *X,
 | 
						|
                                          const SCEV *Y) const {
 | 
						|
  if (Pred == CmpInst::ICMP_EQ ||
 | 
						|
      Pred == CmpInst::ICMP_NE) {
 | 
						|
    if ((isa<SCEVSignExtendExpr>(X) &&
 | 
						|
         isa<SCEVSignExtendExpr>(Y)) ||
 | 
						|
        (isa<SCEVZeroExtendExpr>(X) &&
 | 
						|
         isa<SCEVZeroExtendExpr>(Y))) {
 | 
						|
      const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
 | 
						|
      const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
 | 
						|
      const SCEV *Xop = CX->getOperand();
 | 
						|
      const SCEV *Yop = CY->getOperand();
 | 
						|
      if (Xop->getType() == Yop->getType()) {
 | 
						|
        X = Xop;
 | 
						|
        Y = Yop;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (SE->isKnownPredicate(Pred, X, Y))
 | 
						|
    return true;
 | 
						|
  // If SE->isKnownPredicate can't prove the condition,
 | 
						|
  // we try the brute-force approach of subtracting
 | 
						|
  // and testing the difference.
 | 
						|
  // By testing with SE->isKnownPredicate first, we avoid
 | 
						|
  // the possibility of overflow when the arguments are constants.
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(X, Y);
 | 
						|
  switch (Pred) {
 | 
						|
  case CmpInst::ICMP_EQ:
 | 
						|
    return Delta->isZero();
 | 
						|
  case CmpInst::ICMP_NE:
 | 
						|
    return SE->isKnownNonZero(Delta);
 | 
						|
  case CmpInst::ICMP_SGE:
 | 
						|
    return SE->isKnownNonNegative(Delta);
 | 
						|
  case CmpInst::ICMP_SLE:
 | 
						|
    return SE->isKnownNonPositive(Delta);
 | 
						|
  case CmpInst::ICMP_SGT:
 | 
						|
    return SE->isKnownPositive(Delta);
 | 
						|
  case CmpInst::ICMP_SLT:
 | 
						|
    return SE->isKnownNegative(Delta);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected predicate in isKnownPredicate");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// All subscripts are all the same type.
 | 
						|
// Loop bound may be smaller (e.g., a char).
 | 
						|
// Should zero extend loop bound, since it's always >= 0.
 | 
						|
// This routine collects upper bound and extends if needed.
 | 
						|
// Return null if no bound available.
 | 
						|
const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
 | 
						|
                                                  Type *T) const {
 | 
						|
  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | 
						|
    const SCEV *UB = SE->getBackedgeTakenCount(L);
 | 
						|
    return SE->getNoopOrZeroExtend(UB, T);
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
 | 
						|
// If the cast fails, returns NULL.
 | 
						|
const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
 | 
						|
                                                                  Type *T
 | 
						|
                                                                  ) const {
 | 
						|
  if (const SCEV *UB = collectUpperBound(L, T))
 | 
						|
    return dyn_cast<SCEVConstant>(UB);
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// testZIV -
 | 
						|
// When we have a pair of subscripts of the form [c1] and [c2],
 | 
						|
// where c1 and c2 are both loop invariant, we attack it using
 | 
						|
// the ZIV test. Basically, we test by comparing the two values,
 | 
						|
// but there are actually three possible results:
 | 
						|
// 1) the values are equal, so there's a dependence
 | 
						|
// 2) the values are different, so there's no dependence
 | 
						|
// 3) the values might be equal, so we have to assume a dependence.
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::testZIV(const SCEV *Src,
 | 
						|
                                 const SCEV *Dst,
 | 
						|
                                 FullDependence &Result) const {
 | 
						|
  DEBUG(dbgs() << "    src = " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | 
						|
  ++ZIVapplications;
 | 
						|
  if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
 | 
						|
    DEBUG(dbgs() << "    provably dependent\n");
 | 
						|
    return false; // provably dependent
 | 
						|
  }
 | 
						|
  if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
 | 
						|
    DEBUG(dbgs() << "    provably independent\n");
 | 
						|
    ++ZIVindependence;
 | 
						|
    return true; // provably independent
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "    possibly dependent\n");
 | 
						|
  Result.Consistent = false;
 | 
						|
  return false; // possibly dependent
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// strongSIVtest -
 | 
						|
// From the paper, Practical Dependence Testing, Section 4.2.1
 | 
						|
//
 | 
						|
// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
 | 
						|
// where i is an induction variable, c1 and c2 are loop invariant,
 | 
						|
//  and a is a constant, we can solve it exactly using the Strong SIV test.
 | 
						|
//
 | 
						|
// Can prove independence. Failing that, can compute distance (and direction).
 | 
						|
// In the presence of symbolic terms, we can sometimes make progress.
 | 
						|
//
 | 
						|
// If there's a dependence,
 | 
						|
//
 | 
						|
//    c1 + a*i = c2 + a*i'
 | 
						|
//
 | 
						|
// The dependence distance is
 | 
						|
//
 | 
						|
//    d = i' - i = (c1 - c2)/a
 | 
						|
//
 | 
						|
// A dependence only exists if d is an integer and abs(d) <= U, where U is the
 | 
						|
// loop's upper bound. If a dependence exists, the dependence direction is
 | 
						|
// defined as
 | 
						|
//
 | 
						|
//                { < if d > 0
 | 
						|
//    direction = { = if d = 0
 | 
						|
//                { > if d < 0
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
 | 
						|
                                       const SCEV *SrcConst,
 | 
						|
                                       const SCEV *DstConst,
 | 
						|
                                       const Loop *CurLoop,
 | 
						|
                                       unsigned Level,
 | 
						|
                                       FullDependence &Result,
 | 
						|
                                       Constraint &NewConstraint) const {
 | 
						|
  DEBUG(dbgs() << "\tStrong SIV test\n");
 | 
						|
  DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
 | 
						|
  DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
 | 
						|
  DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
 | 
						|
  DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
 | 
						|
  ++StrongSIVapplications;
 | 
						|
  assert(0 < Level && Level <= CommonLevels && "level out of range");
 | 
						|
  Level--;
 | 
						|
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
 | 
						|
  DEBUG(dbgs() << "\t    Delta = " << *Delta);
 | 
						|
  DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
 | 
						|
 | 
						|
  // check that |Delta| < iteration count
 | 
						|
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | 
						|
    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
 | 
						|
    DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
 | 
						|
    const SCEV *AbsDelta =
 | 
						|
      SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
 | 
						|
    const SCEV *AbsCoeff =
 | 
						|
      SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
 | 
						|
    const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
 | 
						|
      // Distance greater than trip count - no dependence
 | 
						|
      ++StrongSIVindependence;
 | 
						|
      ++StrongSIVsuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Can we compute distance?
 | 
						|
  if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
 | 
						|
    APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
 | 
						|
    APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
 | 
						|
    APInt Distance  = ConstDelta; // these need to be initialized
 | 
						|
    APInt Remainder = ConstDelta;
 | 
						|
    APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
 | 
						|
    DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
 | 
						|
    DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
 | 
						|
    // Make sure Coeff divides Delta exactly
 | 
						|
    if (Remainder != 0) {
 | 
						|
      // Coeff doesn't divide Distance, no dependence
 | 
						|
      ++StrongSIVindependence;
 | 
						|
      ++StrongSIVsuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    Result.DV[Level].Distance = SE->getConstant(Distance);
 | 
						|
    NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
 | 
						|
    if (Distance.sgt(0))
 | 
						|
      Result.DV[Level].Direction &= Dependence::DVEntry::LT;
 | 
						|
    else if (Distance.slt(0))
 | 
						|
      Result.DV[Level].Direction &= Dependence::DVEntry::GT;
 | 
						|
    else
 | 
						|
      Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
 | 
						|
    ++StrongSIVsuccesses;
 | 
						|
  }
 | 
						|
  else if (Delta->isZero()) {
 | 
						|
    // since 0/X == 0
 | 
						|
    Result.DV[Level].Distance = Delta;
 | 
						|
    NewConstraint.setDistance(Delta, CurLoop);
 | 
						|
    Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
 | 
						|
    ++StrongSIVsuccesses;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (Coeff->isOne()) {
 | 
						|
      DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
 | 
						|
      Result.DV[Level].Distance = Delta; // since X/1 == X
 | 
						|
      NewConstraint.setDistance(Delta, CurLoop);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      Result.Consistent = false;
 | 
						|
      NewConstraint.setLine(Coeff,
 | 
						|
                            SE->getNegativeSCEV(Coeff),
 | 
						|
                            SE->getNegativeSCEV(Delta), CurLoop);
 | 
						|
    }
 | 
						|
 | 
						|
    // maybe we can get a useful direction
 | 
						|
    bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
 | 
						|
    bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
 | 
						|
    bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
 | 
						|
    bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
 | 
						|
    bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
 | 
						|
    // The double negatives above are confusing.
 | 
						|
    // It helps to read !SE->isKnownNonZero(Delta)
 | 
						|
    // as "Delta might be Zero"
 | 
						|
    unsigned NewDirection = Dependence::DVEntry::NONE;
 | 
						|
    if ((DeltaMaybePositive && CoeffMaybePositive) ||
 | 
						|
        (DeltaMaybeNegative && CoeffMaybeNegative))
 | 
						|
      NewDirection = Dependence::DVEntry::LT;
 | 
						|
    if (DeltaMaybeZero)
 | 
						|
      NewDirection |= Dependence::DVEntry::EQ;
 | 
						|
    if ((DeltaMaybeNegative && CoeffMaybePositive) ||
 | 
						|
        (DeltaMaybePositive && CoeffMaybeNegative))
 | 
						|
      NewDirection |= Dependence::DVEntry::GT;
 | 
						|
    if (NewDirection < Result.DV[Level].Direction)
 | 
						|
      ++StrongSIVsuccesses;
 | 
						|
    Result.DV[Level].Direction &= NewDirection;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// weakCrossingSIVtest -
 | 
						|
// From the paper, Practical Dependence Testing, Section 4.2.2
 | 
						|
//
 | 
						|
// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
 | 
						|
// where i is an induction variable, c1 and c2 are loop invariant,
 | 
						|
// and a is a constant, we can solve it exactly using the
 | 
						|
// Weak-Crossing SIV test.
 | 
						|
//
 | 
						|
// Given c1 + a*i = c2 - a*i', we can look for the intersection of
 | 
						|
// the two lines, where i = i', yielding
 | 
						|
//
 | 
						|
//    c1 + a*i = c2 - a*i
 | 
						|
//    2a*i = c2 - c1
 | 
						|
//    i = (c2 - c1)/2a
 | 
						|
//
 | 
						|
// If i < 0, there is no dependence.
 | 
						|
// If i > upperbound, there is no dependence.
 | 
						|
// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
 | 
						|
// If i = upperbound, there's a dependence with distance = 0.
 | 
						|
// If i is integral, there's a dependence (all directions).
 | 
						|
// If the non-integer part = 1/2, there's a dependence (<> directions).
 | 
						|
// Otherwise, there's no dependence.
 | 
						|
//
 | 
						|
// Can prove independence. Failing that,
 | 
						|
// can sometimes refine the directions.
 | 
						|
// Can determine iteration for splitting.
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
 | 
						|
                                             const SCEV *SrcConst,
 | 
						|
                                             const SCEV *DstConst,
 | 
						|
                                             const Loop *CurLoop,
 | 
						|
                                             unsigned Level,
 | 
						|
                                             FullDependence &Result,
 | 
						|
                                             Constraint &NewConstraint,
 | 
						|
                                             const SCEV *&SplitIter) const {
 | 
						|
  DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
 | 
						|
  DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | 
						|
  ++WeakCrossingSIVapplications;
 | 
						|
  assert(0 < Level && Level <= CommonLevels && "Level out of range");
 | 
						|
  Level--;
 | 
						|
  Result.Consistent = false;
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | 
						|
  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | 
						|
  NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
 | 
						|
  if (Delta->isZero()) {
 | 
						|
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
 | 
						|
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
 | 
						|
    ++WeakCrossingSIVsuccesses;
 | 
						|
    if (!Result.DV[Level].Direction) {
 | 
						|
      ++WeakCrossingSIVindependence;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    Result.DV[Level].Distance = Delta; // = 0
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
 | 
						|
  if (!ConstCoeff)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Result.DV[Level].Splitable = true;
 | 
						|
  if (SE->isKnownNegative(ConstCoeff)) {
 | 
						|
    ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
 | 
						|
    assert(ConstCoeff &&
 | 
						|
           "dynamic cast of negative of ConstCoeff should yield constant");
 | 
						|
    Delta = SE->getNegativeSCEV(Delta);
 | 
						|
  }
 | 
						|
  assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
 | 
						|
 | 
						|
  // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
 | 
						|
  SplitIter =
 | 
						|
    SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
 | 
						|
                                    Delta),
 | 
						|
                    SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
 | 
						|
                                   ConstCoeff));
 | 
						|
  DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
 | 
						|
 | 
						|
  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
 | 
						|
  if (!ConstDelta)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We're certain that ConstCoeff > 0; therefore,
 | 
						|
  // if Delta < 0, then no dependence.
 | 
						|
  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
 | 
						|
  if (SE->isKnownNegative(Delta)) {
 | 
						|
    // No dependence, Delta < 0
 | 
						|
    ++WeakCrossingSIVindependence;
 | 
						|
    ++WeakCrossingSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We're certain that Delta > 0 and ConstCoeff > 0.
 | 
						|
  // Check Delta/(2*ConstCoeff) against upper loop bound
 | 
						|
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | 
						|
    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
 | 
						|
    const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
 | 
						|
    const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
 | 
						|
                                    ConstantTwo);
 | 
						|
    DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
 | 
						|
      // Delta too big, no dependence
 | 
						|
      ++WeakCrossingSIVindependence;
 | 
						|
      ++WeakCrossingSIVsuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
 | 
						|
      // i = i' = UB
 | 
						|
      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
 | 
						|
      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
 | 
						|
      ++WeakCrossingSIVsuccesses;
 | 
						|
      if (!Result.DV[Level].Direction) {
 | 
						|
        ++WeakCrossingSIVindependence;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      Result.DV[Level].Splitable = false;
 | 
						|
      Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // check that Coeff divides Delta
 | 
						|
  APInt APDelta = ConstDelta->getValue()->getValue();
 | 
						|
  APInt APCoeff = ConstCoeff->getValue()->getValue();
 | 
						|
  APInt Distance = APDelta; // these need to be initialzed
 | 
						|
  APInt Remainder = APDelta;
 | 
						|
  APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
 | 
						|
  DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
 | 
						|
  if (Remainder != 0) {
 | 
						|
    // Coeff doesn't divide Delta, no dependence
 | 
						|
    ++WeakCrossingSIVindependence;
 | 
						|
    ++WeakCrossingSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
 | 
						|
 | 
						|
  // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
 | 
						|
  APInt Two = APInt(Distance.getBitWidth(), 2, true);
 | 
						|
  Remainder = Distance.srem(Two);
 | 
						|
  DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
 | 
						|
  if (Remainder != 0) {
 | 
						|
    // Equal direction isn't possible
 | 
						|
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
 | 
						|
    ++WeakCrossingSIVsuccesses;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Kirch's algorithm, from
 | 
						|
//
 | 
						|
//        Optimizing Supercompilers for Supercomputers
 | 
						|
//        Michael Wolfe
 | 
						|
//        MIT Press, 1989
 | 
						|
//
 | 
						|
// Program 2.1, page 29.
 | 
						|
// Computes the GCD of AM and BM.
 | 
						|
// Also finds a solution to the equation ax - by = gdc(a, b).
 | 
						|
// Returns true iff the gcd divides Delta.
 | 
						|
static
 | 
						|
bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
 | 
						|
             APInt &G, APInt &X, APInt &Y) {
 | 
						|
  APInt A0(Bits, 1, true), A1(Bits, 0, true);
 | 
						|
  APInt B0(Bits, 0, true), B1(Bits, 1, true);
 | 
						|
  APInt G0 = AM.abs();
 | 
						|
  APInt G1 = BM.abs();
 | 
						|
  APInt Q = G0; // these need to be initialized
 | 
						|
  APInt R = G0;
 | 
						|
  APInt::sdivrem(G0, G1, Q, R);
 | 
						|
  while (R != 0) {
 | 
						|
    APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
 | 
						|
    APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
 | 
						|
    G0 = G1; G1 = R;
 | 
						|
    APInt::sdivrem(G0, G1, Q, R);
 | 
						|
  }
 | 
						|
  G = G1;
 | 
						|
  DEBUG(dbgs() << "\t    GCD = " << G << "\n");
 | 
						|
  X = AM.slt(0) ? -A1 : A1;
 | 
						|
  Y = BM.slt(0) ? B1 : -B1;
 | 
						|
 | 
						|
  // make sure gcd divides Delta
 | 
						|
  R = Delta.srem(G);
 | 
						|
  if (R != 0)
 | 
						|
    return true; // gcd doesn't divide Delta, no dependence
 | 
						|
  Q = Delta.sdiv(G);
 | 
						|
  X *= Q;
 | 
						|
  Y *= Q;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static
 | 
						|
APInt floorOfQuotient(APInt A, APInt B) {
 | 
						|
  APInt Q = A; // these need to be initialized
 | 
						|
  APInt R = A;
 | 
						|
  APInt::sdivrem(A, B, Q, R);
 | 
						|
  if (R == 0)
 | 
						|
    return Q;
 | 
						|
  if ((A.sgt(0) && B.sgt(0)) ||
 | 
						|
      (A.slt(0) && B.slt(0)))
 | 
						|
    return Q;
 | 
						|
  else
 | 
						|
    return Q - 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static
 | 
						|
APInt ceilingOfQuotient(APInt A, APInt B) {
 | 
						|
  APInt Q = A; // these need to be initialized
 | 
						|
  APInt R = A;
 | 
						|
  APInt::sdivrem(A, B, Q, R);
 | 
						|
  if (R == 0)
 | 
						|
    return Q;
 | 
						|
  if ((A.sgt(0) && B.sgt(0)) ||
 | 
						|
      (A.slt(0) && B.slt(0)))
 | 
						|
    return Q + 1;
 | 
						|
  else
 | 
						|
    return Q;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static
 | 
						|
APInt maxAPInt(APInt A, APInt B) {
 | 
						|
  return A.sgt(B) ? A : B;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static
 | 
						|
APInt minAPInt(APInt A, APInt B) {
 | 
						|
  return A.slt(B) ? A : B;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// exactSIVtest -
 | 
						|
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
 | 
						|
// where i is an induction variable, c1 and c2 are loop invariant, and a1
 | 
						|
// and a2 are constant, we can solve it exactly using an algorithm developed
 | 
						|
// by Banerjee and Wolfe. See Section 2.5.3 in
 | 
						|
//
 | 
						|
//        Optimizing Supercompilers for Supercomputers
 | 
						|
//        Michael Wolfe
 | 
						|
//        MIT Press, 1989
 | 
						|
//
 | 
						|
// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
 | 
						|
// so use them if possible. They're also a bit better with symbolics and,
 | 
						|
// in the case of the strong SIV test, can compute Distances.
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
 | 
						|
                                      const SCEV *DstCoeff,
 | 
						|
                                      const SCEV *SrcConst,
 | 
						|
                                      const SCEV *DstConst,
 | 
						|
                                      const Loop *CurLoop,
 | 
						|
                                      unsigned Level,
 | 
						|
                                      FullDependence &Result,
 | 
						|
                                      Constraint &NewConstraint) const {
 | 
						|
  DEBUG(dbgs() << "\tExact SIV test\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | 
						|
  ++ExactSIVapplications;
 | 
						|
  assert(0 < Level && Level <= CommonLevels && "Level out of range");
 | 
						|
  Level--;
 | 
						|
  Result.Consistent = false;
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | 
						|
  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | 
						|
  NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
 | 
						|
                        Delta, CurLoop);
 | 
						|
  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
 | 
						|
  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
 | 
						|
  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
 | 
						|
  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // find gcd
 | 
						|
  APInt G, X, Y;
 | 
						|
  APInt AM = ConstSrcCoeff->getValue()->getValue();
 | 
						|
  APInt BM = ConstDstCoeff->getValue()->getValue();
 | 
						|
  unsigned Bits = AM.getBitWidth();
 | 
						|
  if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
 | 
						|
    // gcd doesn't divide Delta, no dependence
 | 
						|
    ++ExactSIVindependence;
 | 
						|
    ++ExactSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
 | 
						|
 | 
						|
  // since SCEV construction normalizes, LM = 0
 | 
						|
  APInt UM(Bits, 1, true);
 | 
						|
  bool UMvalid = false;
 | 
						|
  // UM is perhaps unavailable, let's check
 | 
						|
  if (const SCEVConstant *CUB =
 | 
						|
      collectConstantUpperBound(CurLoop, Delta->getType())) {
 | 
						|
    UM = CUB->getValue()->getValue();
 | 
						|
    DEBUG(dbgs() << "\t    UM = " << UM << "\n");
 | 
						|
    UMvalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt TU(APInt::getSignedMaxValue(Bits));
 | 
						|
  APInt TL(APInt::getSignedMinValue(Bits));
 | 
						|
 | 
						|
  // test(BM/G, LM-X) and test(-BM/G, X-UM)
 | 
						|
  APInt TMUL = BM.sdiv(G);
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    if (UMvalid) {
 | 
						|
      TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    if (UMvalid) {
 | 
						|
      TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
 | 
						|
  TMUL = AM.sdiv(G);
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    if (UMvalid) {
 | 
						|
      TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    if (UMvalid) {
 | 
						|
      TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (TL.sgt(TU)) {
 | 
						|
    ++ExactSIVindependence;
 | 
						|
    ++ExactSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // explore directions
 | 
						|
  unsigned NewDirection = Dependence::DVEntry::NONE;
 | 
						|
 | 
						|
  // less than
 | 
						|
  APInt SaveTU(TU); // save these
 | 
						|
  APInt SaveTL(TL);
 | 
						|
  DEBUG(dbgs() << "\t    exploring LT direction\n");
 | 
						|
  TMUL = AM - BM;
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
 | 
						|
  }
 | 
						|
  if (TL.sle(TU)) {
 | 
						|
    NewDirection |= Dependence::DVEntry::LT;
 | 
						|
    ++ExactSIVsuccesses;
 | 
						|
  }
 | 
						|
 | 
						|
  // equal
 | 
						|
  TU = SaveTU; // restore
 | 
						|
  TL = SaveTL;
 | 
						|
  DEBUG(dbgs() << "\t    exploring EQ direction\n");
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
 | 
						|
  }
 | 
						|
  TMUL = BM - AM;
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
 | 
						|
  }
 | 
						|
  if (TL.sle(TU)) {
 | 
						|
    NewDirection |= Dependence::DVEntry::EQ;
 | 
						|
    ++ExactSIVsuccesses;
 | 
						|
  }
 | 
						|
 | 
						|
  // greater than
 | 
						|
  TU = SaveTU; // restore
 | 
						|
  TL = SaveTL;
 | 
						|
  DEBUG(dbgs() << "\t    exploring GT direction\n");
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
 | 
						|
  }
 | 
						|
  if (TL.sle(TU)) {
 | 
						|
    NewDirection |= Dependence::DVEntry::GT;
 | 
						|
    ++ExactSIVsuccesses;
 | 
						|
  }
 | 
						|
 | 
						|
  // finished
 | 
						|
  Result.DV[Level].Direction &= NewDirection;
 | 
						|
  if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
 | 
						|
    ++ExactSIVindependence;
 | 
						|
  return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// Return true if the divisor evenly divides the dividend.
 | 
						|
static
 | 
						|
bool isRemainderZero(const SCEVConstant *Dividend,
 | 
						|
                     const SCEVConstant *Divisor) {
 | 
						|
  APInt ConstDividend = Dividend->getValue()->getValue();
 | 
						|
  APInt ConstDivisor = Divisor->getValue()->getValue();
 | 
						|
  return ConstDividend.srem(ConstDivisor) == 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// weakZeroSrcSIVtest -
 | 
						|
// From the paper, Practical Dependence Testing, Section 4.2.2
 | 
						|
//
 | 
						|
// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
 | 
						|
// where i is an induction variable, c1 and c2 are loop invariant,
 | 
						|
// and a is a constant, we can solve it exactly using the
 | 
						|
// Weak-Zero SIV test.
 | 
						|
//
 | 
						|
// Given
 | 
						|
//
 | 
						|
//    c1 = c2 + a*i
 | 
						|
//
 | 
						|
// we get
 | 
						|
//
 | 
						|
//    (c1 - c2)/a = i
 | 
						|
//
 | 
						|
// If i is not an integer, there's no dependence.
 | 
						|
// If i < 0 or > UB, there's no dependence.
 | 
						|
// If i = 0, the direction is <= and peeling the
 | 
						|
// 1st iteration will break the dependence.
 | 
						|
// If i = UB, the direction is >= and peeling the
 | 
						|
// last iteration will break the dependence.
 | 
						|
// Otherwise, the direction is *.
 | 
						|
//
 | 
						|
// Can prove independence. Failing that, we can sometimes refine
 | 
						|
// the directions. Can sometimes show that first or last
 | 
						|
// iteration carries all the dependences (so worth peeling).
 | 
						|
//
 | 
						|
// (see also weakZeroDstSIVtest)
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
 | 
						|
                                            const SCEV *SrcConst,
 | 
						|
                                            const SCEV *DstConst,
 | 
						|
                                            const Loop *CurLoop,
 | 
						|
                                            unsigned Level,
 | 
						|
                                            FullDependence &Result,
 | 
						|
                                            Constraint &NewConstraint) const {
 | 
						|
  // For the WeakSIV test, it's possible the loop isn't common to
 | 
						|
  // the Src and Dst loops. If it isn't, then there's no need to
 | 
						|
  // record a direction.
 | 
						|
  DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | 
						|
  ++WeakZeroSIVapplications;
 | 
						|
  assert(0 < Level && Level <= MaxLevels && "Level out of range");
 | 
						|
  Level--;
 | 
						|
  Result.Consistent = false;
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
 | 
						|
  NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
 | 
						|
                        DstCoeff, Delta, CurLoop);
 | 
						|
  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | 
						|
  if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
 | 
						|
    if (Level < CommonLevels) {
 | 
						|
      Result.DV[Level].Direction &= Dependence::DVEntry::LE;
 | 
						|
      Result.DV[Level].PeelFirst = true;
 | 
						|
      ++WeakZeroSIVsuccesses;
 | 
						|
    }
 | 
						|
    return false; // dependences caused by first iteration
 | 
						|
  }
 | 
						|
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
 | 
						|
  if (!ConstCoeff)
 | 
						|
    return false;
 | 
						|
  const SCEV *AbsCoeff =
 | 
						|
    SE->isKnownNegative(ConstCoeff) ?
 | 
						|
    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
 | 
						|
  const SCEV *NewDelta =
 | 
						|
    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
 | 
						|
 | 
						|
  // check that Delta/SrcCoeff < iteration count
 | 
						|
  // really check NewDelta < count*AbsCoeff
 | 
						|
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | 
						|
    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
 | 
						|
    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
 | 
						|
      ++WeakZeroSIVindependence;
 | 
						|
      ++WeakZeroSIVsuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
 | 
						|
      // dependences caused by last iteration
 | 
						|
      if (Level < CommonLevels) {
 | 
						|
        Result.DV[Level].Direction &= Dependence::DVEntry::GE;
 | 
						|
        Result.DV[Level].PeelLast = true;
 | 
						|
        ++WeakZeroSIVsuccesses;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // check that Delta/SrcCoeff >= 0
 | 
						|
  // really check that NewDelta >= 0
 | 
						|
  if (SE->isKnownNegative(NewDelta)) {
 | 
						|
    // No dependence, newDelta < 0
 | 
						|
    ++WeakZeroSIVindependence;
 | 
						|
    ++WeakZeroSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // if SrcCoeff doesn't divide Delta, then no dependence
 | 
						|
  if (isa<SCEVConstant>(Delta) &&
 | 
						|
      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
 | 
						|
    ++WeakZeroSIVindependence;
 | 
						|
    ++WeakZeroSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// weakZeroDstSIVtest -
 | 
						|
// From the paper, Practical Dependence Testing, Section 4.2.2
 | 
						|
//
 | 
						|
// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
 | 
						|
// where i is an induction variable, c1 and c2 are loop invariant,
 | 
						|
// and a is a constant, we can solve it exactly using the
 | 
						|
// Weak-Zero SIV test.
 | 
						|
//
 | 
						|
// Given
 | 
						|
//
 | 
						|
//    c1 + a*i = c2
 | 
						|
//
 | 
						|
// we get
 | 
						|
//
 | 
						|
//    i = (c2 - c1)/a
 | 
						|
//
 | 
						|
// If i is not an integer, there's no dependence.
 | 
						|
// If i < 0 or > UB, there's no dependence.
 | 
						|
// If i = 0, the direction is <= and peeling the
 | 
						|
// 1st iteration will break the dependence.
 | 
						|
// If i = UB, the direction is >= and peeling the
 | 
						|
// last iteration will break the dependence.
 | 
						|
// Otherwise, the direction is *.
 | 
						|
//
 | 
						|
// Can prove independence. Failing that, we can sometimes refine
 | 
						|
// the directions. Can sometimes show that first or last
 | 
						|
// iteration carries all the dependences (so worth peeling).
 | 
						|
//
 | 
						|
// (see also weakZeroSrcSIVtest)
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
 | 
						|
                                            const SCEV *SrcConst,
 | 
						|
                                            const SCEV *DstConst,
 | 
						|
                                            const Loop *CurLoop,
 | 
						|
                                            unsigned Level,
 | 
						|
                                            FullDependence &Result,
 | 
						|
                                            Constraint &NewConstraint) const {
 | 
						|
  // For the WeakSIV test, it's possible the loop isn't common to the
 | 
						|
  // Src and Dst loops. If it isn't, then there's no need to record a direction.
 | 
						|
  DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | 
						|
  ++WeakZeroSIVapplications;
 | 
						|
  assert(0 < Level && Level <= SrcLevels && "Level out of range");
 | 
						|
  Level--;
 | 
						|
  Result.Consistent = false;
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | 
						|
  NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
 | 
						|
                        Delta, CurLoop);
 | 
						|
  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | 
						|
  if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
 | 
						|
    if (Level < CommonLevels) {
 | 
						|
      Result.DV[Level].Direction &= Dependence::DVEntry::LE;
 | 
						|
      Result.DV[Level].PeelFirst = true;
 | 
						|
      ++WeakZeroSIVsuccesses;
 | 
						|
    }
 | 
						|
    return false; // dependences caused by first iteration
 | 
						|
  }
 | 
						|
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
 | 
						|
  if (!ConstCoeff)
 | 
						|
    return false;
 | 
						|
  const SCEV *AbsCoeff =
 | 
						|
    SE->isKnownNegative(ConstCoeff) ?
 | 
						|
    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
 | 
						|
  const SCEV *NewDelta =
 | 
						|
    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
 | 
						|
 | 
						|
  // check that Delta/SrcCoeff < iteration count
 | 
						|
  // really check NewDelta < count*AbsCoeff
 | 
						|
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
 | 
						|
    DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
 | 
						|
    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
 | 
						|
      ++WeakZeroSIVindependence;
 | 
						|
      ++WeakZeroSIVsuccesses;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
 | 
						|
      // dependences caused by last iteration
 | 
						|
      if (Level < CommonLevels) {
 | 
						|
        Result.DV[Level].Direction &= Dependence::DVEntry::GE;
 | 
						|
        Result.DV[Level].PeelLast = true;
 | 
						|
        ++WeakZeroSIVsuccesses;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // check that Delta/SrcCoeff >= 0
 | 
						|
  // really check that NewDelta >= 0
 | 
						|
  if (SE->isKnownNegative(NewDelta)) {
 | 
						|
    // No dependence, newDelta < 0
 | 
						|
    ++WeakZeroSIVindependence;
 | 
						|
    ++WeakZeroSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // if SrcCoeff doesn't divide Delta, then no dependence
 | 
						|
  if (isa<SCEVConstant>(Delta) &&
 | 
						|
      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
 | 
						|
    ++WeakZeroSIVindependence;
 | 
						|
    ++WeakZeroSIVsuccesses;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// exactRDIVtest - Tests the RDIV subscript pair for dependence.
 | 
						|
// Things of the form [c1 + a*i] and [c2 + b*j],
 | 
						|
// where i and j are induction variable, c1 and c2 are loop invariant,
 | 
						|
// and a and b are constants.
 | 
						|
// Returns true if any possible dependence is disproved.
 | 
						|
// Marks the result as inconsistent.
 | 
						|
// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
 | 
						|
bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
 | 
						|
                                       const SCEV *DstCoeff,
 | 
						|
                                       const SCEV *SrcConst,
 | 
						|
                                       const SCEV *DstConst,
 | 
						|
                                       const Loop *SrcLoop,
 | 
						|
                                       const Loop *DstLoop,
 | 
						|
                                       FullDependence &Result) const {
 | 
						|
  DEBUG(dbgs() << "\tExact RDIV test\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
 | 
						|
  DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
 | 
						|
  ++ExactRDIVapplications;
 | 
						|
  Result.Consistent = false;
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | 
						|
  DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
 | 
						|
  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
 | 
						|
  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
 | 
						|
  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
 | 
						|
  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // find gcd
 | 
						|
  APInt G, X, Y;
 | 
						|
  APInt AM = ConstSrcCoeff->getValue()->getValue();
 | 
						|
  APInt BM = ConstDstCoeff->getValue()->getValue();
 | 
						|
  unsigned Bits = AM.getBitWidth();
 | 
						|
  if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
 | 
						|
    // gcd doesn't divide Delta, no dependence
 | 
						|
    ++ExactRDIVindependence;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
 | 
						|
 | 
						|
  // since SCEV construction seems to normalize, LM = 0
 | 
						|
  APInt SrcUM(Bits, 1, true);
 | 
						|
  bool SrcUMvalid = false;
 | 
						|
  // SrcUM is perhaps unavailable, let's check
 | 
						|
  if (const SCEVConstant *UpperBound =
 | 
						|
      collectConstantUpperBound(SrcLoop, Delta->getType())) {
 | 
						|
    SrcUM = UpperBound->getValue()->getValue();
 | 
						|
    DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
 | 
						|
    SrcUMvalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt DstUM(Bits, 1, true);
 | 
						|
  bool DstUMvalid = false;
 | 
						|
  // UM is perhaps unavailable, let's check
 | 
						|
  if (const SCEVConstant *UpperBound =
 | 
						|
      collectConstantUpperBound(DstLoop, Delta->getType())) {
 | 
						|
    DstUM = UpperBound->getValue()->getValue();
 | 
						|
    DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
 | 
						|
    DstUMvalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt TU(APInt::getSignedMaxValue(Bits));
 | 
						|
  APInt TL(APInt::getSignedMinValue(Bits));
 | 
						|
 | 
						|
  // test(BM/G, LM-X) and test(-BM/G, X-UM)
 | 
						|
  APInt TMUL = BM.sdiv(G);
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    if (SrcUMvalid) {
 | 
						|
      TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    if (SrcUMvalid) {
 | 
						|
      TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
 | 
						|
  TMUL = AM.sdiv(G);
 | 
						|
  if (TMUL.sgt(0)) {
 | 
						|
    TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    if (DstUMvalid) {
 | 
						|
      TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
 | 
						|
    DEBUG(dbgs() << "\t    TU = " << TU << "\n");
 | 
						|
    if (DstUMvalid) {
 | 
						|
      TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
 | 
						|
      DEBUG(dbgs() << "\t    TL = " << TL << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (TL.sgt(TU))
 | 
						|
    ++ExactRDIVindependence;
 | 
						|
  return TL.sgt(TU);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// symbolicRDIVtest -
 | 
						|
// In Section 4.5 of the Practical Dependence Testing paper,the authors
 | 
						|
// introduce a special case of Banerjee's Inequalities (also called the
 | 
						|
// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
 | 
						|
// particularly cases with symbolics. Since it's only able to disprove
 | 
						|
// dependence (not compute distances or directions), we'll use it as a
 | 
						|
// fall back for the other tests.
 | 
						|
//
 | 
						|
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
 | 
						|
// where i and j are induction variables and c1 and c2 are loop invariants,
 | 
						|
// we can use the symbolic tests to disprove some dependences, serving as a
 | 
						|
// backup for the RDIV test. Note that i and j can be the same variable,
 | 
						|
// letting this test serve as a backup for the various SIV tests.
 | 
						|
//
 | 
						|
// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
 | 
						|
//  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
 | 
						|
// loop bounds for the i and j loops, respectively. So, ...
 | 
						|
//
 | 
						|
// c1 + a1*i = c2 + a2*j
 | 
						|
// a1*i - a2*j = c2 - c1
 | 
						|
//
 | 
						|
// To test for a dependence, we compute c2 - c1 and make sure it's in the
 | 
						|
// range of the maximum and minimum possible values of a1*i - a2*j.
 | 
						|
// Considering the signs of a1 and a2, we have 4 possible cases:
 | 
						|
//
 | 
						|
// 1) If a1 >= 0 and a2 >= 0, then
 | 
						|
//        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
 | 
						|
//              -a2*N2 <= c2 - c1 <= a1*N1
 | 
						|
//
 | 
						|
// 2) If a1 >= 0 and a2 <= 0, then
 | 
						|
//        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
 | 
						|
//                  0 <= c2 - c1 <= a1*N1 - a2*N2
 | 
						|
//
 | 
						|
// 3) If a1 <= 0 and a2 >= 0, then
 | 
						|
//        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
 | 
						|
//        a1*N1 - a2*N2 <= c2 - c1 <= 0
 | 
						|
//
 | 
						|
// 4) If a1 <= 0 and a2 <= 0, then
 | 
						|
//        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
 | 
						|
//        a1*N1         <= c2 - c1 <=       -a2*N2
 | 
						|
//
 | 
						|
// return true if dependence disproved
 | 
						|
bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
 | 
						|
                                          const SCEV *A2,
 | 
						|
                                          const SCEV *C1,
 | 
						|
                                          const SCEV *C2,
 | 
						|
                                          const Loop *Loop1,
 | 
						|
                                          const Loop *Loop2) const {
 | 
						|
  ++SymbolicRDIVapplications;
 | 
						|
  DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
 | 
						|
  DEBUG(dbgs() << "\t    A1 = " << *A1);
 | 
						|
  DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
 | 
						|
  const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
 | 
						|
  const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
 | 
						|
  DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
 | 
						|
  DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
 | 
						|
  const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
 | 
						|
  const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
 | 
						|
  DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
 | 
						|
  DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
 | 
						|
  if (SE->isKnownNonNegative(A1)) {
 | 
						|
    if (SE->isKnownNonNegative(A2)) {
 | 
						|
      // A1 >= 0 && A2 >= 0
 | 
						|
      if (N1) {
 | 
						|
        // make sure that c2 - c1 <= a1*N1
 | 
						|
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | 
						|
        DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
 | 
						|
        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
 | 
						|
          ++SymbolicRDIVindependence;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (N2) {
 | 
						|
        // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
 | 
						|
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | 
						|
        DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
 | 
						|
        if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
 | 
						|
          ++SymbolicRDIVindependence;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (SE->isKnownNonPositive(A2)) {
 | 
						|
      // a1 >= 0 && a2 <= 0
 | 
						|
      if (N1 && N2) {
 | 
						|
        // make sure that c2 - c1 <= a1*N1 - a2*N2
 | 
						|
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | 
						|
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | 
						|
        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
 | 
						|
        DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
 | 
						|
        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
 | 
						|
          ++SymbolicRDIVindependence;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // make sure that 0 <= c2 - c1
 | 
						|
      if (SE->isKnownNegative(C2_C1)) {
 | 
						|
        ++SymbolicRDIVindependence;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (SE->isKnownNonPositive(A1)) {
 | 
						|
    if (SE->isKnownNonNegative(A2)) {
 | 
						|
      // a1 <= 0 && a2 >= 0
 | 
						|
      if (N1 && N2) {
 | 
						|
        // make sure that a1*N1 - a2*N2 <= c2 - c1
 | 
						|
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | 
						|
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | 
						|
        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
 | 
						|
        DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
 | 
						|
        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
 | 
						|
          ++SymbolicRDIVindependence;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // make sure that c2 - c1 <= 0
 | 
						|
      if (SE->isKnownPositive(C2_C1)) {
 | 
						|
        ++SymbolicRDIVindependence;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (SE->isKnownNonPositive(A2)) {
 | 
						|
      // a1 <= 0 && a2 <= 0
 | 
						|
      if (N1) {
 | 
						|
        // make sure that a1*N1 <= c2 - c1
 | 
						|
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
 | 
						|
        DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
 | 
						|
        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
 | 
						|
          ++SymbolicRDIVindependence;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (N2) {
 | 
						|
        // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
 | 
						|
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
 | 
						|
        DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
 | 
						|
        if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
 | 
						|
          ++SymbolicRDIVindependence;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// testSIV -
 | 
						|
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
 | 
						|
// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
 | 
						|
// a2 are constant, we attack it with an SIV test. While they can all be
 | 
						|
// solved with the Exact SIV test, it's worthwhile to use simpler tests when
 | 
						|
// they apply; they're cheaper and sometimes more precise.
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::testSIV(const SCEV *Src,
 | 
						|
                                 const SCEV *Dst,
 | 
						|
                                 unsigned &Level,
 | 
						|
                                 FullDependence &Result,
 | 
						|
                                 Constraint &NewConstraint,
 | 
						|
                                 const SCEV *&SplitIter) const {
 | 
						|
  DEBUG(dbgs() << "    src = " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | 
						|
  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
 | 
						|
  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
 | 
						|
  if (SrcAddRec && DstAddRec) {
 | 
						|
    const SCEV *SrcConst = SrcAddRec->getStart();
 | 
						|
    const SCEV *DstConst = DstAddRec->getStart();
 | 
						|
    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
 | 
						|
    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
 | 
						|
    const Loop *CurLoop = SrcAddRec->getLoop();
 | 
						|
    assert(CurLoop == DstAddRec->getLoop() &&
 | 
						|
           "both loops in SIV should be same");
 | 
						|
    Level = mapSrcLoop(CurLoop);
 | 
						|
    bool disproven;
 | 
						|
    if (SrcCoeff == DstCoeff)
 | 
						|
      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
 | 
						|
                                Level, Result, NewConstraint);
 | 
						|
    else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
 | 
						|
      disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
 | 
						|
                                      Level, Result, NewConstraint, SplitIter);
 | 
						|
    else
 | 
						|
      disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
 | 
						|
                               Level, Result, NewConstraint);
 | 
						|
    return disproven ||
 | 
						|
      gcdMIVtest(Src, Dst, Result) ||
 | 
						|
      symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
 | 
						|
  }
 | 
						|
  if (SrcAddRec) {
 | 
						|
    const SCEV *SrcConst = SrcAddRec->getStart();
 | 
						|
    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
 | 
						|
    const SCEV *DstConst = Dst;
 | 
						|
    const Loop *CurLoop = SrcAddRec->getLoop();
 | 
						|
    Level = mapSrcLoop(CurLoop);
 | 
						|
    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
 | 
						|
                              Level, Result, NewConstraint) ||
 | 
						|
      gcdMIVtest(Src, Dst, Result);
 | 
						|
  }
 | 
						|
  if (DstAddRec) {
 | 
						|
    const SCEV *DstConst = DstAddRec->getStart();
 | 
						|
    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
 | 
						|
    const SCEV *SrcConst = Src;
 | 
						|
    const Loop *CurLoop = DstAddRec->getLoop();
 | 
						|
    Level = mapDstLoop(CurLoop);
 | 
						|
    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
 | 
						|
                              CurLoop, Level, Result, NewConstraint) ||
 | 
						|
      gcdMIVtest(Src, Dst, Result);
 | 
						|
  }
 | 
						|
  llvm_unreachable("SIV test expected at least one AddRec");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// testRDIV -
 | 
						|
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
 | 
						|
// where i and j are induction variables, c1 and c2 are loop invariant,
 | 
						|
// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
 | 
						|
// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
 | 
						|
// It doesn't make sense to talk about distance or direction in this case,
 | 
						|
// so there's no point in making special versions of the Strong SIV test or
 | 
						|
// the Weak-crossing SIV test.
 | 
						|
//
 | 
						|
// With minor algebra, this test can also be used for things like
 | 
						|
// [c1 + a1*i + a2*j][c2].
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::testRDIV(const SCEV *Src,
 | 
						|
                                  const SCEV *Dst,
 | 
						|
                                  FullDependence &Result) const {
 | 
						|
  // we have 3 possible situations here:
 | 
						|
  //   1) [a*i + b] and [c*j + d]
 | 
						|
  //   2) [a*i + c*j + b] and [d]
 | 
						|
  //   3) [b] and [a*i + c*j + d]
 | 
						|
  // We need to find what we've got and get organized
 | 
						|
 | 
						|
  const SCEV *SrcConst, *DstConst;
 | 
						|
  const SCEV *SrcCoeff, *DstCoeff;
 | 
						|
  const Loop *SrcLoop, *DstLoop;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "    src = " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | 
						|
  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
 | 
						|
  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
 | 
						|
  if (SrcAddRec && DstAddRec) {
 | 
						|
    SrcConst = SrcAddRec->getStart();
 | 
						|
    SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
 | 
						|
    SrcLoop = SrcAddRec->getLoop();
 | 
						|
    DstConst = DstAddRec->getStart();
 | 
						|
    DstCoeff = DstAddRec->getStepRecurrence(*SE);
 | 
						|
    DstLoop = DstAddRec->getLoop();
 | 
						|
  }
 | 
						|
  else if (SrcAddRec) {
 | 
						|
    if (const SCEVAddRecExpr *tmpAddRec =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
 | 
						|
      SrcConst = tmpAddRec->getStart();
 | 
						|
      SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
 | 
						|
      SrcLoop = tmpAddRec->getLoop();
 | 
						|
      DstConst = Dst;
 | 
						|
      DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
 | 
						|
      DstLoop = SrcAddRec->getLoop();
 | 
						|
    }
 | 
						|
    else
 | 
						|
      llvm_unreachable("RDIV reached by surprising SCEVs");
 | 
						|
  }
 | 
						|
  else if (DstAddRec) {
 | 
						|
    if (const SCEVAddRecExpr *tmpAddRec =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
 | 
						|
      DstConst = tmpAddRec->getStart();
 | 
						|
      DstCoeff = tmpAddRec->getStepRecurrence(*SE);
 | 
						|
      DstLoop = tmpAddRec->getLoop();
 | 
						|
      SrcConst = Src;
 | 
						|
      SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
 | 
						|
      SrcLoop = DstAddRec->getLoop();
 | 
						|
    }
 | 
						|
    else
 | 
						|
      llvm_unreachable("RDIV reached by surprising SCEVs");
 | 
						|
  }
 | 
						|
  else
 | 
						|
    llvm_unreachable("RDIV expected at least one AddRec");
 | 
						|
  return exactRDIVtest(SrcCoeff, DstCoeff,
 | 
						|
                       SrcConst, DstConst,
 | 
						|
                       SrcLoop, DstLoop,
 | 
						|
                       Result) ||
 | 
						|
    gcdMIVtest(Src, Dst, Result) ||
 | 
						|
    symbolicRDIVtest(SrcCoeff, DstCoeff,
 | 
						|
                     SrcConst, DstConst,
 | 
						|
                     SrcLoop, DstLoop);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Tests the single-subscript MIV pair (Src and Dst) for dependence.
 | 
						|
// Return true if dependence disproved.
 | 
						|
// Can sometimes refine direction vectors.
 | 
						|
bool DependenceAnalysis::testMIV(const SCEV *Src,
 | 
						|
                                 const SCEV *Dst,
 | 
						|
                                 const SmallBitVector &Loops,
 | 
						|
                                 FullDependence &Result) const {
 | 
						|
  DEBUG(dbgs() << "    src = " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "    dst = " << *Dst << "\n");
 | 
						|
  Result.Consistent = false;
 | 
						|
  return gcdMIVtest(Src, Dst, Result) ||
 | 
						|
    banerjeeMIVtest(Src, Dst, Loops, Result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Given a product, e.g., 10*X*Y, returns the first constant operand,
 | 
						|
// in this case 10. If there is no constant part, returns NULL.
 | 
						|
static
 | 
						|
const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
 | 
						|
  for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
 | 
						|
    if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
 | 
						|
      return Constant;
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// gcdMIVtest -
 | 
						|
// Tests an MIV subscript pair for dependence.
 | 
						|
// Returns true if any possible dependence is disproved.
 | 
						|
// Marks the result as inconsistent.
 | 
						|
// Can sometimes disprove the equal direction for 1 or more loops,
 | 
						|
// as discussed in Michael Wolfe's book,
 | 
						|
// High Performance Compilers for Parallel Computing, page 235.
 | 
						|
//
 | 
						|
// We spend some effort (code!) to handle cases like
 | 
						|
// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
 | 
						|
// but M and N are just loop-invariant variables.
 | 
						|
// This should help us handle linearized subscripts;
 | 
						|
// also makes this test a useful backup to the various SIV tests.
 | 
						|
//
 | 
						|
// It occurs to me that the presence of loop-invariant variables
 | 
						|
// changes the nature of the test from "greatest common divisor"
 | 
						|
// to "a common divisor!"
 | 
						|
bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
 | 
						|
                                    const SCEV *Dst,
 | 
						|
                                    FullDependence &Result) const {
 | 
						|
  DEBUG(dbgs() << "starting gcd\n");
 | 
						|
  ++GCDapplications;
 | 
						|
  unsigned BitWidth = Src->getType()->getIntegerBitWidth();
 | 
						|
  APInt RunningGCD = APInt::getNullValue(BitWidth);
 | 
						|
 | 
						|
  // Examine Src coefficients.
 | 
						|
  // Compute running GCD and record source constant.
 | 
						|
  // Because we're looking for the constant at the end of the chain,
 | 
						|
  // we can't quit the loop just because the GCD == 1.
 | 
						|
  const SCEV *Coefficients = Src;
 | 
						|
  while (const SCEVAddRecExpr *AddRec =
 | 
						|
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
 | 
						|
    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | 
						|
    const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
 | 
						|
    if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
 | 
						|
      // If the coefficient is the product of a constant and other stuff,
 | 
						|
      // we can use the constant in the GCD computation.
 | 
						|
      Constant = getConstantPart(Product);
 | 
						|
    if (!Constant)
 | 
						|
      return false;
 | 
						|
    APInt ConstCoeff = Constant->getValue()->getValue();
 | 
						|
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | 
						|
    Coefficients = AddRec->getStart();
 | 
						|
  }
 | 
						|
  const SCEV *SrcConst = Coefficients;
 | 
						|
 | 
						|
  // Examine Dst coefficients.
 | 
						|
  // Compute running GCD and record destination constant.
 | 
						|
  // Because we're looking for the constant at the end of the chain,
 | 
						|
  // we can't quit the loop just because the GCD == 1.
 | 
						|
  Coefficients = Dst;
 | 
						|
  while (const SCEVAddRecExpr *AddRec =
 | 
						|
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
 | 
						|
    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | 
						|
    const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
 | 
						|
    if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
 | 
						|
      // If the coefficient is the product of a constant and other stuff,
 | 
						|
      // we can use the constant in the GCD computation.
 | 
						|
      Constant = getConstantPart(Product);
 | 
						|
    if (!Constant)
 | 
						|
      return false;
 | 
						|
    APInt ConstCoeff = Constant->getValue()->getValue();
 | 
						|
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | 
						|
    Coefficients = AddRec->getStart();
 | 
						|
  }
 | 
						|
  const SCEV *DstConst = Coefficients;
 | 
						|
 | 
						|
  APInt ExtraGCD = APInt::getNullValue(BitWidth);
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
 | 
						|
  DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
 | 
						|
  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
 | 
						|
  if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
 | 
						|
    // If Delta is a sum of products, we may be able to make further progress.
 | 
						|
    for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
 | 
						|
      const SCEV *Operand = Sum->getOperand(Op);
 | 
						|
      if (isa<SCEVConstant>(Operand)) {
 | 
						|
        assert(!Constant && "Surprised to find multiple constants");
 | 
						|
        Constant = cast<SCEVConstant>(Operand);
 | 
						|
      }
 | 
						|
      else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
 | 
						|
        // Search for constant operand to participate in GCD;
 | 
						|
        // If none found; return false.
 | 
						|
        const SCEVConstant *ConstOp = getConstantPart(Product);
 | 
						|
        if (!ConstOp)
 | 
						|
          return false;
 | 
						|
        APInt ConstOpValue = ConstOp->getValue()->getValue();
 | 
						|
        ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
 | 
						|
                                                   ConstOpValue.abs());
 | 
						|
      }
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Constant)
 | 
						|
    return false;
 | 
						|
  APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
 | 
						|
  DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
 | 
						|
  if (ConstDelta == 0)
 | 
						|
    return false;
 | 
						|
  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
 | 
						|
  DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
 | 
						|
  APInt Remainder = ConstDelta.srem(RunningGCD);
 | 
						|
  if (Remainder != 0) {
 | 
						|
    ++GCDindependence;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to disprove equal directions.
 | 
						|
  // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
 | 
						|
  // the code above can't disprove the dependence because the GCD = 1.
 | 
						|
  // So we consider what happen if i = i' and what happens if j = j'.
 | 
						|
  // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
 | 
						|
  // which is infeasible, so we can disallow the = direction for the i level.
 | 
						|
  // Setting j = j' doesn't help matters, so we end up with a direction vector
 | 
						|
  // of [<>, *]
 | 
						|
  //
 | 
						|
  // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
 | 
						|
  // we need to remember that the constant part is 5 and the RunningGCD should
 | 
						|
  // be initialized to ExtraGCD = 30.
 | 
						|
  DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
 | 
						|
 | 
						|
  bool Improved = false;
 | 
						|
  Coefficients = Src;
 | 
						|
  while (const SCEVAddRecExpr *AddRec =
 | 
						|
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
 | 
						|
    Coefficients = AddRec->getStart();
 | 
						|
    const Loop *CurLoop = AddRec->getLoop();
 | 
						|
    RunningGCD = ExtraGCD;
 | 
						|
    const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
 | 
						|
    const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
 | 
						|
    const SCEV *Inner = Src;
 | 
						|
    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
 | 
						|
      AddRec = cast<SCEVAddRecExpr>(Inner);
 | 
						|
      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | 
						|
      if (CurLoop == AddRec->getLoop())
 | 
						|
        ; // SrcCoeff == Coeff
 | 
						|
      else {
 | 
						|
        if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
 | 
						|
          // If the coefficient is the product of a constant and other stuff,
 | 
						|
          // we can use the constant in the GCD computation.
 | 
						|
          Constant = getConstantPart(Product);
 | 
						|
        else
 | 
						|
          Constant = cast<SCEVConstant>(Coeff);
 | 
						|
        APInt ConstCoeff = Constant->getValue()->getValue();
 | 
						|
        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | 
						|
      }
 | 
						|
      Inner = AddRec->getStart();
 | 
						|
    }
 | 
						|
    Inner = Dst;
 | 
						|
    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
 | 
						|
      AddRec = cast<SCEVAddRecExpr>(Inner);
 | 
						|
      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
 | 
						|
      if (CurLoop == AddRec->getLoop())
 | 
						|
        DstCoeff = Coeff;
 | 
						|
      else {
 | 
						|
        if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
 | 
						|
          // If the coefficient is the product of a constant and other stuff,
 | 
						|
          // we can use the constant in the GCD computation.
 | 
						|
          Constant = getConstantPart(Product);
 | 
						|
        else
 | 
						|
          Constant = cast<SCEVConstant>(Coeff);
 | 
						|
        APInt ConstCoeff = Constant->getValue()->getValue();
 | 
						|
        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | 
						|
      }
 | 
						|
      Inner = AddRec->getStart();
 | 
						|
    }
 | 
						|
    Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
 | 
						|
    if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
 | 
						|
      // If the coefficient is the product of a constant and other stuff,
 | 
						|
      // we can use the constant in the GCD computation.
 | 
						|
      Constant = getConstantPart(Product);
 | 
						|
    else if (isa<SCEVConstant>(Delta))
 | 
						|
      Constant = cast<SCEVConstant>(Delta);
 | 
						|
    else {
 | 
						|
      // The difference of the two coefficients might not be a product
 | 
						|
      // or constant, in which case we give up on this direction.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    APInt ConstCoeff = Constant->getValue()->getValue();
 | 
						|
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
 | 
						|
    DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
 | 
						|
    if (RunningGCD != 0) {
 | 
						|
      Remainder = ConstDelta.srem(RunningGCD);
 | 
						|
      DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
 | 
						|
      if (Remainder != 0) {
 | 
						|
        unsigned Level = mapSrcLoop(CurLoop);
 | 
						|
        Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
 | 
						|
        Improved = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Improved)
 | 
						|
    ++GCDsuccesses;
 | 
						|
  DEBUG(dbgs() << "all done\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// banerjeeMIVtest -
 | 
						|
// Use Banerjee's Inequalities to test an MIV subscript pair.
 | 
						|
// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
 | 
						|
// Generally follows the discussion in Section 2.5.2 of
 | 
						|
//
 | 
						|
//    Optimizing Supercompilers for Supercomputers
 | 
						|
//    Michael Wolfe
 | 
						|
//
 | 
						|
// The inequalities given on page 25 are simplified in that loops are
 | 
						|
// normalized so that the lower bound is always 0 and the stride is always 1.
 | 
						|
// For example, Wolfe gives
 | 
						|
//
 | 
						|
//     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
 | 
						|
//
 | 
						|
// where A_k is the coefficient of the kth index in the source subscript,
 | 
						|
// B_k is the coefficient of the kth index in the destination subscript,
 | 
						|
// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
 | 
						|
// index, and N_k is the stride of the kth index. Since all loops are normalized
 | 
						|
// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
 | 
						|
// equation to
 | 
						|
//
 | 
						|
//     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
 | 
						|
//            = (A^-_k - B_k)^- (U_k - 1)  - B_k
 | 
						|
//
 | 
						|
// Similar simplifications are possible for the other equations.
 | 
						|
//
 | 
						|
// When we can't determine the number of iterations for a loop,
 | 
						|
// we use NULL as an indicator for the worst case, infinity.
 | 
						|
// When computing the upper bound, NULL denotes +inf;
 | 
						|
// for the lower bound, NULL denotes -inf.
 | 
						|
//
 | 
						|
// Return true if dependence disproved.
 | 
						|
bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
 | 
						|
                                         const SCEV *Dst,
 | 
						|
                                         const SmallBitVector &Loops,
 | 
						|
                                         FullDependence &Result) const {
 | 
						|
  DEBUG(dbgs() << "starting Banerjee\n");
 | 
						|
  ++BanerjeeApplications;
 | 
						|
  DEBUG(dbgs() << "    Src = " << *Src << '\n');
 | 
						|
  const SCEV *A0;
 | 
						|
  CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
 | 
						|
  DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
 | 
						|
  const SCEV *B0;
 | 
						|
  CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
 | 
						|
  BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
 | 
						|
  const SCEV *Delta = SE->getMinusSCEV(B0, A0);
 | 
						|
  DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
 | 
						|
 | 
						|
  // Compute bounds for all the * directions.
 | 
						|
  DEBUG(dbgs() << "\tBounds[*]\n");
 | 
						|
  for (unsigned K = 1; K <= MaxLevels; ++K) {
 | 
						|
    Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
 | 
						|
    Bound[K].Direction = Dependence::DVEntry::ALL;
 | 
						|
    Bound[K].DirSet = Dependence::DVEntry::NONE;
 | 
						|
    findBoundsALL(A, B, Bound, K);
 | 
						|
#ifndef NDEBUG
 | 
						|
    DEBUG(dbgs() << "\t    " << K << '\t');
 | 
						|
    if (Bound[K].Lower[Dependence::DVEntry::ALL])
 | 
						|
      DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
 | 
						|
    else
 | 
						|
      DEBUG(dbgs() << "-inf\t");
 | 
						|
    if (Bound[K].Upper[Dependence::DVEntry::ALL])
 | 
						|
      DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
 | 
						|
    else
 | 
						|
      DEBUG(dbgs() << "+inf\n");
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // Test the *, *, *, ... case.
 | 
						|
  bool Disproved = false;
 | 
						|
  if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
 | 
						|
    // Explore the direction vector hierarchy.
 | 
						|
    unsigned DepthExpanded = 0;
 | 
						|
    unsigned NewDeps = exploreDirections(1, A, B, Bound,
 | 
						|
                                         Loops, DepthExpanded, Delta);
 | 
						|
    if (NewDeps > 0) {
 | 
						|
      bool Improved = false;
 | 
						|
      for (unsigned K = 1; K <= CommonLevels; ++K) {
 | 
						|
        if (Loops[K]) {
 | 
						|
          unsigned Old = Result.DV[K - 1].Direction;
 | 
						|
          Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
 | 
						|
          Improved |= Old != Result.DV[K - 1].Direction;
 | 
						|
          if (!Result.DV[K - 1].Direction) {
 | 
						|
            Improved = false;
 | 
						|
            Disproved = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Improved)
 | 
						|
        ++BanerjeeSuccesses;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      ++BanerjeeIndependence;
 | 
						|
      Disproved = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    ++BanerjeeIndependence;
 | 
						|
    Disproved = true;
 | 
						|
  }
 | 
						|
  delete [] Bound;
 | 
						|
  delete [] A;
 | 
						|
  delete [] B;
 | 
						|
  return Disproved;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Hierarchically expands the direction vector
 | 
						|
// search space, combining the directions of discovered dependences
 | 
						|
// in the DirSet field of Bound. Returns the number of distinct
 | 
						|
// dependences discovered. If the dependence is disproved,
 | 
						|
// it will return 0.
 | 
						|
unsigned DependenceAnalysis::exploreDirections(unsigned Level,
 | 
						|
                                               CoefficientInfo *A,
 | 
						|
                                               CoefficientInfo *B,
 | 
						|
                                               BoundInfo *Bound,
 | 
						|
                                               const SmallBitVector &Loops,
 | 
						|
                                               unsigned &DepthExpanded,
 | 
						|
                                               const SCEV *Delta) const {
 | 
						|
  if (Level > CommonLevels) {
 | 
						|
    // record result
 | 
						|
    DEBUG(dbgs() << "\t[");
 | 
						|
    for (unsigned K = 1; K <= CommonLevels; ++K) {
 | 
						|
      if (Loops[K]) {
 | 
						|
        Bound[K].DirSet |= Bound[K].Direction;
 | 
						|
#ifndef NDEBUG
 | 
						|
        switch (Bound[K].Direction) {
 | 
						|
        case Dependence::DVEntry::LT:
 | 
						|
          DEBUG(dbgs() << " <");
 | 
						|
          break;
 | 
						|
        case Dependence::DVEntry::EQ:
 | 
						|
          DEBUG(dbgs() << " =");
 | 
						|
          break;
 | 
						|
        case Dependence::DVEntry::GT:
 | 
						|
          DEBUG(dbgs() << " >");
 | 
						|
          break;
 | 
						|
        case Dependence::DVEntry::ALL:
 | 
						|
          DEBUG(dbgs() << " *");
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("unexpected Bound[K].Direction");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << " ]\n");
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
  if (Loops[Level]) {
 | 
						|
    if (Level > DepthExpanded) {
 | 
						|
      DepthExpanded = Level;
 | 
						|
      // compute bounds for <, =, > at current level
 | 
						|
      findBoundsLT(A, B, Bound, Level);
 | 
						|
      findBoundsGT(A, B, Bound, Level);
 | 
						|
      findBoundsEQ(A, B, Bound, Level);
 | 
						|
#ifndef NDEBUG
 | 
						|
      DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
 | 
						|
      DEBUG(dbgs() << "\t    <\t");
 | 
						|
      if (Bound[Level].Lower[Dependence::DVEntry::LT])
 | 
						|
        DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
 | 
						|
      else
 | 
						|
        DEBUG(dbgs() << "-inf\t");
 | 
						|
      if (Bound[Level].Upper[Dependence::DVEntry::LT])
 | 
						|
        DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
 | 
						|
      else
 | 
						|
        DEBUG(dbgs() << "+inf\n");
 | 
						|
      DEBUG(dbgs() << "\t    =\t");
 | 
						|
      if (Bound[Level].Lower[Dependence::DVEntry::EQ])
 | 
						|
        DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
 | 
						|
      else
 | 
						|
        DEBUG(dbgs() << "-inf\t");
 | 
						|
      if (Bound[Level].Upper[Dependence::DVEntry::EQ])
 | 
						|
        DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
 | 
						|
      else
 | 
						|
        DEBUG(dbgs() << "+inf\n");
 | 
						|
      DEBUG(dbgs() << "\t    >\t");
 | 
						|
      if (Bound[Level].Lower[Dependence::DVEntry::GT])
 | 
						|
        DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
 | 
						|
      else
 | 
						|
        DEBUG(dbgs() << "-inf\t");
 | 
						|
      if (Bound[Level].Upper[Dependence::DVEntry::GT])
 | 
						|
        DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
 | 
						|
      else
 | 
						|
        DEBUG(dbgs() << "+inf\n");
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned NewDeps = 0;
 | 
						|
 | 
						|
    // test bounds for <, *, *, ...
 | 
						|
    if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
 | 
						|
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
 | 
						|
                                   Loops, DepthExpanded, Delta);
 | 
						|
 | 
						|
    // Test bounds for =, *, *, ...
 | 
						|
    if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
 | 
						|
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
 | 
						|
                                   Loops, DepthExpanded, Delta);
 | 
						|
 | 
						|
    // test bounds for >, *, *, ...
 | 
						|
    if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
 | 
						|
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
 | 
						|
                                   Loops, DepthExpanded, Delta);
 | 
						|
 | 
						|
    Bound[Level].Direction = Dependence::DVEntry::ALL;
 | 
						|
    return NewDeps;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns true iff the current bounds are plausible.
 | 
						|
bool DependenceAnalysis::testBounds(unsigned char DirKind,
 | 
						|
                                    unsigned Level,
 | 
						|
                                    BoundInfo *Bound,
 | 
						|
                                    const SCEV *Delta) const {
 | 
						|
  Bound[Level].Direction = DirKind;
 | 
						|
  if (const SCEV *LowerBound = getLowerBound(Bound))
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
 | 
						|
      return false;
 | 
						|
  if (const SCEV *UpperBound = getUpperBound(Bound))
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Computes the upper and lower bounds for level K
 | 
						|
// using the * direction. Records them in Bound.
 | 
						|
// Wolfe gives the equations
 | 
						|
//
 | 
						|
//    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
 | 
						|
//    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
 | 
						|
//
 | 
						|
// Since we normalize loops, we can simplify these equations to
 | 
						|
//
 | 
						|
//    LB^*_k = (A^-_k - B^+_k)U_k
 | 
						|
//    UB^*_k = (A^+_k - B^-_k)U_k
 | 
						|
//
 | 
						|
// We must be careful to handle the case where the upper bound is unknown.
 | 
						|
// Note that the lower bound is always <= 0
 | 
						|
// and the upper bound is always >= 0.
 | 
						|
void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
 | 
						|
                                       CoefficientInfo *B,
 | 
						|
                                       BoundInfo *Bound,
 | 
						|
                                       unsigned K) const {
 | 
						|
  Bound[K].Lower[Dependence::DVEntry::ALL] = NULL; // Default value = -infinity.
 | 
						|
  Bound[K].Upper[Dependence::DVEntry::ALL] = NULL; // Default value = +infinity.
 | 
						|
  if (Bound[K].Iterations) {
 | 
						|
    Bound[K].Lower[Dependence::DVEntry::ALL] =
 | 
						|
      SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
 | 
						|
                     Bound[K].Iterations);
 | 
						|
    Bound[K].Upper[Dependence::DVEntry::ALL] =
 | 
						|
      SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
 | 
						|
                     Bound[K].Iterations);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // If the difference is 0, we won't need to know the number of iterations.
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
 | 
						|
      Bound[K].Lower[Dependence::DVEntry::ALL] =
 | 
						|
        SE->getConstant(A[K].Coeff->getType(), 0);
 | 
						|
    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
 | 
						|
      Bound[K].Upper[Dependence::DVEntry::ALL] =
 | 
						|
        SE->getConstant(A[K].Coeff->getType(), 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Computes the upper and lower bounds for level K
 | 
						|
// using the = direction. Records them in Bound.
 | 
						|
// Wolfe gives the equations
 | 
						|
//
 | 
						|
//    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
 | 
						|
//    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
 | 
						|
//
 | 
						|
// Since we normalize loops, we can simplify these equations to
 | 
						|
//
 | 
						|
//    LB^=_k = (A_k - B_k)^- U_k
 | 
						|
//    UB^=_k = (A_k - B_k)^+ U_k
 | 
						|
//
 | 
						|
// We must be careful to handle the case where the upper bound is unknown.
 | 
						|
// Note that the lower bound is always <= 0
 | 
						|
// and the upper bound is always >= 0.
 | 
						|
void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
 | 
						|
                                      CoefficientInfo *B,
 | 
						|
                                      BoundInfo *Bound,
 | 
						|
                                      unsigned K) const {
 | 
						|
  Bound[K].Lower[Dependence::DVEntry::EQ] = NULL; // Default value = -infinity.
 | 
						|
  Bound[K].Upper[Dependence::DVEntry::EQ] = NULL; // Default value = +infinity.
 | 
						|
  if (Bound[K].Iterations) {
 | 
						|
    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
 | 
						|
    const SCEV *NegativePart = getNegativePart(Delta);
 | 
						|
    Bound[K].Lower[Dependence::DVEntry::EQ] =
 | 
						|
      SE->getMulExpr(NegativePart, Bound[K].Iterations);
 | 
						|
    const SCEV *PositivePart = getPositivePart(Delta);
 | 
						|
    Bound[K].Upper[Dependence::DVEntry::EQ] =
 | 
						|
      SE->getMulExpr(PositivePart, Bound[K].Iterations);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // If the positive/negative part of the difference is 0,
 | 
						|
    // we won't need to know the number of iterations.
 | 
						|
    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
 | 
						|
    const SCEV *NegativePart = getNegativePart(Delta);
 | 
						|
    if (NegativePart->isZero())
 | 
						|
      Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
 | 
						|
    const SCEV *PositivePart = getPositivePart(Delta);
 | 
						|
    if (PositivePart->isZero())
 | 
						|
      Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Computes the upper and lower bounds for level K
 | 
						|
// using the < direction. Records them in Bound.
 | 
						|
// Wolfe gives the equations
 | 
						|
//
 | 
						|
//    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
 | 
						|
//    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
 | 
						|
//
 | 
						|
// Since we normalize loops, we can simplify these equations to
 | 
						|
//
 | 
						|
//    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
 | 
						|
//    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
 | 
						|
//
 | 
						|
// We must be careful to handle the case where the upper bound is unknown.
 | 
						|
void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
 | 
						|
                                      CoefficientInfo *B,
 | 
						|
                                      BoundInfo *Bound,
 | 
						|
                                      unsigned K) const {
 | 
						|
  Bound[K].Lower[Dependence::DVEntry::LT] = NULL; // Default value = -infinity.
 | 
						|
  Bound[K].Upper[Dependence::DVEntry::LT] = NULL; // Default value = +infinity.
 | 
						|
  if (Bound[K].Iterations) {
 | 
						|
    const SCEV *Iter_1 =
 | 
						|
      SE->getMinusSCEV(Bound[K].Iterations,
 | 
						|
                       SE->getConstant(Bound[K].Iterations->getType(), 1));
 | 
						|
    const SCEV *NegPart =
 | 
						|
      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
 | 
						|
    Bound[K].Lower[Dependence::DVEntry::LT] =
 | 
						|
      SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
 | 
						|
    const SCEV *PosPart =
 | 
						|
      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
 | 
						|
    Bound[K].Upper[Dependence::DVEntry::LT] =
 | 
						|
      SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // If the positive/negative part of the difference is 0,
 | 
						|
    // we won't need to know the number of iterations.
 | 
						|
    const SCEV *NegPart =
 | 
						|
      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
 | 
						|
    if (NegPart->isZero())
 | 
						|
      Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
 | 
						|
    const SCEV *PosPart =
 | 
						|
      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
 | 
						|
    if (PosPart->isZero())
 | 
						|
      Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Computes the upper and lower bounds for level K
 | 
						|
// using the > direction. Records them in Bound.
 | 
						|
// Wolfe gives the equations
 | 
						|
//
 | 
						|
//    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
 | 
						|
//    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
 | 
						|
//
 | 
						|
// Since we normalize loops, we can simplify these equations to
 | 
						|
//
 | 
						|
//    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
 | 
						|
//    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
 | 
						|
//
 | 
						|
// We must be careful to handle the case where the upper bound is unknown.
 | 
						|
void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
 | 
						|
                                      CoefficientInfo *B,
 | 
						|
                                      BoundInfo *Bound,
 | 
						|
                                      unsigned K) const {
 | 
						|
  Bound[K].Lower[Dependence::DVEntry::GT] = NULL; // Default value = -infinity.
 | 
						|
  Bound[K].Upper[Dependence::DVEntry::GT] = NULL; // Default value = +infinity.
 | 
						|
  if (Bound[K].Iterations) {
 | 
						|
    const SCEV *Iter_1 =
 | 
						|
      SE->getMinusSCEV(Bound[K].Iterations,
 | 
						|
                       SE->getConstant(Bound[K].Iterations->getType(), 1));
 | 
						|
    const SCEV *NegPart =
 | 
						|
      getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
 | 
						|
    Bound[K].Lower[Dependence::DVEntry::GT] =
 | 
						|
      SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
 | 
						|
    const SCEV *PosPart =
 | 
						|
      getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
 | 
						|
    Bound[K].Upper[Dependence::DVEntry::GT] =
 | 
						|
      SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // If the positive/negative part of the difference is 0,
 | 
						|
    // we won't need to know the number of iterations.
 | 
						|
    const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
 | 
						|
    if (NegPart->isZero())
 | 
						|
      Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
 | 
						|
    const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
 | 
						|
    if (PosPart->isZero())
 | 
						|
      Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// X^+ = max(X, 0)
 | 
						|
const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
 | 
						|
  return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// X^- = min(X, 0)
 | 
						|
const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
 | 
						|
  return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Walks through the subscript,
 | 
						|
// collecting each coefficient, the associated loop bounds,
 | 
						|
// and recording its positive and negative parts for later use.
 | 
						|
DependenceAnalysis::CoefficientInfo *
 | 
						|
DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
 | 
						|
                                     bool SrcFlag,
 | 
						|
                                     const SCEV *&Constant) const {
 | 
						|
  const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
 | 
						|
  CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
 | 
						|
  for (unsigned K = 1; K <= MaxLevels; ++K) {
 | 
						|
    CI[K].Coeff = Zero;
 | 
						|
    CI[K].PosPart = Zero;
 | 
						|
    CI[K].NegPart = Zero;
 | 
						|
    CI[K].Iterations = NULL;
 | 
						|
  }
 | 
						|
  while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
 | 
						|
    const Loop *L = AddRec->getLoop();
 | 
						|
    unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
 | 
						|
    CI[K].Coeff = AddRec->getStepRecurrence(*SE);
 | 
						|
    CI[K].PosPart = getPositivePart(CI[K].Coeff);
 | 
						|
    CI[K].NegPart = getNegativePart(CI[K].Coeff);
 | 
						|
    CI[K].Iterations = collectUpperBound(L, Subscript->getType());
 | 
						|
    Subscript = AddRec->getStart();
 | 
						|
  }
 | 
						|
  Constant = Subscript;
 | 
						|
#ifndef NDEBUG
 | 
						|
  DEBUG(dbgs() << "\tCoefficient Info\n");
 | 
						|
  for (unsigned K = 1; K <= MaxLevels; ++K) {
 | 
						|
    DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
 | 
						|
    DEBUG(dbgs() << "\tPos Part = ");
 | 
						|
    DEBUG(dbgs() << *CI[K].PosPart);
 | 
						|
    DEBUG(dbgs() << "\tNeg Part = ");
 | 
						|
    DEBUG(dbgs() << *CI[K].NegPart);
 | 
						|
    DEBUG(dbgs() << "\tUpper Bound = ");
 | 
						|
    if (CI[K].Iterations)
 | 
						|
      DEBUG(dbgs() << *CI[K].Iterations);
 | 
						|
    else
 | 
						|
      DEBUG(dbgs() << "+inf");
 | 
						|
    DEBUG(dbgs() << '\n');
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
 | 
						|
#endif
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Looks through all the bounds info and
 | 
						|
// computes the lower bound given the current direction settings
 | 
						|
// at each level. If the lower bound for any level is -inf,
 | 
						|
// the result is -inf.
 | 
						|
const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
 | 
						|
  const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
 | 
						|
  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
 | 
						|
    if (Bound[K].Lower[Bound[K].Direction])
 | 
						|
      Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
 | 
						|
    else
 | 
						|
      Sum = NULL;
 | 
						|
  }
 | 
						|
  return Sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Looks through all the bounds info and
 | 
						|
// computes the upper bound given the current direction settings
 | 
						|
// at each level. If the upper bound at any level is +inf,
 | 
						|
// the result is +inf.
 | 
						|
const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
 | 
						|
  const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
 | 
						|
  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
 | 
						|
    if (Bound[K].Upper[Bound[K].Direction])
 | 
						|
      Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
 | 
						|
    else
 | 
						|
      Sum = NULL;
 | 
						|
  }
 | 
						|
  return Sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constraint manipulation for Delta test.
 | 
						|
 | 
						|
// Given a linear SCEV,
 | 
						|
// return the coefficient (the step)
 | 
						|
// corresponding to the specified loop.
 | 
						|
// If there isn't one, return 0.
 | 
						|
// For example, given a*i + b*j + c*k, zeroing the coefficient
 | 
						|
// corresponding to the j loop would yield b.
 | 
						|
const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
 | 
						|
                                                const Loop *TargetLoop)  const {
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
 | 
						|
  if (!AddRec)
 | 
						|
    return SE->getConstant(Expr->getType(), 0);
 | 
						|
  if (AddRec->getLoop() == TargetLoop)
 | 
						|
    return AddRec->getStepRecurrence(*SE);
 | 
						|
  return findCoefficient(AddRec->getStart(), TargetLoop);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Given a linear SCEV,
 | 
						|
// return the SCEV given by zeroing out the coefficient
 | 
						|
// corresponding to the specified loop.
 | 
						|
// For example, given a*i + b*j + c*k, zeroing the coefficient
 | 
						|
// corresponding to the j loop would yield a*i + c*k.
 | 
						|
const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
 | 
						|
                                                const Loop *TargetLoop)  const {
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
 | 
						|
  if (!AddRec)
 | 
						|
    return Expr; // ignore
 | 
						|
  if (AddRec->getLoop() == TargetLoop)
 | 
						|
    return AddRec->getStart();
 | 
						|
  return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
 | 
						|
                           AddRec->getStepRecurrence(*SE),
 | 
						|
                           AddRec->getLoop(),
 | 
						|
                           AddRec->getNoWrapFlags());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Given a linear SCEV Expr,
 | 
						|
// return the SCEV given by adding some Value to the
 | 
						|
// coefficient corresponding to the specified TargetLoop.
 | 
						|
// For example, given a*i + b*j + c*k, adding 1 to the coefficient
 | 
						|
// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
 | 
						|
const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
 | 
						|
                                                 const Loop *TargetLoop,
 | 
						|
                                                 const SCEV *Value)  const {
 | 
						|
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
 | 
						|
  if (!AddRec) // create a new addRec
 | 
						|
    return SE->getAddRecExpr(Expr,
 | 
						|
                             Value,
 | 
						|
                             TargetLoop,
 | 
						|
                             SCEV::FlagAnyWrap); // Worst case, with no info.
 | 
						|
  if (AddRec->getLoop() == TargetLoop) {
 | 
						|
    const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
 | 
						|
    if (Sum->isZero())
 | 
						|
      return AddRec->getStart();
 | 
						|
    return SE->getAddRecExpr(AddRec->getStart(),
 | 
						|
                             Sum,
 | 
						|
                             AddRec->getLoop(),
 | 
						|
                             AddRec->getNoWrapFlags());
 | 
						|
  }
 | 
						|
  return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
 | 
						|
                                            TargetLoop, Value),
 | 
						|
                           AddRec->getStepRecurrence(*SE),
 | 
						|
                           AddRec->getLoop(),
 | 
						|
                           AddRec->getNoWrapFlags());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Review the constraints, looking for opportunities
 | 
						|
// to simplify a subscript pair (Src and Dst).
 | 
						|
// Return true if some simplification occurs.
 | 
						|
// If the simplification isn't exact (that is, if it is conservative
 | 
						|
// in terms of dependence), set consistent to false.
 | 
						|
// Corresponds to Figure 5 from the paper
 | 
						|
//
 | 
						|
//            Practical Dependence Testing
 | 
						|
//            Goff, Kennedy, Tseng
 | 
						|
//            PLDI 1991
 | 
						|
bool DependenceAnalysis::propagate(const SCEV *&Src,
 | 
						|
                                   const SCEV *&Dst,
 | 
						|
                                   SmallBitVector &Loops,
 | 
						|
                                   SmallVector<Constraint, 4> &Constraints,
 | 
						|
                                   bool &Consistent) {
 | 
						|
  bool Result = false;
 | 
						|
  for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
 | 
						|
    DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
 | 
						|
    DEBUG(Constraints[LI].dump(dbgs()));
 | 
						|
    if (Constraints[LI].isDistance())
 | 
						|
      Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
 | 
						|
    else if (Constraints[LI].isLine())
 | 
						|
      Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
 | 
						|
    else if (Constraints[LI].isPoint())
 | 
						|
      Result |= propagatePoint(Src, Dst, Constraints[LI]);
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Attempt to propagate a distance
 | 
						|
// constraint into a subscript pair (Src and Dst).
 | 
						|
// Return true if some simplification occurs.
 | 
						|
// If the simplification isn't exact (that is, if it is conservative
 | 
						|
// in terms of dependence), set consistent to false.
 | 
						|
bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
 | 
						|
                                           const SCEV *&Dst,
 | 
						|
                                           Constraint &CurConstraint,
 | 
						|
                                           bool &Consistent) {
 | 
						|
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
 | 
						|
  DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
 | 
						|
  const SCEV *A_K = findCoefficient(Src, CurLoop);
 | 
						|
  if (A_K->isZero())
 | 
						|
    return false;
 | 
						|
  const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
 | 
						|
  Src = SE->getMinusSCEV(Src, DA_K);
 | 
						|
  Src = zeroCoefficient(Src, CurLoop);
 | 
						|
  DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
 | 
						|
  Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
 | 
						|
  DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
 | 
						|
  if (!findCoefficient(Dst, CurLoop)->isZero())
 | 
						|
    Consistent = false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Attempt to propagate a line
 | 
						|
// constraint into a subscript pair (Src and Dst).
 | 
						|
// Return true if some simplification occurs.
 | 
						|
// If the simplification isn't exact (that is, if it is conservative
 | 
						|
// in terms of dependence), set consistent to false.
 | 
						|
bool DependenceAnalysis::propagateLine(const SCEV *&Src,
 | 
						|
                                       const SCEV *&Dst,
 | 
						|
                                       Constraint &CurConstraint,
 | 
						|
                                       bool &Consistent) {
 | 
						|
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
 | 
						|
  const SCEV *A = CurConstraint.getA();
 | 
						|
  const SCEV *B = CurConstraint.getB();
 | 
						|
  const SCEV *C = CurConstraint.getC();
 | 
						|
  DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
 | 
						|
  DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
 | 
						|
  if (A->isZero()) {
 | 
						|
    const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
 | 
						|
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
 | 
						|
    if (!Bconst || !Cconst) return false;
 | 
						|
    APInt Beta = Bconst->getValue()->getValue();
 | 
						|
    APInt Charlie = Cconst->getValue()->getValue();
 | 
						|
    APInt CdivB = Charlie.sdiv(Beta);
 | 
						|
    assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
 | 
						|
    const SCEV *AP_K = findCoefficient(Dst, CurLoop);
 | 
						|
    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
 | 
						|
    Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
 | 
						|
    Dst = zeroCoefficient(Dst, CurLoop);
 | 
						|
    if (!findCoefficient(Src, CurLoop)->isZero())
 | 
						|
      Consistent = false;
 | 
						|
  }
 | 
						|
  else if (B->isZero()) {
 | 
						|
    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
 | 
						|
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
 | 
						|
    if (!Aconst || !Cconst) return false;
 | 
						|
    APInt Alpha = Aconst->getValue()->getValue();
 | 
						|
    APInt Charlie = Cconst->getValue()->getValue();
 | 
						|
    APInt CdivA = Charlie.sdiv(Alpha);
 | 
						|
    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
 | 
						|
    const SCEV *A_K = findCoefficient(Src, CurLoop);
 | 
						|
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
 | 
						|
    Src = zeroCoefficient(Src, CurLoop);
 | 
						|
    if (!findCoefficient(Dst, CurLoop)->isZero())
 | 
						|
      Consistent = false;
 | 
						|
  }
 | 
						|
  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
 | 
						|
    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
 | 
						|
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
 | 
						|
    if (!Aconst || !Cconst) return false;
 | 
						|
    APInt Alpha = Aconst->getValue()->getValue();
 | 
						|
    APInt Charlie = Cconst->getValue()->getValue();
 | 
						|
    APInt CdivA = Charlie.sdiv(Alpha);
 | 
						|
    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
 | 
						|
    const SCEV *A_K = findCoefficient(Src, CurLoop);
 | 
						|
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
 | 
						|
    Src = zeroCoefficient(Src, CurLoop);
 | 
						|
    Dst = addToCoefficient(Dst, CurLoop, A_K);
 | 
						|
    if (!findCoefficient(Dst, CurLoop)->isZero())
 | 
						|
      Consistent = false;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // paper is incorrect here, or perhaps just misleading
 | 
						|
    const SCEV *A_K = findCoefficient(Src, CurLoop);
 | 
						|
    Src = SE->getMulExpr(Src, A);
 | 
						|
    Dst = SE->getMulExpr(Dst, A);
 | 
						|
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
 | 
						|
    Src = zeroCoefficient(Src, CurLoop);
 | 
						|
    Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
 | 
						|
    if (!findCoefficient(Dst, CurLoop)->isZero())
 | 
						|
      Consistent = false;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Attempt to propagate a point
 | 
						|
// constraint into a subscript pair (Src and Dst).
 | 
						|
// Return true if some simplification occurs.
 | 
						|
bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
 | 
						|
                                        const SCEV *&Dst,
 | 
						|
                                        Constraint &CurConstraint) {
 | 
						|
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
 | 
						|
  const SCEV *A_K = findCoefficient(Src, CurLoop);
 | 
						|
  const SCEV *AP_K = findCoefficient(Dst, CurLoop);
 | 
						|
  const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
 | 
						|
  const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
 | 
						|
  DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
 | 
						|
  Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
 | 
						|
  Src = zeroCoefficient(Src, CurLoop);
 | 
						|
  DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
 | 
						|
  DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
 | 
						|
  Dst = zeroCoefficient(Dst, CurLoop);
 | 
						|
  DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Update direction vector entry based on the current constraint.
 | 
						|
void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
 | 
						|
                                         const Constraint &CurConstraint
 | 
						|
                                         ) const {
 | 
						|
  DEBUG(dbgs() << "\tUpdate direction, constraint =");
 | 
						|
  DEBUG(CurConstraint.dump(dbgs()));
 | 
						|
  if (CurConstraint.isAny())
 | 
						|
    ; // use defaults
 | 
						|
  else if (CurConstraint.isDistance()) {
 | 
						|
    // this one is consistent, the others aren't
 | 
						|
    Level.Scalar = false;
 | 
						|
    Level.Distance = CurConstraint.getD();
 | 
						|
    unsigned NewDirection = Dependence::DVEntry::NONE;
 | 
						|
    if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
 | 
						|
      NewDirection = Dependence::DVEntry::EQ;
 | 
						|
    if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
 | 
						|
      NewDirection |= Dependence::DVEntry::LT;
 | 
						|
    if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
 | 
						|
      NewDirection |= Dependence::DVEntry::GT;
 | 
						|
    Level.Direction &= NewDirection;
 | 
						|
  }
 | 
						|
  else if (CurConstraint.isLine()) {
 | 
						|
    Level.Scalar = false;
 | 
						|
    Level.Distance = NULL;
 | 
						|
    // direction should be accurate
 | 
						|
  }
 | 
						|
  else if (CurConstraint.isPoint()) {
 | 
						|
    Level.Scalar = false;
 | 
						|
    Level.Distance = NULL;
 | 
						|
    unsigned NewDirection = Dependence::DVEntry::NONE;
 | 
						|
    if (!isKnownPredicate(CmpInst::ICMP_NE,
 | 
						|
                          CurConstraint.getY(),
 | 
						|
                          CurConstraint.getX()))
 | 
						|
      // if X may be = Y
 | 
						|
      NewDirection |= Dependence::DVEntry::EQ;
 | 
						|
    if (!isKnownPredicate(CmpInst::ICMP_SLE,
 | 
						|
                          CurConstraint.getY(),
 | 
						|
                          CurConstraint.getX()))
 | 
						|
      // if Y may be > X
 | 
						|
      NewDirection |= Dependence::DVEntry::LT;
 | 
						|
    if (!isKnownPredicate(CmpInst::ICMP_SGE,
 | 
						|
                          CurConstraint.getY(),
 | 
						|
                          CurConstraint.getX()))
 | 
						|
      // if Y may be < X
 | 
						|
      NewDirection |= Dependence::DVEntry::GT;
 | 
						|
    Level.Direction &= NewDirection;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    llvm_unreachable("constraint has unexpected kind");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
// For debugging purposes, dump a small bit vector to dbgs().
 | 
						|
static void dumpSmallBitVector(SmallBitVector &BV) {
 | 
						|
  dbgs() << "{";
 | 
						|
  for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
 | 
						|
    dbgs() << VI;
 | 
						|
    if (BV.find_next(VI) >= 0)
 | 
						|
      dbgs() << ' ';
 | 
						|
  }
 | 
						|
  dbgs() << "}\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// depends -
 | 
						|
// Returns NULL if there is no dependence.
 | 
						|
// Otherwise, return a Dependence with as many details as possible.
 | 
						|
// Corresponds to Section 3.1 in the paper
 | 
						|
//
 | 
						|
//            Practical Dependence Testing
 | 
						|
//            Goff, Kennedy, Tseng
 | 
						|
//            PLDI 1991
 | 
						|
//
 | 
						|
// Care is required to keep the code below up to date w.r.t. this routine.
 | 
						|
Dependence *DependenceAnalysis::depends(const Instruction *Src,
 | 
						|
                                        const Instruction *Dst,
 | 
						|
                                        bool PossiblyLoopIndependent) {
 | 
						|
  if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
 | 
						|
      (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
 | 
						|
    // if both instructions don't reference memory, there's no dependence
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if (!isLoadOrStore(Src) || !isLoadOrStore(Dst))
 | 
						|
    // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
 | 
						|
    return new Dependence(Src, Dst);
 | 
						|
 | 
						|
  const Value *SrcPtr = getPointerOperand(Src);
 | 
						|
  const Value *DstPtr = getPointerOperand(Dst);
 | 
						|
 | 
						|
  switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
 | 
						|
  case AliasAnalysis::MayAlias:
 | 
						|
  case AliasAnalysis::PartialAlias:
 | 
						|
    // cannot analyse objects if we don't understand their aliasing.
 | 
						|
    return new Dependence(Src, Dst);
 | 
						|
  case AliasAnalysis::NoAlias:
 | 
						|
    // If the objects noalias, they are distinct, accesses are independent.
 | 
						|
    return NULL;
 | 
						|
  case AliasAnalysis::MustAlias:
 | 
						|
    break; // The underlying objects alias; test accesses for dependence.
 | 
						|
  }
 | 
						|
 | 
						|
  const GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
 | 
						|
  const GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
 | 
						|
  if (!SrcGEP || !DstGEP)
 | 
						|
    return new Dependence(Src, Dst); // missing GEP, assume dependence
 | 
						|
 | 
						|
  if (SrcGEP->getPointerOperandType() != DstGEP->getPointerOperandType())
 | 
						|
    return new Dependence(Src, Dst); // different types, assume dependence
 | 
						|
 | 
						|
  // establish loop nesting levels
 | 
						|
  establishNestingLevels(Src, Dst);
 | 
						|
  DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
 | 
						|
  DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
 | 
						|
 | 
						|
  FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
 | 
						|
  ++TotalArrayPairs;
 | 
						|
 | 
						|
  // classify subscript pairs
 | 
						|
  unsigned Pairs = SrcGEP->idx_end() - SrcGEP->idx_begin();
 | 
						|
  SmallVector<Subscript, 4> Pair(Pairs);
 | 
						|
  for (unsigned SI = 0; SI < Pairs; ++SI) {
 | 
						|
    Pair[SI].Loops.resize(MaxLevels + 1);
 | 
						|
    Pair[SI].GroupLoops.resize(MaxLevels + 1);
 | 
						|
    Pair[SI].Group.resize(Pairs);
 | 
						|
  }
 | 
						|
  Pairs = 0;
 | 
						|
  for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
 | 
						|
         SrcEnd = SrcGEP->idx_end(),
 | 
						|
         DstIdx = DstGEP->idx_begin(),
 | 
						|
         DstEnd = DstGEP->idx_end();
 | 
						|
       SrcIdx != SrcEnd && DstIdx != DstEnd;
 | 
						|
       ++SrcIdx, ++DstIdx, ++Pairs) {
 | 
						|
    Pair[Pairs].Src = SE->getSCEV(*SrcIdx);
 | 
						|
    Pair[Pairs].Dst = SE->getSCEV(*DstIdx);
 | 
						|
    removeMatchingExtensions(&Pair[Pairs]);
 | 
						|
    Pair[Pairs].Classification =
 | 
						|
      classifyPair(Pair[Pairs].Src, LI->getLoopFor(Src->getParent()),
 | 
						|
                   Pair[Pairs].Dst, LI->getLoopFor(Dst->getParent()),
 | 
						|
                   Pair[Pairs].Loops);
 | 
						|
    Pair[Pairs].GroupLoops = Pair[Pairs].Loops;
 | 
						|
    Pair[Pairs].Group.set(Pairs);
 | 
						|
    DEBUG(dbgs() << "    subscript " << Pairs << "\n");
 | 
						|
    DEBUG(dbgs() << "\tsrc = " << *Pair[Pairs].Src << "\n");
 | 
						|
    DEBUG(dbgs() << "\tdst = " << *Pair[Pairs].Dst << "\n");
 | 
						|
    DEBUG(dbgs() << "\tclass = " << Pair[Pairs].Classification << "\n");
 | 
						|
    DEBUG(dbgs() << "\tloops = ");
 | 
						|
    DEBUG(dumpSmallBitVector(Pair[Pairs].Loops));
 | 
						|
  }
 | 
						|
 | 
						|
  SmallBitVector Separable(Pairs);
 | 
						|
  SmallBitVector Coupled(Pairs);
 | 
						|
 | 
						|
  // Partition subscripts into separable and minimally-coupled groups
 | 
						|
  // Algorithm in paper is algorithmically better;
 | 
						|
  // this may be faster in practice. Check someday.
 | 
						|
  //
 | 
						|
  // Here's an example of how it works. Consider this code:
 | 
						|
  //
 | 
						|
  //   for (i = ...) {
 | 
						|
  //     for (j = ...) {
 | 
						|
  //       for (k = ...) {
 | 
						|
  //         for (l = ...) {
 | 
						|
  //           for (m = ...) {
 | 
						|
  //             A[i][j][k][m] = ...;
 | 
						|
  //             ... = A[0][j][l][i + j];
 | 
						|
  //           }
 | 
						|
  //         }
 | 
						|
  //       }
 | 
						|
  //     }
 | 
						|
  //   }
 | 
						|
  //
 | 
						|
  // There are 4 subscripts here:
 | 
						|
  //    0 [i] and [0]
 | 
						|
  //    1 [j] and [j]
 | 
						|
  //    2 [k] and [l]
 | 
						|
  //    3 [m] and [i + j]
 | 
						|
  //
 | 
						|
  // We've already classified each subscript pair as ZIV, SIV, etc.,
 | 
						|
  // and collected all the loops mentioned by pair P in Pair[P].Loops.
 | 
						|
  // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
 | 
						|
  // and set Pair[P].Group = {P}.
 | 
						|
  //
 | 
						|
  //      Src Dst    Classification Loops  GroupLoops Group
 | 
						|
  //    0 [i] [0]         SIV       {1}      {1}        {0}
 | 
						|
  //    1 [j] [j]         SIV       {2}      {2}        {1}
 | 
						|
  //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
 | 
						|
  //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
 | 
						|
  //
 | 
						|
  // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
 | 
						|
  // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
 | 
						|
  //
 | 
						|
  // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
 | 
						|
  // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
 | 
						|
  // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
 | 
						|
  // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
 | 
						|
  // to either Separable or Coupled).
 | 
						|
  //
 | 
						|
  // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
 | 
						|
  // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
 | 
						|
  // so Pair[3].Group = {0, 1, 3} and Done = false.
 | 
						|
  //
 | 
						|
  // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
 | 
						|
  // Since Done remains true, we add 2 to the set of Separable pairs.
 | 
						|
  //
 | 
						|
  // Finally, we consider 3. There's nothing to compare it with,
 | 
						|
  // so Done remains true and we add it to the Coupled set.
 | 
						|
  // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
 | 
						|
  //
 | 
						|
  // In the end, we've got 1 separable subscript and 1 coupled group.
 | 
						|
  for (unsigned SI = 0; SI < Pairs; ++SI) {
 | 
						|
    if (Pair[SI].Classification == Subscript::NonLinear) {
 | 
						|
      // ignore these, but collect loops for later
 | 
						|
      ++NonlinearSubscriptPairs;
 | 
						|
      collectCommonLoops(Pair[SI].Src,
 | 
						|
                         LI->getLoopFor(Src->getParent()),
 | 
						|
                         Pair[SI].Loops);
 | 
						|
      collectCommonLoops(Pair[SI].Dst,
 | 
						|
                         LI->getLoopFor(Dst->getParent()),
 | 
						|
                         Pair[SI].Loops);
 | 
						|
      Result.Consistent = false;
 | 
						|
    }
 | 
						|
    else if (Pair[SI].Classification == Subscript::ZIV) {
 | 
						|
      // always separable
 | 
						|
      Separable.set(SI);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // SIV, RDIV, or MIV, so check for coupled group
 | 
						|
      bool Done = true;
 | 
						|
      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
 | 
						|
        SmallBitVector Intersection = Pair[SI].GroupLoops;
 | 
						|
        Intersection &= Pair[SJ].GroupLoops;
 | 
						|
        if (Intersection.any()) {
 | 
						|
          // accumulate set of all the loops in group
 | 
						|
          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
 | 
						|
          // accumulate set of all subscripts in group
 | 
						|
          Pair[SJ].Group |= Pair[SI].Group;
 | 
						|
          Done = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Done) {
 | 
						|
        if (Pair[SI].Group.count() == 1) {
 | 
						|
          Separable.set(SI);
 | 
						|
          ++SeparableSubscriptPairs;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          Coupled.set(SI);
 | 
						|
          ++CoupledSubscriptPairs;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "    Separable = ");
 | 
						|
  DEBUG(dumpSmallBitVector(Separable));
 | 
						|
  DEBUG(dbgs() << "    Coupled = ");
 | 
						|
  DEBUG(dumpSmallBitVector(Coupled));
 | 
						|
 | 
						|
  Constraint NewConstraint;
 | 
						|
  NewConstraint.setAny(SE);
 | 
						|
 | 
						|
  // test separable subscripts
 | 
						|
  for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
 | 
						|
    DEBUG(dbgs() << "testing subscript " << SI);
 | 
						|
    switch (Pair[SI].Classification) {
 | 
						|
    case Subscript::ZIV:
 | 
						|
      DEBUG(dbgs() << ", ZIV\n");
 | 
						|
      if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
 | 
						|
        return NULL;
 | 
						|
      break;
 | 
						|
    case Subscript::SIV: {
 | 
						|
      DEBUG(dbgs() << ", SIV\n");
 | 
						|
      unsigned Level;
 | 
						|
      const SCEV *SplitIter = NULL;
 | 
						|
      if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
 | 
						|
                  Result, NewConstraint, SplitIter))
 | 
						|
        return NULL;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Subscript::RDIV:
 | 
						|
      DEBUG(dbgs() << ", RDIV\n");
 | 
						|
      if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
 | 
						|
        return NULL;
 | 
						|
      break;
 | 
						|
    case Subscript::MIV:
 | 
						|
      DEBUG(dbgs() << ", MIV\n");
 | 
						|
      if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
 | 
						|
        return NULL;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("subscript has unexpected classification");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Coupled.count()) {
 | 
						|
    // test coupled subscript groups
 | 
						|
    DEBUG(dbgs() << "starting on coupled subscripts\n");
 | 
						|
    DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
 | 
						|
    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
 | 
						|
    for (unsigned II = 0; II <= MaxLevels; ++II)
 | 
						|
      Constraints[II].setAny(SE);
 | 
						|
    for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
 | 
						|
      DEBUG(dbgs() << "testing subscript group " << SI << " { ");
 | 
						|
      SmallBitVector Group(Pair[SI].Group);
 | 
						|
      SmallBitVector Sivs(Pairs);
 | 
						|
      SmallBitVector Mivs(Pairs);
 | 
						|
      SmallBitVector ConstrainedLevels(MaxLevels + 1);
 | 
						|
      for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
 | 
						|
        DEBUG(dbgs() << SJ << " ");
 | 
						|
        if (Pair[SJ].Classification == Subscript::SIV)
 | 
						|
          Sivs.set(SJ);
 | 
						|
        else
 | 
						|
          Mivs.set(SJ);
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "}\n");
 | 
						|
      while (Sivs.any()) {
 | 
						|
        bool Changed = false;
 | 
						|
        for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
 | 
						|
          DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
 | 
						|
          // SJ is an SIV subscript that's part of the current coupled group
 | 
						|
          unsigned Level;
 | 
						|
          const SCEV *SplitIter = NULL;
 | 
						|
          DEBUG(dbgs() << "SIV\n");
 | 
						|
          if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
 | 
						|
                      Result, NewConstraint, SplitIter))
 | 
						|
            return NULL;
 | 
						|
          ConstrainedLevels.set(Level);
 | 
						|
          if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
 | 
						|
            if (Constraints[Level].isEmpty()) {
 | 
						|
              ++DeltaIndependence;
 | 
						|
              return NULL;
 | 
						|
            }
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
          Sivs.reset(SJ);
 | 
						|
        }
 | 
						|
        if (Changed) {
 | 
						|
          // propagate, possibly creating new SIVs and ZIVs
 | 
						|
          DEBUG(dbgs() << "    propagating\n");
 | 
						|
          DEBUG(dbgs() << "\tMivs = ");
 | 
						|
          DEBUG(dumpSmallBitVector(Mivs));
 | 
						|
          for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
 | 
						|
            // SJ is an MIV subscript that's part of the current coupled group
 | 
						|
            DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
 | 
						|
            if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
 | 
						|
                          Constraints, Result.Consistent)) {
 | 
						|
              DEBUG(dbgs() << "\t    Changed\n");
 | 
						|
              ++DeltaPropagations;
 | 
						|
              Pair[SJ].Classification =
 | 
						|
                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
 | 
						|
                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
 | 
						|
                             Pair[SJ].Loops);
 | 
						|
              switch (Pair[SJ].Classification) {
 | 
						|
              case Subscript::ZIV:
 | 
						|
                DEBUG(dbgs() << "ZIV\n");
 | 
						|
                if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
 | 
						|
                  return NULL;
 | 
						|
                Mivs.reset(SJ);
 | 
						|
                break;
 | 
						|
              case Subscript::SIV:
 | 
						|
                Sivs.set(SJ);
 | 
						|
                Mivs.reset(SJ);
 | 
						|
                break;
 | 
						|
              case Subscript::RDIV:
 | 
						|
              case Subscript::MIV:
 | 
						|
                break;
 | 
						|
              default:
 | 
						|
                llvm_unreachable("bad subscript classification");
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // test & propagate remaining RDIVs
 | 
						|
      for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
 | 
						|
        if (Pair[SJ].Classification == Subscript::RDIV) {
 | 
						|
          DEBUG(dbgs() << "RDIV test\n");
 | 
						|
          if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
 | 
						|
            return NULL;
 | 
						|
          // I don't yet understand how to propagate RDIV results
 | 
						|
          Mivs.reset(SJ);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // test remaining MIVs
 | 
						|
      // This code is temporary.
 | 
						|
      // Better to somehow test all remaining subscripts simultaneously.
 | 
						|
      for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
 | 
						|
        if (Pair[SJ].Classification == Subscript::MIV) {
 | 
						|
          DEBUG(dbgs() << "MIV test\n");
 | 
						|
          if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        else
 | 
						|
          llvm_unreachable("expected only MIV subscripts at this point");
 | 
						|
      }
 | 
						|
 | 
						|
      // update Result.DV from constraint vector
 | 
						|
      DEBUG(dbgs() << "    updating\n");
 | 
						|
      for (int SJ = ConstrainedLevels.find_first();
 | 
						|
           SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
 | 
						|
        updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
 | 
						|
        if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // make sure Scalar flags are set correctly
 | 
						|
  SmallBitVector CompleteLoops(MaxLevels + 1);
 | 
						|
  for (unsigned SI = 0; SI < Pairs; ++SI)
 | 
						|
    CompleteLoops |= Pair[SI].Loops;
 | 
						|
  for (unsigned II = 1; II <= CommonLevels; ++II)
 | 
						|
    if (CompleteLoops[II])
 | 
						|
      Result.DV[II - 1].Scalar = false;
 | 
						|
 | 
						|
  // make sure loopIndepent flag is set correctly
 | 
						|
  if (PossiblyLoopIndependent) {
 | 
						|
    for (unsigned II = 1; II <= CommonLevels; ++II) {
 | 
						|
      if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
 | 
						|
        Result.LoopIndependent = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FullDependence *Final = new FullDependence(Result);
 | 
						|
  Result.DV = NULL;
 | 
						|
  return Final;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// getSplitIteration -
 | 
						|
// Rather than spend rarely-used space recording the splitting iteration
 | 
						|
// during the Weak-Crossing SIV test, we re-compute it on demand.
 | 
						|
// The re-computation is basically a repeat of the entire dependence test,
 | 
						|
// though simplified since we know that the dependence exists.
 | 
						|
// It's tedious, since we must go through all propagations, etc.
 | 
						|
//
 | 
						|
// Care is required to keep this code up to date w.r.t. the code above.
 | 
						|
//
 | 
						|
// Generally, the dependence analyzer will be used to build
 | 
						|
// a dependence graph for a function (basically a map from instructions
 | 
						|
// to dependences). Looking for cycles in the graph shows us loops
 | 
						|
// that cannot be trivially vectorized/parallelized.
 | 
						|
//
 | 
						|
// We can try to improve the situation by examining all the dependences
 | 
						|
// that make up the cycle, looking for ones we can break.
 | 
						|
// Sometimes, peeling the first or last iteration of a loop will break
 | 
						|
// dependences, and we've got flags for those possibilities.
 | 
						|
// Sometimes, splitting a loop at some other iteration will do the trick,
 | 
						|
// and we've got a flag for that case. Rather than waste the space to
 | 
						|
// record the exact iteration (since we rarely know), we provide
 | 
						|
// a method that calculates the iteration. It's a drag that it must work
 | 
						|
// from scratch, but wonderful in that it's possible.
 | 
						|
//
 | 
						|
// Here's an example:
 | 
						|
//
 | 
						|
//    for (i = 0; i < 10; i++)
 | 
						|
//        A[i] = ...
 | 
						|
//        ... = A[11 - i]
 | 
						|
//
 | 
						|
// There's a loop-carried flow dependence from the store to the load,
 | 
						|
// found by the weak-crossing SIV test. The dependence will have a flag,
 | 
						|
// indicating that the dependence can be broken by splitting the loop.
 | 
						|
// Calling getSplitIteration will return 5.
 | 
						|
// Splitting the loop breaks the dependence, like so:
 | 
						|
//
 | 
						|
//    for (i = 0; i <= 5; i++)
 | 
						|
//        A[i] = ...
 | 
						|
//        ... = A[11 - i]
 | 
						|
//    for (i = 6; i < 10; i++)
 | 
						|
//        A[i] = ...
 | 
						|
//        ... = A[11 - i]
 | 
						|
//
 | 
						|
// breaks the dependence and allows us to vectorize/parallelize
 | 
						|
// both loops.
 | 
						|
const  SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
 | 
						|
                                                   unsigned SplitLevel) {
 | 
						|
  assert(Dep && "expected a pointer to a Dependence");
 | 
						|
  assert(Dep->isSplitable(SplitLevel) &&
 | 
						|
         "Dep should be splitable at SplitLevel");
 | 
						|
  const Instruction *Src = Dep->getSrc();
 | 
						|
  const Instruction *Dst = Dep->getDst();
 | 
						|
  assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
 | 
						|
  assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
 | 
						|
  assert(isLoadOrStore(Src));
 | 
						|
  assert(isLoadOrStore(Dst));
 | 
						|
  const Value *SrcPtr = getPointerOperand(Src);
 | 
						|
  const Value *DstPtr = getPointerOperand(Dst);
 | 
						|
  assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
 | 
						|
         AliasAnalysis::MustAlias);
 | 
						|
  const GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
 | 
						|
  const GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
 | 
						|
  assert(SrcGEP);
 | 
						|
  assert(DstGEP);
 | 
						|
  assert(SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType());
 | 
						|
 | 
						|
  // establish loop nesting levels
 | 
						|
  establishNestingLevels(Src, Dst);
 | 
						|
 | 
						|
  FullDependence Result(Src, Dst, false, CommonLevels);
 | 
						|
 | 
						|
  // classify subscript pairs
 | 
						|
  unsigned Pairs = SrcGEP->idx_end() - SrcGEP->idx_begin();
 | 
						|
  SmallVector<Subscript, 4> Pair(Pairs);
 | 
						|
  for (unsigned SI = 0; SI < Pairs; ++SI) {
 | 
						|
    Pair[SI].Loops.resize(MaxLevels + 1);
 | 
						|
    Pair[SI].GroupLoops.resize(MaxLevels + 1);
 | 
						|
    Pair[SI].Group.resize(Pairs);
 | 
						|
  }
 | 
						|
  Pairs = 0;
 | 
						|
  for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
 | 
						|
         SrcEnd = SrcGEP->idx_end(),
 | 
						|
         DstIdx = DstGEP->idx_begin(),
 | 
						|
         DstEnd = DstGEP->idx_end();
 | 
						|
       SrcIdx != SrcEnd && DstIdx != DstEnd;
 | 
						|
       ++SrcIdx, ++DstIdx, ++Pairs) {
 | 
						|
    Pair[Pairs].Src = SE->getSCEV(*SrcIdx);
 | 
						|
    Pair[Pairs].Dst = SE->getSCEV(*DstIdx);
 | 
						|
    Pair[Pairs].Classification =
 | 
						|
      classifyPair(Pair[Pairs].Src, LI->getLoopFor(Src->getParent()),
 | 
						|
                   Pair[Pairs].Dst, LI->getLoopFor(Dst->getParent()),
 | 
						|
                   Pair[Pairs].Loops);
 | 
						|
    Pair[Pairs].GroupLoops = Pair[Pairs].Loops;
 | 
						|
    Pair[Pairs].Group.set(Pairs);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallBitVector Separable(Pairs);
 | 
						|
  SmallBitVector Coupled(Pairs);
 | 
						|
 | 
						|
  // partition subscripts into separable and minimally-coupled groups
 | 
						|
  for (unsigned SI = 0; SI < Pairs; ++SI) {
 | 
						|
    if (Pair[SI].Classification == Subscript::NonLinear) {
 | 
						|
      // ignore these, but collect loops for later
 | 
						|
      collectCommonLoops(Pair[SI].Src,
 | 
						|
                         LI->getLoopFor(Src->getParent()),
 | 
						|
                         Pair[SI].Loops);
 | 
						|
      collectCommonLoops(Pair[SI].Dst,
 | 
						|
                         LI->getLoopFor(Dst->getParent()),
 | 
						|
                         Pair[SI].Loops);
 | 
						|
      Result.Consistent = false;
 | 
						|
    }
 | 
						|
    else if (Pair[SI].Classification == Subscript::ZIV)
 | 
						|
      Separable.set(SI);
 | 
						|
    else {
 | 
						|
      // SIV, RDIV, or MIV, so check for coupled group
 | 
						|
      bool Done = true;
 | 
						|
      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
 | 
						|
        SmallBitVector Intersection = Pair[SI].GroupLoops;
 | 
						|
        Intersection &= Pair[SJ].GroupLoops;
 | 
						|
        if (Intersection.any()) {
 | 
						|
          // accumulate set of all the loops in group
 | 
						|
          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
 | 
						|
          // accumulate set of all subscripts in group
 | 
						|
          Pair[SJ].Group |= Pair[SI].Group;
 | 
						|
          Done = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Done) {
 | 
						|
        if (Pair[SI].Group.count() == 1)
 | 
						|
          Separable.set(SI);
 | 
						|
        else
 | 
						|
          Coupled.set(SI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Constraint NewConstraint;
 | 
						|
  NewConstraint.setAny(SE);
 | 
						|
 | 
						|
  // test separable subscripts
 | 
						|
  for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
 | 
						|
    switch (Pair[SI].Classification) {
 | 
						|
    case Subscript::SIV: {
 | 
						|
      unsigned Level;
 | 
						|
      const SCEV *SplitIter = NULL;
 | 
						|
      (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
 | 
						|
                     Result, NewConstraint, SplitIter);
 | 
						|
      if (Level == SplitLevel) {
 | 
						|
        assert(SplitIter != NULL);
 | 
						|
        return SplitIter;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Subscript::ZIV:
 | 
						|
    case Subscript::RDIV:
 | 
						|
    case Subscript::MIV:
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("subscript has unexpected classification");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Coupled.count()) {
 | 
						|
    // test coupled subscript groups
 | 
						|
    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
 | 
						|
    for (unsigned II = 0; II <= MaxLevels; ++II)
 | 
						|
      Constraints[II].setAny(SE);
 | 
						|
    for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
 | 
						|
      SmallBitVector Group(Pair[SI].Group);
 | 
						|
      SmallBitVector Sivs(Pairs);
 | 
						|
      SmallBitVector Mivs(Pairs);
 | 
						|
      SmallBitVector ConstrainedLevels(MaxLevels + 1);
 | 
						|
      for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
 | 
						|
        if (Pair[SJ].Classification == Subscript::SIV)
 | 
						|
          Sivs.set(SJ);
 | 
						|
        else
 | 
						|
          Mivs.set(SJ);
 | 
						|
      }
 | 
						|
      while (Sivs.any()) {
 | 
						|
        bool Changed = false;
 | 
						|
        for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
 | 
						|
          // SJ is an SIV subscript that's part of the current coupled group
 | 
						|
          unsigned Level;
 | 
						|
          const SCEV *SplitIter = NULL;
 | 
						|
          (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
 | 
						|
                         Result, NewConstraint, SplitIter);
 | 
						|
          if (Level == SplitLevel && SplitIter)
 | 
						|
            return SplitIter;
 | 
						|
          ConstrainedLevels.set(Level);
 | 
						|
          if (intersectConstraints(&Constraints[Level], &NewConstraint))
 | 
						|
            Changed = true;
 | 
						|
          Sivs.reset(SJ);
 | 
						|
        }
 | 
						|
        if (Changed) {
 | 
						|
          // propagate, possibly creating new SIVs and ZIVs
 | 
						|
          for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
 | 
						|
            // SJ is an MIV subscript that's part of the current coupled group
 | 
						|
            if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
 | 
						|
                          Pair[SJ].Loops, Constraints, Result.Consistent)) {
 | 
						|
              Pair[SJ].Classification =
 | 
						|
                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
 | 
						|
                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
 | 
						|
                             Pair[SJ].Loops);
 | 
						|
              switch (Pair[SJ].Classification) {
 | 
						|
              case Subscript::ZIV:
 | 
						|
                Mivs.reset(SJ);
 | 
						|
                break;
 | 
						|
              case Subscript::SIV:
 | 
						|
                Sivs.set(SJ);
 | 
						|
                Mivs.reset(SJ);
 | 
						|
                break;
 | 
						|
              case Subscript::RDIV:
 | 
						|
              case Subscript::MIV:
 | 
						|
                break;
 | 
						|
              default:
 | 
						|
                llvm_unreachable("bad subscript classification");
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("somehow reached end of routine");
 | 
						|
  return NULL;
 | 
						|
}
 |