forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1229 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1229 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Collect the sequence of machine instructions for a basic block.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/LeakDetector.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
 | |
|   : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
 | |
|     AddressTaken(false), CachedMCSymbol(NULL) {
 | |
|   Insts.Parent = this;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::~MachineBasicBlock() {
 | |
|   LeakDetector::removeGarbageObject(this);
 | |
| }
 | |
| 
 | |
| /// getSymbol - Return the MCSymbol for this basic block.
 | |
| ///
 | |
| MCSymbol *MachineBasicBlock::getSymbol() const {
 | |
|   if (!CachedMCSymbol) {
 | |
|     const MachineFunction *MF = getParent();
 | |
|     MCContext &Ctx = MF->getContext();
 | |
|     const TargetMachine &TM = MF->getTarget();
 | |
|     const char *Prefix = TM.getDataLayout()->getPrivateGlobalPrefix();
 | |
|     CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
 | |
|                                            Twine(MF->getFunctionNumber()) +
 | |
|                                            "_" + Twine(getNumber()));
 | |
|   }
 | |
| 
 | |
|   return CachedMCSymbol;
 | |
| }
 | |
| 
 | |
| 
 | |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
 | |
|   MBB.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
 | |
| /// parent pointer of the MBB, the MBB numbering, and any instructions in the
 | |
| /// MBB to be on the right operand list for registers.
 | |
| ///
 | |
| /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
 | |
| /// gets the next available unique MBB number. If it is removed from a
 | |
| /// MachineFunction, it goes back to being #-1.
 | |
| void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
 | |
|   MachineFunction &MF = *N->getParent();
 | |
|   N->Number = MF.addToMBBNumbering(N);
 | |
| 
 | |
|   // Make sure the instructions have their operands in the reginfo lists.
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|   for (MachineBasicBlock::instr_iterator
 | |
|          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
 | |
|     I->AddRegOperandsToUseLists(RegInfo);
 | |
| 
 | |
|   LeakDetector::removeGarbageObject(N);
 | |
| }
 | |
| 
 | |
| void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
 | |
|   N->getParent()->removeFromMBBNumbering(N->Number);
 | |
|   N->Number = -1;
 | |
|   LeakDetector::addGarbageObject(N);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// addNodeToList (MI) - When we add an instruction to a basic block
 | |
| /// list, we update its parent pointer and add its operands from reg use/def
 | |
| /// lists if appropriate.
 | |
| void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
 | |
|   assert(N->getParent() == 0 && "machine instruction already in a basic block");
 | |
|   N->setParent(Parent);
 | |
| 
 | |
|   // Add the instruction's register operands to their corresponding
 | |
|   // use/def lists.
 | |
|   MachineFunction *MF = Parent->getParent();
 | |
|   N->AddRegOperandsToUseLists(MF->getRegInfo());
 | |
| 
 | |
|   LeakDetector::removeGarbageObject(N);
 | |
| }
 | |
| 
 | |
| /// removeNodeFromList (MI) - When we remove an instruction from a basic block
 | |
| /// list, we update its parent pointer and remove its operands from reg use/def
 | |
| /// lists if appropriate.
 | |
| void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
 | |
|   assert(N->getParent() != 0 && "machine instruction not in a basic block");
 | |
| 
 | |
|   // Remove from the use/def lists.
 | |
|   if (MachineFunction *MF = N->getParent()->getParent())
 | |
|     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
 | |
| 
 | |
|   N->setParent(0);
 | |
| 
 | |
|   LeakDetector::addGarbageObject(N);
 | |
| }
 | |
| 
 | |
| /// transferNodesFromList (MI) - When moving a range of instructions from one
 | |
| /// MBB list to another, we need to update the parent pointers and the use/def
 | |
| /// lists.
 | |
| void ilist_traits<MachineInstr>::
 | |
| transferNodesFromList(ilist_traits<MachineInstr> &fromList,
 | |
|                       ilist_iterator<MachineInstr> first,
 | |
|                       ilist_iterator<MachineInstr> last) {
 | |
|   assert(Parent->getParent() == fromList.Parent->getParent() &&
 | |
|         "MachineInstr parent mismatch!");
 | |
| 
 | |
|   // Splice within the same MBB -> no change.
 | |
|   if (Parent == fromList.Parent) return;
 | |
| 
 | |
|   // If splicing between two blocks within the same function, just update the
 | |
|   // parent pointers.
 | |
|   for (; first != last; ++first)
 | |
|     first->setParent(Parent);
 | |
| }
 | |
| 
 | |
| void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
 | |
|   assert(!MI->getParent() && "MI is still in a block!");
 | |
|   Parent->getParent()->DeleteMachineInstr(MI);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
 | |
|   instr_iterator I = instr_begin(), E = instr_end();
 | |
|   while (I != E && I->isPHI())
 | |
|     ++I;
 | |
|   assert((I == E || !I->isInsideBundle()) &&
 | |
|          "First non-phi MI cannot be inside a bundle!");
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator
 | |
| MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
 | |
|   iterator E = end();
 | |
|   while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
 | |
|     ++I;
 | |
|   // FIXME: This needs to change if we wish to bundle labels / dbg_values
 | |
|   // inside the bundle.
 | |
|   assert((I == E || !I->isInsideBundle()) &&
 | |
|          "First non-phi / non-label instruction is inside a bundle!");
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
 | |
|   iterator B = begin(), E = end(), I = E;
 | |
|   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
 | |
|     ; /*noop */
 | |
|   while (I != E && !I->isTerminator())
 | |
|     ++I;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::const_iterator
 | |
| MachineBasicBlock::getFirstTerminator() const {
 | |
|   const_iterator B = begin(), E = end(), I = E;
 | |
|   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
 | |
|     ; /*noop */
 | |
|   while (I != E && !I->isTerminator())
 | |
|     ++I;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
 | |
|   instr_iterator B = instr_begin(), E = instr_end(), I = E;
 | |
|   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
 | |
|     ; /*noop */
 | |
|   while (I != E && !I->isTerminator())
 | |
|     ++I;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
 | |
|   // Skip over end-of-block dbg_value instructions.
 | |
|   instr_iterator B = instr_begin(), I = instr_end();
 | |
|   while (I != B) {
 | |
|     --I;
 | |
|     // Return instruction that starts a bundle.
 | |
|     if (I->isDebugValue() || I->isInsideBundle())
 | |
|       continue;
 | |
|     return I;
 | |
|   }
 | |
|   // The block is all debug values.
 | |
|   return end();
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::const_iterator
 | |
| MachineBasicBlock::getLastNonDebugInstr() const {
 | |
|   // Skip over end-of-block dbg_value instructions.
 | |
|   const_instr_iterator B = instr_begin(), I = instr_end();
 | |
|   while (I != B) {
 | |
|     --I;
 | |
|     // Return instruction that starts a bundle.
 | |
|     if (I->isDebugValue() || I->isInsideBundle())
 | |
|       continue;
 | |
|     return I;
 | |
|   }
 | |
|   // The block is all debug values.
 | |
|   return end();
 | |
| }
 | |
| 
 | |
| const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
 | |
|   // A block with a landing pad successor only has one other successor.
 | |
|   if (succ_size() > 2)
 | |
|     return 0;
 | |
|   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
 | |
|     if ((*I)->isLandingPad())
 | |
|       return *I;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void MachineBasicBlock::dump() const {
 | |
|   print(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| StringRef MachineBasicBlock::getName() const {
 | |
|   if (const BasicBlock *LBB = getBasicBlock())
 | |
|     return LBB->getName();
 | |
|   else
 | |
|     return "(null)";
 | |
| }
 | |
| 
 | |
| /// Return a hopefully unique identifier for this block.
 | |
| std::string MachineBasicBlock::getFullName() const {
 | |
|   std::string Name;
 | |
|   if (getParent())
 | |
|     Name = (getParent()->getName() + ":").str();
 | |
|   if (getBasicBlock())
 | |
|     Name += getBasicBlock()->getName();
 | |
|   else
 | |
|     Name += (Twine("BB") + Twine(getNumber())).str();
 | |
|   return Name;
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
 | |
|   const MachineFunction *MF = getParent();
 | |
|   if (!MF) {
 | |
|     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
 | |
|        << " is null\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Indexes)
 | |
|     OS << Indexes->getMBBStartIdx(this) << '\t';
 | |
| 
 | |
|   OS << "BB#" << getNumber() << ": ";
 | |
| 
 | |
|   const char *Comma = "";
 | |
|   if (const BasicBlock *LBB = getBasicBlock()) {
 | |
|     OS << Comma << "derived from LLVM BB ";
 | |
|     LBB->printAsOperand(OS, /*PrintType=*/false);
 | |
|     Comma = ", ";
 | |
|   }
 | |
|   if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
 | |
|   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
 | |
|   if (Alignment)
 | |
|     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
 | |
|        << " bytes)";
 | |
| 
 | |
|   OS << '\n';
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
 | |
|   if (!livein_empty()) {
 | |
|     if (Indexes) OS << '\t';
 | |
|     OS << "    Live Ins:";
 | |
|     for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
 | |
|       OS << ' ' << PrintReg(*I, TRI);
 | |
|     OS << '\n';
 | |
|   }
 | |
|   // Print the preds of this block according to the CFG.
 | |
|   if (!pred_empty()) {
 | |
|     if (Indexes) OS << '\t';
 | |
|     OS << "    Predecessors according to CFG:";
 | |
|     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
 | |
|       OS << " BB#" << (*PI)->getNumber();
 | |
|     OS << '\n';
 | |
|   }
 | |
| 
 | |
|   for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
 | |
|     if (Indexes) {
 | |
|       if (Indexes->hasIndex(I))
 | |
|         OS << Indexes->getInstructionIndex(I);
 | |
|       OS << '\t';
 | |
|     }
 | |
|     OS << '\t';
 | |
|     if (I->isInsideBundle())
 | |
|       OS << "  * ";
 | |
|     I->print(OS, &getParent()->getTarget());
 | |
|   }
 | |
| 
 | |
|   // Print the successors of this block according to the CFG.
 | |
|   if (!succ_empty()) {
 | |
|     if (Indexes) OS << '\t';
 | |
|     OS << "    Successors according to CFG:";
 | |
|     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
 | |
|       OS << " BB#" << (*SI)->getNumber();
 | |
|       if (!Weights.empty())
 | |
|         OS << '(' << *getWeightIterator(SI) << ')';
 | |
|     }
 | |
|     OS << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
 | |
|   OS << "BB#" << getNumber();
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::removeLiveIn(unsigned Reg) {
 | |
|   std::vector<unsigned>::iterator I =
 | |
|     std::find(LiveIns.begin(), LiveIns.end(), Reg);
 | |
|   if (I != LiveIns.end())
 | |
|     LiveIns.erase(I);
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
 | |
|   livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
 | |
|   return I != livein_end();
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
 | |
|   assert(getParent() && "MBB must be inserted in function");
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
 | |
|   assert(RC && "Register class is required");
 | |
|   assert((isLandingPad() || this == &getParent()->front()) &&
 | |
|          "Only the entry block and landing pads can have physreg live ins");
 | |
| 
 | |
|   bool LiveIn = isLiveIn(PhysReg);
 | |
|   iterator I = SkipPHIsAndLabels(begin()), E = end();
 | |
|   MachineRegisterInfo &MRI = getParent()->getRegInfo();
 | |
|   const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();
 | |
| 
 | |
|   // Look for an existing copy.
 | |
|   if (LiveIn)
 | |
|     for (;I != E && I->isCopy(); ++I)
 | |
|       if (I->getOperand(1).getReg() == PhysReg) {
 | |
|         unsigned VirtReg = I->getOperand(0).getReg();
 | |
|         if (!MRI.constrainRegClass(VirtReg, RC))
 | |
|           llvm_unreachable("Incompatible live-in register class.");
 | |
|         return VirtReg;
 | |
|       }
 | |
| 
 | |
|   // No luck, create a virtual register.
 | |
|   unsigned VirtReg = MRI.createVirtualRegister(RC);
 | |
|   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
 | |
|     .addReg(PhysReg, RegState::Kill);
 | |
|   if (!LiveIn)
 | |
|     addLiveIn(PhysReg);
 | |
|   return VirtReg;
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
 | |
|   getParent()->splice(NewAfter, this);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
 | |
|   MachineFunction::iterator BBI = NewBefore;
 | |
|   getParent()->splice(++BBI, this);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::updateTerminator() {
 | |
|   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
 | |
|   // A block with no successors has no concerns with fall-through edges.
 | |
|   if (this->succ_empty()) return;
 | |
| 
 | |
|   MachineBasicBlock *TBB = 0, *FBB = 0;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   DebugLoc dl;  // FIXME: this is nowhere
 | |
|   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
 | |
|   (void) B;
 | |
|   assert(!B && "UpdateTerminators requires analyzable predecessors!");
 | |
|   if (Cond.empty()) {
 | |
|     if (TBB) {
 | |
|       // The block has an unconditional branch. If its successor is now
 | |
|       // its layout successor, delete the branch.
 | |
|       if (isLayoutSuccessor(TBB))
 | |
|         TII->RemoveBranch(*this);
 | |
|     } else {
 | |
|       // The block has an unconditional fallthrough. If its successor is not
 | |
|       // its layout successor, insert a branch. First we have to locate the
 | |
|       // only non-landing-pad successor, as that is the fallthrough block.
 | |
|       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
 | |
|         if ((*SI)->isLandingPad())
 | |
|           continue;
 | |
|         assert(!TBB && "Found more than one non-landing-pad successor!");
 | |
|         TBB = *SI;
 | |
|       }
 | |
| 
 | |
|       // If there is no non-landing-pad successor, the block has no
 | |
|       // fall-through edges to be concerned with.
 | |
|       if (!TBB)
 | |
|         return;
 | |
| 
 | |
|       // Finally update the unconditional successor to be reached via a branch
 | |
|       // if it would not be reached by fallthrough.
 | |
|       if (!isLayoutSuccessor(TBB))
 | |
|         TII->InsertBranch(*this, TBB, 0, Cond, dl);
 | |
|     }
 | |
|   } else {
 | |
|     if (FBB) {
 | |
|       // The block has a non-fallthrough conditional branch. If one of its
 | |
|       // successors is its layout successor, rewrite it to a fallthrough
 | |
|       // conditional branch.
 | |
|       if (isLayoutSuccessor(TBB)) {
 | |
|         if (TII->ReverseBranchCondition(Cond))
 | |
|           return;
 | |
|         TII->RemoveBranch(*this);
 | |
|         TII->InsertBranch(*this, FBB, 0, Cond, dl);
 | |
|       } else if (isLayoutSuccessor(FBB)) {
 | |
|         TII->RemoveBranch(*this);
 | |
|         TII->InsertBranch(*this, TBB, 0, Cond, dl);
 | |
|       }
 | |
|     } else {
 | |
|       // Walk through the successors and find the successor which is not
 | |
|       // a landing pad and is not the conditional branch destination (in TBB)
 | |
|       // as the fallthrough successor.
 | |
|       MachineBasicBlock *FallthroughBB = 0;
 | |
|       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
 | |
|         if ((*SI)->isLandingPad() || *SI == TBB)
 | |
|           continue;
 | |
|         assert(!FallthroughBB && "Found more than one fallthrough successor.");
 | |
|         FallthroughBB = *SI;
 | |
|       }
 | |
|       if (!FallthroughBB && canFallThrough()) {
 | |
|         // We fallthrough to the same basic block as the conditional jump
 | |
|         // targets. Remove the conditional jump, leaving unconditional
 | |
|         // fallthrough.
 | |
|         // FIXME: This does not seem like a reasonable pattern to support, but it
 | |
|         // has been seen in the wild coming out of degenerate ARM test cases.
 | |
|         TII->RemoveBranch(*this);
 | |
| 
 | |
|         // Finally update the unconditional successor to be reached via a branch
 | |
|         // if it would not be reached by fallthrough.
 | |
|         if (!isLayoutSuccessor(TBB))
 | |
|           TII->InsertBranch(*this, TBB, 0, Cond, dl);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // The block has a fallthrough conditional branch.
 | |
|       if (isLayoutSuccessor(TBB)) {
 | |
|         if (TII->ReverseBranchCondition(Cond)) {
 | |
|           // We can't reverse the condition, add an unconditional branch.
 | |
|           Cond.clear();
 | |
|           TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
 | |
|           return;
 | |
|         }
 | |
|         TII->RemoveBranch(*this);
 | |
|         TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
 | |
|       } else if (!isLayoutSuccessor(FallthroughBB)) {
 | |
|         TII->RemoveBranch(*this);
 | |
|         TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
 | |
| 
 | |
|   // If we see non-zero value for the first time it means we actually use Weight
 | |
|   // list, so we fill all Weights with 0's.
 | |
|   if (weight != 0 && Weights.empty())
 | |
|     Weights.resize(Successors.size());
 | |
| 
 | |
|   if (weight != 0 || !Weights.empty())
 | |
|     Weights.push_back(weight);
 | |
| 
 | |
|    Successors.push_back(succ);
 | |
|    succ->addPredecessor(this);
 | |
|  }
 | |
| 
 | |
| void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
 | |
|   succ->removePredecessor(this);
 | |
|   succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
 | |
|   assert(I != Successors.end() && "Not a current successor!");
 | |
| 
 | |
|   // If Weight list is empty it means we don't use it (disabled optimization).
 | |
|   if (!Weights.empty()) {
 | |
|     weight_iterator WI = getWeightIterator(I);
 | |
|     Weights.erase(WI);
 | |
|   }
 | |
| 
 | |
|   Successors.erase(I);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::succ_iterator
 | |
| MachineBasicBlock::removeSuccessor(succ_iterator I) {
 | |
|   assert(I != Successors.end() && "Not a current successor!");
 | |
| 
 | |
|   // If Weight list is empty it means we don't use it (disabled optimization).
 | |
|   if (!Weights.empty()) {
 | |
|     weight_iterator WI = getWeightIterator(I);
 | |
|     Weights.erase(WI);
 | |
|   }
 | |
| 
 | |
|   (*I)->removePredecessor(this);
 | |
|   return Successors.erase(I);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
 | |
|                                          MachineBasicBlock *New) {
 | |
|   if (Old == New)
 | |
|     return;
 | |
| 
 | |
|   succ_iterator E = succ_end();
 | |
|   succ_iterator NewI = E;
 | |
|   succ_iterator OldI = E;
 | |
|   for (succ_iterator I = succ_begin(); I != E; ++I) {
 | |
|     if (*I == Old) {
 | |
|       OldI = I;
 | |
|       if (NewI != E)
 | |
|         break;
 | |
|     }
 | |
|     if (*I == New) {
 | |
|       NewI = I;
 | |
|       if (OldI != E)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   assert(OldI != E && "Old is not a successor of this block");
 | |
|   Old->removePredecessor(this);
 | |
| 
 | |
|   // If New isn't already a successor, let it take Old's place.
 | |
|   if (NewI == E) {
 | |
|     New->addPredecessor(this);
 | |
|     *OldI = New;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // New is already a successor.
 | |
|   // Update its weight instead of adding a duplicate edge.
 | |
|   if (!Weights.empty()) {
 | |
|     weight_iterator OldWI = getWeightIterator(OldI);
 | |
|     *getWeightIterator(NewI) += *OldWI;
 | |
|     Weights.erase(OldWI);
 | |
|   }
 | |
|   Successors.erase(OldI);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
 | |
|   Predecessors.push_back(pred);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
 | |
|   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
 | |
|   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
 | |
|   Predecessors.erase(I);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
 | |
|   if (this == fromMBB)
 | |
|     return;
 | |
| 
 | |
|   while (!fromMBB->succ_empty()) {
 | |
|     MachineBasicBlock *Succ = *fromMBB->succ_begin();
 | |
|     uint32_t Weight = 0;
 | |
| 
 | |
|     // If Weight list is empty it means we don't use it (disabled optimization).
 | |
|     if (!fromMBB->Weights.empty())
 | |
|       Weight = *fromMBB->Weights.begin();
 | |
| 
 | |
|     addSuccessor(Succ, Weight);
 | |
|     fromMBB->removeSuccessor(Succ);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
 | |
|   if (this == fromMBB)
 | |
|     return;
 | |
| 
 | |
|   while (!fromMBB->succ_empty()) {
 | |
|     MachineBasicBlock *Succ = *fromMBB->succ_begin();
 | |
|     uint32_t Weight = 0;
 | |
|     if (!fromMBB->Weights.empty())
 | |
|       Weight = *fromMBB->Weights.begin();
 | |
|     addSuccessor(Succ, Weight);
 | |
|     fromMBB->removeSuccessor(Succ);
 | |
| 
 | |
|     // Fix up any PHI nodes in the successor.
 | |
|     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
 | |
|            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
 | |
|       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         if (MO.getMBB() == fromMBB)
 | |
|           MO.setMBB(this);
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
 | |
|   return std::find(pred_begin(), pred_end(), MBB) != pred_end();
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
 | |
|   return std::find(succ_begin(), succ_end(), MBB) != succ_end();
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
 | |
|   MachineFunction::const_iterator I(this);
 | |
|   return llvm::next(I) == MachineFunction::const_iterator(MBB);
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::canFallThrough() {
 | |
|   MachineFunction::iterator Fallthrough = this;
 | |
|   ++Fallthrough;
 | |
|   // If FallthroughBlock is off the end of the function, it can't fall through.
 | |
|   if (Fallthrough == getParent()->end())
 | |
|     return false;
 | |
| 
 | |
|   // If FallthroughBlock isn't a successor, no fallthrough is possible.
 | |
|   if (!isSuccessor(Fallthrough))
 | |
|     return false;
 | |
| 
 | |
|   // Analyze the branches, if any, at the end of the block.
 | |
|   MachineBasicBlock *TBB = 0, *FBB = 0;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
 | |
|   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
 | |
|     // If we couldn't analyze the branch, examine the last instruction.
 | |
|     // If the block doesn't end in a known control barrier, assume fallthrough
 | |
|     // is possible. The isPredicated check is needed because this code can be
 | |
|     // called during IfConversion, where an instruction which is normally a
 | |
|     // Barrier is predicated and thus no longer an actual control barrier.
 | |
|     return empty() || !back().isBarrier() || TII->isPredicated(&back());
 | |
|   }
 | |
| 
 | |
|   // If there is no branch, control always falls through.
 | |
|   if (TBB == 0) return true;
 | |
| 
 | |
|   // If there is some explicit branch to the fallthrough block, it can obviously
 | |
|   // reach, even though the branch should get folded to fall through implicitly.
 | |
|   if (MachineFunction::iterator(TBB) == Fallthrough ||
 | |
|       MachineFunction::iterator(FBB) == Fallthrough)
 | |
|     return true;
 | |
| 
 | |
|   // If it's an unconditional branch to some block not the fall through, it
 | |
|   // doesn't fall through.
 | |
|   if (Cond.empty()) return false;
 | |
| 
 | |
|   // Otherwise, if it is conditional and has no explicit false block, it falls
 | |
|   // through.
 | |
|   return FBB == 0;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
 | |
|   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
 | |
|   // it in this generic function.
 | |
|   if (Succ->isLandingPad())
 | |
|     return NULL;
 | |
| 
 | |
|   MachineFunction *MF = getParent();
 | |
|   DebugLoc dl;  // FIXME: this is nowhere
 | |
| 
 | |
|   // Performance might be harmed on HW that implements branching using exec mask
 | |
|   // where both sides of the branches are always executed.
 | |
|   if (MF->getTarget().requiresStructuredCFG())
 | |
|     return NULL;
 | |
| 
 | |
|   // We may need to update this's terminator, but we can't do that if
 | |
|   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
 | |
|   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
|   MachineBasicBlock *TBB = 0, *FBB = 0;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
 | |
|     return NULL;
 | |
| 
 | |
|   // Avoid bugpoint weirdness: A block may end with a conditional branch but
 | |
|   // jumps to the same MBB is either case. We have duplicate CFG edges in that
 | |
|   // case that we can't handle. Since this never happens in properly optimized
 | |
|   // code, just skip those edges.
 | |
|   if (TBB && TBB == FBB) {
 | |
|     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
 | |
|                  << getNumber() << '\n');
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
 | |
|   MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
 | |
|   DEBUG(dbgs() << "Splitting critical edge:"
 | |
|         " BB#" << getNumber()
 | |
|         << " -- BB#" << NMBB->getNumber()
 | |
|         << " -- BB#" << Succ->getNumber() << '\n');
 | |
| 
 | |
|   LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
 | |
|   SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
 | |
|   if (LIS)
 | |
|     LIS->insertMBBInMaps(NMBB);
 | |
|   else if (Indexes)
 | |
|     Indexes->insertMBBInMaps(NMBB);
 | |
| 
 | |
|   // On some targets like Mips, branches may kill virtual registers. Make sure
 | |
|   // that LiveVariables is properly updated after updateTerminator replaces the
 | |
|   // terminators.
 | |
|   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
 | |
| 
 | |
|   // Collect a list of virtual registers killed by the terminators.
 | |
|   SmallVector<unsigned, 4> KilledRegs;
 | |
|   if (LV)
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I) {
 | |
|       MachineInstr *MI = I;
 | |
|       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | |
|            OE = MI->operands_end(); OI != OE; ++OI) {
 | |
|         if (!OI->isReg() || OI->getReg() == 0 ||
 | |
|             !OI->isUse() || !OI->isKill() || OI->isUndef())
 | |
|           continue;
 | |
|         unsigned Reg = OI->getReg();
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
 | |
|             LV->getVarInfo(Reg).removeKill(MI)) {
 | |
|           KilledRegs.push_back(Reg);
 | |
|           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
 | |
|           OI->setIsKill(false);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   SmallVector<unsigned, 4> UsedRegs;
 | |
|   if (LIS) {
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I) {
 | |
|       MachineInstr *MI = I;
 | |
| 
 | |
|       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | |
|            OE = MI->operands_end(); OI != OE; ++OI) {
 | |
|         if (!OI->isReg() || OI->getReg() == 0)
 | |
|           continue;
 | |
| 
 | |
|         unsigned Reg = OI->getReg();
 | |
|         if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
 | |
|           UsedRegs.push_back(Reg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ReplaceUsesOfBlockWith(Succ, NMBB);
 | |
| 
 | |
|   // If updateTerminator() removes instructions, we need to remove them from
 | |
|   // SlotIndexes.
 | |
|   SmallVector<MachineInstr*, 4> Terminators;
 | |
|   if (Indexes) {
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I)
 | |
|       Terminators.push_back(I);
 | |
|   }
 | |
| 
 | |
|   updateTerminator();
 | |
| 
 | |
|   if (Indexes) {
 | |
|     SmallVector<MachineInstr*, 4> NewTerminators;
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I)
 | |
|       NewTerminators.push_back(I);
 | |
| 
 | |
|     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
 | |
|         E = Terminators.end(); I != E; ++I) {
 | |
|       if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
 | |
|           NewTerminators.end())
 | |
|        Indexes->removeMachineInstrFromMaps(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
 | |
|   NMBB->addSuccessor(Succ);
 | |
|   if (!NMBB->isLayoutSuccessor(Succ)) {
 | |
|     Cond.clear();
 | |
|     MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
 | |
| 
 | |
|     if (Indexes) {
 | |
|       for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
 | |
|            I != E; ++I) {
 | |
|         // Some instructions may have been moved to NMBB by updateTerminator(),
 | |
|         // so we first remove any instruction that already has an index.
 | |
|         if (Indexes->hasIndex(I))
 | |
|           Indexes->removeMachineInstrFromMaps(I);
 | |
|         Indexes->insertMachineInstrInMaps(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fix PHI nodes in Succ so they refer to NMBB instead of this
 | |
|   for (MachineBasicBlock::instr_iterator
 | |
|          i = Succ->instr_begin(),e = Succ->instr_end();
 | |
|        i != e && i->isPHI(); ++i)
 | |
|     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
 | |
|       if (i->getOperand(ni+1).getMBB() == this)
 | |
|         i->getOperand(ni+1).setMBB(NMBB);
 | |
| 
 | |
|   // Inherit live-ins from the successor
 | |
|   for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
 | |
|          E = Succ->livein_end(); I != E; ++I)
 | |
|     NMBB->addLiveIn(*I);
 | |
| 
 | |
|   // Update LiveVariables.
 | |
|   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
 | |
|   if (LV) {
 | |
|     // Restore kills of virtual registers that were killed by the terminators.
 | |
|     while (!KilledRegs.empty()) {
 | |
|       unsigned Reg = KilledRegs.pop_back_val();
 | |
|       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
 | |
|         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
 | |
|           continue;
 | |
|         if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|           LV->getVarInfo(Reg).Kills.push_back(I);
 | |
|         DEBUG(dbgs() << "Restored terminator kill: " << *I);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // Update relevant live-through information.
 | |
|     LV->addNewBlock(NMBB, this, Succ);
 | |
|   }
 | |
| 
 | |
|   if (LIS) {
 | |
|     // After splitting the edge and updating SlotIndexes, live intervals may be
 | |
|     // in one of two situations, depending on whether this block was the last in
 | |
|     // the function. If the original block was the last in the function, all live
 | |
|     // intervals will end prior to the beginning of the new split block. If the
 | |
|     // original block was not at the end of the function, all live intervals will
 | |
|     // extend to the end of the new split block.
 | |
| 
 | |
|     bool isLastMBB =
 | |
|       llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
 | |
| 
 | |
|     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
 | |
|     SlotIndex PrevIndex = StartIndex.getPrevSlot();
 | |
|     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
 | |
| 
 | |
|     // Find the registers used from NMBB in PHIs in Succ.
 | |
|     SmallSet<unsigned, 8> PHISrcRegs;
 | |
|     for (MachineBasicBlock::instr_iterator
 | |
|          I = Succ->instr_begin(), E = Succ->instr_end();
 | |
|          I != E && I->isPHI(); ++I) {
 | |
|       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
 | |
|         if (I->getOperand(ni+1).getMBB() == NMBB) {
 | |
|           MachineOperand &MO = I->getOperand(ni);
 | |
|           unsigned Reg = MO.getReg();
 | |
|           PHISrcRegs.insert(Reg);
 | |
|           if (MO.isUndef())
 | |
|             continue;
 | |
| 
 | |
|           LiveInterval &LI = LIS->getInterval(Reg);
 | |
|           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
 | |
|           assert(VNI && "PHI sources should be live out of their predecessors.");
 | |
|           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
 | |
|     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
 | |
|         continue;
 | |
| 
 | |
|       LiveInterval &LI = LIS->getInterval(Reg);
 | |
|       if (!LI.liveAt(PrevIndex))
 | |
|         continue;
 | |
| 
 | |
|       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
 | |
|       if (isLiveOut && isLastMBB) {
 | |
|         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
 | |
|         assert(VNI && "LiveInterval should have VNInfo where it is live.");
 | |
|         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
 | |
|       } else if (!isLiveOut && !isLastMBB) {
 | |
|         LI.removeSegment(StartIndex, EndIndex);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update all intervals for registers whose uses may have been modified by
 | |
|     // updateTerminator().
 | |
|     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
 | |
|   }
 | |
| 
 | |
|   if (MachineDominatorTree *MDT =
 | |
|       P->getAnalysisIfAvailable<MachineDominatorTree>()) {
 | |
|     // Update dominator information.
 | |
|     MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
 | |
| 
 | |
|     bool IsNewIDom = true;
 | |
|     for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
 | |
|          PI != E; ++PI) {
 | |
|       MachineBasicBlock *PredBB = *PI;
 | |
|       if (PredBB == NMBB)
 | |
|         continue;
 | |
|       if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
 | |
|         IsNewIDom = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We know "this" dominates the newly created basic block.
 | |
|     MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
 | |
| 
 | |
|     // If all the other predecessors of "Succ" are dominated by "Succ" itself
 | |
|     // then the new block is the new immediate dominator of "Succ". Otherwise,
 | |
|     // the new block doesn't dominate anything.
 | |
|     if (IsNewIDom)
 | |
|       MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
 | |
|   }
 | |
| 
 | |
|   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
 | |
|     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
 | |
|       // If one or the other blocks were not in a loop, the new block is not
 | |
|       // either, and thus LI doesn't need to be updated.
 | |
|       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
 | |
|         if (TIL == DestLoop) {
 | |
|           // Both in the same loop, the NMBB joins loop.
 | |
|           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         } else if (TIL->contains(DestLoop)) {
 | |
|           // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | |
|           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         } else if (DestLoop->contains(TIL)) {
 | |
|           // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | |
|           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         } else {
 | |
|           // Edge from two loops with no containment relation.  Because these
 | |
|           // are natural loops, we know that the destination block must be the
 | |
|           // header of its loop (adding a branch into a loop elsewhere would
 | |
|           // create an irreducible loop).
 | |
|           assert(DestLoop->getHeader() == Succ &&
 | |
|                  "Should not create irreducible loops!");
 | |
|           if (MachineLoop *P = DestLoop->getParentLoop())
 | |
|             P->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return NMBB;
 | |
| }
 | |
| 
 | |
| /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
 | |
| /// neighboring instructions so the bundle won't be broken by removing MI.
 | |
| static void unbundleSingleMI(MachineInstr *MI) {
 | |
|   // Removing the first instruction in a bundle.
 | |
|   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
 | |
|     MI->unbundleFromSucc();
 | |
|   // Removing the last instruction in a bundle.
 | |
|   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
 | |
|     MI->unbundleFromPred();
 | |
|   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
 | |
|   // are already fine.
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::instr_iterator
 | |
| MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
 | |
|   unbundleSingleMI(I);
 | |
|   return Insts.erase(I);
 | |
| }
 | |
| 
 | |
| MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
 | |
|   unbundleSingleMI(MI);
 | |
|   MI->clearFlag(MachineInstr::BundledPred);
 | |
|   MI->clearFlag(MachineInstr::BundledSucc);
 | |
|   return Insts.remove(MI);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::instr_iterator
 | |
| MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
 | |
|   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
 | |
|          "Cannot insert instruction with bundle flags");
 | |
|   // Set the bundle flags when inserting inside a bundle.
 | |
|   if (I != instr_end() && I->isBundledWithPred()) {
 | |
|     MI->setFlag(MachineInstr::BundledPred);
 | |
|     MI->setFlag(MachineInstr::BundledSucc);
 | |
|   }
 | |
|   return Insts.insert(I, MI);
 | |
| }
 | |
| 
 | |
| /// removeFromParent - This method unlinks 'this' from the containing function,
 | |
| /// and returns it, but does not delete it.
 | |
| MachineBasicBlock *MachineBasicBlock::removeFromParent() {
 | |
|   assert(getParent() && "Not embedded in a function!");
 | |
|   getParent()->remove(this);
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// eraseFromParent - This method unlinks 'this' from the containing function,
 | |
| /// and deletes it.
 | |
| void MachineBasicBlock::eraseFromParent() {
 | |
|   assert(getParent() && "Not embedded in a function!");
 | |
|   getParent()->erase(this);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
 | |
| /// 'Old', change the code and CFG so that it branches to 'New' instead.
 | |
| void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
 | |
|                                                MachineBasicBlock *New) {
 | |
|   assert(Old != New && "Cannot replace self with self!");
 | |
| 
 | |
|   MachineBasicBlock::instr_iterator I = instr_end();
 | |
|   while (I != instr_begin()) {
 | |
|     --I;
 | |
|     if (!I->isTerminator()) break;
 | |
| 
 | |
|     // Scan the operands of this machine instruction, replacing any uses of Old
 | |
|     // with New.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|       if (I->getOperand(i).isMBB() &&
 | |
|           I->getOperand(i).getMBB() == Old)
 | |
|         I->getOperand(i).setMBB(New);
 | |
|   }
 | |
| 
 | |
|   // Update the successor information.
 | |
|   replaceSuccessor(Old, New);
 | |
| }
 | |
| 
 | |
| /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
 | |
| /// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
 | |
| /// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
 | |
| /// null.
 | |
| ///
 | |
| /// Besides DestA and DestB, retain other edges leading to LandingPads
 | |
| /// (currently there can be only one; we don't check or require that here).
 | |
| /// Note it is possible that DestA and/or DestB are LandingPads.
 | |
| bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
 | |
|                                              MachineBasicBlock *DestB,
 | |
|                                              bool isCond) {
 | |
|   // The values of DestA and DestB frequently come from a call to the
 | |
|   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
 | |
|   // values from there.
 | |
|   //
 | |
|   // 1. If both DestA and DestB are null, then the block ends with no branches
 | |
|   //    (it falls through to its successor).
 | |
|   // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
 | |
|   //    with only an unconditional branch.
 | |
|   // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
 | |
|   //    with a conditional branch that falls through to a successor (DestB).
 | |
|   // 4. If DestA and DestB is set and isCond is true, then the block ends with a
 | |
|   //    conditional branch followed by an unconditional branch. DestA is the
 | |
|   //    'true' destination and DestB is the 'false' destination.
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   MachineFunction::iterator FallThru =
 | |
|     llvm::next(MachineFunction::iterator(this));
 | |
| 
 | |
|   if (DestA == 0 && DestB == 0) {
 | |
|     // Block falls through to successor.
 | |
|     DestA = FallThru;
 | |
|     DestB = FallThru;
 | |
|   } else if (DestA != 0 && DestB == 0) {
 | |
|     if (isCond)
 | |
|       // Block ends in conditional jump that falls through to successor.
 | |
|       DestB = FallThru;
 | |
|   } else {
 | |
|     assert(DestA && DestB && isCond &&
 | |
|            "CFG in a bad state. Cannot correct CFG edges");
 | |
|   }
 | |
| 
 | |
|   // Remove superfluous edges. I.e., those which aren't destinations of this
 | |
|   // basic block, duplicate edges, or landing pads.
 | |
|   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
 | |
|   MachineBasicBlock::succ_iterator SI = succ_begin();
 | |
|   while (SI != succ_end()) {
 | |
|     const MachineBasicBlock *MBB = *SI;
 | |
|     if (!SeenMBBs.insert(MBB) ||
 | |
|         (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
 | |
|       // This is a superfluous edge, remove it.
 | |
|       SI = removeSuccessor(SI);
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       ++SI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
 | |
| /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
 | |
| DebugLoc
 | |
| MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
 | |
|   DebugLoc DL;
 | |
|   instr_iterator E = instr_end();
 | |
|   if (MBBI == E)
 | |
|     return DL;
 | |
| 
 | |
|   // Skip debug declarations, we don't want a DebugLoc from them.
 | |
|   while (MBBI != E && MBBI->isDebugValue())
 | |
|     MBBI++;
 | |
|   if (MBBI != E)
 | |
|     DL = MBBI->getDebugLoc();
 | |
|   return DL;
 | |
| }
 | |
| 
 | |
| /// getSuccWeight - Return weight of the edge from this block to MBB.
 | |
| ///
 | |
| uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
 | |
|   if (Weights.empty())
 | |
|     return 0;
 | |
| 
 | |
|   return *getWeightIterator(Succ);
 | |
| }
 | |
| 
 | |
| /// Set successor weight of a given iterator.
 | |
| void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) {
 | |
|   if (Weights.empty())
 | |
|     return;
 | |
|   *getWeightIterator(I) = weight;
 | |
| }
 | |
| 
 | |
| /// getWeightIterator - Return wight iterator corresonding to the I successor
 | |
| /// iterator
 | |
| MachineBasicBlock::weight_iterator MachineBasicBlock::
 | |
| getWeightIterator(MachineBasicBlock::succ_iterator I) {
 | |
|   assert(Weights.size() == Successors.size() && "Async weight list!");
 | |
|   size_t index = std::distance(Successors.begin(), I);
 | |
|   assert(index < Weights.size() && "Not a current successor!");
 | |
|   return Weights.begin() + index;
 | |
| }
 | |
| 
 | |
| /// getWeightIterator - Return wight iterator corresonding to the I successor
 | |
| /// iterator
 | |
| MachineBasicBlock::const_weight_iterator MachineBasicBlock::
 | |
| getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
 | |
|   assert(Weights.size() == Successors.size() && "Async weight list!");
 | |
|   const size_t index = std::distance(Successors.begin(), I);
 | |
|   assert(index < Weights.size() && "Not a current successor!");
 | |
|   return Weights.begin() + index;
 | |
| }
 | |
| 
 | |
| /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
 | |
| /// as of just before "MI".
 | |
| /// 
 | |
| /// Search is localised to a neighborhood of
 | |
| /// Neighborhood instructions before (searching for defs or kills) and N
 | |
| /// instructions after (searching just for defs) MI.
 | |
| MachineBasicBlock::LivenessQueryResult
 | |
| MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
 | |
|                                            unsigned Reg, MachineInstr *MI,
 | |
|                                            unsigned Neighborhood) {
 | |
|   unsigned N = Neighborhood;
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
| 
 | |
|   // Start by searching backwards from MI, looking for kills, reads or defs.
 | |
| 
 | |
|   MachineBasicBlock::iterator I(MI);
 | |
|   // If this is the first insn in the block, don't search backwards.
 | |
|   if (I != MBB->begin()) {
 | |
|     do {
 | |
|       --I;
 | |
| 
 | |
|       MachineOperandIteratorBase::PhysRegInfo Analysis =
 | |
|         MIOperands(I).analyzePhysReg(Reg, TRI);
 | |
| 
 | |
|       if (Analysis.Defines)
 | |
|         // Outputs happen after inputs so they take precedence if both are
 | |
|         // present.
 | |
|         return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
 | |
| 
 | |
|       if (Analysis.Kills || Analysis.Clobbers)
 | |
|         // Register killed, so isn't live.
 | |
|         return LQR_Dead;
 | |
| 
 | |
|       else if (Analysis.ReadsOverlap)
 | |
|         // Defined or read without a previous kill - live.
 | |
|         return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
 | |
| 
 | |
|     } while (I != MBB->begin() && --N > 0);
 | |
|   }
 | |
| 
 | |
|   // Did we get to the start of the block?
 | |
|   if (I == MBB->begin()) {
 | |
|     // If so, the register's state is definitely defined by the live-in state.
 | |
|     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
 | |
|          RAI.isValid(); ++RAI) {
 | |
|       if (MBB->isLiveIn(*RAI))
 | |
|         return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
 | |
|     }
 | |
| 
 | |
|     return LQR_Dead;
 | |
|   }
 | |
| 
 | |
|   N = Neighborhood;
 | |
| 
 | |
|   // Try searching forwards from MI, looking for reads or defs.
 | |
|   I = MachineBasicBlock::iterator(MI);
 | |
|   // If this is the last insn in the block, don't search forwards.
 | |
|   if (I != MBB->end()) {
 | |
|     for (++I; I != MBB->end() && N > 0; ++I, --N) {
 | |
|       MachineOperandIteratorBase::PhysRegInfo Analysis =
 | |
|         MIOperands(I).analyzePhysReg(Reg, TRI);
 | |
| 
 | |
|       if (Analysis.ReadsOverlap)
 | |
|         // Used, therefore must have been live.
 | |
|         return (Analysis.Reads) ?
 | |
|           LQR_Live : LQR_OverlappingLive;
 | |
| 
 | |
|       else if (Analysis.Clobbers || Analysis.Defines)
 | |
|         // Defined (but not read) therefore cannot have been live.
 | |
|         return LQR_Dead;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At this point we have no idea of the liveness of the register.
 | |
|   return LQR_Unknown;
 | |
| }
 |