forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			495 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			495 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass inserts stack protectors into functions which need them. A variable
 | |
| // with a random value in it is stored onto the stack before the local variables
 | |
| // are allocated. Upon exiting the block, the stored value is checked. If it's
 | |
| // changed, then there was some sort of violation and the program aborts.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "stack-protector"
 | |
| #include "llvm/CodeGen/StackProtector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include <cstdlib>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFunProtected, "Number of functions protected");
 | |
| STATISTIC(NumAddrTaken, "Number of local variables that have their address"
 | |
|                         " taken.");
 | |
| 
 | |
| static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
 | |
|                                           cl::init(true), cl::Hidden);
 | |
| 
 | |
| char StackProtector::ID = 0;
 | |
| INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
 | |
|                 false, true)
 | |
| 
 | |
| FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
 | |
|   return new StackProtector(TM);
 | |
| }
 | |
| 
 | |
| StackProtector::SSPLayoutKind
 | |
| StackProtector::getSSPLayout(const AllocaInst *AI) const {
 | |
|   return AI ? Layout.lookup(AI) : SSPLK_None;
 | |
| }
 | |
| 
 | |
| void StackProtector::adjustForColoring(const AllocaInst *From,
 | |
|                                        const AllocaInst *To) {
 | |
|   // When coloring replaces one alloca with another, transfer the SSPLayoutKind
 | |
|   // tag from the remapped to the target alloca. The remapped alloca should
 | |
|   // have a size smaller than or equal to the replacement alloca.
 | |
|   SSPLayoutMap::iterator I = Layout.find(From);
 | |
|   if (I != Layout.end()) {
 | |
|     SSPLayoutKind Kind = I->second;
 | |
|     Layout.erase(I);
 | |
| 
 | |
|     // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
 | |
|     // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
 | |
|     // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
 | |
|     I = Layout.find(To);
 | |
|     if (I == Layout.end())
 | |
|       Layout.insert(std::make_pair(To, Kind));
 | |
|     else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
 | |
|       I->second = Kind;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool StackProtector::runOnFunction(Function &Fn) {
 | |
|   F = &Fn;
 | |
|   M = F->getParent();
 | |
|   DominatorTreeWrapperPass *DTWP =
 | |
|       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   DT = DTWP ? &DTWP->getDomTree() : 0;
 | |
|   TLI = TM->getTargetLowering();
 | |
| 
 | |
|   if (!RequiresStackProtector())
 | |
|     return false;
 | |
| 
 | |
|   Attribute Attr = Fn.getAttributes().getAttribute(
 | |
|       AttributeSet::FunctionIndex, "stack-protector-buffer-size");
 | |
|   if (Attr.isStringAttribute() &&
 | |
|       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
 | |
|       return false; // Invalid integer string
 | |
| 
 | |
|   ++NumFunProtected;
 | |
|   return InsertStackProtectors();
 | |
| }
 | |
| 
 | |
| /// \param [out] IsLarge is set to true if a protectable array is found and
 | |
| /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
 | |
| /// multiple arrays, this gets set if any of them is large.
 | |
| bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
 | |
|                                               bool Strong,
 | |
|                                               bool InStruct) const {
 | |
|   if (!Ty)
 | |
|     return false;
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | |
|     if (!AT->getElementType()->isIntegerTy(8)) {
 | |
|       // If we're on a non-Darwin platform or we're inside of a structure, don't
 | |
|       // add stack protectors unless the array is a character array.
 | |
|       // However, in strong mode any array, regardless of type and size,
 | |
|       // triggers a protector.
 | |
|       if (!Strong && (InStruct || !Trip.isOSDarwin()))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If an array has more than SSPBufferSize bytes of allocated space, then we
 | |
|     // emit stack protectors.
 | |
|     if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
 | |
|       IsLarge = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Strong)
 | |
|       // Require a protector for all arrays in strong mode
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   const StructType *ST = dyn_cast<StructType>(Ty);
 | |
|   if (!ST)
 | |
|     return false;
 | |
| 
 | |
|   bool NeedsProtector = false;
 | |
|   for (StructType::element_iterator I = ST->element_begin(),
 | |
|                                     E = ST->element_end();
 | |
|        I != E; ++I)
 | |
|     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
 | |
|       // If the element is a protectable array and is large (>= SSPBufferSize)
 | |
|       // then we are done.  If the protectable array is not large, then
 | |
|       // keep looking in case a subsequent element is a large array.
 | |
|       if (IsLarge)
 | |
|         return true;
 | |
|       NeedsProtector = true;
 | |
|     }
 | |
| 
 | |
|   return NeedsProtector;
 | |
| }
 | |
| 
 | |
| bool StackProtector::HasAddressTaken(const Instruction *AI) {
 | |
|   for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     const User *U = *UI;
 | |
|     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       if (AI == SI->getValueOperand())
 | |
|         return true;
 | |
|     } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
 | |
|       if (AI == SI->getOperand(0))
 | |
|         return true;
 | |
|     } else if (isa<CallInst>(U)) {
 | |
|       return true;
 | |
|     } else if (isa<InvokeInst>(U)) {
 | |
|       return true;
 | |
|     } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
 | |
|       if (HasAddressTaken(SI))
 | |
|         return true;
 | |
|     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
 | |
|       // Keep track of what PHI nodes we have already visited to ensure
 | |
|       // they are only visited once.
 | |
|       if (VisitedPHIs.insert(PN))
 | |
|         if (HasAddressTaken(PN))
 | |
|           return true;
 | |
|     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       if (HasAddressTaken(GEP))
 | |
|         return true;
 | |
|     } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
 | |
|       if (HasAddressTaken(BI))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether or not this function needs a stack protector based
 | |
| /// upon the stack protector level.
 | |
| ///
 | |
| /// We use two heuristics: a standard (ssp) and strong (sspstrong).
 | |
| /// The standard heuristic which will add a guard variable to functions that
 | |
| /// call alloca with a either a variable size or a size >= SSPBufferSize,
 | |
| /// functions with character buffers larger than SSPBufferSize, and functions
 | |
| /// with aggregates containing character buffers larger than SSPBufferSize. The
 | |
| /// strong heuristic will add a guard variables to functions that call alloca
 | |
| /// regardless of size, functions with any buffer regardless of type and size,
 | |
| /// functions with aggregates that contain any buffer regardless of type and
 | |
| /// size, and functions that contain stack-based variables that have had their
 | |
| /// address taken.
 | |
| bool StackProtector::RequiresStackProtector() {
 | |
|   bool Strong = false;
 | |
|   bool NeedsProtector = false;
 | |
|   if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                       Attribute::StackProtectReq)) {
 | |
|     NeedsProtector = true;
 | |
|     Strong = true; // Use the same heuristic as strong to determine SSPLayout
 | |
|   } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                              Attribute::StackProtectStrong))
 | |
|     Strong = true;
 | |
|   else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                             Attribute::StackProtect))
 | |
|     return false;
 | |
| 
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | |
|     BasicBlock *BB = I;
 | |
| 
 | |
|     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
 | |
|          ++II) {
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|         if (AI->isArrayAllocation()) {
 | |
|           // SSP-Strong: Enable protectors for any call to alloca, regardless
 | |
|           // of size.
 | |
|           if (Strong)
 | |
|             return true;
 | |
| 
 | |
|           if (const ConstantInt *CI =
 | |
|                   dyn_cast<ConstantInt>(AI->getArraySize())) {
 | |
|             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
 | |
|               // A call to alloca with size >= SSPBufferSize requires
 | |
|               // stack protectors.
 | |
|               Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
 | |
|               NeedsProtector = true;
 | |
|             } else if (Strong) {
 | |
|               // Require protectors for all alloca calls in strong mode.
 | |
|               Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
 | |
|               NeedsProtector = true;
 | |
|             }
 | |
|           } else {
 | |
|             // A call to alloca with a variable size requires protectors.
 | |
|             Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
 | |
|             NeedsProtector = true;
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         bool IsLarge = false;
 | |
|         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
 | |
|           Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
 | |
|                                                    : SSPLK_SmallArray));
 | |
|           NeedsProtector = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (Strong && HasAddressTaken(AI)) {
 | |
|           ++NumAddrTaken;
 | |
|           Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
 | |
|           NeedsProtector = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NeedsProtector;
 | |
| }
 | |
| 
 | |
| static bool InstructionWillNotHaveChain(const Instruction *I) {
 | |
|   return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
 | |
|          isSafeToSpeculativelyExecute(I);
 | |
| }
 | |
| 
 | |
| /// Identify if RI has a previous instruction in the "Tail Position" and return
 | |
| /// it. Otherwise return 0.
 | |
| ///
 | |
| /// This is based off of the code in llvm::isInTailCallPosition. The difference
 | |
| /// is that it inverts the first part of llvm::isInTailCallPosition since
 | |
| /// isInTailCallPosition is checking if a call is in a tail call position, and
 | |
| /// we are searching for an unknown tail call that might be in the tail call
 | |
| /// position. Once we find the call though, the code uses the same refactored
 | |
| /// code, returnTypeIsEligibleForTailCall.
 | |
| static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
 | |
|                                        const TargetLoweringBase *TLI) {
 | |
|   // Establish a reasonable upper bound on the maximum amount of instructions we
 | |
|   // will look through to find a tail call.
 | |
|   unsigned SearchCounter = 0;
 | |
|   const unsigned MaxSearch = 4;
 | |
|   bool NoInterposingChain = true;
 | |
| 
 | |
|   for (BasicBlock::reverse_iterator I = llvm::next(BB->rbegin()),
 | |
|                                     E = BB->rend();
 | |
|        I != E && SearchCounter < MaxSearch; ++I) {
 | |
|     Instruction *Inst = &*I;
 | |
| 
 | |
|     // Skip over debug intrinsics and do not allow them to affect our MaxSearch
 | |
|     // counter.
 | |
|     if (isa<DbgInfoIntrinsic>(Inst))
 | |
|       continue;
 | |
| 
 | |
|     // If we find a call and the following conditions are satisifed, then we
 | |
|     // have found a tail call that satisfies at least the target independent
 | |
|     // requirements of a tail call:
 | |
|     //
 | |
|     // 1. The call site has the tail marker.
 | |
|     //
 | |
|     // 2. The call site either will not cause the creation of a chain or if a
 | |
|     // chain is necessary there are no instructions in between the callsite and
 | |
|     // the call which would create an interposing chain.
 | |
|     //
 | |
|     // 3. The return type of the function does not impede tail call
 | |
|     // optimization.
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
 | |
|       if (CI->isTailCall() &&
 | |
|           (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
 | |
|           returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
 | |
|         return CI;
 | |
|     }
 | |
| 
 | |
|     // If we did not find a call see if we have an instruction that may create
 | |
|     // an interposing chain.
 | |
|     NoInterposingChain =
 | |
|         NoInterposingChain && InstructionWillNotHaveChain(Inst);
 | |
| 
 | |
|     // Increment max search.
 | |
|     SearchCounter++;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Insert code into the entry block that stores the __stack_chk_guard
 | |
| /// variable onto the stack:
 | |
| ///
 | |
| ///   entry:
 | |
| ///     StackGuardSlot = alloca i8*
 | |
| ///     StackGuard = load __stack_chk_guard
 | |
| ///     call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
 | |
| ///
 | |
| /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
 | |
| /// node.
 | |
| static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
 | |
|                            const TargetLoweringBase *TLI, const Triple &Trip,
 | |
|                            AllocaInst *&AI, Value *&StackGuardVar) {
 | |
|   bool SupportsSelectionDAGSP = false;
 | |
|   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
 | |
|   unsigned AddressSpace, Offset;
 | |
|   if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
 | |
|     Constant *OffsetVal =
 | |
|         ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
 | |
| 
 | |
|     StackGuardVar = ConstantExpr::getIntToPtr(
 | |
|         OffsetVal, PointerType::get(PtrTy, AddressSpace));
 | |
|   } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
 | |
|     StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
 | |
|     cast<GlobalValue>(StackGuardVar)
 | |
|         ->setVisibility(GlobalValue::HiddenVisibility);
 | |
|   } else {
 | |
|     SupportsSelectionDAGSP = true;
 | |
|     StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> B(&F->getEntryBlock().front());
 | |
|   AI = B.CreateAlloca(PtrTy, 0, "StackGuardSlot");
 | |
|   LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
 | |
|   B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
 | |
|                 AI);
 | |
| 
 | |
|   return SupportsSelectionDAGSP;
 | |
| }
 | |
| 
 | |
| /// InsertStackProtectors - Insert code into the prologue and epilogue of the
 | |
| /// function.
 | |
| ///
 | |
| ///  - The prologue code loads and stores the stack guard onto the stack.
 | |
| ///  - The epilogue checks the value stored in the prologue against the original
 | |
| ///    value. It calls __stack_chk_fail if they differ.
 | |
| bool StackProtector::InsertStackProtectors() {
 | |
|   bool HasPrologue = false;
 | |
|   bool SupportsSelectionDAGSP =
 | |
|       EnableSelectionDAGSP && !TM->Options.EnableFastISel;
 | |
|   AllocaInst *AI = 0;       // Place on stack that stores the stack guard.
 | |
|   Value *StackGuardVar = 0; // The stack guard variable.
 | |
| 
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
 | |
|     BasicBlock *BB = I++;
 | |
|     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
 | |
|     if (!RI)
 | |
|       continue;
 | |
| 
 | |
|     if (!HasPrologue) {
 | |
|       HasPrologue = true;
 | |
|       SupportsSelectionDAGSP &=
 | |
|           CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
 | |
|     }
 | |
| 
 | |
|     if (SupportsSelectionDAGSP) {
 | |
|       // Since we have a potential tail call, insert the special stack check
 | |
|       // intrinsic.
 | |
|       Instruction *InsertionPt = 0;
 | |
|       if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
 | |
|         InsertionPt = CI;
 | |
|       } else {
 | |
|         InsertionPt = RI;
 | |
|         // At this point we know that BB has a return statement so it *DOES*
 | |
|         // have a terminator.
 | |
|         assert(InsertionPt != 0 && "BB must have a terminator instruction at "
 | |
|                                    "this point.");
 | |
|       }
 | |
| 
 | |
|       Function *Intrinsic =
 | |
|           Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
 | |
|       CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
 | |
| 
 | |
|     } else {
 | |
|       // If we do not support SelectionDAG based tail calls, generate IR level
 | |
|       // tail calls.
 | |
|       //
 | |
|       // For each block with a return instruction, convert this:
 | |
|       //
 | |
|       //   return:
 | |
|       //     ...
 | |
|       //     ret ...
 | |
|       //
 | |
|       // into this:
 | |
|       //
 | |
|       //   return:
 | |
|       //     ...
 | |
|       //     %1 = load __stack_chk_guard
 | |
|       //     %2 = load StackGuardSlot
 | |
|       //     %3 = cmp i1 %1, %2
 | |
|       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
 | |
|       //
 | |
|       //   SP_return:
 | |
|       //     ret ...
 | |
|       //
 | |
|       //   CallStackCheckFailBlk:
 | |
|       //     call void @__stack_chk_fail()
 | |
|       //     unreachable
 | |
| 
 | |
|       // Create the FailBB. We duplicate the BB every time since the MI tail
 | |
|       // merge pass will merge together all of the various BB into one including
 | |
|       // fail BB generated by the stack protector pseudo instruction.
 | |
|       BasicBlock *FailBB = CreateFailBB();
 | |
| 
 | |
|       // Split the basic block before the return instruction.
 | |
|       BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
 | |
| 
 | |
|       // Update the dominator tree if we need to.
 | |
|       if (DT && DT->isReachableFromEntry(BB)) {
 | |
|         DT->addNewBlock(NewBB, BB);
 | |
|         DT->addNewBlock(FailBB, BB);
 | |
|       }
 | |
| 
 | |
|       // Remove default branch instruction to the new BB.
 | |
|       BB->getTerminator()->eraseFromParent();
 | |
| 
 | |
|       // Move the newly created basic block to the point right after the old
 | |
|       // basic block so that it's in the "fall through" position.
 | |
|       NewBB->moveAfter(BB);
 | |
| 
 | |
|       // Generate the stack protector instructions in the old basic block.
 | |
|       IRBuilder<> B(BB);
 | |
|       LoadInst *LI1 = B.CreateLoad(StackGuardVar);
 | |
|       LoadInst *LI2 = B.CreateLoad(AI);
 | |
|       Value *Cmp = B.CreateICmpEQ(LI1, LI2);
 | |
|       B.CreateCondBr(Cmp, NewBB, FailBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Return if we didn't modify any basic blocks. I.e., there are no return
 | |
|   // statements in the function.
 | |
|   if (!HasPrologue)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CreateFailBB - Create a basic block to jump to when the stack protector
 | |
| /// check fails.
 | |
| BasicBlock *StackProtector::CreateFailBB() {
 | |
|   LLVMContext &Context = F->getContext();
 | |
|   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
 | |
|   IRBuilder<> B(FailBB);
 | |
|   if (Trip.getOS() == llvm::Triple::OpenBSD) {
 | |
|     Constant *StackChkFail = M->getOrInsertFunction(
 | |
|         "__stack_smash_handler", Type::getVoidTy(Context),
 | |
|         Type::getInt8PtrTy(Context), NULL);
 | |
| 
 | |
|     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
 | |
|   } else {
 | |
|     Constant *StackChkFail = M->getOrInsertFunction(
 | |
|         "__stack_chk_fail", Type::getVoidTy(Context), NULL);
 | |
|     B.CreateCall(StackChkFail);
 | |
|   }
 | |
|   B.CreateUnreachable();
 | |
|   return FailBB;
 | |
| }
 |