forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3887 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3887 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a class to represent arbitrary precision floating
 | |
| // point values and provide a variety of arithmetic operations on them.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <cstring>
 | |
| #include <limits.h>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// A macro used to combine two fcCategory enums into one key which can be used
 | |
| /// in a switch statement to classify how the interaction of two APFloat's
 | |
| /// categories affects an operation.
 | |
| ///
 | |
| /// TODO: If clang source code is ever allowed to use constexpr in its own
 | |
| /// codebase, change this into a static inline function.
 | |
| #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
 | |
| 
 | |
| /* Assumed in hexadecimal significand parsing, and conversion to
 | |
|    hexadecimal strings.  */
 | |
| #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
 | |
| COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   /* Represents floating point arithmetic semantics.  */
 | |
|   struct fltSemantics {
 | |
|     /* The largest E such that 2^E is representable; this matches the
 | |
|        definition of IEEE 754.  */
 | |
|     APFloat::ExponentType maxExponent;
 | |
| 
 | |
|     /* The smallest E such that 2^E is a normalized number; this
 | |
|        matches the definition of IEEE 754.  */
 | |
|     APFloat::ExponentType minExponent;
 | |
| 
 | |
|     /* Number of bits in the significand.  This includes the integer
 | |
|        bit.  */
 | |
|     unsigned int precision;
 | |
|   };
 | |
| 
 | |
|   const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 };
 | |
|   const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 };
 | |
|   const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 };
 | |
|   const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 };
 | |
|   const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 };
 | |
|   const fltSemantics APFloat::Bogus = { 0, 0, 0 };
 | |
| 
 | |
|   /* The PowerPC format consists of two doubles.  It does not map cleanly
 | |
|      onto the usual format above.  It is approximated using twice the
 | |
|      mantissa bits.  Note that for exponents near the double minimum,
 | |
|      we no longer can represent the full 106 mantissa bits, so those
 | |
|      will be treated as denormal numbers.
 | |
| 
 | |
|      FIXME: While this approximation is equivalent to what GCC uses for
 | |
|      compile-time arithmetic on PPC double-double numbers, it is not able
 | |
|      to represent all possible values held by a PPC double-double number,
 | |
|      for example: (long double) 1.0 + (long double) 0x1p-106
 | |
|      Should this be replaced by a full emulation of PPC double-double?  */
 | |
|   const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 };
 | |
| 
 | |
|   /* A tight upper bound on number of parts required to hold the value
 | |
|      pow(5, power) is
 | |
| 
 | |
|        power * 815 / (351 * integerPartWidth) + 1
 | |
| 
 | |
|      However, whilst the result may require only this many parts,
 | |
|      because we are multiplying two values to get it, the
 | |
|      multiplication may require an extra part with the excess part
 | |
|      being zero (consider the trivial case of 1 * 1, tcFullMultiply
 | |
|      requires two parts to hold the single-part result).  So we add an
 | |
|      extra one to guarantee enough space whilst multiplying.  */
 | |
|   const unsigned int maxExponent = 16383;
 | |
|   const unsigned int maxPrecision = 113;
 | |
|   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
 | |
|   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
 | |
|                                                 / (351 * integerPartWidth));
 | |
| }
 | |
| 
 | |
| /* A bunch of private, handy routines.  */
 | |
| 
 | |
| static inline unsigned int
 | |
| partCountForBits(unsigned int bits)
 | |
| {
 | |
|   return ((bits) + integerPartWidth - 1) / integerPartWidth;
 | |
| }
 | |
| 
 | |
| /* Returns 0U-9U.  Return values >= 10U are not digits.  */
 | |
| static inline unsigned int
 | |
| decDigitValue(unsigned int c)
 | |
| {
 | |
|   return c - '0';
 | |
| }
 | |
| 
 | |
| /* Return the value of a decimal exponent of the form
 | |
|    [+-]ddddddd.
 | |
| 
 | |
|    If the exponent overflows, returns a large exponent with the
 | |
|    appropriate sign.  */
 | |
| static int
 | |
| readExponent(StringRef::iterator begin, StringRef::iterator end)
 | |
| {
 | |
|   bool isNegative;
 | |
|   unsigned int absExponent;
 | |
|   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
 | |
|   StringRef::iterator p = begin;
 | |
| 
 | |
|   assert(p != end && "Exponent has no digits");
 | |
| 
 | |
|   isNegative = (*p == '-');
 | |
|   if (*p == '-' || *p == '+') {
 | |
|     p++;
 | |
|     assert(p != end && "Exponent has no digits");
 | |
|   }
 | |
| 
 | |
|   absExponent = decDigitValue(*p++);
 | |
|   assert(absExponent < 10U && "Invalid character in exponent");
 | |
| 
 | |
|   for (; p != end; ++p) {
 | |
|     unsigned int value;
 | |
| 
 | |
|     value = decDigitValue(*p);
 | |
|     assert(value < 10U && "Invalid character in exponent");
 | |
| 
 | |
|     value += absExponent * 10;
 | |
|     if (absExponent >= overlargeExponent) {
 | |
|       absExponent = overlargeExponent;
 | |
|       p = end;  /* outwit assert below */
 | |
|       break;
 | |
|     }
 | |
|     absExponent = value;
 | |
|   }
 | |
| 
 | |
|   assert(p == end && "Invalid exponent in exponent");
 | |
| 
 | |
|   if (isNegative)
 | |
|     return -(int) absExponent;
 | |
|   else
 | |
|     return (int) absExponent;
 | |
| }
 | |
| 
 | |
| /* This is ugly and needs cleaning up, but I don't immediately see
 | |
|    how whilst remaining safe.  */
 | |
| static int
 | |
| totalExponent(StringRef::iterator p, StringRef::iterator end,
 | |
|               int exponentAdjustment)
 | |
| {
 | |
|   int unsignedExponent;
 | |
|   bool negative, overflow;
 | |
|   int exponent = 0;
 | |
| 
 | |
|   assert(p != end && "Exponent has no digits");
 | |
| 
 | |
|   negative = *p == '-';
 | |
|   if (*p == '-' || *p == '+') {
 | |
|     p++;
 | |
|     assert(p != end && "Exponent has no digits");
 | |
|   }
 | |
| 
 | |
|   unsignedExponent = 0;
 | |
|   overflow = false;
 | |
|   for (; p != end; ++p) {
 | |
|     unsigned int value;
 | |
| 
 | |
|     value = decDigitValue(*p);
 | |
|     assert(value < 10U && "Invalid character in exponent");
 | |
| 
 | |
|     unsignedExponent = unsignedExponent * 10 + value;
 | |
|     if (unsignedExponent > 32767) {
 | |
|       overflow = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
 | |
|     overflow = true;
 | |
| 
 | |
|   if (!overflow) {
 | |
|     exponent = unsignedExponent;
 | |
|     if (negative)
 | |
|       exponent = -exponent;
 | |
|     exponent += exponentAdjustment;
 | |
|     if (exponent > 32767 || exponent < -32768)
 | |
|       overflow = true;
 | |
|   }
 | |
| 
 | |
|   if (overflow)
 | |
|     exponent = negative ? -32768: 32767;
 | |
| 
 | |
|   return exponent;
 | |
| }
 | |
| 
 | |
| static StringRef::iterator
 | |
| skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
 | |
|                            StringRef::iterator *dot)
 | |
| {
 | |
|   StringRef::iterator p = begin;
 | |
|   *dot = end;
 | |
|   while (*p == '0' && p != end)
 | |
|     p++;
 | |
| 
 | |
|   if (*p == '.') {
 | |
|     *dot = p++;
 | |
| 
 | |
|     assert(end - begin != 1 && "Significand has no digits");
 | |
| 
 | |
|     while (*p == '0' && p != end)
 | |
|       p++;
 | |
|   }
 | |
| 
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /* Given a normal decimal floating point number of the form
 | |
| 
 | |
|      dddd.dddd[eE][+-]ddd
 | |
| 
 | |
|    where the decimal point and exponent are optional, fill out the
 | |
|    structure D.  Exponent is appropriate if the significand is
 | |
|    treated as an integer, and normalizedExponent if the significand
 | |
|    is taken to have the decimal point after a single leading
 | |
|    non-zero digit.
 | |
| 
 | |
|    If the value is zero, V->firstSigDigit points to a non-digit, and
 | |
|    the return exponent is zero.
 | |
| */
 | |
| struct decimalInfo {
 | |
|   const char *firstSigDigit;
 | |
|   const char *lastSigDigit;
 | |
|   int exponent;
 | |
|   int normalizedExponent;
 | |
| };
 | |
| 
 | |
| static void
 | |
| interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
 | |
|                  decimalInfo *D)
 | |
| {
 | |
|   StringRef::iterator dot = end;
 | |
|   StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
 | |
| 
 | |
|   D->firstSigDigit = p;
 | |
|   D->exponent = 0;
 | |
|   D->normalizedExponent = 0;
 | |
| 
 | |
|   for (; p != end; ++p) {
 | |
|     if (*p == '.') {
 | |
|       assert(dot == end && "String contains multiple dots");
 | |
|       dot = p++;
 | |
|       if (p == end)
 | |
|         break;
 | |
|     }
 | |
|     if (decDigitValue(*p) >= 10U)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (p != end) {
 | |
|     assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
 | |
|     assert(p != begin && "Significand has no digits");
 | |
|     assert((dot == end || p - begin != 1) && "Significand has no digits");
 | |
| 
 | |
|     /* p points to the first non-digit in the string */
 | |
|     D->exponent = readExponent(p + 1, end);
 | |
| 
 | |
|     /* Implied decimal point?  */
 | |
|     if (dot == end)
 | |
|       dot = p;
 | |
|   }
 | |
| 
 | |
|   /* If number is all zeroes accept any exponent.  */
 | |
|   if (p != D->firstSigDigit) {
 | |
|     /* Drop insignificant trailing zeroes.  */
 | |
|     if (p != begin) {
 | |
|       do
 | |
|         do
 | |
|           p--;
 | |
|         while (p != begin && *p == '0');
 | |
|       while (p != begin && *p == '.');
 | |
|     }
 | |
| 
 | |
|     /* Adjust the exponents for any decimal point.  */
 | |
|     D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
 | |
|     D->normalizedExponent = (D->exponent +
 | |
|               static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
 | |
|                                       - (dot > D->firstSigDigit && dot < p)));
 | |
|   }
 | |
| 
 | |
|   D->lastSigDigit = p;
 | |
| }
 | |
| 
 | |
| /* Return the trailing fraction of a hexadecimal number.
 | |
|    DIGITVALUE is the first hex digit of the fraction, P points to
 | |
|    the next digit.  */
 | |
| static lostFraction
 | |
| trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
 | |
|                             unsigned int digitValue)
 | |
| {
 | |
|   unsigned int hexDigit;
 | |
| 
 | |
|   /* If the first trailing digit isn't 0 or 8 we can work out the
 | |
|      fraction immediately.  */
 | |
|   if (digitValue > 8)
 | |
|     return lfMoreThanHalf;
 | |
|   else if (digitValue < 8 && digitValue > 0)
 | |
|     return lfLessThanHalf;
 | |
| 
 | |
|   // Otherwise we need to find the first non-zero digit.
 | |
|   while (p != end && (*p == '0' || *p == '.'))
 | |
|     p++;
 | |
| 
 | |
|   assert(p != end && "Invalid trailing hexadecimal fraction!");
 | |
| 
 | |
|   hexDigit = hexDigitValue(*p);
 | |
| 
 | |
|   /* If we ran off the end it is exactly zero or one-half, otherwise
 | |
|      a little more.  */
 | |
|   if (hexDigit == -1U)
 | |
|     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
 | |
|   else
 | |
|     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
 | |
| }
 | |
| 
 | |
| /* Return the fraction lost were a bignum truncated losing the least
 | |
|    significant BITS bits.  */
 | |
| static lostFraction
 | |
| lostFractionThroughTruncation(const integerPart *parts,
 | |
|                               unsigned int partCount,
 | |
|                               unsigned int bits)
 | |
| {
 | |
|   unsigned int lsb;
 | |
| 
 | |
|   lsb = APInt::tcLSB(parts, partCount);
 | |
| 
 | |
|   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
 | |
|   if (bits <= lsb)
 | |
|     return lfExactlyZero;
 | |
|   if (bits == lsb + 1)
 | |
|     return lfExactlyHalf;
 | |
|   if (bits <= partCount * integerPartWidth &&
 | |
|       APInt::tcExtractBit(parts, bits - 1))
 | |
|     return lfMoreThanHalf;
 | |
| 
 | |
|   return lfLessThanHalf;
 | |
| }
 | |
| 
 | |
| /* Shift DST right BITS bits noting lost fraction.  */
 | |
| static lostFraction
 | |
| shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
 | |
| {
 | |
|   lostFraction lost_fraction;
 | |
| 
 | |
|   lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
 | |
| 
 | |
|   APInt::tcShiftRight(dst, parts, bits);
 | |
| 
 | |
|   return lost_fraction;
 | |
| }
 | |
| 
 | |
| /* Combine the effect of two lost fractions.  */
 | |
| static lostFraction
 | |
| combineLostFractions(lostFraction moreSignificant,
 | |
|                      lostFraction lessSignificant)
 | |
| {
 | |
|   if (lessSignificant != lfExactlyZero) {
 | |
|     if (moreSignificant == lfExactlyZero)
 | |
|       moreSignificant = lfLessThanHalf;
 | |
|     else if (moreSignificant == lfExactlyHalf)
 | |
|       moreSignificant = lfMoreThanHalf;
 | |
|   }
 | |
| 
 | |
|   return moreSignificant;
 | |
| }
 | |
| 
 | |
| /* The error from the true value, in half-ulps, on multiplying two
 | |
|    floating point numbers, which differ from the value they
 | |
|    approximate by at most HUE1 and HUE2 half-ulps, is strictly less
 | |
|    than the returned value.
 | |
| 
 | |
|    See "How to Read Floating Point Numbers Accurately" by William D
 | |
|    Clinger.  */
 | |
| static unsigned int
 | |
| HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
 | |
| {
 | |
|   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
 | |
| 
 | |
|   if (HUerr1 + HUerr2 == 0)
 | |
|     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
 | |
|   else
 | |
|     return inexactMultiply + 2 * (HUerr1 + HUerr2);
 | |
| }
 | |
| 
 | |
| /* The number of ulps from the boundary (zero, or half if ISNEAREST)
 | |
|    when the least significant BITS are truncated.  BITS cannot be
 | |
|    zero.  */
 | |
| static integerPart
 | |
| ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
 | |
| {
 | |
|   unsigned int count, partBits;
 | |
|   integerPart part, boundary;
 | |
| 
 | |
|   assert(bits != 0);
 | |
| 
 | |
|   bits--;
 | |
|   count = bits / integerPartWidth;
 | |
|   partBits = bits % integerPartWidth + 1;
 | |
| 
 | |
|   part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
 | |
| 
 | |
|   if (isNearest)
 | |
|     boundary = (integerPart) 1 << (partBits - 1);
 | |
|   else
 | |
|     boundary = 0;
 | |
| 
 | |
|   if (count == 0) {
 | |
|     if (part - boundary <= boundary - part)
 | |
|       return part - boundary;
 | |
|     else
 | |
|       return boundary - part;
 | |
|   }
 | |
| 
 | |
|   if (part == boundary) {
 | |
|     while (--count)
 | |
|       if (parts[count])
 | |
|         return ~(integerPart) 0; /* A lot.  */
 | |
| 
 | |
|     return parts[0];
 | |
|   } else if (part == boundary - 1) {
 | |
|     while (--count)
 | |
|       if (~parts[count])
 | |
|         return ~(integerPart) 0; /* A lot.  */
 | |
| 
 | |
|     return -parts[0];
 | |
|   }
 | |
| 
 | |
|   return ~(integerPart) 0; /* A lot.  */
 | |
| }
 | |
| 
 | |
| /* Place pow(5, power) in DST, and return the number of parts used.
 | |
|    DST must be at least one part larger than size of the answer.  */
 | |
| static unsigned int
 | |
| powerOf5(integerPart *dst, unsigned int power)
 | |
| {
 | |
|   static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
 | |
|                                                   15625, 78125 };
 | |
|   integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
 | |
|   pow5s[0] = 78125 * 5;
 | |
| 
 | |
|   unsigned int partsCount[16] = { 1 };
 | |
|   integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
 | |
|   unsigned int result;
 | |
|   assert(power <= maxExponent);
 | |
| 
 | |
|   p1 = dst;
 | |
|   p2 = scratch;
 | |
| 
 | |
|   *p1 = firstEightPowers[power & 7];
 | |
|   power >>= 3;
 | |
| 
 | |
|   result = 1;
 | |
|   pow5 = pow5s;
 | |
| 
 | |
|   for (unsigned int n = 0; power; power >>= 1, n++) {
 | |
|     unsigned int pc;
 | |
| 
 | |
|     pc = partsCount[n];
 | |
| 
 | |
|     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
 | |
|     if (pc == 0) {
 | |
|       pc = partsCount[n - 1];
 | |
|       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
 | |
|       pc *= 2;
 | |
|       if (pow5[pc - 1] == 0)
 | |
|         pc--;
 | |
|       partsCount[n] = pc;
 | |
|     }
 | |
| 
 | |
|     if (power & 1) {
 | |
|       integerPart *tmp;
 | |
| 
 | |
|       APInt::tcFullMultiply(p2, p1, pow5, result, pc);
 | |
|       result += pc;
 | |
|       if (p2[result - 1] == 0)
 | |
|         result--;
 | |
| 
 | |
|       /* Now result is in p1 with partsCount parts and p2 is scratch
 | |
|          space.  */
 | |
|       tmp = p1, p1 = p2, p2 = tmp;
 | |
|     }
 | |
| 
 | |
|     pow5 += pc;
 | |
|   }
 | |
| 
 | |
|   if (p1 != dst)
 | |
|     APInt::tcAssign(dst, p1, result);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* Zero at the end to avoid modular arithmetic when adding one; used
 | |
|    when rounding up during hexadecimal output.  */
 | |
| static const char hexDigitsLower[] = "0123456789abcdef0";
 | |
| static const char hexDigitsUpper[] = "0123456789ABCDEF0";
 | |
| static const char infinityL[] = "infinity";
 | |
| static const char infinityU[] = "INFINITY";
 | |
| static const char NaNL[] = "nan";
 | |
| static const char NaNU[] = "NAN";
 | |
| 
 | |
| /* Write out an integerPart in hexadecimal, starting with the most
 | |
|    significant nibble.  Write out exactly COUNT hexdigits, return
 | |
|    COUNT.  */
 | |
| static unsigned int
 | |
| partAsHex (char *dst, integerPart part, unsigned int count,
 | |
|            const char *hexDigitChars)
 | |
| {
 | |
|   unsigned int result = count;
 | |
| 
 | |
|   assert(count != 0 && count <= integerPartWidth / 4);
 | |
| 
 | |
|   part >>= (integerPartWidth - 4 * count);
 | |
|   while (count--) {
 | |
|     dst[count] = hexDigitChars[part & 0xf];
 | |
|     part >>= 4;
 | |
|   }
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* Write out an unsigned decimal integer.  */
 | |
| static char *
 | |
| writeUnsignedDecimal (char *dst, unsigned int n)
 | |
| {
 | |
|   char buff[40], *p;
 | |
| 
 | |
|   p = buff;
 | |
|   do
 | |
|     *p++ = '0' + n % 10;
 | |
|   while (n /= 10);
 | |
| 
 | |
|   do
 | |
|     *dst++ = *--p;
 | |
|   while (p != buff);
 | |
| 
 | |
|   return dst;
 | |
| }
 | |
| 
 | |
| /* Write out a signed decimal integer.  */
 | |
| static char *
 | |
| writeSignedDecimal (char *dst, int value)
 | |
| {
 | |
|   if (value < 0) {
 | |
|     *dst++ = '-';
 | |
|     dst = writeUnsignedDecimal(dst, -(unsigned) value);
 | |
|   } else
 | |
|     dst = writeUnsignedDecimal(dst, value);
 | |
| 
 | |
|   return dst;
 | |
| }
 | |
| 
 | |
| /* Constructors.  */
 | |
| void
 | |
| APFloat::initialize(const fltSemantics *ourSemantics)
 | |
| {
 | |
|   unsigned int count;
 | |
| 
 | |
|   semantics = ourSemantics;
 | |
|   count = partCount();
 | |
|   if (count > 1)
 | |
|     significand.parts = new integerPart[count];
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::freeSignificand()
 | |
| {
 | |
|   if (needsCleanup())
 | |
|     delete [] significand.parts;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::assign(const APFloat &rhs)
 | |
| {
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   sign = rhs.sign;
 | |
|   category = rhs.category;
 | |
|   exponent = rhs.exponent;
 | |
|   if (isFiniteNonZero() || category == fcNaN)
 | |
|     copySignificand(rhs);
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::copySignificand(const APFloat &rhs)
 | |
| {
 | |
|   assert(isFiniteNonZero() || category == fcNaN);
 | |
|   assert(rhs.partCount() >= partCount());
 | |
| 
 | |
|   APInt::tcAssign(significandParts(), rhs.significandParts(),
 | |
|                   partCount());
 | |
| }
 | |
| 
 | |
| /* Make this number a NaN, with an arbitrary but deterministic value
 | |
|    for the significand.  If double or longer, this is a signalling NaN,
 | |
|    which may not be ideal.  If float, this is QNaN(0).  */
 | |
| void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
 | |
| {
 | |
|   category = fcNaN;
 | |
|   sign = Negative;
 | |
| 
 | |
|   integerPart *significand = significandParts();
 | |
|   unsigned numParts = partCount();
 | |
| 
 | |
|   // Set the significand bits to the fill.
 | |
|   if (!fill || fill->getNumWords() < numParts)
 | |
|     APInt::tcSet(significand, 0, numParts);
 | |
|   if (fill) {
 | |
|     APInt::tcAssign(significand, fill->getRawData(),
 | |
|                     std::min(fill->getNumWords(), numParts));
 | |
| 
 | |
|     // Zero out the excess bits of the significand.
 | |
|     unsigned bitsToPreserve = semantics->precision - 1;
 | |
|     unsigned part = bitsToPreserve / 64;
 | |
|     bitsToPreserve %= 64;
 | |
|     significand[part] &= ((1ULL << bitsToPreserve) - 1);
 | |
|     for (part++; part != numParts; ++part)
 | |
|       significand[part] = 0;
 | |
|   }
 | |
| 
 | |
|   unsigned QNaNBit = semantics->precision - 2;
 | |
| 
 | |
|   if (SNaN) {
 | |
|     // We always have to clear the QNaN bit to make it an SNaN.
 | |
|     APInt::tcClearBit(significand, QNaNBit);
 | |
| 
 | |
|     // If there are no bits set in the payload, we have to set
 | |
|     // *something* to make it a NaN instead of an infinity;
 | |
|     // conventionally, this is the next bit down from the QNaN bit.
 | |
|     if (APInt::tcIsZero(significand, numParts))
 | |
|       APInt::tcSetBit(significand, QNaNBit - 1);
 | |
|   } else {
 | |
|     // We always have to set the QNaN bit to make it a QNaN.
 | |
|     APInt::tcSetBit(significand, QNaNBit);
 | |
|   }
 | |
| 
 | |
|   // For x87 extended precision, we want to make a NaN, not a
 | |
|   // pseudo-NaN.  Maybe we should expose the ability to make
 | |
|   // pseudo-NaNs?
 | |
|   if (semantics == &APFloat::x87DoubleExtended)
 | |
|     APInt::tcSetBit(significand, QNaNBit + 1);
 | |
| }
 | |
| 
 | |
| APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
 | |
|                          const APInt *fill) {
 | |
|   APFloat value(Sem, uninitialized);
 | |
|   value.makeNaN(SNaN, Negative, fill);
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| APFloat &
 | |
| APFloat::operator=(const APFloat &rhs)
 | |
| {
 | |
|   if (this != &rhs) {
 | |
|     if (semantics != rhs.semantics) {
 | |
|       freeSignificand();
 | |
|       initialize(rhs.semantics);
 | |
|     }
 | |
|     assign(rhs);
 | |
|   }
 | |
| 
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| bool
 | |
| APFloat::isDenormal() const {
 | |
|   return isFiniteNonZero() && (exponent == semantics->minExponent) &&
 | |
|          (APInt::tcExtractBit(significandParts(), 
 | |
|                               semantics->precision - 1) == 0);
 | |
| }
 | |
| 
 | |
| bool
 | |
| APFloat::isSmallest() const {
 | |
|   // The smallest number by magnitude in our format will be the smallest
 | |
|   // denormal, i.e. the floating point number with exponent being minimum
 | |
|   // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
 | |
|   return isFiniteNonZero() && exponent == semantics->minExponent &&
 | |
|     significandMSB() == 0;
 | |
| }
 | |
| 
 | |
| bool APFloat::isSignificandAllOnes() const {
 | |
|   // Test if the significand excluding the integral bit is all ones. This allows
 | |
|   // us to test for binade boundaries.
 | |
|   const integerPart *Parts = significandParts();
 | |
|   const unsigned PartCount = partCount();
 | |
|   for (unsigned i = 0; i < PartCount - 1; i++)
 | |
|     if (~Parts[i])
 | |
|       return false;
 | |
| 
 | |
|   // Set the unused high bits to all ones when we compare.
 | |
|   const unsigned NumHighBits =
 | |
|     PartCount*integerPartWidth - semantics->precision + 1;
 | |
|   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
 | |
|          "fill than integerPartWidth");
 | |
|   const integerPart HighBitFill =
 | |
|     ~integerPart(0) << (integerPartWidth - NumHighBits);
 | |
|   if (~(Parts[PartCount - 1] | HighBitFill))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool APFloat::isSignificandAllZeros() const {
 | |
|   // Test if the significand excluding the integral bit is all zeros. This
 | |
|   // allows us to test for binade boundaries.
 | |
|   const integerPart *Parts = significandParts();
 | |
|   const unsigned PartCount = partCount();
 | |
| 
 | |
|   for (unsigned i = 0; i < PartCount - 1; i++)
 | |
|     if (Parts[i])
 | |
|       return false;
 | |
| 
 | |
|   const unsigned NumHighBits =
 | |
|     PartCount*integerPartWidth - semantics->precision + 1;
 | |
|   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
 | |
|          "clear than integerPartWidth");
 | |
|   const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
 | |
| 
 | |
|   if (Parts[PartCount - 1] & HighBitMask)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| APFloat::isLargest() const {
 | |
|   // The largest number by magnitude in our format will be the floating point
 | |
|   // number with maximum exponent and with significand that is all ones.
 | |
|   return isFiniteNonZero() && exponent == semantics->maxExponent
 | |
|     && isSignificandAllOnes();
 | |
| }
 | |
| 
 | |
| bool
 | |
| APFloat::bitwiseIsEqual(const APFloat &rhs) const {
 | |
|   if (this == &rhs)
 | |
|     return true;
 | |
|   if (semantics != rhs.semantics ||
 | |
|       category != rhs.category ||
 | |
|       sign != rhs.sign)
 | |
|     return false;
 | |
|   if (category==fcZero || category==fcInfinity)
 | |
|     return true;
 | |
|   else if (isFiniteNonZero() && exponent!=rhs.exponent)
 | |
|     return false;
 | |
|   else {
 | |
|     int i= partCount();
 | |
|     const integerPart* p=significandParts();
 | |
|     const integerPart* q=rhs.significandParts();
 | |
|     for (; i>0; i--, p++, q++) {
 | |
|       if (*p != *q)
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
 | |
|   initialize(&ourSemantics);
 | |
|   sign = 0;
 | |
|   category = fcNormal;
 | |
|   zeroSignificand();
 | |
|   exponent = ourSemantics.precision - 1;
 | |
|   significandParts()[0] = value;
 | |
|   normalize(rmNearestTiesToEven, lfExactlyZero);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &ourSemantics) {
 | |
|   initialize(&ourSemantics);
 | |
|   category = fcZero;
 | |
|   sign = false;
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
 | |
|   // Allocates storage if necessary but does not initialize it.
 | |
|   initialize(&ourSemantics);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
 | |
|   initialize(&ourSemantics);
 | |
|   convertFromString(text, rmNearestTiesToEven);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const APFloat &rhs) {
 | |
|   initialize(rhs.semantics);
 | |
|   assign(rhs);
 | |
| }
 | |
| 
 | |
| APFloat::~APFloat()
 | |
| {
 | |
|   freeSignificand();
 | |
| }
 | |
| 
 | |
| // Profile - This method 'profiles' an APFloat for use with FoldingSet.
 | |
| void APFloat::Profile(FoldingSetNodeID& ID) const {
 | |
|   ID.Add(bitcastToAPInt());
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::partCount() const
 | |
| {
 | |
|   return partCountForBits(semantics->precision + 1);
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::semanticsPrecision(const fltSemantics &semantics)
 | |
| {
 | |
|   return semantics.precision;
 | |
| }
 | |
| 
 | |
| const integerPart *
 | |
| APFloat::significandParts() const
 | |
| {
 | |
|   return const_cast<APFloat *>(this)->significandParts();
 | |
| }
 | |
| 
 | |
| integerPart *
 | |
| APFloat::significandParts()
 | |
| {
 | |
|   if (partCount() > 1)
 | |
|     return significand.parts;
 | |
|   else
 | |
|     return &significand.part;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::zeroSignificand()
 | |
| {
 | |
|   APInt::tcSet(significandParts(), 0, partCount());
 | |
| }
 | |
| 
 | |
| /* Increment an fcNormal floating point number's significand.  */
 | |
| void
 | |
| APFloat::incrementSignificand()
 | |
| {
 | |
|   integerPart carry;
 | |
| 
 | |
|   carry = APInt::tcIncrement(significandParts(), partCount());
 | |
| 
 | |
|   /* Our callers should never cause us to overflow.  */
 | |
|   assert(carry == 0);
 | |
|   (void)carry;
 | |
| }
 | |
| 
 | |
| /* Add the significand of the RHS.  Returns the carry flag.  */
 | |
| integerPart
 | |
| APFloat::addSignificand(const APFloat &rhs)
 | |
| {
 | |
|   integerPart *parts;
 | |
| 
 | |
|   parts = significandParts();
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
|   assert(exponent == rhs.exponent);
 | |
| 
 | |
|   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
 | |
| }
 | |
| 
 | |
| /* Subtract the significand of the RHS with a borrow flag.  Returns
 | |
|    the borrow flag.  */
 | |
| integerPart
 | |
| APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
 | |
| {
 | |
|   integerPart *parts;
 | |
| 
 | |
|   parts = significandParts();
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
|   assert(exponent == rhs.exponent);
 | |
| 
 | |
|   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
 | |
|                            partCount());
 | |
| }
 | |
| 
 | |
| /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
 | |
|    on to the full-precision result of the multiplication.  Returns the
 | |
|    lost fraction.  */
 | |
| lostFraction
 | |
| APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
 | |
| {
 | |
|   unsigned int omsb;        // One, not zero, based MSB.
 | |
|   unsigned int partsCount, newPartsCount, precision;
 | |
|   integerPart *lhsSignificand;
 | |
|   integerPart scratch[4];
 | |
|   integerPart *fullSignificand;
 | |
|   lostFraction lost_fraction;
 | |
|   bool ignored;
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   precision = semantics->precision;
 | |
|   newPartsCount = partCountForBits(precision * 2);
 | |
| 
 | |
|   if (newPartsCount > 4)
 | |
|     fullSignificand = new integerPart[newPartsCount];
 | |
|   else
 | |
|     fullSignificand = scratch;
 | |
| 
 | |
|   lhsSignificand = significandParts();
 | |
|   partsCount = partCount();
 | |
| 
 | |
|   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
 | |
|                         rhs.significandParts(), partsCount, partsCount);
 | |
| 
 | |
|   lost_fraction = lfExactlyZero;
 | |
|   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | |
|   exponent += rhs.exponent;
 | |
| 
 | |
|   // Assume the operands involved in the multiplication are single-precision
 | |
|   // FP, and the two multiplicants are:
 | |
|   //   *this = a23 . a22 ... a0 * 2^e1
 | |
|   //     rhs = b23 . b22 ... b0 * 2^e2
 | |
|   // the result of multiplication is:
 | |
|   //   *this = c47 c46 . c45 ... c0 * 2^(e1+e2)
 | |
|   // Note that there are two significant bits at the left-hand side of the 
 | |
|   // radix point. Move the radix point toward left by one bit, and adjust
 | |
|   // exponent accordingly.
 | |
|   exponent += 1;
 | |
| 
 | |
|   if (addend) {
 | |
|     // The intermediate result of the multiplication has "2 * precision" 
 | |
|     // signicant bit; adjust the addend to be consistent with mul result.
 | |
|     //
 | |
|     Significand savedSignificand = significand;
 | |
|     const fltSemantics *savedSemantics = semantics;
 | |
|     fltSemantics extendedSemantics;
 | |
|     opStatus status;
 | |
|     unsigned int extendedPrecision;
 | |
| 
 | |
|     /* Normalize our MSB.  */
 | |
|     extendedPrecision = 2 * precision;
 | |
|     if (omsb != extendedPrecision) {
 | |
|       assert(extendedPrecision > omsb);
 | |
|       APInt::tcShiftLeft(fullSignificand, newPartsCount,
 | |
|                          extendedPrecision - omsb);
 | |
|       exponent -= extendedPrecision - omsb;
 | |
|     }
 | |
| 
 | |
|     /* Create new semantics.  */
 | |
|     extendedSemantics = *semantics;
 | |
|     extendedSemantics.precision = extendedPrecision;
 | |
| 
 | |
|     if (newPartsCount == 1)
 | |
|       significand.part = fullSignificand[0];
 | |
|     else
 | |
|       significand.parts = fullSignificand;
 | |
|     semantics = &extendedSemantics;
 | |
| 
 | |
|     APFloat extendedAddend(*addend);
 | |
|     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
 | |
|     assert(status == opOK);
 | |
|     (void)status;
 | |
|     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
 | |
| 
 | |
|     /* Restore our state.  */
 | |
|     if (newPartsCount == 1)
 | |
|       fullSignificand[0] = significand.part;
 | |
|     significand = savedSignificand;
 | |
|     semantics = savedSemantics;
 | |
| 
 | |
|     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | |
|   }
 | |
| 
 | |
|   // Convert the result having "2 * precision" significant-bits back to the one
 | |
|   // having "precision" significant-bits. First, move the radix point from 
 | |
|   // poision "2*precision - 1" to "precision - 1". The exponent need to be
 | |
|   // adjusted by "2*precision - 1" - "precision - 1" = "precision".
 | |
|   exponent -= precision;
 | |
| 
 | |
|   // In case MSB resides at the left-hand side of radix point, shift the
 | |
|   // mantissa right by some amount to make sure the MSB reside right before
 | |
|   // the radix point (i.e. "MSB . rest-significant-bits").
 | |
|   //
 | |
|   // Note that the result is not normalized when "omsb < precision". So, the
 | |
|   // caller needs to call APFloat::normalize() if normalized value is expected.
 | |
|   if (omsb > precision) {
 | |
|     unsigned int bits, significantParts;
 | |
|     lostFraction lf;
 | |
| 
 | |
|     bits = omsb - precision;
 | |
|     significantParts = partCountForBits(omsb);
 | |
|     lf = shiftRight(fullSignificand, significantParts, bits);
 | |
|     lost_fraction = combineLostFractions(lf, lost_fraction);
 | |
|     exponent += bits;
 | |
|   }
 | |
| 
 | |
|   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
 | |
| 
 | |
|   if (newPartsCount > 4)
 | |
|     delete [] fullSignificand;
 | |
| 
 | |
|   return lost_fraction;
 | |
| }
 | |
| 
 | |
| /* Multiply the significands of LHS and RHS to DST.  */
 | |
| lostFraction
 | |
| APFloat::divideSignificand(const APFloat &rhs)
 | |
| {
 | |
|   unsigned int bit, i, partsCount;
 | |
|   const integerPart *rhsSignificand;
 | |
|   integerPart *lhsSignificand, *dividend, *divisor;
 | |
|   integerPart scratch[4];
 | |
|   lostFraction lost_fraction;
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   lhsSignificand = significandParts();
 | |
|   rhsSignificand = rhs.significandParts();
 | |
|   partsCount = partCount();
 | |
| 
 | |
|   if (partsCount > 2)
 | |
|     dividend = new integerPart[partsCount * 2];
 | |
|   else
 | |
|     dividend = scratch;
 | |
| 
 | |
|   divisor = dividend + partsCount;
 | |
| 
 | |
|   /* Copy the dividend and divisor as they will be modified in-place.  */
 | |
|   for (i = 0; i < partsCount; i++) {
 | |
|     dividend[i] = lhsSignificand[i];
 | |
|     divisor[i] = rhsSignificand[i];
 | |
|     lhsSignificand[i] = 0;
 | |
|   }
 | |
| 
 | |
|   exponent -= rhs.exponent;
 | |
| 
 | |
|   unsigned int precision = semantics->precision;
 | |
| 
 | |
|   /* Normalize the divisor.  */
 | |
|   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
 | |
|   if (bit) {
 | |
|     exponent += bit;
 | |
|     APInt::tcShiftLeft(divisor, partsCount, bit);
 | |
|   }
 | |
| 
 | |
|   /* Normalize the dividend.  */
 | |
|   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
 | |
|   if (bit) {
 | |
|     exponent -= bit;
 | |
|     APInt::tcShiftLeft(dividend, partsCount, bit);
 | |
|   }
 | |
| 
 | |
|   /* Ensure the dividend >= divisor initially for the loop below.
 | |
|      Incidentally, this means that the division loop below is
 | |
|      guaranteed to set the integer bit to one.  */
 | |
|   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
 | |
|     exponent--;
 | |
|     APInt::tcShiftLeft(dividend, partsCount, 1);
 | |
|     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
 | |
|   }
 | |
| 
 | |
|   /* Long division.  */
 | |
|   for (bit = precision; bit; bit -= 1) {
 | |
|     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
 | |
|       APInt::tcSubtract(dividend, divisor, 0, partsCount);
 | |
|       APInt::tcSetBit(lhsSignificand, bit - 1);
 | |
|     }
 | |
| 
 | |
|     APInt::tcShiftLeft(dividend, partsCount, 1);
 | |
|   }
 | |
| 
 | |
|   /* Figure out the lost fraction.  */
 | |
|   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
 | |
| 
 | |
|   if (cmp > 0)
 | |
|     lost_fraction = lfMoreThanHalf;
 | |
|   else if (cmp == 0)
 | |
|     lost_fraction = lfExactlyHalf;
 | |
|   else if (APInt::tcIsZero(dividend, partsCount))
 | |
|     lost_fraction = lfExactlyZero;
 | |
|   else
 | |
|     lost_fraction = lfLessThanHalf;
 | |
| 
 | |
|   if (partsCount > 2)
 | |
|     delete [] dividend;
 | |
| 
 | |
|   return lost_fraction;
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::significandMSB() const
 | |
| {
 | |
|   return APInt::tcMSB(significandParts(), partCount());
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::significandLSB() const
 | |
| {
 | |
|   return APInt::tcLSB(significandParts(), partCount());
 | |
| }
 | |
| 
 | |
| /* Note that a zero result is NOT normalized to fcZero.  */
 | |
| lostFraction
 | |
| APFloat::shiftSignificandRight(unsigned int bits)
 | |
| {
 | |
|   /* Our exponent should not overflow.  */
 | |
|   assert((ExponentType) (exponent + bits) >= exponent);
 | |
| 
 | |
|   exponent += bits;
 | |
| 
 | |
|   return shiftRight(significandParts(), partCount(), bits);
 | |
| }
 | |
| 
 | |
| /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
 | |
| void
 | |
| APFloat::shiftSignificandLeft(unsigned int bits)
 | |
| {
 | |
|   assert(bits < semantics->precision);
 | |
| 
 | |
|   if (bits) {
 | |
|     unsigned int partsCount = partCount();
 | |
| 
 | |
|     APInt::tcShiftLeft(significandParts(), partsCount, bits);
 | |
|     exponent -= bits;
 | |
| 
 | |
|     assert(!APInt::tcIsZero(significandParts(), partsCount));
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::cmpResult
 | |
| APFloat::compareAbsoluteValue(const APFloat &rhs) const
 | |
| {
 | |
|   int compare;
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
|   assert(isFiniteNonZero());
 | |
|   assert(rhs.isFiniteNonZero());
 | |
| 
 | |
|   compare = exponent - rhs.exponent;
 | |
| 
 | |
|   /* If exponents are equal, do an unsigned bignum comparison of the
 | |
|      significands.  */
 | |
|   if (compare == 0)
 | |
|     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
 | |
|                                partCount());
 | |
| 
 | |
|   if (compare > 0)
 | |
|     return cmpGreaterThan;
 | |
|   else if (compare < 0)
 | |
|     return cmpLessThan;
 | |
|   else
 | |
|     return cmpEqual;
 | |
| }
 | |
| 
 | |
| /* Handle overflow.  Sign is preserved.  We either become infinity or
 | |
|    the largest finite number.  */
 | |
| APFloat::opStatus
 | |
| APFloat::handleOverflow(roundingMode rounding_mode)
 | |
| {
 | |
|   /* Infinity?  */
 | |
|   if (rounding_mode == rmNearestTiesToEven ||
 | |
|       rounding_mode == rmNearestTiesToAway ||
 | |
|       (rounding_mode == rmTowardPositive && !sign) ||
 | |
|       (rounding_mode == rmTowardNegative && sign)) {
 | |
|     category = fcInfinity;
 | |
|     return (opStatus) (opOverflow | opInexact);
 | |
|   }
 | |
| 
 | |
|   /* Otherwise we become the largest finite number.  */
 | |
|   category = fcNormal;
 | |
|   exponent = semantics->maxExponent;
 | |
|   APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
 | |
|                                    semantics->precision);
 | |
| 
 | |
|   return opInexact;
 | |
| }
 | |
| 
 | |
| /* Returns TRUE if, when truncating the current number, with BIT the
 | |
|    new LSB, with the given lost fraction and rounding mode, the result
 | |
|    would need to be rounded away from zero (i.e., by increasing the
 | |
|    signficand).  This routine must work for fcZero of both signs, and
 | |
|    fcNormal numbers.  */
 | |
| bool
 | |
| APFloat::roundAwayFromZero(roundingMode rounding_mode,
 | |
|                            lostFraction lost_fraction,
 | |
|                            unsigned int bit) const
 | |
| {
 | |
|   /* NaNs and infinities should not have lost fractions.  */
 | |
|   assert(isFiniteNonZero() || category == fcZero);
 | |
| 
 | |
|   /* Current callers never pass this so we don't handle it.  */
 | |
|   assert(lost_fraction != lfExactlyZero);
 | |
| 
 | |
|   switch (rounding_mode) {
 | |
|   case rmNearestTiesToAway:
 | |
|     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
 | |
| 
 | |
|   case rmNearestTiesToEven:
 | |
|     if (lost_fraction == lfMoreThanHalf)
 | |
|       return true;
 | |
| 
 | |
|     /* Our zeroes don't have a significand to test.  */
 | |
|     if (lost_fraction == lfExactlyHalf && category != fcZero)
 | |
|       return APInt::tcExtractBit(significandParts(), bit);
 | |
| 
 | |
|     return false;
 | |
| 
 | |
|   case rmTowardZero:
 | |
|     return false;
 | |
| 
 | |
|   case rmTowardPositive:
 | |
|     return sign == false;
 | |
| 
 | |
|   case rmTowardNegative:
 | |
|     return sign == true;
 | |
|   }
 | |
|   llvm_unreachable("Invalid rounding mode found");
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::normalize(roundingMode rounding_mode,
 | |
|                    lostFraction lost_fraction)
 | |
| {
 | |
|   unsigned int omsb;                /* One, not zero, based MSB.  */
 | |
|   int exponentChange;
 | |
| 
 | |
|   if (!isFiniteNonZero())
 | |
|     return opOK;
 | |
| 
 | |
|   /* Before rounding normalize the exponent of fcNormal numbers.  */
 | |
|   omsb = significandMSB() + 1;
 | |
| 
 | |
|   if (omsb) {
 | |
|     /* OMSB is numbered from 1.  We want to place it in the integer
 | |
|        bit numbered PRECISION if possible, with a compensating change in
 | |
|        the exponent.  */
 | |
|     exponentChange = omsb - semantics->precision;
 | |
| 
 | |
|     /* If the resulting exponent is too high, overflow according to
 | |
|        the rounding mode.  */
 | |
|     if (exponent + exponentChange > semantics->maxExponent)
 | |
|       return handleOverflow(rounding_mode);
 | |
| 
 | |
|     /* Subnormal numbers have exponent minExponent, and their MSB
 | |
|        is forced based on that.  */
 | |
|     if (exponent + exponentChange < semantics->minExponent)
 | |
|       exponentChange = semantics->minExponent - exponent;
 | |
| 
 | |
|     /* Shifting left is easy as we don't lose precision.  */
 | |
|     if (exponentChange < 0) {
 | |
|       assert(lost_fraction == lfExactlyZero);
 | |
| 
 | |
|       shiftSignificandLeft(-exponentChange);
 | |
| 
 | |
|       return opOK;
 | |
|     }
 | |
| 
 | |
|     if (exponentChange > 0) {
 | |
|       lostFraction lf;
 | |
| 
 | |
|       /* Shift right and capture any new lost fraction.  */
 | |
|       lf = shiftSignificandRight(exponentChange);
 | |
| 
 | |
|       lost_fraction = combineLostFractions(lf, lost_fraction);
 | |
| 
 | |
|       /* Keep OMSB up-to-date.  */
 | |
|       if (omsb > (unsigned) exponentChange)
 | |
|         omsb -= exponentChange;
 | |
|       else
 | |
|         omsb = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Now round the number according to rounding_mode given the lost
 | |
|      fraction.  */
 | |
| 
 | |
|   /* As specified in IEEE 754, since we do not trap we do not report
 | |
|      underflow for exact results.  */
 | |
|   if (lost_fraction == lfExactlyZero) {
 | |
|     /* Canonicalize zeroes.  */
 | |
|     if (omsb == 0)
 | |
|       category = fcZero;
 | |
| 
 | |
|     return opOK;
 | |
|   }
 | |
| 
 | |
|   /* Increment the significand if we're rounding away from zero.  */
 | |
|   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
 | |
|     if (omsb == 0)
 | |
|       exponent = semantics->minExponent;
 | |
| 
 | |
|     incrementSignificand();
 | |
|     omsb = significandMSB() + 1;
 | |
| 
 | |
|     /* Did the significand increment overflow?  */
 | |
|     if (omsb == (unsigned) semantics->precision + 1) {
 | |
|       /* Renormalize by incrementing the exponent and shifting our
 | |
|          significand right one.  However if we already have the
 | |
|          maximum exponent we overflow to infinity.  */
 | |
|       if (exponent == semantics->maxExponent) {
 | |
|         category = fcInfinity;
 | |
| 
 | |
|         return (opStatus) (opOverflow | opInexact);
 | |
|       }
 | |
| 
 | |
|       shiftSignificandRight(1);
 | |
| 
 | |
|       return opInexact;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The normal case - we were and are not denormal, and any
 | |
|      significand increment above didn't overflow.  */
 | |
|   if (omsb == semantics->precision)
 | |
|     return opInexact;
 | |
| 
 | |
|   /* We have a non-zero denormal.  */
 | |
|   assert(omsb < semantics->precision);
 | |
| 
 | |
|   /* Canonicalize zeroes.  */
 | |
|   if (omsb == 0)
 | |
|     category = fcZero;
 | |
| 
 | |
|   /* The fcZero case is a denormal that underflowed to zero.  */
 | |
|   return (opStatus) (opUnderflow | opInexact);
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
 | |
| {
 | |
|   switch (PackCategoriesIntoKey(category, rhs.category)) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNaN, fcZero):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcZero):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcZero):
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | |
|     sign = false;
 | |
|     category = fcNaN;
 | |
|     copySignificand(rhs);
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcZero, fcInfinity):
 | |
|     category = fcInfinity;
 | |
|     sign = rhs.sign ^ subtract;
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcNormal):
 | |
|     assign(rhs);
 | |
|     sign = rhs.sign ^ subtract;
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcZero):
 | |
|     /* Sign depends on rounding mode; handled by caller.  */
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | |
|     /* Differently signed infinities can only be validly
 | |
|        subtracted.  */
 | |
|     if (((sign ^ rhs.sign)!=0) != subtract) {
 | |
|       makeNaN();
 | |
|       return opInvalidOp;
 | |
|     }
 | |
| 
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNormal):
 | |
|     return opDivByZero;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Add or subtract two normal numbers.  */
 | |
| lostFraction
 | |
| APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
 | |
| {
 | |
|   integerPart carry;
 | |
|   lostFraction lost_fraction;
 | |
|   int bits;
 | |
| 
 | |
|   /* Determine if the operation on the absolute values is effectively
 | |
|      an addition or subtraction.  */
 | |
|   subtract ^= (sign ^ rhs.sign) ? true : false;
 | |
| 
 | |
|   /* Are we bigger exponent-wise than the RHS?  */
 | |
|   bits = exponent - rhs.exponent;
 | |
| 
 | |
|   /* Subtraction is more subtle than one might naively expect.  */
 | |
|   if (subtract) {
 | |
|     APFloat temp_rhs(rhs);
 | |
|     bool reverse;
 | |
| 
 | |
|     if (bits == 0) {
 | |
|       reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
 | |
|       lost_fraction = lfExactlyZero;
 | |
|     } else if (bits > 0) {
 | |
|       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
 | |
|       shiftSignificandLeft(1);
 | |
|       reverse = false;
 | |
|     } else {
 | |
|       lost_fraction = shiftSignificandRight(-bits - 1);
 | |
|       temp_rhs.shiftSignificandLeft(1);
 | |
|       reverse = true;
 | |
|     }
 | |
| 
 | |
|     if (reverse) {
 | |
|       carry = temp_rhs.subtractSignificand
 | |
|         (*this, lost_fraction != lfExactlyZero);
 | |
|       copySignificand(temp_rhs);
 | |
|       sign = !sign;
 | |
|     } else {
 | |
|       carry = subtractSignificand
 | |
|         (temp_rhs, lost_fraction != lfExactlyZero);
 | |
|     }
 | |
| 
 | |
|     /* Invert the lost fraction - it was on the RHS and
 | |
|        subtracted.  */
 | |
|     if (lost_fraction == lfLessThanHalf)
 | |
|       lost_fraction = lfMoreThanHalf;
 | |
|     else if (lost_fraction == lfMoreThanHalf)
 | |
|       lost_fraction = lfLessThanHalf;
 | |
| 
 | |
|     /* The code above is intended to ensure that no borrow is
 | |
|        necessary.  */
 | |
|     assert(!carry);
 | |
|     (void)carry;
 | |
|   } else {
 | |
|     if (bits > 0) {
 | |
|       APFloat temp_rhs(rhs);
 | |
| 
 | |
|       lost_fraction = temp_rhs.shiftSignificandRight(bits);
 | |
|       carry = addSignificand(temp_rhs);
 | |
|     } else {
 | |
|       lost_fraction = shiftSignificandRight(-bits);
 | |
|       carry = addSignificand(rhs);
 | |
|     }
 | |
| 
 | |
|     /* We have a guard bit; generating a carry cannot happen.  */
 | |
|     assert(!carry);
 | |
|     (void)carry;
 | |
|   }
 | |
| 
 | |
|   return lost_fraction;
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::multiplySpecials(const APFloat &rhs)
 | |
| {
 | |
|   switch (PackCategoriesIntoKey(category, rhs.category)) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNaN, fcZero):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNaN):
 | |
|     sign = false;
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | |
|     sign = false;
 | |
|     category = fcNaN;
 | |
|     copySignificand(rhs);
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | |
|     category = fcInfinity;
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcZero):
 | |
|   case PackCategoriesIntoKey(fcZero, fcZero):
 | |
|     category = fcZero;
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcZero):
 | |
|     makeNaN();
 | |
|     return opInvalidOp;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNormal):
 | |
|     return opOK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::divideSpecials(const APFloat &rhs)
 | |
| {
 | |
|   switch (PackCategoriesIntoKey(category, rhs.category)) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | |
|     category = fcNaN;
 | |
|     copySignificand(rhs);
 | |
|   case PackCategoriesIntoKey(fcNaN, fcZero):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNaN):
 | |
|     sign = false;
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcZero):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcZero, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcZero, fcNormal):
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | |
|     category = fcZero;
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcZero):
 | |
|     category = fcInfinity;
 | |
|     return opDivByZero;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcZero, fcZero):
 | |
|     makeNaN();
 | |
|     return opInvalidOp;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNormal):
 | |
|     return opOK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::modSpecials(const APFloat &rhs)
 | |
| {
 | |
|   switch (PackCategoriesIntoKey(category, rhs.category)) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNaN, fcZero):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcZero, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcZero, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | |
|     sign = false;
 | |
|     category = fcNaN;
 | |
|     copySignificand(rhs);
 | |
|     return opOK;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcZero):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcZero):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcZero, fcZero):
 | |
|     makeNaN();
 | |
|     return opInvalidOp;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNormal):
 | |
|     return opOK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Change sign.  */
 | |
| void
 | |
| APFloat::changeSign()
 | |
| {
 | |
|   /* Look mummy, this one's easy.  */
 | |
|   sign = !sign;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::clearSign()
 | |
| {
 | |
|   /* So is this one. */
 | |
|   sign = 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::copySign(const APFloat &rhs)
 | |
| {
 | |
|   /* And this one. */
 | |
|   sign = rhs.sign;
 | |
| }
 | |
| 
 | |
| /* Normalized addition or subtraction.  */
 | |
| APFloat::opStatus
 | |
| APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
 | |
|                        bool subtract)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   fs = addOrSubtractSpecials(rhs, subtract);
 | |
| 
 | |
|   /* This return code means it was not a simple case.  */
 | |
|   if (fs == opDivByZero) {
 | |
|     lostFraction lost_fraction;
 | |
| 
 | |
|     lost_fraction = addOrSubtractSignificand(rhs, subtract);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
| 
 | |
|     /* Can only be zero if we lost no fraction.  */
 | |
|     assert(category != fcZero || lost_fraction == lfExactlyZero);
 | |
|   }
 | |
| 
 | |
|   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | |
|      positive zero unless rounding to minus infinity, except that
 | |
|      adding two like-signed zeroes gives that zero.  */
 | |
|   if (category == fcZero) {
 | |
|     if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
 | |
|       sign = (rounding_mode == rmTowardNegative);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized addition.  */
 | |
| APFloat::opStatus
 | |
| APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   return addOrSubtract(rhs, rounding_mode, false);
 | |
| }
 | |
| 
 | |
| /* Normalized subtraction.  */
 | |
| APFloat::opStatus
 | |
| APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   return addOrSubtract(rhs, rounding_mode, true);
 | |
| }
 | |
| 
 | |
| /* Normalized multiply.  */
 | |
| APFloat::opStatus
 | |
| APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   sign ^= rhs.sign;
 | |
|   fs = multiplySpecials(rhs);
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     lostFraction lost_fraction = multiplySignificand(rhs, 0);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
|     if (lost_fraction != lfExactlyZero)
 | |
|       fs = (opStatus) (fs | opInexact);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized divide.  */
 | |
| APFloat::opStatus
 | |
| APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   sign ^= rhs.sign;
 | |
|   fs = divideSpecials(rhs);
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     lostFraction lost_fraction = divideSignificand(rhs);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
|     if (lost_fraction != lfExactlyZero)
 | |
|       fs = (opStatus) (fs | opInexact);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized remainder.  This is not currently correct in all cases.  */
 | |
| APFloat::opStatus
 | |
| APFloat::remainder(const APFloat &rhs)
 | |
| {
 | |
|   opStatus fs;
 | |
|   APFloat V = *this;
 | |
|   unsigned int origSign = sign;
 | |
| 
 | |
|   fs = V.divide(rhs, rmNearestTiesToEven);
 | |
|   if (fs == opDivByZero)
 | |
|     return fs;
 | |
| 
 | |
|   int parts = partCount();
 | |
|   integerPart *x = new integerPart[parts];
 | |
|   bool ignored;
 | |
|   fs = V.convertToInteger(x, parts * integerPartWidth, true,
 | |
|                           rmNearestTiesToEven, &ignored);
 | |
|   if (fs==opInvalidOp)
 | |
|     return fs;
 | |
| 
 | |
|   fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
 | |
|                                         rmNearestTiesToEven);
 | |
|   assert(fs==opOK);   // should always work
 | |
| 
 | |
|   fs = V.multiply(rhs, rmNearestTiesToEven);
 | |
|   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
 | |
| 
 | |
|   fs = subtract(V, rmNearestTiesToEven);
 | |
|   assert(fs==opOK || fs==opInexact);   // likewise
 | |
| 
 | |
|   if (isZero())
 | |
|     sign = origSign;    // IEEE754 requires this
 | |
|   delete[] x;
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized llvm frem (C fmod).
 | |
|    This is not currently correct in all cases.  */
 | |
| APFloat::opStatus
 | |
| APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
|   fs = modSpecials(rhs);
 | |
| 
 | |
|   if (isFiniteNonZero() && rhs.isFiniteNonZero()) {
 | |
|     APFloat V = *this;
 | |
|     unsigned int origSign = sign;
 | |
| 
 | |
|     fs = V.divide(rhs, rmNearestTiesToEven);
 | |
|     if (fs == opDivByZero)
 | |
|       return fs;
 | |
| 
 | |
|     int parts = partCount();
 | |
|     integerPart *x = new integerPart[parts];
 | |
|     bool ignored;
 | |
|     fs = V.convertToInteger(x, parts * integerPartWidth, true,
 | |
|                             rmTowardZero, &ignored);
 | |
|     if (fs==opInvalidOp)
 | |
|       return fs;
 | |
| 
 | |
|     fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
 | |
|                                           rmNearestTiesToEven);
 | |
|     assert(fs==opOK);   // should always work
 | |
| 
 | |
|     fs = V.multiply(rhs, rounding_mode);
 | |
|     assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
 | |
| 
 | |
|     fs = subtract(V, rounding_mode);
 | |
|     assert(fs==opOK || fs==opInexact);   // likewise
 | |
| 
 | |
|     if (isZero())
 | |
|       sign = origSign;    // IEEE754 requires this
 | |
|     delete[] x;
 | |
|   }
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized fused-multiply-add.  */
 | |
| APFloat::opStatus
 | |
| APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
 | |
|                           const APFloat &addend,
 | |
|                           roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   /* Post-multiplication sign, before addition.  */
 | |
|   sign ^= multiplicand.sign;
 | |
| 
 | |
|   /* If and only if all arguments are normal do we need to do an
 | |
|      extended-precision calculation.  */
 | |
|   if (isFiniteNonZero() &&
 | |
|       multiplicand.isFiniteNonZero() &&
 | |
|       addend.isFiniteNonZero()) {
 | |
|     lostFraction lost_fraction;
 | |
| 
 | |
|     lost_fraction = multiplySignificand(multiplicand, &addend);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
|     if (lost_fraction != lfExactlyZero)
 | |
|       fs = (opStatus) (fs | opInexact);
 | |
| 
 | |
|     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | |
|        positive zero unless rounding to minus infinity, except that
 | |
|        adding two like-signed zeroes gives that zero.  */
 | |
|     if (category == fcZero && sign != addend.sign)
 | |
|       sign = (rounding_mode == rmTowardNegative);
 | |
|   } else {
 | |
|     fs = multiplySpecials(multiplicand);
 | |
| 
 | |
|     /* FS can only be opOK or opInvalidOp.  There is no more work
 | |
|        to do in the latter case.  The IEEE-754R standard says it is
 | |
|        implementation-defined in this case whether, if ADDEND is a
 | |
|        quiet NaN, we raise invalid op; this implementation does so.
 | |
| 
 | |
|        If we need to do the addition we can do so with normal
 | |
|        precision.  */
 | |
|     if (fs == opOK)
 | |
|       fs = addOrSubtract(addend, rounding_mode, false);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Rounding-mode corrrect round to integral value.  */
 | |
| APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
 | |
|   opStatus fs;
 | |
| 
 | |
|   // If the exponent is large enough, we know that this value is already
 | |
|   // integral, and the arithmetic below would potentially cause it to saturate
 | |
|   // to +/-Inf.  Bail out early instead.
 | |
|   if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
 | |
|     return opOK;
 | |
| 
 | |
|   // The algorithm here is quite simple: we add 2^(p-1), where p is the
 | |
|   // precision of our format, and then subtract it back off again.  The choice
 | |
|   // of rounding modes for the addition/subtraction determines the rounding mode
 | |
|   // for our integral rounding as well.
 | |
|   // NOTE: When the input value is negative, we do subtraction followed by
 | |
|   // addition instead.
 | |
|   APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
 | |
|   IntegerConstant <<= semanticsPrecision(*semantics)-1;
 | |
|   APFloat MagicConstant(*semantics);
 | |
|   fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
 | |
|                                       rmNearestTiesToEven);
 | |
|   MagicConstant.copySign(*this);
 | |
| 
 | |
|   if (fs != opOK)
 | |
|     return fs;
 | |
| 
 | |
|   // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
 | |
|   bool inputSign = isNegative();
 | |
| 
 | |
|   fs = add(MagicConstant, rounding_mode);
 | |
|   if (fs != opOK && fs != opInexact)
 | |
|     return fs;
 | |
| 
 | |
|   fs = subtract(MagicConstant, rounding_mode);
 | |
| 
 | |
|   // Restore the input sign.
 | |
|   if (inputSign != isNegative())
 | |
|     changeSign();
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Comparison requires normalized numbers.  */
 | |
| APFloat::cmpResult
 | |
| APFloat::compare(const APFloat &rhs) const
 | |
| {
 | |
|   cmpResult result;
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   switch (PackCategoriesIntoKey(category, rhs.category)) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNaN, fcZero):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcNaN, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcZero, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNaN):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNaN):
 | |
|     return cmpUnordered;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcNormal):
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcZero):
 | |
|   case PackCategoriesIntoKey(fcNormal, fcZero):
 | |
|     if (sign)
 | |
|       return cmpLessThan;
 | |
|     else
 | |
|       return cmpGreaterThan;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcZero, fcInfinity):
 | |
|   case PackCategoriesIntoKey(fcZero, fcNormal):
 | |
|     if (rhs.sign)
 | |
|       return cmpGreaterThan;
 | |
|     else
 | |
|       return cmpLessThan;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
 | |
|     if (sign == rhs.sign)
 | |
|       return cmpEqual;
 | |
|     else if (sign)
 | |
|       return cmpLessThan;
 | |
|     else
 | |
|       return cmpGreaterThan;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcZero, fcZero):
 | |
|     return cmpEqual;
 | |
| 
 | |
|   case PackCategoriesIntoKey(fcNormal, fcNormal):
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /* Two normal numbers.  Do they have the same sign?  */
 | |
|   if (sign != rhs.sign) {
 | |
|     if (sign)
 | |
|       result = cmpLessThan;
 | |
|     else
 | |
|       result = cmpGreaterThan;
 | |
|   } else {
 | |
|     /* Compare absolute values; invert result if negative.  */
 | |
|     result = compareAbsoluteValue(rhs);
 | |
| 
 | |
|     if (sign) {
 | |
|       if (result == cmpLessThan)
 | |
|         result = cmpGreaterThan;
 | |
|       else if (result == cmpGreaterThan)
 | |
|         result = cmpLessThan;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// APFloat::convert - convert a value of one floating point type to another.
 | |
| /// The return value corresponds to the IEEE754 exceptions.  *losesInfo
 | |
| /// records whether the transformation lost information, i.e. whether
 | |
| /// converting the result back to the original type will produce the
 | |
| /// original value (this is almost the same as return value==fsOK, but there
 | |
| /// are edge cases where this is not so).
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convert(const fltSemantics &toSemantics,
 | |
|                  roundingMode rounding_mode, bool *losesInfo)
 | |
| {
 | |
|   lostFraction lostFraction;
 | |
|   unsigned int newPartCount, oldPartCount;
 | |
|   opStatus fs;
 | |
|   int shift;
 | |
|   const fltSemantics &fromSemantics = *semantics;
 | |
| 
 | |
|   lostFraction = lfExactlyZero;
 | |
|   newPartCount = partCountForBits(toSemantics.precision + 1);
 | |
|   oldPartCount = partCount();
 | |
|   shift = toSemantics.precision - fromSemantics.precision;
 | |
| 
 | |
|   bool X86SpecialNan = false;
 | |
|   if (&fromSemantics == &APFloat::x87DoubleExtended &&
 | |
|       &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
 | |
|       (!(*significandParts() & 0x8000000000000000ULL) ||
 | |
|        !(*significandParts() & 0x4000000000000000ULL))) {
 | |
|     // x86 has some unusual NaNs which cannot be represented in any other
 | |
|     // format; note them here.
 | |
|     X86SpecialNan = true;
 | |
|   }
 | |
| 
 | |
|   // If this is a truncation of a denormal number, and the target semantics
 | |
|   // has larger exponent range than the source semantics (this can happen
 | |
|   // when truncating from PowerPC double-double to double format), the
 | |
|   // right shift could lose result mantissa bits.  Adjust exponent instead
 | |
|   // of performing excessive shift.
 | |
|   if (shift < 0 && isFiniteNonZero()) {
 | |
|     int exponentChange = significandMSB() + 1 - fromSemantics.precision;
 | |
|     if (exponent + exponentChange < toSemantics.minExponent)
 | |
|       exponentChange = toSemantics.minExponent - exponent;
 | |
|     if (exponentChange < shift)
 | |
|       exponentChange = shift;
 | |
|     if (exponentChange < 0) {
 | |
|       shift -= exponentChange;
 | |
|       exponent += exponentChange;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a truncation, perform the shift before we narrow the storage.
 | |
|   if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
 | |
|     lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
 | |
| 
 | |
|   // Fix the storage so it can hold to new value.
 | |
|   if (newPartCount > oldPartCount) {
 | |
|     // The new type requires more storage; make it available.
 | |
|     integerPart *newParts;
 | |
|     newParts = new integerPart[newPartCount];
 | |
|     APInt::tcSet(newParts, 0, newPartCount);
 | |
|     if (isFiniteNonZero() || category==fcNaN)
 | |
|       APInt::tcAssign(newParts, significandParts(), oldPartCount);
 | |
|     freeSignificand();
 | |
|     significand.parts = newParts;
 | |
|   } else if (newPartCount == 1 && oldPartCount != 1) {
 | |
|     // Switch to built-in storage for a single part.
 | |
|     integerPart newPart = 0;
 | |
|     if (isFiniteNonZero() || category==fcNaN)
 | |
|       newPart = significandParts()[0];
 | |
|     freeSignificand();
 | |
|     significand.part = newPart;
 | |
|   }
 | |
| 
 | |
|   // Now that we have the right storage, switch the semantics.
 | |
|   semantics = &toSemantics;
 | |
| 
 | |
|   // If this is an extension, perform the shift now that the storage is
 | |
|   // available.
 | |
|   if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
 | |
|     APInt::tcShiftLeft(significandParts(), newPartCount, shift);
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     fs = normalize(rounding_mode, lostFraction);
 | |
|     *losesInfo = (fs != opOK);
 | |
|   } else if (category == fcNaN) {
 | |
|     *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
 | |
| 
 | |
|     // For x87 extended precision, we want to make a NaN, not a special NaN if
 | |
|     // the input wasn't special either.
 | |
|     if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended)
 | |
|       APInt::tcSetBit(significandParts(), semantics->precision - 1);
 | |
| 
 | |
|     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
 | |
|     // does not give you back the same bits.  This is dubious, and we
 | |
|     // don't currently do it.  You're really supposed to get
 | |
|     // an invalid operation signal at runtime, but nobody does that.
 | |
|     fs = opOK;
 | |
|   } else {
 | |
|     *losesInfo = false;
 | |
|     fs = opOK;
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Convert a floating point number to an integer according to the
 | |
|    rounding mode.  If the rounded integer value is out of range this
 | |
|    returns an invalid operation exception and the contents of the
 | |
|    destination parts are unspecified.  If the rounded value is in
 | |
|    range but the floating point number is not the exact integer, the C
 | |
|    standard doesn't require an inexact exception to be raised.  IEEE
 | |
|    854 does require it so we do that.
 | |
| 
 | |
|    Note that for conversions to integer type the C standard requires
 | |
|    round-to-zero to always be used.  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
 | |
|                                       bool isSigned,
 | |
|                                       roundingMode rounding_mode,
 | |
|                                       bool *isExact) const
 | |
| {
 | |
|   lostFraction lost_fraction;
 | |
|   const integerPart *src;
 | |
|   unsigned int dstPartsCount, truncatedBits;
 | |
| 
 | |
|   *isExact = false;
 | |
| 
 | |
|   /* Handle the three special cases first.  */
 | |
|   if (category == fcInfinity || category == fcNaN)
 | |
|     return opInvalidOp;
 | |
| 
 | |
|   dstPartsCount = partCountForBits(width);
 | |
| 
 | |
|   if (category == fcZero) {
 | |
|     APInt::tcSet(parts, 0, dstPartsCount);
 | |
|     // Negative zero can't be represented as an int.
 | |
|     *isExact = !sign;
 | |
|     return opOK;
 | |
|   }
 | |
| 
 | |
|   src = significandParts();
 | |
| 
 | |
|   /* Step 1: place our absolute value, with any fraction truncated, in
 | |
|      the destination.  */
 | |
|   if (exponent < 0) {
 | |
|     /* Our absolute value is less than one; truncate everything.  */
 | |
|     APInt::tcSet(parts, 0, dstPartsCount);
 | |
|     /* For exponent -1 the integer bit represents .5, look at that.
 | |
|        For smaller exponents leftmost truncated bit is 0. */
 | |
|     truncatedBits = semantics->precision -1U - exponent;
 | |
|   } else {
 | |
|     /* We want the most significant (exponent + 1) bits; the rest are
 | |
|        truncated.  */
 | |
|     unsigned int bits = exponent + 1U;
 | |
| 
 | |
|     /* Hopelessly large in magnitude?  */
 | |
|     if (bits > width)
 | |
|       return opInvalidOp;
 | |
| 
 | |
|     if (bits < semantics->precision) {
 | |
|       /* We truncate (semantics->precision - bits) bits.  */
 | |
|       truncatedBits = semantics->precision - bits;
 | |
|       APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
 | |
|     } else {
 | |
|       /* We want at least as many bits as are available.  */
 | |
|       APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
 | |
|       APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
 | |
|       truncatedBits = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Step 2: work out any lost fraction, and increment the absolute
 | |
|      value if we would round away from zero.  */
 | |
|   if (truncatedBits) {
 | |
|     lost_fraction = lostFractionThroughTruncation(src, partCount(),
 | |
|                                                   truncatedBits);
 | |
|     if (lost_fraction != lfExactlyZero &&
 | |
|         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
 | |
|       if (APInt::tcIncrement(parts, dstPartsCount))
 | |
|         return opInvalidOp;     /* Overflow.  */
 | |
|     }
 | |
|   } else {
 | |
|     lost_fraction = lfExactlyZero;
 | |
|   }
 | |
| 
 | |
|   /* Step 3: check if we fit in the destination.  */
 | |
|   unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
 | |
| 
 | |
|   if (sign) {
 | |
|     if (!isSigned) {
 | |
|       /* Negative numbers cannot be represented as unsigned.  */
 | |
|       if (omsb != 0)
 | |
|         return opInvalidOp;
 | |
|     } else {
 | |
|       /* It takes omsb bits to represent the unsigned integer value.
 | |
|          We lose a bit for the sign, but care is needed as the
 | |
|          maximally negative integer is a special case.  */
 | |
|       if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
 | |
|         return opInvalidOp;
 | |
| 
 | |
|       /* This case can happen because of rounding.  */
 | |
|       if (omsb > width)
 | |
|         return opInvalidOp;
 | |
|     }
 | |
| 
 | |
|     APInt::tcNegate (parts, dstPartsCount);
 | |
|   } else {
 | |
|     if (omsb >= width + !isSigned)
 | |
|       return opInvalidOp;
 | |
|   }
 | |
| 
 | |
|   if (lost_fraction == lfExactlyZero) {
 | |
|     *isExact = true;
 | |
|     return opOK;
 | |
|   } else
 | |
|     return opInexact;
 | |
| }
 | |
| 
 | |
| /* Same as convertToSignExtendedInteger, except we provide
 | |
|    deterministic values in case of an invalid operation exception,
 | |
|    namely zero for NaNs and the minimal or maximal value respectively
 | |
|    for underflow or overflow.
 | |
|    The *isExact output tells whether the result is exact, in the sense
 | |
|    that converting it back to the original floating point type produces
 | |
|    the original value.  This is almost equivalent to result==opOK,
 | |
|    except for negative zeroes.
 | |
| */
 | |
| APFloat::opStatus
 | |
| APFloat::convertToInteger(integerPart *parts, unsigned int width,
 | |
|                           bool isSigned,
 | |
|                           roundingMode rounding_mode, bool *isExact) const
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
 | |
|                                     isExact);
 | |
| 
 | |
|   if (fs == opInvalidOp) {
 | |
|     unsigned int bits, dstPartsCount;
 | |
| 
 | |
|     dstPartsCount = partCountForBits(width);
 | |
| 
 | |
|     if (category == fcNaN)
 | |
|       bits = 0;
 | |
|     else if (sign)
 | |
|       bits = isSigned;
 | |
|     else
 | |
|       bits = width - isSigned;
 | |
| 
 | |
|     APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
 | |
|     if (sign && isSigned)
 | |
|       APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Same as convertToInteger(integerPart*, ...), except the result is returned in
 | |
|    an APSInt, whose initial bit-width and signed-ness are used to determine the
 | |
|    precision of the conversion.
 | |
|  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertToInteger(APSInt &result,
 | |
|                           roundingMode rounding_mode, bool *isExact) const
 | |
| {
 | |
|   unsigned bitWidth = result.getBitWidth();
 | |
|   SmallVector<uint64_t, 4> parts(result.getNumWords());
 | |
|   opStatus status = convertToInteger(
 | |
|     parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
 | |
|   // Keeps the original signed-ness.
 | |
|   result = APInt(bitWidth, parts);
 | |
|   return status;
 | |
| }
 | |
| 
 | |
| /* Convert an unsigned integer SRC to a floating point number,
 | |
|    rounding according to ROUNDING_MODE.  The sign of the floating
 | |
|    point number is not modified.  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromUnsignedParts(const integerPart *src,
 | |
|                                   unsigned int srcCount,
 | |
|                                   roundingMode rounding_mode)
 | |
| {
 | |
|   unsigned int omsb, precision, dstCount;
 | |
|   integerPart *dst;
 | |
|   lostFraction lost_fraction;
 | |
| 
 | |
|   category = fcNormal;
 | |
|   omsb = APInt::tcMSB(src, srcCount) + 1;
 | |
|   dst = significandParts();
 | |
|   dstCount = partCount();
 | |
|   precision = semantics->precision;
 | |
| 
 | |
|   /* We want the most significant PRECISION bits of SRC.  There may not
 | |
|      be that many; extract what we can.  */
 | |
|   if (precision <= omsb) {
 | |
|     exponent = omsb - 1;
 | |
|     lost_fraction = lostFractionThroughTruncation(src, srcCount,
 | |
|                                                   omsb - precision);
 | |
|     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
 | |
|   } else {
 | |
|     exponent = precision - 1;
 | |
|     lost_fraction = lfExactlyZero;
 | |
|     APInt::tcExtract(dst, dstCount, src, omsb, 0);
 | |
|   }
 | |
| 
 | |
|   return normalize(rounding_mode, lost_fraction);
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromAPInt(const APInt &Val,
 | |
|                           bool isSigned,
 | |
|                           roundingMode rounding_mode)
 | |
| {
 | |
|   unsigned int partCount = Val.getNumWords();
 | |
|   APInt api = Val;
 | |
| 
 | |
|   sign = false;
 | |
|   if (isSigned && api.isNegative()) {
 | |
|     sign = true;
 | |
|     api = -api;
 | |
|   }
 | |
| 
 | |
|   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 | |
| }
 | |
| 
 | |
| /* Convert a two's complement integer SRC to a floating point number,
 | |
|    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
 | |
|    integer is signed, in which case it must be sign-extended.  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromSignExtendedInteger(const integerPart *src,
 | |
|                                         unsigned int srcCount,
 | |
|                                         bool isSigned,
 | |
|                                         roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus status;
 | |
| 
 | |
|   if (isSigned &&
 | |
|       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
 | |
|     integerPart *copy;
 | |
| 
 | |
|     /* If we're signed and negative negate a copy.  */
 | |
|     sign = true;
 | |
|     copy = new integerPart[srcCount];
 | |
|     APInt::tcAssign(copy, src, srcCount);
 | |
|     APInt::tcNegate(copy, srcCount);
 | |
|     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
 | |
|     delete [] copy;
 | |
|   } else {
 | |
|     sign = false;
 | |
|     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
 | |
|   }
 | |
| 
 | |
|   return status;
 | |
| }
 | |
| 
 | |
| /* FIXME: should this just take a const APInt reference?  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
 | |
|                                         unsigned int width, bool isSigned,
 | |
|                                         roundingMode rounding_mode)
 | |
| {
 | |
|   unsigned int partCount = partCountForBits(width);
 | |
|   APInt api = APInt(width, makeArrayRef(parts, partCount));
 | |
| 
 | |
|   sign = false;
 | |
|   if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
 | |
|     sign = true;
 | |
|     api = -api;
 | |
|   }
 | |
| 
 | |
|   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
 | |
| {
 | |
|   lostFraction lost_fraction = lfExactlyZero;
 | |
| 
 | |
|   category = fcNormal;
 | |
|   zeroSignificand();
 | |
|   exponent = 0;
 | |
| 
 | |
|   integerPart *significand = significandParts();
 | |
|   unsigned partsCount = partCount();
 | |
|   unsigned bitPos = partsCount * integerPartWidth;
 | |
|   bool computedTrailingFraction = false;
 | |
| 
 | |
|   // Skip leading zeroes and any (hexa)decimal point.
 | |
|   StringRef::iterator begin = s.begin();
 | |
|   StringRef::iterator end = s.end();
 | |
|   StringRef::iterator dot;
 | |
|   StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
 | |
|   StringRef::iterator firstSignificantDigit = p;
 | |
| 
 | |
|   while (p != end) {
 | |
|     integerPart hex_value;
 | |
| 
 | |
|     if (*p == '.') {
 | |
|       assert(dot == end && "String contains multiple dots");
 | |
|       dot = p++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     hex_value = hexDigitValue(*p);
 | |
|     if (hex_value == -1U)
 | |
|       break;
 | |
| 
 | |
|     p++;
 | |
| 
 | |
|     // Store the number while we have space.
 | |
|     if (bitPos) {
 | |
|       bitPos -= 4;
 | |
|       hex_value <<= bitPos % integerPartWidth;
 | |
|       significand[bitPos / integerPartWidth] |= hex_value;
 | |
|     } else if (!computedTrailingFraction) {
 | |
|       lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
 | |
|       computedTrailingFraction = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Hex floats require an exponent but not a hexadecimal point.  */
 | |
|   assert(p != end && "Hex strings require an exponent");
 | |
|   assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
 | |
|   assert(p != begin && "Significand has no digits");
 | |
|   assert((dot == end || p - begin != 1) && "Significand has no digits");
 | |
| 
 | |
|   /* Ignore the exponent if we are zero.  */
 | |
|   if (p != firstSignificantDigit) {
 | |
|     int expAdjustment;
 | |
| 
 | |
|     /* Implicit hexadecimal point?  */
 | |
|     if (dot == end)
 | |
|       dot = p;
 | |
| 
 | |
|     /* Calculate the exponent adjustment implicit in the number of
 | |
|        significant digits.  */
 | |
|     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
 | |
|     if (expAdjustment < 0)
 | |
|       expAdjustment++;
 | |
|     expAdjustment = expAdjustment * 4 - 1;
 | |
| 
 | |
|     /* Adjust for writing the significand starting at the most
 | |
|        significant nibble.  */
 | |
|     expAdjustment += semantics->precision;
 | |
|     expAdjustment -= partsCount * integerPartWidth;
 | |
| 
 | |
|     /* Adjust for the given exponent.  */
 | |
|     exponent = totalExponent(p + 1, end, expAdjustment);
 | |
|   }
 | |
| 
 | |
|   return normalize(rounding_mode, lost_fraction);
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
 | |
|                                       unsigned sigPartCount, int exp,
 | |
|                                       roundingMode rounding_mode)
 | |
| {
 | |
|   unsigned int parts, pow5PartCount;
 | |
|   fltSemantics calcSemantics = { 32767, -32767, 0 };
 | |
|   integerPart pow5Parts[maxPowerOfFiveParts];
 | |
|   bool isNearest;
 | |
| 
 | |
|   isNearest = (rounding_mode == rmNearestTiesToEven ||
 | |
|                rounding_mode == rmNearestTiesToAway);
 | |
| 
 | |
|   parts = partCountForBits(semantics->precision + 11);
 | |
| 
 | |
|   /* Calculate pow(5, abs(exp)).  */
 | |
|   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
 | |
| 
 | |
|   for (;; parts *= 2) {
 | |
|     opStatus sigStatus, powStatus;
 | |
|     unsigned int excessPrecision, truncatedBits;
 | |
| 
 | |
|     calcSemantics.precision = parts * integerPartWidth - 1;
 | |
|     excessPrecision = calcSemantics.precision - semantics->precision;
 | |
|     truncatedBits = excessPrecision;
 | |
| 
 | |
|     APFloat decSig = APFloat::getZero(calcSemantics, sign);
 | |
|     APFloat pow5(calcSemantics);
 | |
| 
 | |
|     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
 | |
|                                                 rmNearestTiesToEven);
 | |
|     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
 | |
|                                               rmNearestTiesToEven);
 | |
|     /* Add exp, as 10^n = 5^n * 2^n.  */
 | |
|     decSig.exponent += exp;
 | |
| 
 | |
|     lostFraction calcLostFraction;
 | |
|     integerPart HUerr, HUdistance;
 | |
|     unsigned int powHUerr;
 | |
| 
 | |
|     if (exp >= 0) {
 | |
|       /* multiplySignificand leaves the precision-th bit set to 1.  */
 | |
|       calcLostFraction = decSig.multiplySignificand(pow5, NULL);
 | |
|       powHUerr = powStatus != opOK;
 | |
|     } else {
 | |
|       calcLostFraction = decSig.divideSignificand(pow5);
 | |
|       /* Denormal numbers have less precision.  */
 | |
|       if (decSig.exponent < semantics->minExponent) {
 | |
|         excessPrecision += (semantics->minExponent - decSig.exponent);
 | |
|         truncatedBits = excessPrecision;
 | |
|         if (excessPrecision > calcSemantics.precision)
 | |
|           excessPrecision = calcSemantics.precision;
 | |
|       }
 | |
|       /* Extra half-ulp lost in reciprocal of exponent.  */
 | |
|       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
 | |
|     }
 | |
| 
 | |
|     /* Both multiplySignificand and divideSignificand return the
 | |
|        result with the integer bit set.  */
 | |
|     assert(APInt::tcExtractBit
 | |
|            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
 | |
| 
 | |
|     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
 | |
|                        powHUerr);
 | |
|     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
 | |
|                                       excessPrecision, isNearest);
 | |
| 
 | |
|     /* Are we guaranteed to round correctly if we truncate?  */
 | |
|     if (HUdistance >= HUerr) {
 | |
|       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
 | |
|                        calcSemantics.precision - excessPrecision,
 | |
|                        excessPrecision);
 | |
|       /* Take the exponent of decSig.  If we tcExtract-ed less bits
 | |
|          above we must adjust our exponent to compensate for the
 | |
|          implicit right shift.  */
 | |
|       exponent = (decSig.exponent + semantics->precision
 | |
|                   - (calcSemantics.precision - excessPrecision));
 | |
|       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
 | |
|                                                        decSig.partCount(),
 | |
|                                                        truncatedBits);
 | |
|       return normalize(rounding_mode, calcLostFraction);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
 | |
| {
 | |
|   decimalInfo D;
 | |
|   opStatus fs;
 | |
| 
 | |
|   /* Scan the text.  */
 | |
|   StringRef::iterator p = str.begin();
 | |
|   interpretDecimal(p, str.end(), &D);
 | |
| 
 | |
|   /* Handle the quick cases.  First the case of no significant digits,
 | |
|      i.e. zero, and then exponents that are obviously too large or too
 | |
|      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
 | |
|      definitely overflows if
 | |
| 
 | |
|            (exp - 1) * L >= maxExponent
 | |
| 
 | |
|      and definitely underflows to zero where
 | |
| 
 | |
|            (exp + 1) * L <= minExponent - precision
 | |
| 
 | |
|      With integer arithmetic the tightest bounds for L are
 | |
| 
 | |
|            93/28 < L < 196/59            [ numerator <= 256 ]
 | |
|            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
 | |
|   */
 | |
| 
 | |
|   // Test if we have a zero number allowing for strings with no null terminators
 | |
|   // and zero decimals with non-zero exponents.
 | |
|   // 
 | |
|   // We computed firstSigDigit by ignoring all zeros and dots. Thus if
 | |
|   // D->firstSigDigit equals str.end(), every digit must be a zero and there can
 | |
|   // be at most one dot. On the other hand, if we have a zero with a non-zero
 | |
|   // exponent, then we know that D.firstSigDigit will be non-numeric.
 | |
|   if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
 | |
|     category = fcZero;
 | |
|     fs = opOK;
 | |
| 
 | |
|   /* Check whether the normalized exponent is high enough to overflow
 | |
|      max during the log-rebasing in the max-exponent check below. */
 | |
|   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
 | |
|     fs = handleOverflow(rounding_mode);
 | |
| 
 | |
|   /* If it wasn't, then it also wasn't high enough to overflow max
 | |
|      during the log-rebasing in the min-exponent check.  Check that it
 | |
|      won't overflow min in either check, then perform the min-exponent
 | |
|      check. */
 | |
|   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
 | |
|              (D.normalizedExponent + 1) * 28738 <=
 | |
|                8651 * (semantics->minExponent - (int) semantics->precision)) {
 | |
|     /* Underflow to zero and round.  */
 | |
|     category = fcNormal;
 | |
|     zeroSignificand();
 | |
|     fs = normalize(rounding_mode, lfLessThanHalf);
 | |
| 
 | |
|   /* We can finally safely perform the max-exponent check. */
 | |
|   } else if ((D.normalizedExponent - 1) * 42039
 | |
|              >= 12655 * semantics->maxExponent) {
 | |
|     /* Overflow and round.  */
 | |
|     fs = handleOverflow(rounding_mode);
 | |
|   } else {
 | |
|     integerPart *decSignificand;
 | |
|     unsigned int partCount;
 | |
| 
 | |
|     /* A tight upper bound on number of bits required to hold an
 | |
|        N-digit decimal integer is N * 196 / 59.  Allocate enough space
 | |
|        to hold the full significand, and an extra part required by
 | |
|        tcMultiplyPart.  */
 | |
|     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
 | |
|     partCount = partCountForBits(1 + 196 * partCount / 59);
 | |
|     decSignificand = new integerPart[partCount + 1];
 | |
|     partCount = 0;
 | |
| 
 | |
|     /* Convert to binary efficiently - we do almost all multiplication
 | |
|        in an integerPart.  When this would overflow do we do a single
 | |
|        bignum multiplication, and then revert again to multiplication
 | |
|        in an integerPart.  */
 | |
|     do {
 | |
|       integerPart decValue, val, multiplier;
 | |
| 
 | |
|       val = 0;
 | |
|       multiplier = 1;
 | |
| 
 | |
|       do {
 | |
|         if (*p == '.') {
 | |
|           p++;
 | |
|           if (p == str.end()) {
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         decValue = decDigitValue(*p++);
 | |
|         assert(decValue < 10U && "Invalid character in significand");
 | |
|         multiplier *= 10;
 | |
|         val = val * 10 + decValue;
 | |
|         /* The maximum number that can be multiplied by ten with any
 | |
|            digit added without overflowing an integerPart.  */
 | |
|       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
 | |
| 
 | |
|       /* Multiply out the current part.  */
 | |
|       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
 | |
|                             partCount, partCount + 1, false);
 | |
| 
 | |
|       /* If we used another part (likely but not guaranteed), increase
 | |
|          the count.  */
 | |
|       if (decSignificand[partCount])
 | |
|         partCount++;
 | |
|     } while (p <= D.lastSigDigit);
 | |
| 
 | |
|     category = fcNormal;
 | |
|     fs = roundSignificandWithExponent(decSignificand, partCount,
 | |
|                                       D.exponent, rounding_mode);
 | |
| 
 | |
|     delete [] decSignificand;
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| bool
 | |
| APFloat::convertFromStringSpecials(StringRef str) {
 | |
|   if (str.equals("inf") || str.equals("INFINITY")) {
 | |
|     makeInf(false);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (str.equals("-inf") || str.equals("-INFINITY")) {
 | |
|     makeInf(true);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (str.equals("nan") || str.equals("NaN")) {
 | |
|     makeNaN(false, false);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (str.equals("-nan") || str.equals("-NaN")) {
 | |
|     makeNaN(false, true);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
 | |
| {
 | |
|   assert(!str.empty() && "Invalid string length");
 | |
| 
 | |
|   // Handle special cases.
 | |
|   if (convertFromStringSpecials(str))
 | |
|     return opOK;
 | |
| 
 | |
|   /* Handle a leading minus sign.  */
 | |
|   StringRef::iterator p = str.begin();
 | |
|   size_t slen = str.size();
 | |
|   sign = *p == '-' ? 1 : 0;
 | |
|   if (*p == '-' || *p == '+') {
 | |
|     p++;
 | |
|     slen--;
 | |
|     assert(slen && "String has no digits");
 | |
|   }
 | |
| 
 | |
|   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
 | |
|     assert(slen - 2 && "Invalid string");
 | |
|     return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
 | |
|                                         rounding_mode);
 | |
|   }
 | |
| 
 | |
|   return convertFromDecimalString(StringRef(p, slen), rounding_mode);
 | |
| }
 | |
| 
 | |
| /* Write out a hexadecimal representation of the floating point value
 | |
|    to DST, which must be of sufficient size, in the C99 form
 | |
|    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
 | |
|    excluding the terminating NUL.
 | |
| 
 | |
|    If UPPERCASE, the output is in upper case, otherwise in lower case.
 | |
| 
 | |
|    HEXDIGITS digits appear altogether, rounding the value if
 | |
|    necessary.  If HEXDIGITS is 0, the minimal precision to display the
 | |
|    number precisely is used instead.  If nothing would appear after
 | |
|    the decimal point it is suppressed.
 | |
| 
 | |
|    The decimal exponent is always printed and has at least one digit.
 | |
|    Zero values display an exponent of zero.  Infinities and NaNs
 | |
|    appear as "infinity" or "nan" respectively.
 | |
| 
 | |
|    The above rules are as specified by C99.  There is ambiguity about
 | |
|    what the leading hexadecimal digit should be.  This implementation
 | |
|    uses whatever is necessary so that the exponent is displayed as
 | |
|    stored.  This implies the exponent will fall within the IEEE format
 | |
|    range, and the leading hexadecimal digit will be 0 (for denormals),
 | |
|    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
 | |
|    any other digits zero).
 | |
| */
 | |
| unsigned int
 | |
| APFloat::convertToHexString(char *dst, unsigned int hexDigits,
 | |
|                             bool upperCase, roundingMode rounding_mode) const
 | |
| {
 | |
|   char *p;
 | |
| 
 | |
|   p = dst;
 | |
|   if (sign)
 | |
|     *dst++ = '-';
 | |
| 
 | |
|   switch (category) {
 | |
|   case fcInfinity:
 | |
|     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
 | |
|     dst += sizeof infinityL - 1;
 | |
|     break;
 | |
| 
 | |
|   case fcNaN:
 | |
|     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
 | |
|     dst += sizeof NaNU - 1;
 | |
|     break;
 | |
| 
 | |
|   case fcZero:
 | |
|     *dst++ = '0';
 | |
|     *dst++ = upperCase ? 'X': 'x';
 | |
|     *dst++ = '0';
 | |
|     if (hexDigits > 1) {
 | |
|       *dst++ = '.';
 | |
|       memset (dst, '0', hexDigits - 1);
 | |
|       dst += hexDigits - 1;
 | |
|     }
 | |
|     *dst++ = upperCase ? 'P': 'p';
 | |
|     *dst++ = '0';
 | |
|     break;
 | |
| 
 | |
|   case fcNormal:
 | |
|     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   *dst = 0;
 | |
| 
 | |
|   return static_cast<unsigned int>(dst - p);
 | |
| }
 | |
| 
 | |
| /* Does the hard work of outputting the correctly rounded hexadecimal
 | |
|    form of a normal floating point number with the specified number of
 | |
|    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
 | |
|    digits necessary to print the value precisely is output.  */
 | |
| char *
 | |
| APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
 | |
|                                   bool upperCase,
 | |
|                                   roundingMode rounding_mode) const
 | |
| {
 | |
|   unsigned int count, valueBits, shift, partsCount, outputDigits;
 | |
|   const char *hexDigitChars;
 | |
|   const integerPart *significand;
 | |
|   char *p;
 | |
|   bool roundUp;
 | |
| 
 | |
|   *dst++ = '0';
 | |
|   *dst++ = upperCase ? 'X': 'x';
 | |
| 
 | |
|   roundUp = false;
 | |
|   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
 | |
| 
 | |
|   significand = significandParts();
 | |
|   partsCount = partCount();
 | |
| 
 | |
|   /* +3 because the first digit only uses the single integer bit, so
 | |
|      we have 3 virtual zero most-significant-bits.  */
 | |
|   valueBits = semantics->precision + 3;
 | |
|   shift = integerPartWidth - valueBits % integerPartWidth;
 | |
| 
 | |
|   /* The natural number of digits required ignoring trailing
 | |
|      insignificant zeroes.  */
 | |
|   outputDigits = (valueBits - significandLSB () + 3) / 4;
 | |
| 
 | |
|   /* hexDigits of zero means use the required number for the
 | |
|      precision.  Otherwise, see if we are truncating.  If we are,
 | |
|      find out if we need to round away from zero.  */
 | |
|   if (hexDigits) {
 | |
|     if (hexDigits < outputDigits) {
 | |
|       /* We are dropping non-zero bits, so need to check how to round.
 | |
|          "bits" is the number of dropped bits.  */
 | |
|       unsigned int bits;
 | |
|       lostFraction fraction;
 | |
| 
 | |
|       bits = valueBits - hexDigits * 4;
 | |
|       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
 | |
|       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
 | |
|     }
 | |
|     outputDigits = hexDigits;
 | |
|   }
 | |
| 
 | |
|   /* Write the digits consecutively, and start writing in the location
 | |
|      of the hexadecimal point.  We move the most significant digit
 | |
|      left and add the hexadecimal point later.  */
 | |
|   p = ++dst;
 | |
| 
 | |
|   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
 | |
| 
 | |
|   while (outputDigits && count) {
 | |
|     integerPart part;
 | |
| 
 | |
|     /* Put the most significant integerPartWidth bits in "part".  */
 | |
|     if (--count == partsCount)
 | |
|       part = 0;  /* An imaginary higher zero part.  */
 | |
|     else
 | |
|       part = significand[count] << shift;
 | |
| 
 | |
|     if (count && shift)
 | |
|       part |= significand[count - 1] >> (integerPartWidth - shift);
 | |
| 
 | |
|     /* Convert as much of "part" to hexdigits as we can.  */
 | |
|     unsigned int curDigits = integerPartWidth / 4;
 | |
| 
 | |
|     if (curDigits > outputDigits)
 | |
|       curDigits = outputDigits;
 | |
|     dst += partAsHex (dst, part, curDigits, hexDigitChars);
 | |
|     outputDigits -= curDigits;
 | |
|   }
 | |
| 
 | |
|   if (roundUp) {
 | |
|     char *q = dst;
 | |
| 
 | |
|     /* Note that hexDigitChars has a trailing '0'.  */
 | |
|     do {
 | |
|       q--;
 | |
|       *q = hexDigitChars[hexDigitValue (*q) + 1];
 | |
|     } while (*q == '0');
 | |
|     assert(q >= p);
 | |
|   } else {
 | |
|     /* Add trailing zeroes.  */
 | |
|     memset (dst, '0', outputDigits);
 | |
|     dst += outputDigits;
 | |
|   }
 | |
| 
 | |
|   /* Move the most significant digit to before the point, and if there
 | |
|      is something after the decimal point add it.  This must come
 | |
|      after rounding above.  */
 | |
|   p[-1] = p[0];
 | |
|   if (dst -1 == p)
 | |
|     dst--;
 | |
|   else
 | |
|     p[0] = '.';
 | |
| 
 | |
|   /* Finally output the exponent.  */
 | |
|   *dst++ = upperCase ? 'P': 'p';
 | |
| 
 | |
|   return writeSignedDecimal (dst, exponent);
 | |
| }
 | |
| 
 | |
| hash_code llvm::hash_value(const APFloat &Arg) {
 | |
|   if (!Arg.isFiniteNonZero())
 | |
|     return hash_combine((uint8_t)Arg.category,
 | |
|                         // NaN has no sign, fix it at zero.
 | |
|                         Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
 | |
|                         Arg.semantics->precision);
 | |
| 
 | |
|   // Normal floats need their exponent and significand hashed.
 | |
|   return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
 | |
|                       Arg.semantics->precision, Arg.exponent,
 | |
|                       hash_combine_range(
 | |
|                         Arg.significandParts(),
 | |
|                         Arg.significandParts() + Arg.partCount()));
 | |
| }
 | |
| 
 | |
| // Conversion from APFloat to/from host float/double.  It may eventually be
 | |
| // possible to eliminate these and have everybody deal with APFloats, but that
 | |
| // will take a while.  This approach will not easily extend to long double.
 | |
| // Current implementation requires integerPartWidth==64, which is correct at
 | |
| // the moment but could be made more general.
 | |
| 
 | |
| // Denormals have exponent minExponent in APFloat, but minExponent-1 in
 | |
| // the actual IEEE respresentations.  We compensate for that here.
 | |
| 
 | |
| APInt
 | |
| APFloat::convertF80LongDoubleAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
 | |
|   assert(partCount()==2);
 | |
| 
 | |
|   uint64_t myexponent, mysignificand;
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     myexponent = exponent+16383; //bias
 | |
|     mysignificand = significandParts()[0];
 | |
|     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0x7fff;
 | |
|     mysignificand = 0x8000000000000000ULL;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category");
 | |
|     myexponent = 0x7fff;
 | |
|     mysignificand = significandParts()[0];
 | |
|   }
 | |
| 
 | |
|   uint64_t words[2];
 | |
|   words[0] = mysignificand;
 | |
|   words[1] =  ((uint64_t)(sign & 1) << 15) |
 | |
|               (myexponent & 0x7fffLL);
 | |
|   return APInt(80, words);
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
 | |
|   assert(partCount()==2);
 | |
| 
 | |
|   uint64_t words[2];
 | |
|   opStatus fs;
 | |
|   bool losesInfo;
 | |
| 
 | |
|   // Convert number to double.  To avoid spurious underflows, we re-
 | |
|   // normalize against the "double" minExponent first, and only *then*
 | |
|   // truncate the mantissa.  The result of that second conversion
 | |
|   // may be inexact, but should never underflow.
 | |
|   // Declare fltSemantics before APFloat that uses it (and
 | |
|   // saves pointer to it) to ensure correct destruction order.
 | |
|   fltSemantics extendedSemantics = *semantics;
 | |
|   extendedSemantics.minExponent = IEEEdouble.minExponent;
 | |
|   APFloat extended(*this);
 | |
|   fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
 | |
|   assert(fs == opOK && !losesInfo);
 | |
|   (void)fs;
 | |
| 
 | |
|   APFloat u(extended);
 | |
|   fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
 | |
|   assert(fs == opOK || fs == opInexact);
 | |
|   (void)fs;
 | |
|   words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
 | |
| 
 | |
|   // If conversion was exact or resulted in a special case, we're done;
 | |
|   // just set the second double to zero.  Otherwise, re-convert back to
 | |
|   // the extended format and compute the difference.  This now should
 | |
|   // convert exactly to double.
 | |
|   if (u.isFiniteNonZero() && losesInfo) {
 | |
|     fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
 | |
|     assert(fs == opOK && !losesInfo);
 | |
|     (void)fs;
 | |
| 
 | |
|     APFloat v(extended);
 | |
|     v.subtract(u, rmNearestTiesToEven);
 | |
|     fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
 | |
|     assert(fs == opOK && !losesInfo);
 | |
|     (void)fs;
 | |
|     words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
 | |
|   } else {
 | |
|     words[1] = 0;
 | |
|   }
 | |
| 
 | |
|   return APInt(128, words);
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertQuadrupleAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
 | |
|   assert(partCount()==2);
 | |
| 
 | |
|   uint64_t myexponent, mysignificand, mysignificand2;
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     myexponent = exponent+16383; //bias
 | |
|     mysignificand = significandParts()[0];
 | |
|     mysignificand2 = significandParts()[1];
 | |
|     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = mysignificand2 = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0x7fff;
 | |
|     mysignificand = mysignificand2 = 0;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category!");
 | |
|     myexponent = 0x7fff;
 | |
|     mysignificand = significandParts()[0];
 | |
|     mysignificand2 = significandParts()[1];
 | |
|   }
 | |
| 
 | |
|   uint64_t words[2];
 | |
|   words[0] = mysignificand;
 | |
|   words[1] = ((uint64_t)(sign & 1) << 63) |
 | |
|              ((myexponent & 0x7fff) << 48) |
 | |
|              (mysignificand2 & 0xffffffffffffLL);
 | |
| 
 | |
|   return APInt(128, words);
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertDoubleAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   uint64_t myexponent, mysignificand;
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     myexponent = exponent+1023; //bias
 | |
|     mysignificand = *significandParts();
 | |
|     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0x7ff;
 | |
|     mysignificand = 0;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category!");
 | |
|     myexponent = 0x7ff;
 | |
|     mysignificand = *significandParts();
 | |
|   }
 | |
| 
 | |
|   return APInt(64, ((((uint64_t)(sign & 1) << 63) |
 | |
|                      ((myexponent & 0x7ff) <<  52) |
 | |
|                      (mysignificand & 0xfffffffffffffLL))));
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertFloatAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   uint32_t myexponent, mysignificand;
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     myexponent = exponent+127; //bias
 | |
|     mysignificand = (uint32_t)*significandParts();
 | |
|     if (myexponent == 1 && !(mysignificand & 0x800000))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0xff;
 | |
|     mysignificand = 0;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category!");
 | |
|     myexponent = 0xff;
 | |
|     mysignificand = (uint32_t)*significandParts();
 | |
|   }
 | |
| 
 | |
|   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
 | |
|                     (mysignificand & 0x7fffff)));
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertHalfAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   uint32_t myexponent, mysignificand;
 | |
| 
 | |
|   if (isFiniteNonZero()) {
 | |
|     myexponent = exponent+15; //bias
 | |
|     mysignificand = (uint32_t)*significandParts();
 | |
|     if (myexponent == 1 && !(mysignificand & 0x400))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0x1f;
 | |
|     mysignificand = 0;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category!");
 | |
|     myexponent = 0x1f;
 | |
|     mysignificand = (uint32_t)*significandParts();
 | |
|   }
 | |
| 
 | |
|   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
 | |
|                     (mysignificand & 0x3ff)));
 | |
| }
 | |
| 
 | |
| // This function creates an APInt that is just a bit map of the floating
 | |
| // point constant as it would appear in memory.  It is not a conversion,
 | |
| // and treating the result as a normal integer is unlikely to be useful.
 | |
| 
 | |
| APInt
 | |
| APFloat::bitcastToAPInt() const
 | |
| {
 | |
|   if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
 | |
|     return convertHalfAPFloatToAPInt();
 | |
| 
 | |
|   if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
 | |
|     return convertFloatAPFloatToAPInt();
 | |
| 
 | |
|   if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
 | |
|     return convertDoubleAPFloatToAPInt();
 | |
| 
 | |
|   if (semantics == (const llvm::fltSemantics*)&IEEEquad)
 | |
|     return convertQuadrupleAPFloatToAPInt();
 | |
| 
 | |
|   if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
 | |
|     return convertPPCDoubleDoubleAPFloatToAPInt();
 | |
| 
 | |
|   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
 | |
|          "unknown format!");
 | |
|   return convertF80LongDoubleAPFloatToAPInt();
 | |
| }
 | |
| 
 | |
| float
 | |
| APFloat::convertToFloat() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
 | |
|          "Float semantics are not IEEEsingle");
 | |
|   APInt api = bitcastToAPInt();
 | |
|   return api.bitsToFloat();
 | |
| }
 | |
| 
 | |
| double
 | |
| APFloat::convertToDouble() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
 | |
|          "Float semantics are not IEEEdouble");
 | |
|   APInt api = bitcastToAPInt();
 | |
|   return api.bitsToDouble();
 | |
| }
 | |
| 
 | |
| /// Integer bit is explicit in this format.  Intel hardware (387 and later)
 | |
| /// does not support these bit patterns:
 | |
| ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
 | |
| ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
 | |
| ///  exponent = 0, integer bit 1 ("pseudodenormal")
 | |
| ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
 | |
| /// At the moment, the first two are treated as NaNs, the second two as Normal.
 | |
| void
 | |
| APFloat::initFromF80LongDoubleAPInt(const APInt &api)
 | |
| {
 | |
|   assert(api.getBitWidth()==80);
 | |
|   uint64_t i1 = api.getRawData()[0];
 | |
|   uint64_t i2 = api.getRawData()[1];
 | |
|   uint64_t myexponent = (i2 & 0x7fff);
 | |
|   uint64_t mysignificand = i1;
 | |
| 
 | |
|   initialize(&APFloat::x87DoubleExtended);
 | |
|   assert(partCount()==2);
 | |
| 
 | |
|   sign = static_cast<unsigned int>(i2>>15);
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
 | |
|     // exponent meaningless
 | |
|     category = fcNaN;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = 0;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 16383;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = 0;
 | |
|     if (myexponent==0)          // denormal
 | |
|       exponent = -16382;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
 | |
| {
 | |
|   assert(api.getBitWidth()==128);
 | |
|   uint64_t i1 = api.getRawData()[0];
 | |
|   uint64_t i2 = api.getRawData()[1];
 | |
|   opStatus fs;
 | |
|   bool losesInfo;
 | |
| 
 | |
|   // Get the first double and convert to our format.
 | |
|   initFromDoubleAPInt(APInt(64, i1));
 | |
|   fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
 | |
|   assert(fs == opOK && !losesInfo);
 | |
|   (void)fs;
 | |
| 
 | |
|   // Unless we have a special case, add in second double.
 | |
|   if (isFiniteNonZero()) {
 | |
|     APFloat v(IEEEdouble, APInt(64, i2));
 | |
|     fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
 | |
|     assert(fs == opOK && !losesInfo);
 | |
|     (void)fs;
 | |
| 
 | |
|     add(v, rmNearestTiesToEven);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromQuadrupleAPInt(const APInt &api)
 | |
| {
 | |
|   assert(api.getBitWidth()==128);
 | |
|   uint64_t i1 = api.getRawData()[0];
 | |
|   uint64_t i2 = api.getRawData()[1];
 | |
|   uint64_t myexponent = (i2 >> 48) & 0x7fff;
 | |
|   uint64_t mysignificand  = i1;
 | |
|   uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
 | |
| 
 | |
|   initialize(&APFloat::IEEEquad);
 | |
|   assert(partCount()==2);
 | |
| 
 | |
|   sign = static_cast<unsigned int>(i2>>63);
 | |
|   if (myexponent==0 &&
 | |
|       (mysignificand==0 && mysignificand2==0)) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0x7fff &&
 | |
|              (mysignificand==0 && mysignificand2==0)) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0x7fff &&
 | |
|              (mysignificand!=0 || mysignificand2 !=0)) {
 | |
|     // exponent meaningless
 | |
|     category = fcNaN;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = mysignificand2;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 16383;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = mysignificand2;
 | |
|     if (myexponent==0)          // denormal
 | |
|       exponent = -16382;
 | |
|     else
 | |
|       significandParts()[1] |= 0x1000000000000LL;  // integer bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromDoubleAPInt(const APInt &api)
 | |
| {
 | |
|   assert(api.getBitWidth()==64);
 | |
|   uint64_t i = *api.getRawData();
 | |
|   uint64_t myexponent = (i >> 52) & 0x7ff;
 | |
|   uint64_t mysignificand = i & 0xfffffffffffffLL;
 | |
| 
 | |
|   initialize(&APFloat::IEEEdouble);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   sign = static_cast<unsigned int>(i>>63);
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0x7ff && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0x7ff && mysignificand!=0) {
 | |
|     // exponent meaningless
 | |
|     category = fcNaN;
 | |
|     *significandParts() = mysignificand;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 1023;
 | |
|     *significandParts() = mysignificand;
 | |
|     if (myexponent==0)          // denormal
 | |
|       exponent = -1022;
 | |
|     else
 | |
|       *significandParts() |= 0x10000000000000LL;  // integer bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromFloatAPInt(const APInt & api)
 | |
| {
 | |
|   assert(api.getBitWidth()==32);
 | |
|   uint32_t i = (uint32_t)*api.getRawData();
 | |
|   uint32_t myexponent = (i >> 23) & 0xff;
 | |
|   uint32_t mysignificand = i & 0x7fffff;
 | |
| 
 | |
|   initialize(&APFloat::IEEEsingle);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   sign = i >> 31;
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0xff && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0xff && mysignificand!=0) {
 | |
|     // sign, exponent, significand meaningless
 | |
|     category = fcNaN;
 | |
|     *significandParts() = mysignificand;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 127;  //bias
 | |
|     *significandParts() = mysignificand;
 | |
|     if (myexponent==0)    // denormal
 | |
|       exponent = -126;
 | |
|     else
 | |
|       *significandParts() |= 0x800000; // integer bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromHalfAPInt(const APInt & api)
 | |
| {
 | |
|   assert(api.getBitWidth()==16);
 | |
|   uint32_t i = (uint32_t)*api.getRawData();
 | |
|   uint32_t myexponent = (i >> 10) & 0x1f;
 | |
|   uint32_t mysignificand = i & 0x3ff;
 | |
| 
 | |
|   initialize(&APFloat::IEEEhalf);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   sign = i >> 15;
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0x1f && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0x1f && mysignificand!=0) {
 | |
|     // sign, exponent, significand meaningless
 | |
|     category = fcNaN;
 | |
|     *significandParts() = mysignificand;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 15;  //bias
 | |
|     *significandParts() = mysignificand;
 | |
|     if (myexponent==0)    // denormal
 | |
|       exponent = -14;
 | |
|     else
 | |
|       *significandParts() |= 0x400; // integer bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Treat api as containing the bits of a floating point number.  Currently
 | |
| /// we infer the floating point type from the size of the APInt.  The
 | |
| /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
 | |
| /// when the size is anything else).
 | |
| void
 | |
| APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
 | |
| {
 | |
|   if (Sem == &IEEEhalf)
 | |
|     return initFromHalfAPInt(api);
 | |
|   if (Sem == &IEEEsingle)
 | |
|     return initFromFloatAPInt(api);
 | |
|   if (Sem == &IEEEdouble)
 | |
|     return initFromDoubleAPInt(api);
 | |
|   if (Sem == &x87DoubleExtended)
 | |
|     return initFromF80LongDoubleAPInt(api);
 | |
|   if (Sem == &IEEEquad)
 | |
|     return initFromQuadrupleAPInt(api);
 | |
|   if (Sem == &PPCDoubleDouble)
 | |
|     return initFromPPCDoubleDoubleAPInt(api);
 | |
| 
 | |
|   llvm_unreachable(0);
 | |
| }
 | |
| 
 | |
| APFloat
 | |
| APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
 | |
| {
 | |
|   switch (BitWidth) {
 | |
|   case 16:
 | |
|     return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
 | |
|   case 32:
 | |
|     return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
 | |
|   case 64:
 | |
|     return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
 | |
|   case 80:
 | |
|     return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
 | |
|   case 128:
 | |
|     if (isIEEE)
 | |
|       return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
 | |
|     return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
 | |
|   default:
 | |
|     llvm_unreachable("Unknown floating bit width");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Make this number the largest magnitude normal number in the given
 | |
| /// semantics.
 | |
| void APFloat::makeLargest(bool Negative) {
 | |
|   // We want (in interchange format):
 | |
|   //   sign = {Negative}
 | |
|   //   exponent = 1..10
 | |
|   //   significand = 1..1
 | |
|   category = fcNormal;
 | |
|   sign = Negative;
 | |
|   exponent = semantics->maxExponent;
 | |
| 
 | |
|   // Use memset to set all but the highest integerPart to all ones.
 | |
|   integerPart *significand = significandParts();
 | |
|   unsigned PartCount = partCount();
 | |
|   memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
 | |
| 
 | |
|   // Set the high integerPart especially setting all unused top bits for
 | |
|   // internal consistency.
 | |
|   const unsigned NumUnusedHighBits =
 | |
|     PartCount*integerPartWidth - semantics->precision;
 | |
|   significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits;
 | |
| }
 | |
| 
 | |
| /// Make this number the smallest magnitude denormal number in the given
 | |
| /// semantics.
 | |
| void APFloat::makeSmallest(bool Negative) {
 | |
|   // We want (in interchange format):
 | |
|   //   sign = {Negative}
 | |
|   //   exponent = 0..0
 | |
|   //   significand = 0..01
 | |
|   category = fcNormal;
 | |
|   sign = Negative;
 | |
|   exponent = semantics->minExponent;
 | |
|   APInt::tcSet(significandParts(), 1, partCount());
 | |
| }
 | |
| 
 | |
| 
 | |
| APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
 | |
|   // We want (in interchange format):
 | |
|   //   sign = {Negative}
 | |
|   //   exponent = 1..10
 | |
|   //   significand = 1..1
 | |
|   APFloat Val(Sem, uninitialized);
 | |
|   Val.makeLargest(Negative);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
 | |
|   // We want (in interchange format):
 | |
|   //   sign = {Negative}
 | |
|   //   exponent = 0..0
 | |
|   //   significand = 0..01
 | |
|   APFloat Val(Sem, uninitialized);
 | |
|   Val.makeSmallest(Negative);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
 | |
|   APFloat Val(Sem, uninitialized);
 | |
| 
 | |
|   // We want (in interchange format):
 | |
|   //   sign = {Negative}
 | |
|   //   exponent = 0..0
 | |
|   //   significand = 10..0
 | |
| 
 | |
|   Val.category = fcNormal;
 | |
|   Val.zeroSignificand();
 | |
|   Val.sign = Negative;
 | |
|   Val.exponent = Sem.minExponent;
 | |
|   Val.significandParts()[partCountForBits(Sem.precision)-1] |=
 | |
|     (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
 | |
| 
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
 | |
|   initFromAPInt(&Sem, API);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(float f) {
 | |
|   initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(double d) {
 | |
|   initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
 | |
|     Buffer.append(Str.begin(), Str.end());
 | |
|   }
 | |
| 
 | |
|   /// Removes data from the given significand until it is no more
 | |
|   /// precise than is required for the desired precision.
 | |
|   void AdjustToPrecision(APInt &significand,
 | |
|                          int &exp, unsigned FormatPrecision) {
 | |
|     unsigned bits = significand.getActiveBits();
 | |
| 
 | |
|     // 196/59 is a very slight overestimate of lg_2(10).
 | |
|     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
 | |
| 
 | |
|     if (bits <= bitsRequired) return;
 | |
| 
 | |
|     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
 | |
|     if (!tensRemovable) return;
 | |
| 
 | |
|     exp += tensRemovable;
 | |
| 
 | |
|     APInt divisor(significand.getBitWidth(), 1);
 | |
|     APInt powten(significand.getBitWidth(), 10);
 | |
|     while (true) {
 | |
|       if (tensRemovable & 1)
 | |
|         divisor *= powten;
 | |
|       tensRemovable >>= 1;
 | |
|       if (!tensRemovable) break;
 | |
|       powten *= powten;
 | |
|     }
 | |
| 
 | |
|     significand = significand.udiv(divisor);
 | |
| 
 | |
|     // Truncate the significand down to its active bit count.
 | |
|     significand = significand.trunc(significand.getActiveBits());
 | |
|   }
 | |
| 
 | |
| 
 | |
|   void AdjustToPrecision(SmallVectorImpl<char> &buffer,
 | |
|                          int &exp, unsigned FormatPrecision) {
 | |
|     unsigned N = buffer.size();
 | |
|     if (N <= FormatPrecision) return;
 | |
| 
 | |
|     // The most significant figures are the last ones in the buffer.
 | |
|     unsigned FirstSignificant = N - FormatPrecision;
 | |
| 
 | |
|     // Round.
 | |
|     // FIXME: this probably shouldn't use 'round half up'.
 | |
| 
 | |
|     // Rounding down is just a truncation, except we also want to drop
 | |
|     // trailing zeros from the new result.
 | |
|     if (buffer[FirstSignificant - 1] < '5') {
 | |
|       while (FirstSignificant < N && buffer[FirstSignificant] == '0')
 | |
|         FirstSignificant++;
 | |
| 
 | |
|       exp += FirstSignificant;
 | |
|       buffer.erase(&buffer[0], &buffer[FirstSignificant]);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Rounding up requires a decimal add-with-carry.  If we continue
 | |
|     // the carry, the newly-introduced zeros will just be truncated.
 | |
|     for (unsigned I = FirstSignificant; I != N; ++I) {
 | |
|       if (buffer[I] == '9') {
 | |
|         FirstSignificant++;
 | |
|       } else {
 | |
|         buffer[I]++;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we carried through, we have exactly one digit of precision.
 | |
|     if (FirstSignificant == N) {
 | |
|       exp += FirstSignificant;
 | |
|       buffer.clear();
 | |
|       buffer.push_back('1');
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     exp += FirstSignificant;
 | |
|     buffer.erase(&buffer[0], &buffer[FirstSignificant]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void APFloat::toString(SmallVectorImpl<char> &Str,
 | |
|                        unsigned FormatPrecision,
 | |
|                        unsigned FormatMaxPadding) const {
 | |
|   switch (category) {
 | |
|   case fcInfinity:
 | |
|     if (isNegative())
 | |
|       return append(Str, "-Inf");
 | |
|     else
 | |
|       return append(Str, "+Inf");
 | |
| 
 | |
|   case fcNaN: return append(Str, "NaN");
 | |
| 
 | |
|   case fcZero:
 | |
|     if (isNegative())
 | |
|       Str.push_back('-');
 | |
| 
 | |
|     if (!FormatMaxPadding)
 | |
|       append(Str, "0.0E+0");
 | |
|     else
 | |
|       Str.push_back('0');
 | |
|     return;
 | |
| 
 | |
|   case fcNormal:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (isNegative())
 | |
|     Str.push_back('-');
 | |
| 
 | |
|   // Decompose the number into an APInt and an exponent.
 | |
|   int exp = exponent - ((int) semantics->precision - 1);
 | |
|   APInt significand(semantics->precision,
 | |
|                     makeArrayRef(significandParts(),
 | |
|                                  partCountForBits(semantics->precision)));
 | |
| 
 | |
|   // Set FormatPrecision if zero.  We want to do this before we
 | |
|   // truncate trailing zeros, as those are part of the precision.
 | |
|   if (!FormatPrecision) {
 | |
|     // We use enough digits so the number can be round-tripped back to an
 | |
|     // APFloat. The formula comes from "How to Print Floating-Point Numbers
 | |
|     // Accurately" by Steele and White.
 | |
|     // FIXME: Using a formula based purely on the precision is conservative;
 | |
|     // we can print fewer digits depending on the actual value being printed.
 | |
| 
 | |
|     // FormatPrecision = 2 + floor(significandBits / lg_2(10))
 | |
|     FormatPrecision = 2 + semantics->precision * 59 / 196;
 | |
|   }
 | |
| 
 | |
|   // Ignore trailing binary zeros.
 | |
|   int trailingZeros = significand.countTrailingZeros();
 | |
|   exp += trailingZeros;
 | |
|   significand = significand.lshr(trailingZeros);
 | |
| 
 | |
|   // Change the exponent from 2^e to 10^e.
 | |
|   if (exp == 0) {
 | |
|     // Nothing to do.
 | |
|   } else if (exp > 0) {
 | |
|     // Just shift left.
 | |
|     significand = significand.zext(semantics->precision + exp);
 | |
|     significand <<= exp;
 | |
|     exp = 0;
 | |
|   } else { /* exp < 0 */
 | |
|     int texp = -exp;
 | |
| 
 | |
|     // We transform this using the identity:
 | |
|     //   (N)(2^-e) == (N)(5^e)(10^-e)
 | |
|     // This means we have to multiply N (the significand) by 5^e.
 | |
|     // To avoid overflow, we have to operate on numbers large
 | |
|     // enough to store N * 5^e:
 | |
|     //   log2(N * 5^e) == log2(N) + e * log2(5)
 | |
|     //                 <= semantics->precision + e * 137 / 59
 | |
|     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
 | |
| 
 | |
|     unsigned precision = semantics->precision + (137 * texp + 136) / 59;
 | |
| 
 | |
|     // Multiply significand by 5^e.
 | |
|     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
 | |
|     significand = significand.zext(precision);
 | |
|     APInt five_to_the_i(precision, 5);
 | |
|     while (true) {
 | |
|       if (texp & 1) significand *= five_to_the_i;
 | |
| 
 | |
|       texp >>= 1;
 | |
|       if (!texp) break;
 | |
|       five_to_the_i *= five_to_the_i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AdjustToPrecision(significand, exp, FormatPrecision);
 | |
| 
 | |
|   SmallVector<char, 256> buffer;
 | |
| 
 | |
|   // Fill the buffer.
 | |
|   unsigned precision = significand.getBitWidth();
 | |
|   APInt ten(precision, 10);
 | |
|   APInt digit(precision, 0);
 | |
| 
 | |
|   bool inTrail = true;
 | |
|   while (significand != 0) {
 | |
|     // digit <- significand % 10
 | |
|     // significand <- significand / 10
 | |
|     APInt::udivrem(significand, ten, significand, digit);
 | |
| 
 | |
|     unsigned d = digit.getZExtValue();
 | |
| 
 | |
|     // Drop trailing zeros.
 | |
|     if (inTrail && !d) exp++;
 | |
|     else {
 | |
|       buffer.push_back((char) ('0' + d));
 | |
|       inTrail = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!buffer.empty() && "no characters in buffer!");
 | |
| 
 | |
|   // Drop down to FormatPrecision.
 | |
|   // TODO: don't do more precise calculations above than are required.
 | |
|   AdjustToPrecision(buffer, exp, FormatPrecision);
 | |
| 
 | |
|   unsigned NDigits = buffer.size();
 | |
| 
 | |
|   // Check whether we should use scientific notation.
 | |
|   bool FormatScientific;
 | |
|   if (!FormatMaxPadding)
 | |
|     FormatScientific = true;
 | |
|   else {
 | |
|     if (exp >= 0) {
 | |
|       // 765e3 --> 765000
 | |
|       //              ^^^
 | |
|       // But we shouldn't make the number look more precise than it is.
 | |
|       FormatScientific = ((unsigned) exp > FormatMaxPadding ||
 | |
|                           NDigits + (unsigned) exp > FormatPrecision);
 | |
|     } else {
 | |
|       // Power of the most significant digit.
 | |
|       int MSD = exp + (int) (NDigits - 1);
 | |
|       if (MSD >= 0) {
 | |
|         // 765e-2 == 7.65
 | |
|         FormatScientific = false;
 | |
|       } else {
 | |
|         // 765e-5 == 0.00765
 | |
|         //           ^ ^^
 | |
|         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scientific formatting is pretty straightforward.
 | |
|   if (FormatScientific) {
 | |
|     exp += (NDigits - 1);
 | |
| 
 | |
|     Str.push_back(buffer[NDigits-1]);
 | |
|     Str.push_back('.');
 | |
|     if (NDigits == 1)
 | |
|       Str.push_back('0');
 | |
|     else
 | |
|       for (unsigned I = 1; I != NDigits; ++I)
 | |
|         Str.push_back(buffer[NDigits-1-I]);
 | |
|     Str.push_back('E');
 | |
| 
 | |
|     Str.push_back(exp >= 0 ? '+' : '-');
 | |
|     if (exp < 0) exp = -exp;
 | |
|     SmallVector<char, 6> expbuf;
 | |
|     do {
 | |
|       expbuf.push_back((char) ('0' + (exp % 10)));
 | |
|       exp /= 10;
 | |
|     } while (exp);
 | |
|     for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
 | |
|       Str.push_back(expbuf[E-1-I]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Non-scientific, positive exponents.
 | |
|   if (exp >= 0) {
 | |
|     for (unsigned I = 0; I != NDigits; ++I)
 | |
|       Str.push_back(buffer[NDigits-1-I]);
 | |
|     for (unsigned I = 0; I != (unsigned) exp; ++I)
 | |
|       Str.push_back('0');
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Non-scientific, negative exponents.
 | |
| 
 | |
|   // The number of digits to the left of the decimal point.
 | |
|   int NWholeDigits = exp + (int) NDigits;
 | |
| 
 | |
|   unsigned I = 0;
 | |
|   if (NWholeDigits > 0) {
 | |
|     for (; I != (unsigned) NWholeDigits; ++I)
 | |
|       Str.push_back(buffer[NDigits-I-1]);
 | |
|     Str.push_back('.');
 | |
|   } else {
 | |
|     unsigned NZeros = 1 + (unsigned) -NWholeDigits;
 | |
| 
 | |
|     Str.push_back('0');
 | |
|     Str.push_back('.');
 | |
|     for (unsigned Z = 1; Z != NZeros; ++Z)
 | |
|       Str.push_back('0');
 | |
|   }
 | |
| 
 | |
|   for (; I != NDigits; ++I)
 | |
|     Str.push_back(buffer[NDigits-I-1]);
 | |
| }
 | |
| 
 | |
| bool APFloat::getExactInverse(APFloat *inv) const {
 | |
|   // Special floats and denormals have no exact inverse.
 | |
|   if (!isFiniteNonZero())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the number is a power of two by making sure that only the
 | |
|   // integer bit is set in the significand.
 | |
|   if (significandLSB() != semantics->precision - 1)
 | |
|     return false;
 | |
| 
 | |
|   // Get the inverse.
 | |
|   APFloat reciprocal(*semantics, 1ULL);
 | |
|   if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
 | |
|     return false;
 | |
| 
 | |
|   // Avoid multiplication with a denormal, it is not safe on all platforms and
 | |
|   // may be slower than a normal division.
 | |
|   if (reciprocal.isDenormal())
 | |
|     return false;
 | |
| 
 | |
|   assert(reciprocal.isFiniteNonZero() &&
 | |
|          reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
 | |
| 
 | |
|   if (inv)
 | |
|     *inv = reciprocal;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool APFloat::isSignaling() const {
 | |
|   if (!isNaN())
 | |
|     return false;
 | |
| 
 | |
|   // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
 | |
|   // first bit of the trailing significand being 0.
 | |
|   return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
 | |
| }
 | |
| 
 | |
| /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
 | |
| ///
 | |
| /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
 | |
| /// appropriate sign switching before/after the computation.
 | |
| APFloat::opStatus APFloat::next(bool nextDown) {
 | |
|   // If we are performing nextDown, swap sign so we have -x.
 | |
|   if (nextDown)
 | |
|     changeSign();
 | |
| 
 | |
|   // Compute nextUp(x)
 | |
|   opStatus result = opOK;
 | |
| 
 | |
|   // Handle each float category separately.
 | |
|   switch (category) {
 | |
|   case fcInfinity:
 | |
|     // nextUp(+inf) = +inf
 | |
|     if (!isNegative())
 | |
|       break;
 | |
|     // nextUp(-inf) = -getLargest()
 | |
|     makeLargest(true);
 | |
|     break;
 | |
|   case fcNaN:
 | |
|     // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
 | |
|     // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
 | |
|     //                     change the payload.
 | |
|     if (isSignaling()) {
 | |
|       result = opInvalidOp;
 | |
|       // For consistency, propagate the sign of the sNaN to the qNaN.
 | |
|       makeNaN(false, isNegative(), 0);
 | |
|     }
 | |
|     break;
 | |
|   case fcZero:
 | |
|     // nextUp(pm 0) = +getSmallest()
 | |
|     makeSmallest(false);
 | |
|     break;
 | |
|   case fcNormal:
 | |
|     // nextUp(-getSmallest()) = -0
 | |
|     if (isSmallest() && isNegative()) {
 | |
|       APInt::tcSet(significandParts(), 0, partCount());
 | |
|       category = fcZero;
 | |
|       exponent = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // nextUp(getLargest()) == INFINITY
 | |
|     if (isLargest() && !isNegative()) {
 | |
|       APInt::tcSet(significandParts(), 0, partCount());
 | |
|       category = fcInfinity;
 | |
|       exponent = semantics->maxExponent + 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // nextUp(normal) == normal + inc.
 | |
|     if (isNegative()) {
 | |
|       // If we are negative, we need to decrement the significand.
 | |
| 
 | |
|       // We only cross a binade boundary that requires adjusting the exponent
 | |
|       // if:
 | |
|       //   1. exponent != semantics->minExponent. This implies we are not in the
 | |
|       //   smallest binade or are dealing with denormals.
 | |
|       //   2. Our significand excluding the integral bit is all zeros.
 | |
|       bool WillCrossBinadeBoundary =
 | |
|         exponent != semantics->minExponent && isSignificandAllZeros();
 | |
| 
 | |
|       // Decrement the significand.
 | |
|       //
 | |
|       // We always do this since:
 | |
|       //   1. If we are dealing with a non-binade decrement, by definition we
 | |
|       //   just decrement the significand.
 | |
|       //   2. If we are dealing with a normal -> normal binade decrement, since
 | |
|       //   we have an explicit integral bit the fact that all bits but the
 | |
|       //   integral bit are zero implies that subtracting one will yield a
 | |
|       //   significand with 0 integral bit and 1 in all other spots. Thus we
 | |
|       //   must just adjust the exponent and set the integral bit to 1.
 | |
|       //   3. If we are dealing with a normal -> denormal binade decrement,
 | |
|       //   since we set the integral bit to 0 when we represent denormals, we
 | |
|       //   just decrement the significand.
 | |
|       integerPart *Parts = significandParts();
 | |
|       APInt::tcDecrement(Parts, partCount());
 | |
| 
 | |
|       if (WillCrossBinadeBoundary) {
 | |
|         // Our result is a normal number. Do the following:
 | |
|         // 1. Set the integral bit to 1.
 | |
|         // 2. Decrement the exponent.
 | |
|         APInt::tcSetBit(Parts, semantics->precision - 1);
 | |
|         exponent--;
 | |
|       }
 | |
|     } else {
 | |
|       // If we are positive, we need to increment the significand.
 | |
| 
 | |
|       // We only cross a binade boundary that requires adjusting the exponent if
 | |
|       // the input is not a denormal and all of said input's significand bits
 | |
|       // are set. If all of said conditions are true: clear the significand, set
 | |
|       // the integral bit to 1, and increment the exponent. If we have a
 | |
|       // denormal always increment since moving denormals and the numbers in the
 | |
|       // smallest normal binade have the same exponent in our representation.
 | |
|       bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
 | |
| 
 | |
|       if (WillCrossBinadeBoundary) {
 | |
|         integerPart *Parts = significandParts();
 | |
|         APInt::tcSet(Parts, 0, partCount());
 | |
|         APInt::tcSetBit(Parts, semantics->precision - 1);
 | |
|         assert(exponent != semantics->maxExponent &&
 | |
|                "We can not increment an exponent beyond the maxExponent allowed"
 | |
|                " by the given floating point semantics.");
 | |
|         exponent++;
 | |
|       } else {
 | |
|         incrementSignificand();
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If we are performing nextDown, swap sign so we have -nextUp(-x)
 | |
|   if (nextDown)
 | |
|     changeSign();
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::makeInf(bool Negative) {
 | |
|   category = fcInfinity;
 | |
|   sign = Negative;
 | |
|   exponent = semantics->maxExponent + 1;
 | |
|   APInt::tcSet(significandParts(), 0, partCount());
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::makeZero(bool Negative) {
 | |
|   category = fcZero;
 | |
|   sign = Negative;
 | |
|   exponent = semantics->minExponent-1;
 | |
|   APInt::tcSet(significandParts(), 0, partCount());  
 | |
| }
 |