forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			301 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			301 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 | FileCheck %s -check-prefix=X64
 | |
| ; RUN: llc < %s -O3 -march=x86 -mcpu=core2 | FileCheck %s -check-prefix=X32
 | |
| 
 | |
| ; @simple is the most basic chain of address induction variables. Chaining
 | |
| ; saves at least one register and avoids complex addressing and setup
 | |
| ; code.
 | |
| ;
 | |
| ; X64: @simple
 | |
| ; %x * 4
 | |
| ; X64: shlq $2
 | |
| ; no other address computation in the preheader
 | |
| ; X64-NEXT: xorl
 | |
| ; X64-NEXT: .align
 | |
| ; X64: %loop
 | |
| ; no complex address modes
 | |
| ; X64-NOT: (%{{[^)]+}},%{{[^)]+}},
 | |
| ;
 | |
| ; X32: @simple
 | |
| ; no expensive address computation in the preheader
 | |
| ; X32-NOT: imul
 | |
| ; X32: %loop
 | |
| ; no complex address modes
 | |
| ; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
 | |
| define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
 | |
| entry:
 | |
|   br label %loop
 | |
| loop:
 | |
|   %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
 | |
|   %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
 | |
|   %v = load i32* %iv
 | |
|   %iv1 = getelementptr inbounds i32* %iv, i32 %x
 | |
|   %v1 = load i32* %iv1
 | |
|   %iv2 = getelementptr inbounds i32* %iv1, i32 %x
 | |
|   %v2 = load i32* %iv2
 | |
|   %iv3 = getelementptr inbounds i32* %iv2, i32 %x
 | |
|   %v3 = load i32* %iv3
 | |
|   %s1 = add i32 %s, %v
 | |
|   %s2 = add i32 %s1, %v1
 | |
|   %s3 = add i32 %s2, %v2
 | |
|   %s4 = add i32 %s3, %v3
 | |
|   %iv4 = getelementptr inbounds i32* %iv3, i32 %x
 | |
|   %cmp = icmp eq i32* %iv4, %b
 | |
|   br i1 %cmp, label %exit, label %loop
 | |
| exit:
 | |
|   ret i32 %s4
 | |
| }
 | |
| 
 | |
| ; @user is not currently chained because the IV is live across memory ops.
 | |
| ;
 | |
| ; X64: @user
 | |
| ; X64: shlq $4
 | |
| ; X64: lea
 | |
| ; X64: lea
 | |
| ; X64: %loop
 | |
| ; complex address modes
 | |
| ; X64: (%{{[^)]+}},%{{[^)]+}},
 | |
| ;
 | |
| ; X32: @user
 | |
| ; expensive address computation in the preheader
 | |
| ; X32: imul
 | |
| ; X32: %loop
 | |
| ; complex address modes
 | |
| ; X32: (%{{[^)]+}},%{{[^)]+}},
 | |
| define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
 | |
| entry:
 | |
|   br label %loop
 | |
| loop:
 | |
|   %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
 | |
|   %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
 | |
|   %v = load i32* %iv
 | |
|   %iv1 = getelementptr inbounds i32* %iv, i32 %x
 | |
|   %v1 = load i32* %iv1
 | |
|   %iv2 = getelementptr inbounds i32* %iv1, i32 %x
 | |
|   %v2 = load i32* %iv2
 | |
|   %iv3 = getelementptr inbounds i32* %iv2, i32 %x
 | |
|   %v3 = load i32* %iv3
 | |
|   %s1 = add i32 %s, %v
 | |
|   %s2 = add i32 %s1, %v1
 | |
|   %s3 = add i32 %s2, %v2
 | |
|   %s4 = add i32 %s3, %v3
 | |
|   %iv4 = getelementptr inbounds i32* %iv3, i32 %x
 | |
|   store i32 %s4, i32* %iv
 | |
|   %cmp = icmp eq i32* %iv4, %b
 | |
|   br i1 %cmp, label %exit, label %loop
 | |
| exit:
 | |
|   ret i32 %s4
 | |
| }
 | |
| 
 | |
| ; @extrastride is a slightly more interesting case of a single
 | |
| ; complete chain with multiple strides. The test case IR is what LSR
 | |
| ; used to do, and exactly what we don't want to do. LSR's new IV
 | |
| ; chaining feature should now undo the damage.
 | |
| ;
 | |
| ; X64: extrastride:
 | |
| ; We currently don't handle this on X64 because the sexts cause
 | |
| ; strange increment expressions like this:
 | |
| ; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
 | |
| ;
 | |
| ; X32: extrastride:
 | |
| ; no spills in the preheader
 | |
| ; X32-NOT: mov{{.*}}(%esp){{$}}
 | |
| ; X32: %for.body{{$}}
 | |
| ; no complex address modes
 | |
| ; X32-NOT: (%{{[^)]+}},%{{[^)]+}},
 | |
| ; no reloads
 | |
| ; X32-NOT: (%esp)
 | |
| define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
 | |
| entry:
 | |
|   %cmp8 = icmp eq i32 %z, 0
 | |
|   br i1 %cmp8, label %for.end, label %for.body.lr.ph
 | |
| 
 | |
| for.body.lr.ph:                                   ; preds = %entry
 | |
|   %add.ptr.sum = shl i32 %main_stride, 1 ; s*2
 | |
|   %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
 | |
|   %add.ptr2.sum = add i32 %x, %main_stride ; s + x
 | |
|   %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
 | |
|   %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:                                         ; preds = %for.body.lr.ph, %for.body
 | |
|   %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
 | |
|   %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
 | |
|   %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
 | |
|   %0 = bitcast i8* %main.addr.011 to i32*
 | |
|   %1 = load i32* %0, align 4
 | |
|   %add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
 | |
|   %2 = bitcast i8* %add.ptr to i32*
 | |
|   %3 = load i32* %2, align 4
 | |
|   %add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
 | |
|   %4 = bitcast i8* %add.ptr1 to i32*
 | |
|   %5 = load i32* %4, align 4
 | |
|   %add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
 | |
|   %6 = bitcast i8* %add.ptr2 to i32*
 | |
|   %7 = load i32* %6, align 4
 | |
|   %add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
 | |
|   %8 = bitcast i8* %add.ptr3 to i32*
 | |
|   %9 = load i32* %8, align 4
 | |
|   %add = add i32 %3, %1
 | |
|   %add4 = add i32 %add, %5
 | |
|   %add5 = add i32 %add4, %7
 | |
|   %add6 = add i32 %add5, %9
 | |
|   store i32 %add6, i32* %res.addr.09, align 4
 | |
|   %add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
 | |
|   %add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
 | |
|   %inc = add i32 %i.010, 1
 | |
|   %cmp = icmp eq i32 %inc, %z
 | |
|   br i1 %cmp, label %for.end, label %for.body
 | |
| 
 | |
| for.end:                                          ; preds = %for.body, %entry
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; @foldedidx is an unrolled variant of this loop:
 | |
| ;  for (unsigned long i = 0; i < len; i += s) {
 | |
| ;    c[i] = a[i] + b[i];
 | |
| ;  }
 | |
| ; where 's' can be folded into the addressing mode.
 | |
| ; Consequently, we should *not* form any chains.
 | |
| ;
 | |
| ; X64: foldedidx:
 | |
| ; X64: movzbl -3(
 | |
| ;
 | |
| ; X32: foldedidx:
 | |
| ; X32: movzbl -3(
 | |
| define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:                                         ; preds = %for.body, %entry
 | |
|   %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
 | |
|   %arrayidx = getelementptr inbounds i8* %a, i32 %i.07
 | |
|   %0 = load i8* %arrayidx, align 1
 | |
|   %conv5 = zext i8 %0 to i32
 | |
|   %arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
 | |
|   %1 = load i8* %arrayidx1, align 1
 | |
|   %conv26 = zext i8 %1 to i32
 | |
|   %add = add nsw i32 %conv26, %conv5
 | |
|   %conv3 = trunc i32 %add to i8
 | |
|   %arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
 | |
|   store i8 %conv3, i8* %arrayidx4, align 1
 | |
|   %inc1 = or i32 %i.07, 1
 | |
|   %arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
 | |
|   %2 = load i8* %arrayidx.1, align 1
 | |
|   %conv5.1 = zext i8 %2 to i32
 | |
|   %arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
 | |
|   %3 = load i8* %arrayidx1.1, align 1
 | |
|   %conv26.1 = zext i8 %3 to i32
 | |
|   %add.1 = add nsw i32 %conv26.1, %conv5.1
 | |
|   %conv3.1 = trunc i32 %add.1 to i8
 | |
|   %arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
 | |
|   store i8 %conv3.1, i8* %arrayidx4.1, align 1
 | |
|   %inc.12 = or i32 %i.07, 2
 | |
|   %arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
 | |
|   %4 = load i8* %arrayidx.2, align 1
 | |
|   %conv5.2 = zext i8 %4 to i32
 | |
|   %arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
 | |
|   %5 = load i8* %arrayidx1.2, align 1
 | |
|   %conv26.2 = zext i8 %5 to i32
 | |
|   %add.2 = add nsw i32 %conv26.2, %conv5.2
 | |
|   %conv3.2 = trunc i32 %add.2 to i8
 | |
|   %arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
 | |
|   store i8 %conv3.2, i8* %arrayidx4.2, align 1
 | |
|   %inc.23 = or i32 %i.07, 3
 | |
|   %arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
 | |
|   %6 = load i8* %arrayidx.3, align 1
 | |
|   %conv5.3 = zext i8 %6 to i32
 | |
|   %arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
 | |
|   %7 = load i8* %arrayidx1.3, align 1
 | |
|   %conv26.3 = zext i8 %7 to i32
 | |
|   %add.3 = add nsw i32 %conv26.3, %conv5.3
 | |
|   %conv3.3 = trunc i32 %add.3 to i8
 | |
|   %arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
 | |
|   store i8 %conv3.3, i8* %arrayidx4.3, align 1
 | |
|   %inc.3 = add nsw i32 %i.07, 4
 | |
|   %exitcond.3 = icmp eq i32 %inc.3, 400
 | |
|   br i1 %exitcond.3, label %for.end, label %for.body
 | |
| 
 | |
| for.end:                                          ; preds = %for.body
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; @multioper tests instructions with multiple IV user operands. We
 | |
| ; should be able to chain them independent of each other.
 | |
| ;
 | |
| ; X64: @multioper
 | |
| ; X64: %for.body
 | |
| ; X64: movl %{{.*}},4)
 | |
| ; X64-NEXT: leal 1(
 | |
| ; X64-NEXT: movl %{{.*}},4)
 | |
| ; X64-NEXT: leal 2(
 | |
| ; X64-NEXT: movl %{{.*}},4)
 | |
| ; X64-NEXT: leal 3(
 | |
| ; X64-NEXT: movl %{{.*}},4)
 | |
| ;
 | |
| ; X32: @multioper
 | |
| ; X32: %for.body
 | |
| ; X32: movl %{{.*}},4)
 | |
| ; X32-NEXT: leal 1(
 | |
| ; X32-NEXT: movl %{{.*}},4)
 | |
| ; X32-NEXT: leal 2(
 | |
| ; X32-NEXT: movl %{{.*}},4)
 | |
| ; X32-NEXT: leal 3(
 | |
| ; X32-NEXT: movl %{{.*}},4)
 | |
| define void @multioper(i32* %a, i32 %n) nounwind {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %p = phi i32* [ %p.next, %for.body ], [ %a, %entry ]
 | |
|   %i = phi i32 [ %inc4, %for.body ], [ 0, %entry ]
 | |
|   store i32 %i, i32* %p, align 4
 | |
|   %inc1 = or i32 %i, 1
 | |
|   %add.ptr.i1 = getelementptr inbounds i32* %p, i32 1
 | |
|   store i32 %inc1, i32* %add.ptr.i1, align 4
 | |
|   %inc2 = add nsw i32 %i, 2
 | |
|   %add.ptr.i2 = getelementptr inbounds i32* %p, i32 2
 | |
|   store i32 %inc2, i32* %add.ptr.i2, align 4
 | |
|   %inc3 = add nsw i32 %i, 3
 | |
|   %add.ptr.i3 = getelementptr inbounds i32* %p, i32 3
 | |
|   store i32 %inc3, i32* %add.ptr.i3, align 4
 | |
|   %p.next = getelementptr inbounds i32* %p, i32 4
 | |
|   %inc4 = add nsw i32 %i, 4
 | |
|   %cmp = icmp slt i32 %inc4, %n
 | |
|   br i1 %cmp, label %for.body, label %exit
 | |
| 
 | |
| exit:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; @testCmpZero has a ICmpZero LSR use that should not be hidden from
 | |
| ; LSR. Profitable chains should have more than one nonzero increment
 | |
| ; anyway.
 | |
| ;
 | |
| ; X32: @testCmpZero
 | |
| ; X32: %for.body82.us
 | |
| ; X32: dec
 | |
| ; X32: jne
 | |
| define void @testCmpZero(i8* %src, i8* %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp {
 | |
| entry:
 | |
|   %dest0 = getelementptr inbounds i8* %src, i32 %srcidx
 | |
|   %source0 = getelementptr inbounds i8* %dst, i32 %dstidx
 | |
|   %add.ptr79.us.sum = add i32 %srcidx, %len
 | |
|   %lftr.limit = getelementptr i8* %src, i32 %add.ptr79.us.sum
 | |
|   br label %for.body82.us
 | |
| 
 | |
| for.body82.us:
 | |
|   %dest = phi i8* [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ]
 | |
|   %source = phi i8* [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ]
 | |
|   %0 = bitcast i8* %source to i32*
 | |
|   %1 = load i32* %0, align 4
 | |
|   %trunc = trunc i32 %1 to i8
 | |
|   %add.ptr83.us = getelementptr inbounds i8* %source, i32 4
 | |
|   %incdec.ptr91.us = getelementptr inbounds i8* %dest, i32 1
 | |
|   store i8 %trunc, i8* %dest, align 1
 | |
|   %exitcond = icmp eq i8* %incdec.ptr91.us, %lftr.limit
 | |
|   br i1 %exitcond, label %return, label %for.body82.us
 | |
| 
 | |
| return:
 | |
|   ret void
 | |
| }
 |