forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1702 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1702 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----- ScopDetection.cpp  - Detect Scops --------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Detect the maximal Scops of a function.
 | 
						|
//
 | 
						|
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
 | 
						|
// that only has statically known control flow and can therefore be described
 | 
						|
// within the polyhedral model.
 | 
						|
//
 | 
						|
// Every Scop fullfills these restrictions:
 | 
						|
//
 | 
						|
// * It is a single entry single exit region
 | 
						|
//
 | 
						|
// * Only affine linear bounds in the loops
 | 
						|
//
 | 
						|
// Every natural loop in a Scop must have a number of loop iterations that can
 | 
						|
// be described as an affine linear function in surrounding loop iterators or
 | 
						|
// parameters. (A parameter is a scalar that does not change its value during
 | 
						|
// execution of the Scop).
 | 
						|
//
 | 
						|
// * Only comparisons of affine linear expressions in conditions
 | 
						|
//
 | 
						|
// * All loops and conditions perfectly nested
 | 
						|
//
 | 
						|
// The control flow needs to be structured such that it could be written using
 | 
						|
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
 | 
						|
// 'continue'.
 | 
						|
//
 | 
						|
// * Side effect free functions call
 | 
						|
//
 | 
						|
// Function calls and intrinsics that do not have side effects (readnone)
 | 
						|
// or memory intrinsics (memset, memcpy, memmove) are allowed.
 | 
						|
//
 | 
						|
// The Scop detection finds the largest Scops by checking if the largest
 | 
						|
// region is a Scop. If this is not the case, its canonical subregions are
 | 
						|
// checked until a region is a Scop. It is now tried to extend this Scop by
 | 
						|
// creating a larger non canonical region.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "polly/ScopDetection.h"
 | 
						|
#include "polly/CodeGen/CodeGeneration.h"
 | 
						|
#include "polly/LinkAllPasses.h"
 | 
						|
#include "polly/Options.h"
 | 
						|
#include "polly/ScopDetectionDiagnostic.h"
 | 
						|
#include "polly/Support/SCEVValidator.h"
 | 
						|
#include "polly/Support/ScopLocation.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/Analysis/RegionIterator.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/DiagnosticPrinter.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <set>
 | 
						|
#include <stack>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace polly;
 | 
						|
 | 
						|
#define DEBUG_TYPE "polly-detect"
 | 
						|
 | 
						|
// This option is set to a very high value, as analyzing such loops increases
 | 
						|
// compile time on several cases. For experiments that enable this option,
 | 
						|
// a value of around 40 has been working to avoid run-time regressions with
 | 
						|
// Polly while still exposing interesting optimization opportunities.
 | 
						|
static cl::opt<int> ProfitabilityMinPerLoopInstructions(
 | 
						|
    "polly-detect-profitability-min-per-loop-insts",
 | 
						|
    cl::desc("The minimal number of per-loop instructions before a single loop "
 | 
						|
             "region is considered profitable"),
 | 
						|
    cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));
 | 
						|
 | 
						|
bool polly::PollyProcessUnprofitable;
 | 
						|
static cl::opt<bool, true> XPollyProcessUnprofitable(
 | 
						|
    "polly-process-unprofitable",
 | 
						|
    cl::desc(
 | 
						|
        "Process scops that are unlikely to benefit from Polly optimizations."),
 | 
						|
    cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
 | 
						|
    cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<std::string> OnlyFunction(
 | 
						|
    "polly-only-func",
 | 
						|
    cl::desc("Only run on functions that contain a certain string"),
 | 
						|
    cl::value_desc("string"), cl::ValueRequired, cl::init(""),
 | 
						|
    cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<std::string> OnlyRegion(
 | 
						|
    "polly-only-region",
 | 
						|
    cl::desc("Only run on certain regions (The provided identifier must "
 | 
						|
             "appear in the name of the region's entry block"),
 | 
						|
    cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
 | 
						|
    cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    IgnoreAliasing("polly-ignore-aliasing",
 | 
						|
                   cl::desc("Ignore possible aliasing of the array bases"),
 | 
						|
                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | 
						|
                   cl::cat(PollyCategory));
 | 
						|
 | 
						|
bool polly::PollyAllowUnsignedOperations;
 | 
						|
static cl::opt<bool, true> XPollyAllowUnsignedOperations(
 | 
						|
    "polly-allow-unsigned-operations",
 | 
						|
    cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
 | 
						|
    cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
 | 
						|
    cl::init(true), cl::cat(PollyCategory));
 | 
						|
 | 
						|
bool polly::PollyUseRuntimeAliasChecks;
 | 
						|
static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
 | 
						|
    "polly-use-runtime-alias-checks",
 | 
						|
    cl::desc("Use runtime alias checks to resolve possible aliasing."),
 | 
						|
    cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
 | 
						|
    cl::init(true), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ReportLevel("polly-report",
 | 
						|
                cl::desc("Print information about the activities of Polly"),
 | 
						|
                cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool> AllowDifferentTypes(
 | 
						|
    "polly-allow-differing-element-types",
 | 
						|
    cl::desc("Allow different element types for array accesses"), cl::Hidden,
 | 
						|
    cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    AllowNonAffine("polly-allow-nonaffine",
 | 
						|
                   cl::desc("Allow non affine access functions in arrays"),
 | 
						|
                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | 
						|
                   cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    AllowModrefCall("polly-allow-modref-calls",
 | 
						|
                    cl::desc("Allow functions with known modref behavior"),
 | 
						|
                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | 
						|
                    cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool> AllowNonAffineSubRegions(
 | 
						|
    "polly-allow-nonaffine-branches",
 | 
						|
    cl::desc("Allow non affine conditions for branches"), cl::Hidden,
 | 
						|
    cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
 | 
						|
                           cl::desc("Allow non affine conditions for loops"),
 | 
						|
                           cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | 
						|
                           cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool, true>
 | 
						|
    TrackFailures("polly-detect-track-failures",
 | 
						|
                  cl::desc("Track failure strings in detecting scop regions"),
 | 
						|
                  cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
 | 
						|
                  cl::init(true), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool> KeepGoing("polly-detect-keep-going",
 | 
						|
                               cl::desc("Do not fail on the first error."),
 | 
						|
                               cl::Hidden, cl::ZeroOrMore, cl::init(false),
 | 
						|
                               cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool, true>
 | 
						|
    PollyDelinearizeX("polly-delinearize",
 | 
						|
                      cl::desc("Delinearize array access functions"),
 | 
						|
                      cl::location(PollyDelinearize), cl::Hidden,
 | 
						|
                      cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    VerifyScops("polly-detect-verify",
 | 
						|
                cl::desc("Verify the detected SCoPs after each transformation"),
 | 
						|
                cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | 
						|
                cl::cat(PollyCategory));
 | 
						|
 | 
						|
bool polly::PollyInvariantLoadHoisting;
 | 
						|
static cl::opt<bool, true> XPollyInvariantLoadHoisting(
 | 
						|
    "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
 | 
						|
    cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
 | 
						|
    cl::init(false), cl::cat(PollyCategory));
 | 
						|
 | 
						|
/// The minimal trip count under which loops are considered unprofitable.
 | 
						|
static const unsigned MIN_LOOP_TRIP_COUNT = 8;
 | 
						|
 | 
						|
bool polly::PollyTrackFailures = false;
 | 
						|
bool polly::PollyDelinearize = false;
 | 
						|
StringRef polly::PollySkipFnAttr = "polly.skip.fn";
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Statistics.
 | 
						|
 | 
						|
STATISTIC(NumScopRegions, "Number of scops");
 | 
						|
STATISTIC(NumLoopsInScop, "Number of loops in scops");
 | 
						|
STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
 | 
						|
STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
 | 
						|
STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
 | 
						|
STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
 | 
						|
STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
 | 
						|
STATISTIC(NumScopsDepthLarger,
 | 
						|
          "Number of scops with maximal loop depth 6 and larger");
 | 
						|
STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
 | 
						|
STATISTIC(NumLoopsInProfScop,
 | 
						|
          "Number of loops in scops (profitable scops only)");
 | 
						|
STATISTIC(NumLoopsOverall, "Number of total loops");
 | 
						|
STATISTIC(NumProfScopsDepthOne,
 | 
						|
          "Number of scops with maximal loop depth 1 (profitable scops only)");
 | 
						|
STATISTIC(NumProfScopsDepthTwo,
 | 
						|
          "Number of scops with maximal loop depth 2 (profitable scops only)");
 | 
						|
STATISTIC(NumProfScopsDepthThree,
 | 
						|
          "Number of scops with maximal loop depth 3 (profitable scops only)");
 | 
						|
STATISTIC(NumProfScopsDepthFour,
 | 
						|
          "Number of scops with maximal loop depth 4 (profitable scops only)");
 | 
						|
STATISTIC(NumProfScopsDepthFive,
 | 
						|
          "Number of scops with maximal loop depth 5 (profitable scops only)");
 | 
						|
STATISTIC(NumProfScopsDepthLarger, "Number of scops with maximal loop depth 6 "
 | 
						|
                                   "and larger (profitable scops only)");
 | 
						|
 | 
						|
class DiagnosticScopFound : public DiagnosticInfo {
 | 
						|
private:
 | 
						|
  static int PluginDiagnosticKind;
 | 
						|
 | 
						|
  Function &F;
 | 
						|
  std::string FileName;
 | 
						|
  unsigned EntryLine, ExitLine;
 | 
						|
 | 
						|
public:
 | 
						|
  DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
 | 
						|
                      unsigned ExitLine)
 | 
						|
      : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
 | 
						|
        EntryLine(EntryLine), ExitLine(ExitLine) {}
 | 
						|
 | 
						|
  virtual void print(DiagnosticPrinter &DP) const;
 | 
						|
 | 
						|
  static bool classof(const DiagnosticInfo *DI) {
 | 
						|
    return DI->getKind() == PluginDiagnosticKind;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
int DiagnosticScopFound::PluginDiagnosticKind =
 | 
						|
    getNextAvailablePluginDiagnosticKind();
 | 
						|
 | 
						|
void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
 | 
						|
  DP << "Polly detected an optimizable loop region (scop) in function '" << F
 | 
						|
     << "'\n";
 | 
						|
 | 
						|
  if (FileName.empty()) {
 | 
						|
    DP << "Scop location is unknown. Compile with debug info "
 | 
						|
          "(-g) to get more precise information. ";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DP << FileName << ":" << EntryLine << ": Start of scop\n";
 | 
						|
  DP << FileName << ":" << ExitLine << ": End of scop";
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ScopDetection.
 | 
						|
 | 
						|
ScopDetection::ScopDetection() : FunctionPass(ID) {
 | 
						|
  // Disable runtime alias checks if we ignore aliasing all together.
 | 
						|
  if (IgnoreAliasing)
 | 
						|
    PollyUseRuntimeAliasChecks = false;
 | 
						|
}
 | 
						|
 | 
						|
template <class RR, typename... Args>
 | 
						|
inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
 | 
						|
                                   Args &&... Arguments) const {
 | 
						|
 | 
						|
  if (!Context.Verifying) {
 | 
						|
    RejectLog &Log = Context.Log;
 | 
						|
    std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);
 | 
						|
 | 
						|
    if (PollyTrackFailures)
 | 
						|
      Log.report(RejectReason);
 | 
						|
 | 
						|
    DEBUG(dbgs() << RejectReason->getMessage());
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
  } else {
 | 
						|
    assert(!Assert && "Verification of detected scop failed");
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
 | 
						|
  if (!ValidRegions.count(&R))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Verify) {
 | 
						|
    DetectionContextMap.erase(getBBPairForRegion(&R));
 | 
						|
    const auto &It = DetectionContextMap.insert(std::make_pair(
 | 
						|
        getBBPairForRegion(&R),
 | 
						|
        DetectionContext(const_cast<Region &>(R), *AA, false /*verifying*/)));
 | 
						|
    DetectionContext &Context = It.first->second;
 | 
						|
    return isValidRegion(Context);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
 | 
						|
  // Get the first error we found. Even in keep-going mode, this is the first
 | 
						|
  // reason that caused the candidate to be rejected.
 | 
						|
  auto *Log = lookupRejectionLog(R);
 | 
						|
 | 
						|
  // This can happen when we marked a region invalid, but didn't track
 | 
						|
  // an error for it.
 | 
						|
  if (!Log || !Log->hasErrors())
 | 
						|
    return "";
 | 
						|
 | 
						|
  RejectReasonPtr RR = *Log->begin();
 | 
						|
  return RR->getMessage();
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::addOverApproximatedRegion(Region *AR,
 | 
						|
                                              DetectionContext &Context) const {
 | 
						|
 | 
						|
  // If we already know about Ar we can exit.
 | 
						|
  if (!Context.NonAffineSubRegionSet.insert(AR))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // All loops in the region have to be overapproximated too if there
 | 
						|
  // are accesses that depend on the iteration count.
 | 
						|
 | 
						|
  for (BasicBlock *BB : AR->blocks()) {
 | 
						|
    Loop *L = LI->getLoopFor(BB);
 | 
						|
    if (AR->contains(L))
 | 
						|
      Context.BoxedLoopsSet.insert(L);
 | 
						|
  }
 | 
						|
 | 
						|
  return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::onlyValidRequiredInvariantLoads(
 | 
						|
    InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
 | 
						|
  Region &CurRegion = Context.CurRegion;
 | 
						|
 | 
						|
  if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (LoadInst *Load : RequiredILS)
 | 
						|
    if (!isHoistableLoad(Load, CurRegion, *LI, *SE, *DT))
 | 
						|
      return false;
 | 
						|
 | 
						|
  Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
 | 
						|
                                         Loop *Scope) const {
 | 
						|
  SetVector<Value *> Values;
 | 
						|
  findValues(S0, *SE, Values);
 | 
						|
  if (S1)
 | 
						|
    findValues(S1, *SE, Values);
 | 
						|
 | 
						|
  SmallPtrSet<Value *, 8> PtrVals;
 | 
						|
  for (auto *V : Values) {
 | 
						|
    if (auto *P2I = dyn_cast<PtrToIntInst>(V))
 | 
						|
      V = P2I->getOperand(0);
 | 
						|
 | 
						|
    if (!V->getType()->isPointerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *PtrSCEV = SE->getSCEVAtScope(V, Scope);
 | 
						|
    if (isa<SCEVConstant>(PtrSCEV))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *BasePtr = dyn_cast<SCEVUnknown>(SE->getPointerBase(PtrSCEV));
 | 
						|
    if (!BasePtr)
 | 
						|
      return true;
 | 
						|
 | 
						|
    auto *BasePtrVal = BasePtr->getValue();
 | 
						|
    if (PtrVals.insert(BasePtrVal).second) {
 | 
						|
      for (auto *PtrVal : PtrVals)
 | 
						|
        if (PtrVal != BasePtrVal && !AA->isNoAlias(PtrVal, BasePtrVal))
 | 
						|
          return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
 | 
						|
                             DetectionContext &Context) const {
 | 
						|
 | 
						|
  InvariantLoadsSetTy AccessILS;
 | 
						|
  if (!isAffineExpr(&Context.CurRegion, Scope, S, *SE, &AccessILS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
 | 
						|
                                  Value *Condition, bool IsLoopBranch,
 | 
						|
                                  DetectionContext &Context) const {
 | 
						|
  Loop *L = LI->getLoopFor(&BB);
 | 
						|
  const SCEV *ConditionSCEV = SE->getSCEVAtScope(Condition, L);
 | 
						|
 | 
						|
  if (IsLoopBranch && L->isLoopLatch(&BB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for invalid usage of different pointers in one expression.
 | 
						|
  if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isAffine(ConditionSCEV, L, Context))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (AllowNonAffineSubRegions &&
 | 
						|
      addOverApproximatedRegion(RI->getRegionFor(&BB), Context))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
 | 
						|
                                     ConditionSCEV, ConditionSCEV, SI);
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
 | 
						|
                                  Value *Condition, bool IsLoopBranch,
 | 
						|
                                  DetectionContext &Context) const {
 | 
						|
 | 
						|
  // Constant integer conditions are always affine.
 | 
						|
  if (isa<ConstantInt>(Condition))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
 | 
						|
    auto Opcode = BinOp->getOpcode();
 | 
						|
    if (Opcode == Instruction::And || Opcode == Instruction::Or) {
 | 
						|
      Value *Op0 = BinOp->getOperand(0);
 | 
						|
      Value *Op1 = BinOp->getOperand(1);
 | 
						|
      return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
 | 
						|
             isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Non constant conditions of branches need to be ICmpInst.
 | 
						|
  if (!isa<ICmpInst>(Condition)) {
 | 
						|
    if (!IsLoopBranch && AllowNonAffineSubRegions &&
 | 
						|
        addOverApproximatedRegion(RI->getRegionFor(&BB), Context))
 | 
						|
      return true;
 | 
						|
    return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst *ICmp = cast<ICmpInst>(Condition);
 | 
						|
 | 
						|
  // Are both operands of the ICmp affine?
 | 
						|
  if (isa<UndefValue>(ICmp->getOperand(0)) ||
 | 
						|
      isa<UndefValue>(ICmp->getOperand(1)))
 | 
						|
    return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);
 | 
						|
 | 
						|
  Loop *L = LI->getLoopFor(&BB);
 | 
						|
  const SCEV *LHS = SE->getSCEVAtScope(ICmp->getOperand(0), L);
 | 
						|
  const SCEV *RHS = SE->getSCEVAtScope(ICmp->getOperand(1), L);
 | 
						|
 | 
						|
  // If unsigned operations are not allowed try to approximate the region.
 | 
						|
  if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
 | 
						|
    return !IsLoopBranch && AllowNonAffineSubRegions &&
 | 
						|
           addOverApproximatedRegion(RI->getRegionFor(&BB), Context);
 | 
						|
 | 
						|
  // Check for invalid usage of different pointers in one expression.
 | 
						|
  if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
 | 
						|
      involvesMultiplePtrs(RHS, nullptr, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for invalid usage of different pointers in a relational comparison.
 | 
						|
  if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!IsLoopBranch && AllowNonAffineSubRegions &&
 | 
						|
      addOverApproximatedRegion(RI->getRegionFor(&BB), Context))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (IsLoopBranch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
 | 
						|
                                     ICmp);
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
 | 
						|
                               bool AllowUnreachable,
 | 
						|
                               DetectionContext &Context) const {
 | 
						|
  Region &CurRegion = Context.CurRegion;
 | 
						|
 | 
						|
  TerminatorInst *TI = BB.getTerminator();
 | 
						|
 | 
						|
  if (AllowUnreachable && isa<UnreachableInst>(TI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Return instructions are only valid if the region is the top level region.
 | 
						|
  if (isa<ReturnInst>(TI) && !CurRegion.getExit() && TI->getNumOperands() == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  Value *Condition = getConditionFromTerminator(TI);
 | 
						|
 | 
						|
  if (!Condition)
 | 
						|
    return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);
 | 
						|
 | 
						|
  // UndefValue is not allowed as condition.
 | 
						|
  if (isa<UndefValue>(Condition))
 | 
						|
    return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);
 | 
						|
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | 
						|
    return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);
 | 
						|
 | 
						|
  SwitchInst *SI = dyn_cast<SwitchInst>(TI);
 | 
						|
  assert(SI && "Terminator was neither branch nor switch");
 | 
						|
 | 
						|
  return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidCallInst(CallInst &CI,
 | 
						|
                                    DetectionContext &Context) const {
 | 
						|
  if (CI.doesNotReturn())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (CI.doesNotAccessMemory())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (auto *II = dyn_cast<IntrinsicInst>(&CI))
 | 
						|
    if (isValidIntrinsicInst(*II, Context))
 | 
						|
      return true;
 | 
						|
 | 
						|
  Function *CalledFunction = CI.getCalledFunction();
 | 
						|
 | 
						|
  // Indirect calls are not supported.
 | 
						|
  if (CalledFunction == nullptr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (AllowModrefCall) {
 | 
						|
    switch (AA->getModRefBehavior(CalledFunction)) {
 | 
						|
    case FMRB_UnknownModRefBehavior:
 | 
						|
      return false;
 | 
						|
    case FMRB_DoesNotAccessMemory:
 | 
						|
    case FMRB_OnlyReadsMemory:
 | 
						|
      // Implicitly disable delinearization since we have an unknown
 | 
						|
      // accesses with an unknown access function.
 | 
						|
      Context.HasUnknownAccess = true;
 | 
						|
      Context.AST.add(&CI);
 | 
						|
      return true;
 | 
						|
    case FMRB_OnlyReadsArgumentPointees:
 | 
						|
    case FMRB_OnlyAccessesArgumentPointees:
 | 
						|
      for (const auto &Arg : CI.arg_operands()) {
 | 
						|
        if (!Arg->getType()->isPointerTy())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Bail if a pointer argument has a base address not known to
 | 
						|
        // ScalarEvolution. Note that a zero pointer is acceptable.
 | 
						|
        auto *ArgSCEV = SE->getSCEVAtScope(Arg, LI->getLoopFor(CI.getParent()));
 | 
						|
        if (ArgSCEV->isZero())
 | 
						|
          continue;
 | 
						|
 | 
						|
        auto *BP = dyn_cast<SCEVUnknown>(SE->getPointerBase(ArgSCEV));
 | 
						|
        if (!BP)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // Implicitly disable delinearization since we have an unknown
 | 
						|
        // accesses with an unknown access function.
 | 
						|
        Context.HasUnknownAccess = true;
 | 
						|
      }
 | 
						|
 | 
						|
      Context.AST.add(&CI);
 | 
						|
      return true;
 | 
						|
    case FMRB_DoesNotReadMemory:
 | 
						|
    case FMRB_OnlyAccessesInaccessibleMem:
 | 
						|
    case FMRB_OnlyAccessesInaccessibleOrArgMem:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
 | 
						|
                                         DetectionContext &Context) const {
 | 
						|
  if (isIgnoredIntrinsic(&II))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The closest loop surrounding the call instruction.
 | 
						|
  Loop *L = LI->getLoopFor(II.getParent());
 | 
						|
 | 
						|
  // The access function and base pointer for memory intrinsics.
 | 
						|
  const SCEV *AF;
 | 
						|
  const SCEVUnknown *BP;
 | 
						|
 | 
						|
  switch (II.getIntrinsicID()) {
 | 
						|
  // Memory intrinsics that can be represented are supported.
 | 
						|
  case llvm::Intrinsic::memmove:
 | 
						|
  case llvm::Intrinsic::memcpy:
 | 
						|
    AF = SE->getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
 | 
						|
    if (!AF->isZero()) {
 | 
						|
      BP = dyn_cast<SCEVUnknown>(SE->getPointerBase(AF));
 | 
						|
      // Bail if the source pointer is not valid.
 | 
						|
      if (!isValidAccess(&II, AF, BP, Context))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  // Fall through
 | 
						|
  case llvm::Intrinsic::memset:
 | 
						|
    AF = SE->getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
 | 
						|
    if (!AF->isZero()) {
 | 
						|
      BP = dyn_cast<SCEVUnknown>(SE->getPointerBase(AF));
 | 
						|
      // Bail if the destination pointer is not valid.
 | 
						|
      if (!isValidAccess(&II, AF, BP, Context))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Bail if the length is not affine.
 | 
						|
    if (!isAffine(SE->getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
 | 
						|
                  Context))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isInvariant(const Value &Val, const Region &Reg) const {
 | 
						|
  // A reference to function argument or constant value is invariant.
 | 
						|
  if (isa<Argument>(Val) || isa<Constant>(Val))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const Instruction *I = dyn_cast<Instruction>(&Val);
 | 
						|
  if (!I)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!Reg.contains(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (I->mayHaveSideEffects())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<SelectInst>(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // When Val is a Phi node, it is likely not invariant. We do not check whether
 | 
						|
  // Phi nodes are actually invariant, we assume that Phi nodes are usually not
 | 
						|
  // invariant.
 | 
						|
  if (isa<PHINode>(*I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (const Use &Operand : I->operands())
 | 
						|
    if (!isInvariant(*Operand, Reg))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove smax of smax(0, size) expressions from a SCEV expression and
 | 
						|
/// register the '...' components.
 | 
						|
///
 | 
						|
/// Array access expressions as they are generated by gfortran contain smax(0,
 | 
						|
/// size) expressions that confuse the 'normal' delinearization algorithm.
 | 
						|
/// However, if we extract such expressions before the normal delinearization
 | 
						|
/// takes place they can actually help to identify array size expressions in
 | 
						|
/// fortran accesses. For the subsequently following delinearization the smax(0,
 | 
						|
/// size) component can be replaced by just 'size'. This is correct as we will
 | 
						|
/// always add and verify the assumption that for all subscript expressions
 | 
						|
/// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
 | 
						|
/// that 0 <= size, which means smax(0, size) == size.
 | 
						|
class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
 | 
						|
public:
 | 
						|
  static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
 | 
						|
                             std::vector<const SCEV *> *Terms = nullptr) {
 | 
						|
    SCEVRemoveMax Rewriter(SE, Terms);
 | 
						|
    return Rewriter.visit(Scev);
 | 
						|
  }
 | 
						|
 | 
						|
  SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
 | 
						|
      : SCEVRewriteVisitor(SE), Terms(Terms) {}
 | 
						|
 | 
						|
  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
 | 
						|
    if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
 | 
						|
      auto Res = visit(Expr->getOperand(1));
 | 
						|
      if (Terms)
 | 
						|
        (*Terms).push_back(Res);
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
 | 
						|
    return Expr;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  std::vector<const SCEV *> *Terms;
 | 
						|
};
 | 
						|
 | 
						|
SmallVector<const SCEV *, 4>
 | 
						|
ScopDetection::getDelinearizationTerms(DetectionContext &Context,
 | 
						|
                                       const SCEVUnknown *BasePointer) const {
 | 
						|
  SmallVector<const SCEV *, 4> Terms;
 | 
						|
  for (const auto &Pair : Context.Accesses[BasePointer]) {
 | 
						|
    std::vector<const SCEV *> MaxTerms;
 | 
						|
    SCEVRemoveMax::rewrite(Pair.second, *SE, &MaxTerms);
 | 
						|
    if (MaxTerms.size() > 0) {
 | 
						|
      Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // In case the outermost expression is a plain add, we check if any of its
 | 
						|
    // terms has the form 4 * %inst * %param * %param ..., aka a term that
 | 
						|
    // contains a product between a parameter and an instruction that is
 | 
						|
    // inside the scop. Such instructions, if allowed at all, are instructions
 | 
						|
    // SCEV can not represent, but Polly is still looking through. As a
 | 
						|
    // result, these instructions can depend on induction variables and are
 | 
						|
    // most likely no array sizes. However, terms that are multiplied with
 | 
						|
    // them are likely candidates for array sizes.
 | 
						|
    if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
 | 
						|
      for (auto Op : AF->operands()) {
 | 
						|
        if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
 | 
						|
          SE->collectParametricTerms(AF2, Terms);
 | 
						|
        if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
 | 
						|
          SmallVector<const SCEV *, 0> Operands;
 | 
						|
 | 
						|
          for (auto *MulOp : AF2->operands()) {
 | 
						|
            if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
 | 
						|
              Operands.push_back(Const);
 | 
						|
            if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
 | 
						|
              if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
 | 
						|
                if (!Context.CurRegion.contains(Inst))
 | 
						|
                  Operands.push_back(MulOp);
 | 
						|
 | 
						|
              } else {
 | 
						|
                Operands.push_back(MulOp);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (Operands.size())
 | 
						|
            Terms.push_back(SE->getMulExpr(Operands));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Terms.empty())
 | 
						|
      SE->collectParametricTerms(Pair.second, Terms);
 | 
						|
  }
 | 
						|
  return Terms;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
 | 
						|
                                       SmallVectorImpl<const SCEV *> &Sizes,
 | 
						|
                                       const SCEVUnknown *BasePointer,
 | 
						|
                                       Loop *Scope) const {
 | 
						|
  Value *BaseValue = BasePointer->getValue();
 | 
						|
  Region &CurRegion = Context.CurRegion;
 | 
						|
  for (const SCEV *DelinearizedSize : Sizes) {
 | 
						|
    if (!isAffine(DelinearizedSize, Scope, Context)) {
 | 
						|
      Sizes.clear();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
 | 
						|
      auto *V = dyn_cast<Value>(Unknown->getValue());
 | 
						|
      if (auto *Load = dyn_cast<LoadInst>(V)) {
 | 
						|
        if (Context.CurRegion.contains(Load) &&
 | 
						|
            isHoistableLoad(Load, CurRegion, *LI, *SE, *DT))
 | 
						|
          Context.RequiredILS.insert(Load);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false))
 | 
						|
      return invalid<ReportNonAffineAccess>(
 | 
						|
          Context, /*Assert=*/true, DelinearizedSize,
 | 
						|
          Context.Accesses[BasePointer].front().first, BaseValue);
 | 
						|
  }
 | 
						|
 | 
						|
  // No array shape derived.
 | 
						|
  if (Sizes.empty()) {
 | 
						|
    if (AllowNonAffine)
 | 
						|
      return true;
 | 
						|
 | 
						|
    for (const auto &Pair : Context.Accesses[BasePointer]) {
 | 
						|
      const Instruction *Insn = Pair.first;
 | 
						|
      const SCEV *AF = Pair.second;
 | 
						|
 | 
						|
      if (!isAffine(AF, Scope, Context)) {
 | 
						|
        invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
 | 
						|
                                       BaseValue);
 | 
						|
        if (!KeepGoing)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// We first store the resulting memory accesses in TempMemoryAccesses. Only
 | 
						|
// if the access functions for all memory accesses have been successfully
 | 
						|
// delinearized we continue. Otherwise, we either report a failure or, if
 | 
						|
// non-affine accesses are allowed, we drop the information. In case the
 | 
						|
// information is dropped the memory accesses need to be overapproximated
 | 
						|
// when translated to a polyhedral representation.
 | 
						|
bool ScopDetection::computeAccessFunctions(
 | 
						|
    DetectionContext &Context, const SCEVUnknown *BasePointer,
 | 
						|
    std::shared_ptr<ArrayShape> Shape) const {
 | 
						|
  Value *BaseValue = BasePointer->getValue();
 | 
						|
  bool BasePtrHasNonAffine = false;
 | 
						|
  MapInsnToMemAcc TempMemoryAccesses;
 | 
						|
  for (const auto &Pair : Context.Accesses[BasePointer]) {
 | 
						|
    const Instruction *Insn = Pair.first;
 | 
						|
    auto *AF = Pair.second;
 | 
						|
    AF = SCEVRemoveMax::rewrite(AF, *SE);
 | 
						|
    bool IsNonAffine = false;
 | 
						|
    TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
 | 
						|
    MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
 | 
						|
    auto *Scope = LI->getLoopFor(Insn->getParent());
 | 
						|
 | 
						|
    if (!AF) {
 | 
						|
      if (isAffine(Pair.second, Scope, Context))
 | 
						|
        Acc->DelinearizedSubscripts.push_back(Pair.second);
 | 
						|
      else
 | 
						|
        IsNonAffine = true;
 | 
						|
    } else {
 | 
						|
      SE->computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
 | 
						|
                                 Shape->DelinearizedSizes);
 | 
						|
      if (Acc->DelinearizedSubscripts.size() == 0)
 | 
						|
        IsNonAffine = true;
 | 
						|
      for (const SCEV *S : Acc->DelinearizedSubscripts)
 | 
						|
        if (!isAffine(S, Scope, Context))
 | 
						|
          IsNonAffine = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // (Possibly) report non affine access
 | 
						|
    if (IsNonAffine) {
 | 
						|
      BasePtrHasNonAffine = true;
 | 
						|
      if (!AllowNonAffine)
 | 
						|
        invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
 | 
						|
                                       Insn, BaseValue);
 | 
						|
      if (!KeepGoing && !AllowNonAffine)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!BasePtrHasNonAffine)
 | 
						|
    Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
 | 
						|
                                TempMemoryAccesses.end());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
 | 
						|
                                          const SCEVUnknown *BasePointer,
 | 
						|
                                          Loop *Scope) const {
 | 
						|
  auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
 | 
						|
 | 
						|
  auto Terms = getDelinearizationTerms(Context, BasePointer);
 | 
						|
 | 
						|
  SE->findArrayDimensions(Terms, Shape->DelinearizedSizes,
 | 
						|
                          Context.ElementSize[BasePointer]);
 | 
						|
 | 
						|
  if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
 | 
						|
                          Scope))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return computeAccessFunctions(Context, BasePointer, Shape);
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
 | 
						|
  // TODO: If we have an unknown access and other non-affine accesses we do
 | 
						|
  //       not try to delinearize them for now.
 | 
						|
  if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
 | 
						|
    return AllowNonAffine;
 | 
						|
 | 
						|
  for (auto &Pair : Context.NonAffineAccesses) {
 | 
						|
    auto *BasePointer = Pair.first;
 | 
						|
    auto *Scope = Pair.second;
 | 
						|
    if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
 | 
						|
      if (KeepGoing)
 | 
						|
        continue;
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
 | 
						|
                                  const SCEVUnknown *BP,
 | 
						|
                                  DetectionContext &Context) const {
 | 
						|
 | 
						|
  if (!BP)
 | 
						|
    return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);
 | 
						|
 | 
						|
  auto *BV = BP->getValue();
 | 
						|
  if (isa<UndefValue>(BV))
 | 
						|
    return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);
 | 
						|
 | 
						|
  // FIXME: Think about allowing IntToPtrInst
 | 
						|
  if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
 | 
						|
    return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);
 | 
						|
 | 
						|
  // Check that the base address of the access is invariant in the current
 | 
						|
  // region.
 | 
						|
  if (!isInvariant(*BV, Context.CurRegion))
 | 
						|
    return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);
 | 
						|
 | 
						|
  AF = SE->getMinusSCEV(AF, BP);
 | 
						|
 | 
						|
  const SCEV *Size;
 | 
						|
  if (!isa<MemIntrinsic>(Inst)) {
 | 
						|
    Size = SE->getElementSize(Inst);
 | 
						|
  } else {
 | 
						|
    auto *SizeTy =
 | 
						|
        SE->getEffectiveSCEVType(PointerType::getInt8PtrTy(SE->getContext()));
 | 
						|
    Size = SE->getConstant(SizeTy, 8);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Context.ElementSize[BP]) {
 | 
						|
    if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
 | 
						|
      return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
 | 
						|
                                                      Inst, BV);
 | 
						|
 | 
						|
    Context.ElementSize[BP] = SE->getSMinExpr(Size, Context.ElementSize[BP]);
 | 
						|
  } else {
 | 
						|
    Context.ElementSize[BP] = Size;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsVariantInNonAffineLoop = false;
 | 
						|
  SetVector<const Loop *> Loops;
 | 
						|
  findLoops(AF, Loops);
 | 
						|
  for (const Loop *L : Loops)
 | 
						|
    if (Context.BoxedLoopsSet.count(L))
 | 
						|
      IsVariantInNonAffineLoop = true;
 | 
						|
 | 
						|
  auto *Scope = LI->getLoopFor(Inst->getParent());
 | 
						|
  bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
 | 
						|
  // Do not try to delinearize memory intrinsics and force them to be affine.
 | 
						|
  if (isa<MemIntrinsic>(Inst) && !IsAffine) {
 | 
						|
    return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
 | 
						|
                                          BV);
 | 
						|
  } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
 | 
						|
    Context.Accesses[BP].push_back({Inst, AF});
 | 
						|
 | 
						|
    if (!IsAffine)
 | 
						|
      Context.NonAffineAccesses.insert(
 | 
						|
          std::make_pair(BP, LI->getLoopFor(Inst->getParent())));
 | 
						|
  } else if (!AllowNonAffine && !IsAffine) {
 | 
						|
    return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
 | 
						|
                                          BV);
 | 
						|
  }
 | 
						|
 | 
						|
  if (IgnoreAliasing)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check if the base pointer of the memory access does alias with
 | 
						|
  // any other pointer. This cannot be handled at the moment.
 | 
						|
  AAMDNodes AATags;
 | 
						|
  Inst->getAAMetadata(AATags);
 | 
						|
  AliasSet &AS = Context.AST.getAliasSetForPointer(
 | 
						|
      BP->getValue(), MemoryLocation::UnknownSize, AATags);
 | 
						|
 | 
						|
  if (!AS.isMustAlias()) {
 | 
						|
    if (PollyUseRuntimeAliasChecks) {
 | 
						|
      bool CanBuildRunTimeCheck = true;
 | 
						|
      // The run-time alias check places code that involves the base pointer at
 | 
						|
      // the beginning of the SCoP. This breaks if the base pointer is defined
 | 
						|
      // inside the scop. Hence, we can only create a run-time check if we are
 | 
						|
      // sure the base pointer is not an instruction defined inside the scop.
 | 
						|
      // However, we can ignore loads that will be hoisted.
 | 
						|
      for (const auto &Ptr : AS) {
 | 
						|
        Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
 | 
						|
        if (Inst && Context.CurRegion.contains(Inst)) {
 | 
						|
          auto *Load = dyn_cast<LoadInst>(Inst);
 | 
						|
          if (Load && isHoistableLoad(Load, Context.CurRegion, *LI, *SE, *DT)) {
 | 
						|
            Context.RequiredILS.insert(Load);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
 | 
						|
          CanBuildRunTimeCheck = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (CanBuildRunTimeCheck)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
 | 
						|
                                        DetectionContext &Context) const {
 | 
						|
  Value *Ptr = Inst.getPointerOperand();
 | 
						|
  Loop *L = LI->getLoopFor(Inst->getParent());
 | 
						|
  const SCEV *AccessFunction = SE->getSCEVAtScope(Ptr, L);
 | 
						|
  const SCEVUnknown *BasePointer;
 | 
						|
 | 
						|
  BasePointer = dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));
 | 
						|
 | 
						|
  return isValidAccess(Inst, AccessFunction, BasePointer, Context);
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidInstruction(Instruction &Inst,
 | 
						|
                                       DetectionContext &Context) const {
 | 
						|
  for (auto &Op : Inst.operands()) {
 | 
						|
    auto *OpInst = dyn_cast<Instruction>(&Op);
 | 
						|
 | 
						|
    if (!OpInst)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, *LI, *DT))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only check the call instruction but not invoke instruction.
 | 
						|
  if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
 | 
						|
    if (isValidCallInst(*CI, Context))
 | 
						|
      return true;
 | 
						|
 | 
						|
    return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Inst.mayReadOrWriteMemory()) {
 | 
						|
    if (!isa<AllocaInst>(Inst))
 | 
						|
      return true;
 | 
						|
 | 
						|
    return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the access function.
 | 
						|
  if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
 | 
						|
    Context.hasStores |= isa<StoreInst>(MemInst);
 | 
						|
    Context.hasLoads |= isa<LoadInst>(MemInst);
 | 
						|
    if (!MemInst.isSimple())
 | 
						|
      return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
 | 
						|
                                                  &Inst);
 | 
						|
 | 
						|
    return isValidMemoryAccess(MemInst, Context);
 | 
						|
  }
 | 
						|
 | 
						|
  // We do not know this instruction, therefore we assume it is invalid.
 | 
						|
  return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether @p L has exiting blocks.
 | 
						|
///
 | 
						|
/// @param L The loop of interest
 | 
						|
///
 | 
						|
/// @return True if the loop has exiting blocks, false otherwise.
 | 
						|
static bool hasExitingBlocks(Loop *L) {
 | 
						|
  SmallVector<BasicBlock *, 4> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
  return !ExitingBlocks.empty();
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::canUseISLTripCount(Loop *L,
 | 
						|
                                       DetectionContext &Context) const {
 | 
						|
  // Ensure the loop has valid exiting blocks as well as latches, otherwise we
 | 
						|
  // need to overapproximate it as a boxed loop.
 | 
						|
  SmallVector<BasicBlock *, 4> LoopControlBlocks;
 | 
						|
  L->getExitingBlocks(LoopControlBlocks);
 | 
						|
  L->getLoopLatches(LoopControlBlocks);
 | 
						|
  for (BasicBlock *ControlBB : LoopControlBlocks) {
 | 
						|
    if (!isValidCFG(*ControlBB, true, false, Context))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can use ISL to compute the trip count of L.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
 | 
						|
  // Loops that contain part but not all of the blocks of a region cannot be
 | 
						|
  // handled by the schedule generation. Such loop constructs can happen
 | 
						|
  // because a region can contain BBs that have no path to the exit block
 | 
						|
  // (Infinite loops, UnreachableInst), but such blocks are never part of a
 | 
						|
  // loop.
 | 
						|
  //
 | 
						|
  // _______________
 | 
						|
  // | Loop Header | <-----------.
 | 
						|
  // ---------------             |
 | 
						|
  //        |                    |
 | 
						|
  // _______________       ______________
 | 
						|
  // | RegionEntry |-----> | RegionExit |----->
 | 
						|
  // ---------------       --------------
 | 
						|
  //        |
 | 
						|
  // _______________
 | 
						|
  // | EndlessLoop | <--.
 | 
						|
  // ---------------    |
 | 
						|
  //       |            |
 | 
						|
  //       \------------/
 | 
						|
  //
 | 
						|
  // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
 | 
						|
  // neither entirely contained in the region RegionEntry->RegionExit
 | 
						|
  // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
 | 
						|
  // in the loop.
 | 
						|
  // The block EndlessLoop is contained in the region because Region::contains
 | 
						|
  // tests whether it is not dominated by RegionExit. This is probably to not
 | 
						|
  // having to query the PostdominatorTree. Instead of an endless loop, a dead
 | 
						|
  // end can also be formed by an UnreachableInst. This case is already caught
 | 
						|
  // by isErrorBlock(). We hence only have to reject endless loops here.
 | 
						|
  if (!hasExitingBlocks(L))
 | 
						|
    return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);
 | 
						|
 | 
						|
  if (canUseISLTripCount(L, Context))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
 | 
						|
    Region *R = RI->getRegionFor(L->getHeader());
 | 
						|
    while (R != &Context.CurRegion && !R->contains(L))
 | 
						|
      R = R->getParent();
 | 
						|
 | 
						|
    if (addOverApproximatedRegion(R, Context))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *LoopCount = SE->getBackedgeTakenCount(L);
 | 
						|
  return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
 | 
						|
}
 | 
						|
 | 
						|
/// Return the number of loops in @p L (incl. @p L) that have a trip
 | 
						|
///        count that is not known to be less than @MinProfitableTrips.
 | 
						|
ScopDetection::LoopStats
 | 
						|
ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
 | 
						|
                                       unsigned MinProfitableTrips) const {
 | 
						|
  auto *TripCount = SE.getBackedgeTakenCount(L);
 | 
						|
 | 
						|
  int NumLoops = 1;
 | 
						|
  int MaxLoopDepth = 1;
 | 
						|
  if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
 | 
						|
    if (TripCountC->getType()->getScalarSizeInBits() <= 64)
 | 
						|
      if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
 | 
						|
        NumLoops -= 1;
 | 
						|
 | 
						|
  for (auto &SubLoop : *L) {
 | 
						|
    LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
 | 
						|
    NumLoops += Stats.NumLoops;
 | 
						|
    MaxLoopDepth += std::max(MaxLoopDepth, Stats.MaxDepth + 1);
 | 
						|
  }
 | 
						|
 | 
						|
  return {NumLoops, MaxLoopDepth};
 | 
						|
}
 | 
						|
 | 
						|
ScopDetection::LoopStats
 | 
						|
ScopDetection::countBeneficialLoops(Region *R,
 | 
						|
                                    unsigned MinProfitableTrips) const {
 | 
						|
  int LoopNum = 0;
 | 
						|
  int MaxLoopDepth = 0;
 | 
						|
 | 
						|
  auto L = LI->getLoopFor(R->getEntry());
 | 
						|
  L = L ? R->outermostLoopInRegion(L) : nullptr;
 | 
						|
  L = L ? L->getParentLoop() : nullptr;
 | 
						|
 | 
						|
  auto SubLoops =
 | 
						|
      L ? L->getSubLoopsVector() : std::vector<Loop *>(LI->begin(), LI->end());
 | 
						|
 | 
						|
  for (auto &SubLoop : SubLoops)
 | 
						|
    if (R->contains(SubLoop)) {
 | 
						|
      LoopStats Stats =
 | 
						|
          countBeneficialSubLoops(SubLoop, *SE, MinProfitableTrips);
 | 
						|
      LoopNum += Stats.NumLoops;
 | 
						|
      MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
 | 
						|
    }
 | 
						|
 | 
						|
  return {LoopNum, MaxLoopDepth};
 | 
						|
}
 | 
						|
 | 
						|
Region *ScopDetection::expandRegion(Region &R) {
 | 
						|
  // Initial no valid region was found (greater than R)
 | 
						|
  std::unique_ptr<Region> LastValidRegion;
 | 
						|
  auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
 | 
						|
 | 
						|
  while (ExpandedRegion) {
 | 
						|
    const auto &It = DetectionContextMap.insert(std::make_pair(
 | 
						|
        getBBPairForRegion(ExpandedRegion.get()),
 | 
						|
        DetectionContext(*ExpandedRegion, *AA, false /*verifying*/)));
 | 
						|
    DetectionContext &Context = It.first->second;
 | 
						|
    DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
 | 
						|
    // Only expand when we did not collect errors.
 | 
						|
 | 
						|
    if (!Context.Log.hasErrors()) {
 | 
						|
      // If the exit is valid check all blocks
 | 
						|
      //  - if true, a valid region was found => store it + keep expanding
 | 
						|
      //  - if false, .tbd. => stop  (should this really end the loop?)
 | 
						|
      if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
 | 
						|
        removeCachedResults(*ExpandedRegion);
 | 
						|
        DetectionContextMap.erase(It.first);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Store this region, because it is the greatest valid (encountered so
 | 
						|
      // far).
 | 
						|
      if (LastValidRegion) {
 | 
						|
        removeCachedResults(*LastValidRegion);
 | 
						|
        DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
 | 
						|
      }
 | 
						|
      LastValidRegion = std::move(ExpandedRegion);
 | 
						|
 | 
						|
      // Create and test the next greater region (if any)
 | 
						|
      ExpandedRegion =
 | 
						|
          std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Create and test the next greater region (if any)
 | 
						|
      removeCachedResults(*ExpandedRegion);
 | 
						|
      DetectionContextMap.erase(It.first);
 | 
						|
      ExpandedRegion =
 | 
						|
          std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    if (LastValidRegion)
 | 
						|
      dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
 | 
						|
    else
 | 
						|
      dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
 | 
						|
  });
 | 
						|
 | 
						|
  return LastValidRegion.release();
 | 
						|
}
 | 
						|
static bool regionWithoutLoops(Region &R, LoopInfo *LI) {
 | 
						|
  for (const BasicBlock *BB : R.blocks())
 | 
						|
    if (R.contains(LI->getLoopFor(BB)))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::removeCachedResultsRecursively(const Region &R) {
 | 
						|
  for (auto &SubRegion : R) {
 | 
						|
    if (ValidRegions.count(SubRegion.get())) {
 | 
						|
      removeCachedResults(*SubRegion.get());
 | 
						|
    } else
 | 
						|
      removeCachedResultsRecursively(*SubRegion);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::removeCachedResults(const Region &R) {
 | 
						|
  ValidRegions.remove(&R);
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::findScops(Region &R) {
 | 
						|
  const auto &It = DetectionContextMap.insert(std::make_pair(
 | 
						|
      getBBPairForRegion(&R), DetectionContext(R, *AA, false /*verifying*/)));
 | 
						|
  DetectionContext &Context = It.first->second;
 | 
						|
 | 
						|
  bool RegionIsValid = false;
 | 
						|
  if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
 | 
						|
    invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
 | 
						|
  else
 | 
						|
    RegionIsValid = isValidRegion(Context);
 | 
						|
 | 
						|
  bool HasErrors = !RegionIsValid || Context.Log.size() > 0;
 | 
						|
 | 
						|
  if (HasErrors) {
 | 
						|
    removeCachedResults(R);
 | 
						|
  } else {
 | 
						|
    ValidRegions.insert(&R);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &SubRegion : R)
 | 
						|
    findScops(*SubRegion);
 | 
						|
 | 
						|
  // Try to expand regions.
 | 
						|
  //
 | 
						|
  // As the region tree normally only contains canonical regions, non canonical
 | 
						|
  // regions that form a Scop are not found. Therefore, those non canonical
 | 
						|
  // regions are checked by expanding the canonical ones.
 | 
						|
 | 
						|
  std::vector<Region *> ToExpand;
 | 
						|
 | 
						|
  for (auto &SubRegion : R)
 | 
						|
    ToExpand.push_back(SubRegion.get());
 | 
						|
 | 
						|
  for (Region *CurrentRegion : ToExpand) {
 | 
						|
    // Skip invalid regions. Regions may become invalid, if they are element of
 | 
						|
    // an already expanded region.
 | 
						|
    if (!ValidRegions.count(CurrentRegion))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip regions that had errors.
 | 
						|
    bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
 | 
						|
    if (HadErrors)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Region *ExpandedR = expandRegion(*CurrentRegion);
 | 
						|
 | 
						|
    if (!ExpandedR)
 | 
						|
      continue;
 | 
						|
 | 
						|
    R.addSubRegion(ExpandedR, true);
 | 
						|
    ValidRegions.insert(ExpandedR);
 | 
						|
    removeCachedResults(*CurrentRegion);
 | 
						|
    removeCachedResultsRecursively(*ExpandedR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
 | 
						|
  Region &CurRegion = Context.CurRegion;
 | 
						|
 | 
						|
  for (const BasicBlock *BB : CurRegion.blocks()) {
 | 
						|
    Loop *L = LI->getLoopFor(BB);
 | 
						|
    if (L && L->getHeader() == BB && CurRegion.contains(L) &&
 | 
						|
        (!isValidLoop(L, Context) && !KeepGoing))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (BasicBlock *BB : CurRegion.blocks()) {
 | 
						|
    bool IsErrorBlock = isErrorBlock(*BB, CurRegion, *LI, *DT);
 | 
						|
 | 
						|
    // Also check exception blocks (and possibly register them as non-affine
 | 
						|
    // regions). Even though exception blocks are not modeled, we use them
 | 
						|
    // to forward-propagate domain constraints during ScopInfo construction.
 | 
						|
    if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (IsErrorBlock)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
 | 
						|
      if (!isValidInstruction(*I, Context) && !KeepGoing)
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!hasAffineMemoryAccesses(Context))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
 | 
						|
                                         int NumLoops) const {
 | 
						|
  int InstCount = 0;
 | 
						|
 | 
						|
  if (NumLoops == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto *BB : Context.CurRegion.blocks())
 | 
						|
    if (Context.CurRegion.contains(LI->getLoopFor(BB)))
 | 
						|
      InstCount += BB->size();
 | 
						|
 | 
						|
  InstCount = InstCount / NumLoops;
 | 
						|
 | 
						|
  return InstCount >= ProfitabilityMinPerLoopInstructions;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::hasPossiblyDistributableLoop(
 | 
						|
    DetectionContext &Context) const {
 | 
						|
  for (auto *BB : Context.CurRegion.blocks()) {
 | 
						|
    auto *L = LI->getLoopFor(BB);
 | 
						|
    if (!Context.CurRegion.contains(L))
 | 
						|
      continue;
 | 
						|
    if (Context.BoxedLoopsSet.count(L))
 | 
						|
      continue;
 | 
						|
    unsigned StmtsWithStoresInLoops = 0;
 | 
						|
    for (auto *LBB : L->blocks()) {
 | 
						|
      bool MemStore = false;
 | 
						|
      for (auto &I : *LBB)
 | 
						|
        MemStore |= isa<StoreInst>(&I);
 | 
						|
      StmtsWithStoresInLoops += MemStore;
 | 
						|
    }
 | 
						|
    return (StmtsWithStoresInLoops > 1);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
 | 
						|
  Region &CurRegion = Context.CurRegion;
 | 
						|
 | 
						|
  if (PollyProcessUnprofitable)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can probably not do a lot on scops that only write or only read
 | 
						|
  // data.
 | 
						|
  if (!Context.hasStores || !Context.hasLoads)
 | 
						|
    return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
 | 
						|
 | 
						|
  int NumLoops = countBeneficialLoops(&CurRegion, MIN_LOOP_TRIP_COUNT).NumLoops;
 | 
						|
  int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();
 | 
						|
 | 
						|
  // Scops with at least two loops may allow either loop fusion or tiling and
 | 
						|
  // are consequently interesting to look at.
 | 
						|
  if (NumAffineLoops >= 2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // A loop with multiple non-trivial blocks migt be amendable to distribution.
 | 
						|
  if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Scops that contain a loop with a non-trivial amount of computation per
 | 
						|
  // loop-iteration are interesting as we may be able to parallelize such
 | 
						|
  // loops. Individual loops that have only a small amount of computation
 | 
						|
  // per-iteration are performance-wise very fragile as any change to the
 | 
						|
  // loop induction variables may affect performance. To not cause spurious
 | 
						|
  // performance regressions, we do not consider such loops.
 | 
						|
  if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidRegion(DetectionContext &Context) const {
 | 
						|
  Region &CurRegion = Context.CurRegion;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");
 | 
						|
 | 
						|
  if (CurRegion.isTopLevelRegion()) {
 | 
						|
    DEBUG(dbgs() << "Top level region is invalid\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurRegion.getEntry()->getName().count(OnlyRegion)) {
 | 
						|
    DEBUG({
 | 
						|
      dbgs() << "Region entry does not match -polly-region-only";
 | 
						|
      dbgs() << "\n";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // SCoP cannot contain the entry block of the function, because we need
 | 
						|
  // to insert alloca instruction there when translate scalar to array.
 | 
						|
  if (CurRegion.getEntry() ==
 | 
						|
      &(CurRegion.getEntry()->getParent()->getEntryBlock()))
 | 
						|
    return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());
 | 
						|
 | 
						|
  if (!allBlocksValid(Context))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DebugLoc DbgLoc;
 | 
						|
  if (!isReducibleRegion(CurRegion, DbgLoc))
 | 
						|
    return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
 | 
						|
                                            &CurRegion, DbgLoc);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "OK\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::markFunctionAsInvalid(Function *F) {
 | 
						|
  F->addFnAttr(PollySkipFnAttr);
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isValidFunction(llvm::Function &F) {
 | 
						|
  return !F.hasFnAttribute(PollySkipFnAttr);
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::printLocations(llvm::Function &F) {
 | 
						|
  for (const Region *R : *this) {
 | 
						|
    unsigned LineEntry, LineExit;
 | 
						|
    std::string FileName;
 | 
						|
 | 
						|
    getDebugLocation(R, LineEntry, LineExit, FileName);
 | 
						|
    DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
 | 
						|
    F.getContext().diagnose(Diagnostic);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::emitMissedRemarks(const Function &F) {
 | 
						|
  for (auto &DIt : DetectionContextMap) {
 | 
						|
    auto &DC = DIt.getSecond();
 | 
						|
    if (DC.Log.hasErrors())
 | 
						|
      emitRejectionRemarks(DIt.getFirst(), DC.Log);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
 | 
						|
  /// Enum for coloring BBs in Region.
 | 
						|
  ///
 | 
						|
  /// WHITE - Unvisited BB in DFS walk.
 | 
						|
  /// GREY - BBs which are currently on the DFS stack for processing.
 | 
						|
  /// BLACK - Visited and completely processed BB.
 | 
						|
  enum Color { WHITE, GREY, BLACK };
 | 
						|
 | 
						|
  BasicBlock *REntry = R.getEntry();
 | 
						|
  BasicBlock *RExit = R.getExit();
 | 
						|
  // Map to match the color of a BasicBlock during the DFS walk.
 | 
						|
  DenseMap<const BasicBlock *, Color> BBColorMap;
 | 
						|
  // Stack keeping track of current BB and index of next child to be processed.
 | 
						|
  std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;
 | 
						|
 | 
						|
  unsigned AdjacentBlockIndex = 0;
 | 
						|
  BasicBlock *CurrBB, *SuccBB;
 | 
						|
  CurrBB = REntry;
 | 
						|
 | 
						|
  // Initialize the map for all BB with WHITE color.
 | 
						|
  for (auto *BB : R.blocks())
 | 
						|
    BBColorMap[BB] = WHITE;
 | 
						|
 | 
						|
  // Process the entry block of the Region.
 | 
						|
  BBColorMap[CurrBB] = GREY;
 | 
						|
  DFSStack.push(std::make_pair(CurrBB, 0));
 | 
						|
 | 
						|
  while (!DFSStack.empty()) {
 | 
						|
    // Get next BB on stack to be processed.
 | 
						|
    CurrBB = DFSStack.top().first;
 | 
						|
    AdjacentBlockIndex = DFSStack.top().second;
 | 
						|
    DFSStack.pop();
 | 
						|
 | 
						|
    // Loop to iterate over the successors of current BB.
 | 
						|
    const TerminatorInst *TInst = CurrBB->getTerminator();
 | 
						|
    unsigned NSucc = TInst->getNumSuccessors();
 | 
						|
    for (unsigned I = AdjacentBlockIndex; I < NSucc;
 | 
						|
         ++I, ++AdjacentBlockIndex) {
 | 
						|
      SuccBB = TInst->getSuccessor(I);
 | 
						|
 | 
						|
      // Checks for region exit block and self-loops in BB.
 | 
						|
      if (SuccBB == RExit || SuccBB == CurrBB)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // WHITE indicates an unvisited BB in DFS walk.
 | 
						|
      if (BBColorMap[SuccBB] == WHITE) {
 | 
						|
        // Push the current BB and the index of the next child to be visited.
 | 
						|
        DFSStack.push(std::make_pair(CurrBB, I + 1));
 | 
						|
        // Push the next BB to be processed.
 | 
						|
        DFSStack.push(std::make_pair(SuccBB, 0));
 | 
						|
        // First time the BB is being processed.
 | 
						|
        BBColorMap[SuccBB] = GREY;
 | 
						|
        break;
 | 
						|
      } else if (BBColorMap[SuccBB] == GREY) {
 | 
						|
        // GREY indicates a loop in the control flow.
 | 
						|
        // If the destination dominates the source, it is a natural loop
 | 
						|
        // else, an irreducible control flow in the region is detected.
 | 
						|
        if (!DT->dominates(SuccBB, CurrBB)) {
 | 
						|
          // Get debug info of instruction which causes irregular control flow.
 | 
						|
          DbgLoc = TInst->getDebugLoc();
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If all children of current BB have been processed,
 | 
						|
    // then mark that BB as fully processed.
 | 
						|
    if (AdjacentBlockIndex == NSucc)
 | 
						|
      BBColorMap[CurrBB] = BLACK;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
 | 
						|
                              bool OnlyProfitable) {
 | 
						|
  if (!OnlyProfitable) {
 | 
						|
    NumLoopsInScop += Stats.NumLoops;
 | 
						|
    if (Stats.MaxDepth == 1)
 | 
						|
      NumScopsDepthOne++;
 | 
						|
    else if (Stats.MaxDepth == 2)
 | 
						|
      NumScopsDepthTwo++;
 | 
						|
    else if (Stats.MaxDepth == 3)
 | 
						|
      NumScopsDepthThree++;
 | 
						|
    else if (Stats.MaxDepth == 4)
 | 
						|
      NumScopsDepthFour++;
 | 
						|
    else if (Stats.MaxDepth == 5)
 | 
						|
      NumScopsDepthFive++;
 | 
						|
    else
 | 
						|
      NumScopsDepthLarger++;
 | 
						|
  } else {
 | 
						|
    NumLoopsInProfScop += Stats.NumLoops;
 | 
						|
    if (Stats.MaxDepth == 1)
 | 
						|
      NumProfScopsDepthOne++;
 | 
						|
    else if (Stats.MaxDepth == 2)
 | 
						|
      NumProfScopsDepthTwo++;
 | 
						|
    else if (Stats.MaxDepth == 3)
 | 
						|
      NumProfScopsDepthThree++;
 | 
						|
    else if (Stats.MaxDepth == 4)
 | 
						|
      NumProfScopsDepthFour++;
 | 
						|
    else if (Stats.MaxDepth == 5)
 | 
						|
      NumProfScopsDepthFive++;
 | 
						|
    else
 | 
						|
      NumProfScopsDepthLarger++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ScopDetection::runOnFunction(llvm::Function &F) {
 | 
						|
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
 | 
						|
  if (!PollyProcessUnprofitable && LI->empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  Region *TopRegion = RI->getTopLevelRegion();
 | 
						|
 | 
						|
  releaseMemory();
 | 
						|
 | 
						|
  if (OnlyFunction != "" && !F.getName().count(OnlyFunction))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isValidFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  findScops(*TopRegion);
 | 
						|
 | 
						|
  NumScopRegions += ValidRegions.size();
 | 
						|
 | 
						|
  // Prune non-profitable regions.
 | 
						|
  for (auto &DIt : DetectionContextMap) {
 | 
						|
    auto &DC = DIt.getSecond();
 | 
						|
    if (DC.Log.hasErrors())
 | 
						|
      continue;
 | 
						|
    if (!ValidRegions.count(&DC.CurRegion))
 | 
						|
      continue;
 | 
						|
    LoopStats Stats = countBeneficialLoops(&DC.CurRegion, 0);
 | 
						|
    updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
 | 
						|
    if (isProfitableRegion(DC)) {
 | 
						|
      updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ValidRegions.remove(&DC.CurRegion);
 | 
						|
  }
 | 
						|
 | 
						|
  NumProfScopRegions += ValidRegions.size();
 | 
						|
  NumLoopsOverall += countBeneficialLoops(TopRegion, 0).NumLoops;
 | 
						|
 | 
						|
  // Only makes sense when we tracked errors.
 | 
						|
  if (PollyTrackFailures)
 | 
						|
    emitMissedRemarks(F);
 | 
						|
 | 
						|
  if (ReportLevel)
 | 
						|
    printLocations(F);
 | 
						|
 | 
						|
  assert(ValidRegions.size() <= DetectionContextMap.size() &&
 | 
						|
         "Cached more results than valid regions");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ScopDetection::DetectionContext *
 | 
						|
ScopDetection::getDetectionContext(const Region *R) const {
 | 
						|
  auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
 | 
						|
  if (DCMIt == DetectionContextMap.end())
 | 
						|
    return nullptr;
 | 
						|
  return &DCMIt->second;
 | 
						|
}
 | 
						|
 | 
						|
const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
 | 
						|
  const DetectionContext *DC = getDetectionContext(R);
 | 
						|
  return DC ? &DC->Log : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void polly::ScopDetection::verifyRegion(const Region &R) const {
 | 
						|
  assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
 | 
						|
 | 
						|
  DetectionContext Context(const_cast<Region &>(R), *AA, true /*verifying*/);
 | 
						|
  isValidRegion(Context);
 | 
						|
}
 | 
						|
 | 
						|
void polly::ScopDetection::verifyAnalysis() const {
 | 
						|
  if (!VerifyScops)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const Region *R : ValidRegions)
 | 
						|
    verifyRegion(*R);
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  // We also need AA and RegionInfo when we are verifying analysis.
 | 
						|
  AU.addRequiredTransitive<AAResultsWrapperPass>();
 | 
						|
  AU.addRequiredTransitive<RegionInfoPass>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::print(raw_ostream &OS, const Module *) const {
 | 
						|
  for (const Region *R : ValidRegions)
 | 
						|
    OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
 | 
						|
 | 
						|
  OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void ScopDetection::releaseMemory() {
 | 
						|
  ValidRegions.clear();
 | 
						|
  DetectionContextMap.clear();
 | 
						|
 | 
						|
  // Do not clear the invalid function set.
 | 
						|
}
 | 
						|
 | 
						|
char ScopDetection::ID = 0;
 | 
						|
 | 
						|
Pass *polly::createScopDetectionPass() { return new ScopDetection(); }
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ScopDetection, "polly-detect",
 | 
						|
                      "Polly - Detect static control parts (SCoPs)", false,
 | 
						|
                      false);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
 | 
						|
INITIALIZE_PASS_END(ScopDetection, "polly-detect",
 | 
						|
                    "Polly - Detect static control parts (SCoPs)", false, false)
 |