forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			316 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass transforms loops by placing phi nodes at the end of the loops for
 | 
						|
// all values that are live across the loop boundary.  For example, it turns
 | 
						|
// the left into the right code:
 | 
						|
// 
 | 
						|
// for (...)                for (...)
 | 
						|
//   if (c)                   if (c)
 | 
						|
//     X1 = ...                 X1 = ...
 | 
						|
//   else                     else
 | 
						|
//     X2 = ...                 X2 = ...
 | 
						|
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
 | 
						|
// ... = X3 + 4             X4 = phi(X3)
 | 
						|
//                          ... = X4 + 4
 | 
						|
//
 | 
						|
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
 | 
						|
// be trivially eliminated by InstCombine.  The major benefit of this 
 | 
						|
// transformation is that it makes many other loop optimizations, such as 
 | 
						|
// LoopUnswitching, simpler.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "lcssa"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/PredIteratorCache.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
 | 
						|
 | 
						|
/// Return true if the specified block is in the list.
 | 
						|
static bool isExitBlock(BasicBlock *BB,
 | 
						|
                        const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
    if (ExitBlocks[i] == BB)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given an instruction in the loop, check to see if it has any uses that are
 | 
						|
/// outside the current loop.  If so, insert LCSSA PHI nodes and rewrite the
 | 
						|
/// uses.
 | 
						|
static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
 | 
						|
                               const SmallVectorImpl<BasicBlock *> &ExitBlocks,
 | 
						|
                               PredIteratorCache &PredCache) {
 | 
						|
  SmallVector<Use *, 16> UsesToRewrite;
 | 
						|
 | 
						|
  BasicBlock *InstBB = Inst.getParent();
 | 
						|
 | 
						|
  for (Value::use_iterator UI = Inst.use_begin(), E = Inst.use_end(); UI != E;
 | 
						|
       ++UI) {
 | 
						|
    User *U = *UI;
 | 
						|
    BasicBlock *UserBB = cast<Instruction>(U)->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(U))
 | 
						|
      UserBB = PN->getIncomingBlock(UI);
 | 
						|
 | 
						|
    if (InstBB != UserBB && !L.contains(UserBB))
 | 
						|
      UsesToRewrite.push_back(&UI.getUse());
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no uses outside the loop, exit with no change.
 | 
						|
  if (UsesToRewrite.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++NumLCSSA; // We are applying the transformation
 | 
						|
 | 
						|
  // Invoke instructions are special in that their result value is not available
 | 
						|
  // along their unwind edge. The code below tests to see whether DomBB
 | 
						|
  // dominates
 | 
						|
  // the value, so adjust DomBB to the normal destination block, which is
 | 
						|
  // effectively where the value is first usable.
 | 
						|
  BasicBlock *DomBB = Inst.getParent();
 | 
						|
  if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
 | 
						|
    DomBB = Inv->getNormalDest();
 | 
						|
 | 
						|
  DomTreeNode *DomNode = DT.getNode(DomBB);
 | 
						|
 | 
						|
  SmallVector<PHINode *, 16> AddedPHIs;
 | 
						|
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SSAUpdate.Initialize(Inst.getType(), Inst.getName());
 | 
						|
 | 
						|
  // Insert the LCSSA phi's into all of the exit blocks dominated by the
 | 
						|
  // value, and add them to the Phi's map.
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::const_iterator BBI = ExitBlocks.begin(),
 | 
						|
                                                     BBE = ExitBlocks.end();
 | 
						|
       BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *ExitBB = *BBI;
 | 
						|
    if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we already inserted something for this BB, don't reprocess it.
 | 
						|
    if (SSAUpdate.HasValueForBlock(ExitBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    PHINode *PN = PHINode::Create(Inst.getType(), PredCache.GetNumPreds(ExitBB),
 | 
						|
                                  Inst.getName() + ".lcssa", ExitBB->begin());
 | 
						|
 | 
						|
    // Add inputs from inside the loop for this PHI.
 | 
						|
    for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
 | 
						|
      PN->addIncoming(&Inst, *PI);
 | 
						|
 | 
						|
      // If the exit block has a predecessor not within the loop, arrange for
 | 
						|
      // the incoming value use corresponding to that predecessor to be
 | 
						|
      // rewritten in terms of a different LCSSA PHI.
 | 
						|
      if (!L.contains(*PI))
 | 
						|
        UsesToRewrite.push_back(
 | 
						|
            &PN->getOperandUse(PN->getOperandNumForIncomingValue(
 | 
						|
                 PN->getNumIncomingValues() - 1)));
 | 
						|
    }
 | 
						|
 | 
						|
    AddedPHIs.push_back(PN);
 | 
						|
 | 
						|
    // Remember that this phi makes the value alive in this block.
 | 
						|
    SSAUpdate.AddAvailableValue(ExitBB, PN);
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite all uses outside the loop in terms of the new PHIs we just
 | 
						|
  // inserted.
 | 
						|
  for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
 | 
						|
    // If this use is in an exit block, rewrite to use the newly inserted PHI.
 | 
						|
    // This is required for correctness because SSAUpdate doesn't handle uses in
 | 
						|
    // the same block.  It assumes the PHI we inserted is at the end of the
 | 
						|
    // block.
 | 
						|
    Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(User))
 | 
						|
      UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
 | 
						|
 | 
						|
    if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
 | 
						|
      // Tell the VHs that the uses changed. This updates SCEV's caches.
 | 
						|
      if (UsesToRewrite[i]->get()->hasValueHandle())
 | 
						|
        ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin());
 | 
						|
      UsesToRewrite[i]->set(UserBB->begin());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, do full PHI insertion.
 | 
						|
    SSAUpdate.RewriteUse(*UsesToRewrite[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove PHI nodes that did not have any uses rewritten.
 | 
						|
  for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
 | 
						|
    if (AddedPHIs[i]->use_empty())
 | 
						|
      AddedPHIs[i]->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified block dominates at least
 | 
						|
/// one of the blocks in the specified list.
 | 
						|
static bool
 | 
						|
blockDominatesAnExit(BasicBlock *BB,
 | 
						|
                     DominatorTree &DT,
 | 
						|
                     const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
 | 
						|
  DomTreeNode *DomNode = DT.getNode(BB);
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
    if (DT.dominates(DomNode, DT.getNode(ExitBlocks[i])))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::formLCSSA(Loop &L, DominatorTree &DT, ScalarEvolution *SE) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Get the set of exiting blocks.
 | 
						|
  SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
  L.getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  if (ExitBlocks.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  PredIteratorCache PredCache;
 | 
						|
 | 
						|
  // Look at all the instructions in the loop, checking to see if they have uses
 | 
						|
  // outside the loop.  If so, rewrite those uses.
 | 
						|
  for (Loop::block_iterator BBI = L.block_begin(), BBE = L.block_end();
 | 
						|
       BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *BB = *BBI;
 | 
						|
 | 
						|
    // For large loops, avoid use-scanning by using dominance information:  In
 | 
						|
    // particular, if a block does not dominate any of the loop exits, then none
 | 
						|
    // of the values defined in the block could be used outside the loop.
 | 
						|
    if (!blockDominatesAnExit(BB, DT, ExitBlocks))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
      // Reject two common cases fast: instructions with no uses (like stores)
 | 
						|
      // and instructions with one use that is in the same block as this.
 | 
						|
      if (I->use_empty() ||
 | 
						|
          (I->hasOneUse() && I->use_back()->getParent() == BB &&
 | 
						|
           !isa<PHINode>(I->use_back())))
 | 
						|
        continue;
 | 
						|
 | 
						|
      Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we modified the code, remove any caches about the loop from SCEV to
 | 
						|
  // avoid dangling entries.
 | 
						|
  // FIXME: This is a big hammer, can we clear the cache more selectively?
 | 
						|
  if (SE && Changed)
 | 
						|
    SE->forgetLoop(&L);
 | 
						|
 | 
						|
  assert(L.isLCSSAForm(DT));
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Process a loop nest depth first.
 | 
						|
bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT,
 | 
						|
                                ScalarEvolution *SE) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Recurse depth-first through inner loops.
 | 
						|
  for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
 | 
						|
    Changed |= formLCSSARecursively(**LI, DT, SE);
 | 
						|
 | 
						|
  Changed |= formLCSSA(L, DT, SE);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct LCSSA : public FunctionPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  LCSSA() : FunctionPass(ID) {
 | 
						|
    initializeLCSSAPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  // Cached analysis information for the current function.
 | 
						|
  DominatorTree *DT;
 | 
						|
  LoopInfo *LI;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
 | 
						|
  virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
  /// This transformation requires natural loop information & requires that
 | 
						|
  /// loop preheaders be inserted into the CFG.  It maintains both of these,
 | 
						|
  /// as well as the CFG.  It also requires dominator information.
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<LoopInfo>();
 | 
						|
    AU.addPreservedID(LoopSimplifyID);
 | 
						|
    AU.addPreserved<AliasAnalysis>();
 | 
						|
    AU.addPreserved<ScalarEvolution>();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool processLoop(Loop &L);
 | 
						|
 | 
						|
  virtual void verifyAnalysis() const;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char LCSSA::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | 
						|
INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
 | 
						|
char &llvm::LCSSAID = LCSSA::ID;
 | 
						|
 | 
						|
 | 
						|
/// Process all loops in the function, inner-most out.
 | 
						|
bool LCSSA::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  SE = getAnalysisIfAvailable<ScalarEvolution>();
 | 
						|
 | 
						|
  // Simplify each loop nest in the function.
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
    Changed |= formLCSSARecursively(**I, *DT, SE);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static void verifyLoop(Loop &L, DominatorTree &DT) {
 | 
						|
  // Recurse depth-first through inner loops.
 | 
						|
  for (Loop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
 | 
						|
    verifyLoop(**LI, DT);
 | 
						|
 | 
						|
  // Check the special guarantees that LCSSA makes.
 | 
						|
  //assert(L.isLCSSAForm(DT) && "LCSSA form not preserved!");
 | 
						|
}
 | 
						|
 | 
						|
void LCSSA::verifyAnalysis() const {
 | 
						|
  // Verify each loop nest in the function, assuming LI still points at that
 | 
						|
  // function's loop info.
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
    verifyLoop(**I, *DT);
 | 
						|
}
 |