forked from OSchip/llvm-project
![]() Previously the type dumper itself was passed around to a lot of different places and manipulated in ways that were more appropriate on the type database. For example, the entire TypeDumper was passed into the symbol dumper, when all the symbol dumper wanted to do was lookup the name of a TypeIndex so it could print it. That's what the TypeDatabase is for -- mapping type indices to names. Another example is how if the user runs llvm-pdbdump with the option to dump symbols but not types, we still have to visit all types so that we can print minimal information about the type of a symbol, but just without dumping full symbol records. The way we did this before is by hacking it up so that we run everything through the type dumper with a null printer, so that the output goes to /dev/null. But really, we don't need to dump anything, all we want to do is build the type database. Since TypeDatabaseVisitor now exists independently of TypeDumper, we can do this. We just build a custom visitor callback pipeline that includes a database visitor but not a dumper. All the hackery around printers etc goes away. After this patch, we could probably even delete the entire CVTypeDumper class since really all it is at this point is a thin wrapper that hides the details of how to build a useful visitation pipeline. It's not a priority though, so CVTypeDumper remains for now. After this patch we will be able to easily plug in a different style of type dumper by only implementing the proper visitation methods to dump one-line output and then sticking it on the pipeline. Differential Revision: https://reviews.llvm.org/D28524 llvm-svn: 291724 |
||
---|---|---|
.. | ||
AsmPrinter | ||
GlobalISel | ||
MIRParser | ||
SelectionDAG | ||
AggressiveAntiDepBreaker.cpp | ||
AggressiveAntiDepBreaker.h | ||
AllocationOrder.cpp | ||
AllocationOrder.h | ||
Analysis.cpp | ||
AntiDepBreaker.h | ||
AtomicExpandPass.cpp | ||
BasicTargetTransformInfo.cpp | ||
BranchFolding.cpp | ||
BranchFolding.h | ||
BranchRelaxation.cpp | ||
BuiltinGCs.cpp | ||
CMakeLists.txt | ||
CalcSpillWeights.cpp | ||
CallingConvLower.cpp | ||
CodeGen.cpp | ||
CodeGenPrepare.cpp | ||
CountingFunctionInserter.cpp | ||
CriticalAntiDepBreaker.cpp | ||
CriticalAntiDepBreaker.h | ||
DFAPacketizer.cpp | ||
DeadMachineInstructionElim.cpp | ||
DetectDeadLanes.cpp | ||
DwarfEHPrepare.cpp | ||
EarlyIfConversion.cpp | ||
EdgeBundles.cpp | ||
ExecutionDepsFix.cpp | ||
ExpandISelPseudos.cpp | ||
ExpandPostRAPseudos.cpp | ||
FaultMaps.cpp | ||
FuncletLayout.cpp | ||
GCMetadata.cpp | ||
GCMetadataPrinter.cpp | ||
GCRootLowering.cpp | ||
GCStrategy.cpp | ||
GlobalMerge.cpp | ||
IfConversion.cpp | ||
ImplicitNullChecks.cpp | ||
InlineSpiller.cpp | ||
InterferenceCache.cpp | ||
InterferenceCache.h | ||
InterleavedAccessPass.cpp | ||
IntrinsicLowering.cpp | ||
LLVMBuild.txt | ||
LLVMTargetMachine.cpp | ||
LatencyPriorityQueue.cpp | ||
LexicalScopes.cpp | ||
LiveDebugValues.cpp | ||
LiveDebugVariables.cpp | ||
LiveDebugVariables.h | ||
LiveInterval.cpp | ||
LiveIntervalAnalysis.cpp | ||
LiveIntervalUnion.cpp | ||
LivePhysRegs.cpp | ||
LiveRangeCalc.cpp | ||
LiveRangeCalc.h | ||
LiveRangeEdit.cpp | ||
LiveRangeUtils.h | ||
LiveRegMatrix.cpp | ||
LiveStackAnalysis.cpp | ||
LiveVariables.cpp | ||
LocalStackSlotAllocation.cpp | ||
LowLevelType.cpp | ||
LowerEmuTLS.cpp | ||
MIRPrinter.cpp | ||
MIRPrinter.h | ||
MIRPrintingPass.cpp | ||
MachineBasicBlock.cpp | ||
MachineBlockFrequencyInfo.cpp | ||
MachineBlockPlacement.cpp | ||
MachineBranchProbabilityInfo.cpp | ||
MachineCSE.cpp | ||
MachineCombiner.cpp | ||
MachineCopyPropagation.cpp | ||
MachineDominanceFrontier.cpp | ||
MachineDominators.cpp | ||
MachineFunction.cpp | ||
MachineFunctionPass.cpp | ||
MachineFunctionPrinterPass.cpp | ||
MachineInstr.cpp | ||
MachineInstrBundle.cpp | ||
MachineLICM.cpp | ||
MachineLoopInfo.cpp | ||
MachineModuleInfo.cpp | ||
MachineModuleInfoImpls.cpp | ||
MachinePassRegistry.cpp | ||
MachinePipeliner.cpp | ||
MachinePostDominators.cpp | ||
MachineRegionInfo.cpp | ||
MachineRegisterInfo.cpp | ||
MachineSSAUpdater.cpp | ||
MachineScheduler.cpp | ||
MachineSink.cpp | ||
MachineTraceMetrics.cpp | ||
MachineVerifier.cpp | ||
OptimizePHIs.cpp | ||
PHIElimination.cpp | ||
PHIEliminationUtils.cpp | ||
PHIEliminationUtils.h | ||
ParallelCG.cpp | ||
PatchableFunction.cpp | ||
PeepholeOptimizer.cpp | ||
PostRAHazardRecognizer.cpp | ||
PostRASchedulerList.cpp | ||
PreISelIntrinsicLowering.cpp | ||
ProcessImplicitDefs.cpp | ||
PrologEpilogInserter.cpp | ||
PseudoSourceValue.cpp | ||
README.txt | ||
RegAllocBase.cpp | ||
RegAllocBase.h | ||
RegAllocBasic.cpp | ||
RegAllocFast.cpp | ||
RegAllocGreedy.cpp | ||
RegAllocPBQP.cpp | ||
RegUsageInfoCollector.cpp | ||
RegUsageInfoPropagate.cpp | ||
RegisterClassInfo.cpp | ||
RegisterCoalescer.cpp | ||
RegisterCoalescer.h | ||
RegisterPressure.cpp | ||
RegisterScavenging.cpp | ||
RegisterUsageInfo.cpp | ||
RenameIndependentSubregs.cpp | ||
ResetMachineFunctionPass.cpp | ||
SafeStack.cpp | ||
SafeStackColoring.cpp | ||
SafeStackColoring.h | ||
SafeStackLayout.cpp | ||
SafeStackLayout.h | ||
ScheduleDAG.cpp | ||
ScheduleDAGInstrs.cpp | ||
ScheduleDAGPrinter.cpp | ||
ScoreboardHazardRecognizer.cpp | ||
ShadowStackGCLowering.cpp | ||
ShrinkWrap.cpp | ||
SjLjEHPrepare.cpp | ||
SlotIndexes.cpp | ||
SpillPlacement.cpp | ||
SpillPlacement.h | ||
Spiller.h | ||
SplitKit.cpp | ||
SplitKit.h | ||
StackColoring.cpp | ||
StackMapLivenessAnalysis.cpp | ||
StackMaps.cpp | ||
StackProtector.cpp | ||
StackSlotColoring.cpp | ||
TailDuplication.cpp | ||
TailDuplicator.cpp | ||
TargetFrameLoweringImpl.cpp | ||
TargetInstrInfo.cpp | ||
TargetLoweringBase.cpp | ||
TargetLoweringObjectFileImpl.cpp | ||
TargetOptionsImpl.cpp | ||
TargetPassConfig.cpp | ||
TargetRegisterInfo.cpp | ||
TargetSchedule.cpp | ||
TargetSubtargetInfo.cpp | ||
TwoAddressInstructionPass.cpp | ||
UnreachableBlockElim.cpp | ||
VirtRegMap.cpp | ||
WinEHPrepare.cpp | ||
XRayInstrumentation.cpp |
README.txt
//===---------------------------------------------------------------------===// Common register allocation / spilling problem: mul lr, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 ldr r4, [sp, #+52] mla r4, r3, lr, r4 can be: mul lr, r4, lr mov r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 and then "merge" mul and mov: mul r4, r4, lr str r4, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 It also increase the likelihood the store may become dead. //===---------------------------------------------------------------------===// bb27 ... ... %reg1037 = ADDri %reg1039, 1 %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10 Successors according to CFG: 0x8b03bf0 (#5) bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5): Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4) %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0> Note ADDri is not a two-address instruction. However, its result %reg1037 is an operand of the PHI node in bb76 and its operand %reg1039 is the result of the PHI node. We should treat it as a two-address code and make sure the ADDri is scheduled after any node that reads %reg1039. //===---------------------------------------------------------------------===// Use local info (i.e. register scavenger) to assign it a free register to allow reuse: ldr r3, [sp, #+4] add r3, r3, #3 ldr r2, [sp, #+8] add r2, r2, #2 ldr r1, [sp, #+4] <== add r1, r1, #1 ldr r0, [sp, #+4] add r0, r0, #2 //===---------------------------------------------------------------------===// LLVM aggressively lift CSE out of loop. Sometimes this can be negative side- effects: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: load [i + R1] ... load [i + R2] ... load [i + R3] Suppose there is high register pressure, R1, R2, R3, can be spilled. We need to implement proper re-materialization to handle this: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: R1 = X + 4 @ re-materialized load [i + R1] ... R2 = X + 7 @ re-materialized load [i + R2] ... R3 = X + 15 @ re-materialized load [i + R3] Furthermore, with re-association, we can enable sharing: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: T = i + X load [T + 4] ... load [T + 7] ... load [T + 15] //===---------------------------------------------------------------------===// It's not always a good idea to choose rematerialization over spilling. If all the load / store instructions would be folded then spilling is cheaper because it won't require new live intervals / registers. See 2003-05-31-LongShifts for an example. //===---------------------------------------------------------------------===// With a copying garbage collector, derived pointers must not be retained across collector safe points; the collector could move the objects and invalidate the derived pointer. This is bad enough in the first place, but safe points can crop up unpredictably. Consider: %array = load { i32, [0 x %obj] }** %array_addr %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n %old = load %obj** %nth_el %z = div i64 %x, %y store %obj* %new, %obj** %nth_el If the i64 division is lowered to a libcall, then a safe point will (must) appear for the call site. If a collection occurs, %array and %nth_el no longer point into the correct object. The fix for this is to copy address calculations so that dependent pointers are never live across safe point boundaries. But the loads cannot be copied like this if there was an intervening store, so may be hard to get right. Only a concurrent mutator can trigger a collection at the libcall safe point. So single-threaded programs do not have this requirement, even with a copying collector. Still, LLVM optimizations would probably undo a front-end's careful work. //===---------------------------------------------------------------------===// The ocaml frametable structure supports liveness information. It would be good to support it. //===---------------------------------------------------------------------===// The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be revisited. The check is there to work around a misuse of directives in inline assembly. //===---------------------------------------------------------------------===// It would be good to detect collector/target compatibility instead of silently doing the wrong thing. //===---------------------------------------------------------------------===// It would be really nice to be able to write patterns in .td files for copies, which would eliminate a bunch of explicit predicates on them (e.g. no side effects). Once this is in place, it would be even better to have tblgen synthesize the various copy insertion/inspection methods in TargetInstrInfo. //===---------------------------------------------------------------------===// Stack coloring improvements: 1. Do proper LiveStackAnalysis on all stack objects including those which are not spill slots. 2. Reorder objects to fill in gaps between objects. e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4 //===---------------------------------------------------------------------===// The scheduler should be able to sort nearby instructions by their address. For example, in an expanded memset sequence it's not uncommon to see code like this: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) Each of the stores is independent, and the scheduler is currently making an arbitrary decision about the order. //===---------------------------------------------------------------------===// Another opportunitiy in this code is that the $0 could be moved to a register: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) This would save substantial code size, especially for longer sequences like this. It would be easy to have a rule telling isel to avoid matching MOV32mi if the immediate has more than some fixed number of uses. It's more involved to teach the register allocator how to do late folding to recover from excessive register pressure.