forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2103 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2103 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the primary stateless implementation of the
 | 
						|
// Alias Analysis interface that implements identities (two different
 | 
						|
// globals cannot alias, etc), but does no stateful analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/PhiValues.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstdlib>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#define DEBUG_TYPE "basicaa"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Enable analysis of recursive PHI nodes.
 | 
						|
static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
 | 
						|
                                          cl::init(false));
 | 
						|
 | 
						|
/// By default, even on 32-bit architectures we use 64-bit integers for
 | 
						|
/// calculations. This will allow us to more-aggressively decompose indexing
 | 
						|
/// expressions calculated using i64 values (e.g., long long in C) which is
 | 
						|
/// common enough to worry about.
 | 
						|
static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
 | 
						|
                                        cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
 | 
						|
                                    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
/// SearchLimitReached / SearchTimes shows how often the limit of
 | 
						|
/// to decompose GEPs is reached. It will affect the precision
 | 
						|
/// of basic alias analysis.
 | 
						|
STATISTIC(SearchLimitReached, "Number of times the limit to "
 | 
						|
                              "decompose GEPs is reached");
 | 
						|
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
 | 
						|
 | 
						|
/// Cutoff after which to stop analysing a set of phi nodes potentially involved
 | 
						|
/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
 | 
						|
/// careful with value equivalence. We use reachability to make sure a value
 | 
						|
/// cannot be involved in a cycle.
 | 
						|
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
 | 
						|
 | 
						|
// The max limit of the search depth in DecomposeGEPExpression() and
 | 
						|
// GetUnderlyingObject(), both functions need to use the same search
 | 
						|
// depth otherwise the algorithm in aliasGEP will assert.
 | 
						|
static const unsigned MaxLookupSearchDepth = 6;
 | 
						|
 | 
						|
bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
 | 
						|
                               FunctionAnalysisManager::Invalidator &Inv) {
 | 
						|
  // We don't care if this analysis itself is preserved, it has no state. But
 | 
						|
  // we need to check that the analyses it depends on have been. Note that we
 | 
						|
  // may be created without handles to some analyses and in that case don't
 | 
						|
  // depend on them.
 | 
						|
  if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
 | 
						|
      (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
 | 
						|
      (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
 | 
						|
      (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise this analysis result remains valid.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Useful predicates
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Returns true if the pointer is to a function-local object that never
 | 
						|
/// escapes from the function.
 | 
						|
static bool isNonEscapingLocalObject(
 | 
						|
    const Value *V,
 | 
						|
    SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
 | 
						|
  SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
 | 
						|
  if (IsCapturedCache) {
 | 
						|
    bool Inserted;
 | 
						|
    std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
 | 
						|
    if (!Inserted)
 | 
						|
      // Found cached result, return it!
 | 
						|
      return CacheIt->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a local allocation, check to see if it escapes.
 | 
						|
  if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
 | 
						|
    // Set StoreCaptures to True so that we can assume in our callers that the
 | 
						|
    // pointer is not the result of a load instruction. Currently
 | 
						|
    // PointerMayBeCaptured doesn't have any special analysis for the
 | 
						|
    // StoreCaptures=false case; if it did, our callers could be refined to be
 | 
						|
    // more precise.
 | 
						|
    auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
    if (IsCapturedCache)
 | 
						|
      CacheIt->second = Ret;
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is an argument that corresponds to a byval or noalias argument,
 | 
						|
  // then it has not escaped before entering the function.  Check if it escapes
 | 
						|
  // inside the function.
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
 | 
						|
      // Note even if the argument is marked nocapture, we still need to check
 | 
						|
      // for copies made inside the function. The nocapture attribute only
 | 
						|
      // specifies that there are no copies made that outlive the function.
 | 
						|
      auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
      if (IsCapturedCache)
 | 
						|
        CacheIt->second = Ret;
 | 
						|
      return Ret;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the pointer is one which would have been considered an
 | 
						|
/// escape by isNonEscapingLocalObject.
 | 
						|
static bool isEscapeSource(const Value *V) {
 | 
						|
  if (isa<CallBase>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (isa<Argument>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The load case works because isNonEscapingLocalObject considers all
 | 
						|
  // stores to be escapes (it passes true for the StoreCaptures argument
 | 
						|
  // to PointerMayBeCaptured).
 | 
						|
  if (isa<LoadInst>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the size of the object specified by V or UnknownSize if unknown.
 | 
						|
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
 | 
						|
                              const TargetLibraryInfo &TLI,
 | 
						|
                              bool NullIsValidLoc,
 | 
						|
                              bool RoundToAlign = false) {
 | 
						|
  uint64_t Size;
 | 
						|
  ObjectSizeOpts Opts;
 | 
						|
  Opts.RoundToAlign = RoundToAlign;
 | 
						|
  Opts.NullIsUnknownSize = NullIsValidLoc;
 | 
						|
  if (getObjectSize(V, Size, DL, &TLI, Opts))
 | 
						|
    return Size;
 | 
						|
  return MemoryLocation::UnknownSize;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we can prove that the object specified by V is smaller than
 | 
						|
/// Size.
 | 
						|
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
 | 
						|
                                const DataLayout &DL,
 | 
						|
                                const TargetLibraryInfo &TLI,
 | 
						|
                                bool NullIsValidLoc) {
 | 
						|
  // Note that the meanings of the "object" are slightly different in the
 | 
						|
  // following contexts:
 | 
						|
  //    c1: llvm::getObjectSize()
 | 
						|
  //    c2: llvm.objectsize() intrinsic
 | 
						|
  //    c3: isObjectSmallerThan()
 | 
						|
  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
 | 
						|
  // refers to the "entire object".
 | 
						|
  //
 | 
						|
  //  Consider this example:
 | 
						|
  //     char *p = (char*)malloc(100)
 | 
						|
  //     char *q = p+80;
 | 
						|
  //
 | 
						|
  //  In the context of c1 and c2, the "object" pointed by q refers to the
 | 
						|
  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
 | 
						|
  //
 | 
						|
  //  However, in the context of c3, the "object" refers to the chunk of memory
 | 
						|
  // being allocated. So, the "object" has 100 bytes, and q points to the middle
 | 
						|
  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
 | 
						|
  // parameter, before the llvm::getObjectSize() is called to get the size of
 | 
						|
  // entire object, we should:
 | 
						|
  //    - either rewind the pointer q to the base-address of the object in
 | 
						|
  //      question (in this case rewind to p), or
 | 
						|
  //    - just give up. It is up to caller to make sure the pointer is pointing
 | 
						|
  //      to the base address the object.
 | 
						|
  //
 | 
						|
  // We go for 2nd option for simplicity.
 | 
						|
  if (!isIdentifiedObject(V))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This function needs to use the aligned object size because we allow
 | 
						|
  // reads a bit past the end given sufficient alignment.
 | 
						|
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
 | 
						|
                                      /*RoundToAlign*/ true);
 | 
						|
 | 
						|
  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the minimal extent from \p V to the end of the underlying object,
 | 
						|
/// assuming the result is used in an aliasing query. E.g., we do use the query
 | 
						|
/// location size and the fact that null pointers cannot alias here.
 | 
						|
static uint64_t getMinimalExtentFrom(const Value &V,
 | 
						|
                                     const LocationSize &LocSize,
 | 
						|
                                     const DataLayout &DL,
 | 
						|
                                     bool NullIsValidLoc) {
 | 
						|
  // If we have dereferenceability information we know a lower bound for the
 | 
						|
  // extent as accesses for a lower offset would be valid. We need to exclude
 | 
						|
  // the "or null" part if null is a valid pointer.
 | 
						|
  bool CanBeNull;
 | 
						|
  uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
 | 
						|
  DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
 | 
						|
  // If queried with a precise location size, we assume that location size to be
 | 
						|
  // accessed, thus valid.
 | 
						|
  if (LocSize.isPrecise())
 | 
						|
    DerefBytes = std::max(DerefBytes, LocSize.getValue());
 | 
						|
  return DerefBytes;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we can prove that the object specified by V has size Size.
 | 
						|
static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
 | 
						|
                         const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
 | 
						|
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
 | 
						|
  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// GetElementPtr Instruction Decomposition and Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Analyzes the specified value as a linear expression: "A*V + B", where A and
 | 
						|
/// B are constant integers.
 | 
						|
///
 | 
						|
/// Returns the scale and offset values as APInts and return V as a Value*, and
 | 
						|
/// return whether we looked through any sign or zero extends.  The incoming
 | 
						|
/// Value is known to have IntegerType, and it may already be sign or zero
 | 
						|
/// extended.
 | 
						|
///
 | 
						|
/// Note that this looks through extends, so the high bits may not be
 | 
						|
/// represented in the result.
 | 
						|
/*static*/ const Value *BasicAAResult::GetLinearExpression(
 | 
						|
    const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
 | 
						|
    unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
 | 
						|
    AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
 | 
						|
  assert(V->getType()->isIntegerTy() && "Not an integer value");
 | 
						|
 | 
						|
  // Limit our recursion depth.
 | 
						|
  if (Depth == 6) {
 | 
						|
    Scale = 1;
 | 
						|
    Offset = 0;
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
 | 
						|
    // If it's a constant, just convert it to an offset and remove the variable.
 | 
						|
    // If we've been called recursively, the Offset bit width will be greater
 | 
						|
    // than the constant's (the Offset's always as wide as the outermost call),
 | 
						|
    // so we'll zext here and process any extension in the isa<SExtInst> &
 | 
						|
    // isa<ZExtInst> cases below.
 | 
						|
    Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
 | 
						|
    assert(Scale == 0 && "Constant values don't have a scale");
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
 | 
						|
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
 | 
						|
      // If we've been called recursively, then Offset and Scale will be wider
 | 
						|
      // than the BOp operands. We'll always zext it here as we'll process sign
 | 
						|
      // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
 | 
						|
      APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
 | 
						|
 | 
						|
      switch (BOp->getOpcode()) {
 | 
						|
      default:
 | 
						|
        // We don't understand this instruction, so we can't decompose it any
 | 
						|
        // further.
 | 
						|
        Scale = 1;
 | 
						|
        Offset = 0;
 | 
						|
        return V;
 | 
						|
      case Instruction::Or:
 | 
						|
        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
 | 
						|
        // analyze it.
 | 
						|
        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
 | 
						|
                               BOp, DT)) {
 | 
						|
          Scale = 1;
 | 
						|
          Offset = 0;
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
        LLVM_FALLTHROUGH;
 | 
						|
      case Instruction::Add:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | 
						|
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | 
						|
        Offset += RHS;
 | 
						|
        break;
 | 
						|
      case Instruction::Sub:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | 
						|
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | 
						|
        Offset -= RHS;
 | 
						|
        break;
 | 
						|
      case Instruction::Mul:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | 
						|
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | 
						|
        Offset *= RHS;
 | 
						|
        Scale *= RHS;
 | 
						|
        break;
 | 
						|
      case Instruction::Shl:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | 
						|
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | 
						|
 | 
						|
        // We're trying to linearize an expression of the kind:
 | 
						|
        //   shl i8 -128, 36
 | 
						|
        // where the shift count exceeds the bitwidth of the type.
 | 
						|
        // We can't decompose this further (the expression would return
 | 
						|
        // a poison value).
 | 
						|
        if (Offset.getBitWidth() < RHS.getLimitedValue() ||
 | 
						|
            Scale.getBitWidth() < RHS.getLimitedValue()) {
 | 
						|
          Scale = 1;
 | 
						|
          Offset = 0;
 | 
						|
          return V;
 | 
						|
        }
 | 
						|
 | 
						|
        Offset <<= RHS.getLimitedValue();
 | 
						|
        Scale <<= RHS.getLimitedValue();
 | 
						|
        // the semantics of nsw and nuw for left shifts don't match those of
 | 
						|
        // multiplications, so we won't propagate them.
 | 
						|
        NSW = NUW = false;
 | 
						|
        return V;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<OverflowingBinaryOperator>(BOp)) {
 | 
						|
        NUW &= BOp->hasNoUnsignedWrap();
 | 
						|
        NSW &= BOp->hasNoSignedWrap();
 | 
						|
      }
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Since GEP indices are sign extended anyway, we don't care about the high
 | 
						|
  // bits of a sign or zero extended value - just scales and offsets.  The
 | 
						|
  // extensions have to be consistent though.
 | 
						|
  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
 | 
						|
    Value *CastOp = cast<CastInst>(V)->getOperand(0);
 | 
						|
    unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
 | 
						|
    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
 | 
						|
    unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
 | 
						|
    const Value *Result =
 | 
						|
        GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
 | 
						|
                            Depth + 1, AC, DT, NSW, NUW);
 | 
						|
 | 
						|
    // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
 | 
						|
    // by just incrementing the number of bits we've extended by.
 | 
						|
    unsigned ExtendedBy = NewWidth - SmallWidth;
 | 
						|
 | 
						|
    if (isa<SExtInst>(V) && ZExtBits == 0) {
 | 
						|
      // sext(sext(%x, a), b) == sext(%x, a + b)
 | 
						|
 | 
						|
      if (NSW) {
 | 
						|
        // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
 | 
						|
        // into sext(%x) + sext(c). We'll sext the Offset ourselves:
 | 
						|
        unsigned OldWidth = Offset.getBitWidth();
 | 
						|
        Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
 | 
						|
      } else {
 | 
						|
        // We may have signed-wrapped, so don't decompose sext(%x + c) into
 | 
						|
        // sext(%x) + sext(c)
 | 
						|
        Scale = 1;
 | 
						|
        Offset = 0;
 | 
						|
        Result = CastOp;
 | 
						|
        ZExtBits = OldZExtBits;
 | 
						|
        SExtBits = OldSExtBits;
 | 
						|
      }
 | 
						|
      SExtBits += ExtendedBy;
 | 
						|
    } else {
 | 
						|
      // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
 | 
						|
 | 
						|
      if (!NUW) {
 | 
						|
        // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
 | 
						|
        // zext(%x) + zext(c)
 | 
						|
        Scale = 1;
 | 
						|
        Offset = 0;
 | 
						|
        Result = CastOp;
 | 
						|
        ZExtBits = OldZExtBits;
 | 
						|
        SExtBits = OldSExtBits;
 | 
						|
      }
 | 
						|
      ZExtBits += ExtendedBy;
 | 
						|
    }
 | 
						|
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  Scale = 1;
 | 
						|
  Offset = 0;
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// To ensure a pointer offset fits in an integer of size PointerSize
 | 
						|
/// (in bits) when that size is smaller than the maximum pointer size. This is
 | 
						|
/// an issue, for example, in particular for 32b pointers with negative indices
 | 
						|
/// that rely on two's complement wrap-arounds for precise alias information
 | 
						|
/// where the maximum pointer size is 64b.
 | 
						|
static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
 | 
						|
  assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
 | 
						|
  unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
 | 
						|
  return (Offset << ShiftBits).ashr(ShiftBits);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getMaxPointerSize(const DataLayout &DL) {
 | 
						|
  unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
 | 
						|
  if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
 | 
						|
  if (DoubleCalcBits) MaxPointerSize *= 2;
 | 
						|
 | 
						|
  return MaxPointerSize;
 | 
						|
}
 | 
						|
 | 
						|
/// If V is a symbolic pointer expression, decompose it into a base pointer
 | 
						|
/// with a constant offset and a number of scaled symbolic offsets.
 | 
						|
///
 | 
						|
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
 | 
						|
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
 | 
						|
/// specified amount, but which may have other unrepresented high bits. As
 | 
						|
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
 | 
						|
///
 | 
						|
/// When DataLayout is around, this function is capable of analyzing everything
 | 
						|
/// that GetUnderlyingObject can look through. To be able to do that
 | 
						|
/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
 | 
						|
/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
 | 
						|
/// through pointer casts.
 | 
						|
bool BasicAAResult::DecomposeGEPExpression(const Value *V,
 | 
						|
       DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
 | 
						|
       DominatorTree *DT) {
 | 
						|
  // Limit recursion depth to limit compile time in crazy cases.
 | 
						|
  unsigned MaxLookup = MaxLookupSearchDepth;
 | 
						|
  SearchTimes++;
 | 
						|
 | 
						|
  unsigned MaxPointerSize = getMaxPointerSize(DL);
 | 
						|
  Decomposed.VarIndices.clear();
 | 
						|
  do {
 | 
						|
    // See if this is a bitcast or GEP.
 | 
						|
    const Operator *Op = dyn_cast<Operator>(V);
 | 
						|
    if (!Op) {
 | 
						|
      // The only non-operator case we can handle are GlobalAliases.
 | 
						|
      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | 
						|
        if (!GA->isInterposable()) {
 | 
						|
          V = GA->getAliasee();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Decomposed.Base = V;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Op->getOpcode() == Instruction::BitCast ||
 | 
						|
        Op->getOpcode() == Instruction::AddrSpaceCast) {
 | 
						|
      V = Op->getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
 | 
						|
    if (!GEPOp) {
 | 
						|
      if (const auto *Call = dyn_cast<CallBase>(V)) {
 | 
						|
        // CaptureTracking can know about special capturing properties of some
 | 
						|
        // intrinsics like launder.invariant.group, that can't be expressed with
 | 
						|
        // the attributes, but have properties like returning aliasing pointer.
 | 
						|
        // Because some analysis may assume that nocaptured pointer is not
 | 
						|
        // returned from some special intrinsic (because function would have to
 | 
						|
        // be marked with returns attribute), it is crucial to use this function
 | 
						|
        // because it should be in sync with CaptureTracking. Not using it may
 | 
						|
        // cause weird miscompilations where 2 aliasing pointers are assumed to
 | 
						|
        // noalias.
 | 
						|
        if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
 | 
						|
          V = RP;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
 | 
						|
      // can come up with something. This matches what GetUnderlyingObject does.
 | 
						|
      if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        // TODO: Get a DominatorTree and AssumptionCache and use them here
 | 
						|
        // (these are both now available in this function, but this should be
 | 
						|
        // updated when GetUnderlyingObject is updated). TLI should be
 | 
						|
        // provided also.
 | 
						|
        if (const Value *Simplified =
 | 
						|
                SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
 | 
						|
          V = Simplified;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      Decomposed.Base = V;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't attempt to analyze GEPs over unsized objects.
 | 
						|
    if (!GEPOp->getSourceElementType()->isSized()) {
 | 
						|
      Decomposed.Base = V;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned AS = GEPOp->getPointerAddressSpace();
 | 
						|
    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
 | 
						|
    gep_type_iterator GTI = gep_type_begin(GEPOp);
 | 
						|
    unsigned PointerSize = DL.getPointerSizeInBits(AS);
 | 
						|
    // Assume all GEP operands are constants until proven otherwise.
 | 
						|
    bool GepHasConstantOffset = true;
 | 
						|
    for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
 | 
						|
         I != E; ++I, ++GTI) {
 | 
						|
      const Value *Index = *I;
 | 
						|
      // Compute the (potentially symbolic) offset in bytes for this index.
 | 
						|
      if (StructType *STy = GTI.getStructTypeOrNull()) {
 | 
						|
        // For a struct, add the member offset.
 | 
						|
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | 
						|
        if (FieldNo == 0)
 | 
						|
          continue;
 | 
						|
 | 
						|
        Decomposed.StructOffset +=
 | 
						|
          DL.getStructLayout(STy)->getElementOffset(FieldNo);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // For an array/pointer, add the element offset, explicitly scaled.
 | 
						|
      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
 | 
						|
        if (CIdx->isZero())
 | 
						|
          continue;
 | 
						|
        Decomposed.OtherOffset +=
 | 
						|
          (DL.getTypeAllocSize(GTI.getIndexedType()) *
 | 
						|
            CIdx->getValue().sextOrSelf(MaxPointerSize))
 | 
						|
              .sextOrTrunc(MaxPointerSize);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      GepHasConstantOffset = false;
 | 
						|
 | 
						|
      APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType()));
 | 
						|
      unsigned ZExtBits = 0, SExtBits = 0;
 | 
						|
 | 
						|
      // If the integer type is smaller than the pointer size, it is implicitly
 | 
						|
      // sign extended to pointer size.
 | 
						|
      unsigned Width = Index->getType()->getIntegerBitWidth();
 | 
						|
      if (PointerSize > Width)
 | 
						|
        SExtBits += PointerSize - Width;
 | 
						|
 | 
						|
      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
 | 
						|
      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
 | 
						|
      bool NSW = true, NUW = true;
 | 
						|
      const Value *OrigIndex = Index;
 | 
						|
      Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
 | 
						|
                                  SExtBits, DL, 0, AC, DT, NSW, NUW);
 | 
						|
 | 
						|
      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
 | 
						|
      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
 | 
						|
 | 
						|
      // It can be the case that, even through C1*V+C2 does not overflow for
 | 
						|
      // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
 | 
						|
      // decompose the expression in this way.
 | 
						|
      //
 | 
						|
      // FIXME: C1*Scale and the other operations in the decomposed
 | 
						|
      // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
 | 
						|
      // possibility.
 | 
						|
      APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
 | 
						|
                                 Scale.sext(MaxPointerSize*2);
 | 
						|
      if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
 | 
						|
        Index = OrigIndex;
 | 
						|
        IndexScale = 1;
 | 
						|
        IndexOffset = 0;
 | 
						|
 | 
						|
        ZExtBits = SExtBits = 0;
 | 
						|
        if (PointerSize > Width)
 | 
						|
          SExtBits += PointerSize - Width;
 | 
						|
      } else {
 | 
						|
        Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
 | 
						|
        Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
 | 
						|
      }
 | 
						|
 | 
						|
      // If we already had an occurrence of this index variable, merge this
 | 
						|
      // scale into it.  For example, we want to handle:
 | 
						|
      //   A[x][x] -> x*16 + x*4 -> x*20
 | 
						|
      // This also ensures that 'x' only appears in the index list once.
 | 
						|
      for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
 | 
						|
        if (Decomposed.VarIndices[i].V == Index &&
 | 
						|
            Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
 | 
						|
            Decomposed.VarIndices[i].SExtBits == SExtBits) {
 | 
						|
          Scale += Decomposed.VarIndices[i].Scale;
 | 
						|
          Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that we have a scale that makes sense for this target's
 | 
						|
      // pointer size.
 | 
						|
      Scale = adjustToPointerSize(Scale, PointerSize);
 | 
						|
 | 
						|
      if (!!Scale) {
 | 
						|
        VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
 | 
						|
        Decomposed.VarIndices.push_back(Entry);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Take care of wrap-arounds
 | 
						|
    if (GepHasConstantOffset) {
 | 
						|
      Decomposed.StructOffset =
 | 
						|
          adjustToPointerSize(Decomposed.StructOffset, PointerSize);
 | 
						|
      Decomposed.OtherOffset =
 | 
						|
          adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
 | 
						|
    }
 | 
						|
 | 
						|
    // Analyze the base pointer next.
 | 
						|
    V = GEPOp->getOperand(0);
 | 
						|
  } while (--MaxLookup);
 | 
						|
 | 
						|
  // If the chain of expressions is too deep, just return early.
 | 
						|
  Decomposed.Base = V;
 | 
						|
  SearchLimitReached++;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns whether the given pointer value points to memory that is local to
 | 
						|
/// the function, with global constants being considered local to all
 | 
						|
/// functions.
 | 
						|
bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
 | 
						|
                                           AAQueryInfo &AAQI, bool OrLocal) {
 | 
						|
  assert(Visited.empty() && "Visited must be cleared after use!");
 | 
						|
 | 
						|
  unsigned MaxLookup = 8;
 | 
						|
  SmallVector<const Value *, 16> Worklist;
 | 
						|
  Worklist.push_back(Loc.Ptr);
 | 
						|
  do {
 | 
						|
    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
 | 
						|
    if (!Visited.insert(V).second) {
 | 
						|
      Visited.clear();
 | 
						|
      return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
 | 
						|
    }
 | 
						|
 | 
						|
    // An alloca instruction defines local memory.
 | 
						|
    if (OrLocal && isa<AllocaInst>(V))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A global constant counts as local memory for our purposes.
 | 
						|
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | 
						|
      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
 | 
						|
      // global to be marked constant in some modules and non-constant in
 | 
						|
      // others.  GV may even be a declaration, not a definition.
 | 
						|
      if (!GV->isConstant()) {
 | 
						|
        Visited.clear();
 | 
						|
        return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If both select values point to local memory, then so does the select.
 | 
						|
    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
 | 
						|
      Worklist.push_back(SI->getTrueValue());
 | 
						|
      Worklist.push_back(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If all values incoming to a phi node point to local memory, then so does
 | 
						|
    // the phi.
 | 
						|
    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
      // Don't bother inspecting phi nodes with many operands.
 | 
						|
      if (PN->getNumIncomingValues() > MaxLookup) {
 | 
						|
        Visited.clear();
 | 
						|
        return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
 | 
						|
      }
 | 
						|
      for (Value *IncValue : PN->incoming_values())
 | 
						|
        Worklist.push_back(IncValue);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise be conservative.
 | 
						|
    Visited.clear();
 | 
						|
    return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
 | 
						|
  } while (!Worklist.empty() && --MaxLookup);
 | 
						|
 | 
						|
  Visited.clear();
 | 
						|
  return Worklist.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the behavior when calling the given call site.
 | 
						|
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
 | 
						|
  if (Call->doesNotAccessMemory())
 | 
						|
    // Can't do better than this.
 | 
						|
    return FMRB_DoesNotAccessMemory;
 | 
						|
 | 
						|
  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
 | 
						|
 | 
						|
  // If the callsite knows it only reads memory, don't return worse
 | 
						|
  // than that.
 | 
						|
  if (Call->onlyReadsMemory())
 | 
						|
    Min = FMRB_OnlyReadsMemory;
 | 
						|
  else if (Call->doesNotReadMemory())
 | 
						|
    Min = FMRB_OnlyWritesMemory;
 | 
						|
 | 
						|
  if (Call->onlyAccessesArgMemory())
 | 
						|
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
 | 
						|
  else if (Call->onlyAccessesInaccessibleMemory())
 | 
						|
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
 | 
						|
  else if (Call->onlyAccessesInaccessibleMemOrArgMem())
 | 
						|
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
 | 
						|
 | 
						|
  // If the call has operand bundles then aliasing attributes from the function
 | 
						|
  // it calls do not directly apply to the call.  This can be made more precise
 | 
						|
  // in the future.
 | 
						|
  if (!Call->hasOperandBundles())
 | 
						|
    if (const Function *F = Call->getCalledFunction())
 | 
						|
      Min =
 | 
						|
          FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
 | 
						|
 | 
						|
  return Min;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the behavior when calling the given function. For use when the call
 | 
						|
/// site is not known.
 | 
						|
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
 | 
						|
  // If the function declares it doesn't access memory, we can't do better.
 | 
						|
  if (F->doesNotAccessMemory())
 | 
						|
    return FMRB_DoesNotAccessMemory;
 | 
						|
 | 
						|
  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
 | 
						|
 | 
						|
  // If the function declares it only reads memory, go with that.
 | 
						|
  if (F->onlyReadsMemory())
 | 
						|
    Min = FMRB_OnlyReadsMemory;
 | 
						|
  else if (F->doesNotReadMemory())
 | 
						|
    Min = FMRB_OnlyWritesMemory;
 | 
						|
 | 
						|
  if (F->onlyAccessesArgMemory())
 | 
						|
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
 | 
						|
  else if (F->onlyAccessesInaccessibleMemory())
 | 
						|
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
 | 
						|
  else if (F->onlyAccessesInaccessibleMemOrArgMem())
 | 
						|
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
 | 
						|
 | 
						|
  return Min;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if this is a writeonly (i.e Mod only) parameter.
 | 
						|
static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
 | 
						|
                             const TargetLibraryInfo &TLI) {
 | 
						|
  if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can bound the aliasing properties of memset_pattern16 just as we can
 | 
						|
  // for memcpy/memset.  This is particularly important because the
 | 
						|
  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
 | 
						|
  // whenever possible.
 | 
						|
  // FIXME Consider handling this in InferFunctionAttr.cpp together with other
 | 
						|
  // attributes.
 | 
						|
  LibFunc F;
 | 
						|
  if (Call->getCalledFunction() &&
 | 
						|
      TLI.getLibFunc(*Call->getCalledFunction(), F) &&
 | 
						|
      F == LibFunc_memset_pattern16 && TLI.has(F))
 | 
						|
    if (ArgIdx == 0)
 | 
						|
      return true;
 | 
						|
 | 
						|
  // TODO: memset_pattern4, memset_pattern8
 | 
						|
  // TODO: _chk variants
 | 
						|
  // TODO: strcmp, strcpy
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
 | 
						|
                                           unsigned ArgIdx) {
 | 
						|
  // Checking for known builtin intrinsics and target library functions.
 | 
						|
  if (isWriteOnlyParam(Call, ArgIdx, TLI))
 | 
						|
    return ModRefInfo::Mod;
 | 
						|
 | 
						|
  if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
 | 
						|
    return ModRefInfo::Ref;
 | 
						|
 | 
						|
  if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
 | 
						|
    return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  return AAResultBase::getArgModRefInfo(Call, ArgIdx);
 | 
						|
}
 | 
						|
 | 
						|
static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
 | 
						|
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
 | 
						|
  return II && II->getIntrinsicID() == IID;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static const Function *getParent(const Value *V) {
 | 
						|
  if (const Instruction *inst = dyn_cast<Instruction>(V)) {
 | 
						|
    if (!inst->getParent())
 | 
						|
      return nullptr;
 | 
						|
    return inst->getParent()->getParent();
 | 
						|
  }
 | 
						|
 | 
						|
  if (const Argument *arg = dyn_cast<Argument>(V))
 | 
						|
    return arg->getParent();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool notDifferentParent(const Value *O1, const Value *O2) {
 | 
						|
 | 
						|
  const Function *F1 = getParent(O1);
 | 
						|
  const Function *F2 = getParent(O2);
 | 
						|
 | 
						|
  return !F1 || !F2 || F1 == F2;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
 | 
						|
                                 const MemoryLocation &LocB,
 | 
						|
                                 AAQueryInfo &AAQI) {
 | 
						|
  assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
 | 
						|
         "BasicAliasAnalysis doesn't support interprocedural queries.");
 | 
						|
 | 
						|
  // If we have a directly cached entry for these locations, we have recursed
 | 
						|
  // through this once, so just return the cached results. Notably, when this
 | 
						|
  // happens, we don't clear the cache.
 | 
						|
  auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
 | 
						|
  if (CacheIt != AAQI.AliasCache.end())
 | 
						|
    return CacheIt->second;
 | 
						|
 | 
						|
  CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
 | 
						|
  if (CacheIt != AAQI.AliasCache.end())
 | 
						|
    return CacheIt->second;
 | 
						|
 | 
						|
  AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
 | 
						|
                                 LocB.Size, LocB.AATags, AAQI);
 | 
						|
 | 
						|
  VisitedPhiBBs.clear();
 | 
						|
  return Alias;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks to see if the specified callsite can clobber the specified memory
 | 
						|
/// object.
 | 
						|
///
 | 
						|
/// Since we only look at local properties of this function, we really can't
 | 
						|
/// say much about this query.  We do, however, use simple "address taken"
 | 
						|
/// analysis on local objects.
 | 
						|
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
 | 
						|
                                        const MemoryLocation &Loc,
 | 
						|
                                        AAQueryInfo &AAQI) {
 | 
						|
  assert(notDifferentParent(Call, Loc.Ptr) &&
 | 
						|
         "AliasAnalysis query involving multiple functions!");
 | 
						|
 | 
						|
  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
 | 
						|
 | 
						|
  // Calls marked 'tail' cannot read or write allocas from the current frame
 | 
						|
  // because the current frame might be destroyed by the time they run. However,
 | 
						|
  // a tail call may use an alloca with byval. Calling with byval copies the
 | 
						|
  // contents of the alloca into argument registers or stack slots, so there is
 | 
						|
  // no lifetime issue.
 | 
						|
  if (isa<AllocaInst>(Object))
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(Call))
 | 
						|
      if (CI->isTailCall() &&
 | 
						|
          !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
 | 
						|
        return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  // Stack restore is able to modify unescaped dynamic allocas. Assume it may
 | 
						|
  // modify them even though the alloca is not escaped.
 | 
						|
  if (auto *AI = dyn_cast<AllocaInst>(Object))
 | 
						|
    if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
 | 
						|
      return ModRefInfo::Mod;
 | 
						|
 | 
						|
  // If the pointer is to a locally allocated object that does not escape,
 | 
						|
  // then the call can not mod/ref the pointer unless the call takes the pointer
 | 
						|
  // as an argument, and itself doesn't capture it.
 | 
						|
  if (!isa<Constant>(Object) && Call != Object &&
 | 
						|
      isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
 | 
						|
 | 
						|
    // Optimistically assume that call doesn't touch Object and check this
 | 
						|
    // assumption in the following loop.
 | 
						|
    ModRefInfo Result = ModRefInfo::NoModRef;
 | 
						|
    bool IsMustAlias = true;
 | 
						|
 | 
						|
    unsigned OperandNo = 0;
 | 
						|
    for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
 | 
						|
         CI != CE; ++CI, ++OperandNo) {
 | 
						|
      // Only look at the no-capture or byval pointer arguments.  If this
 | 
						|
      // pointer were passed to arguments that were neither of these, then it
 | 
						|
      // couldn't be no-capture.
 | 
						|
      if (!(*CI)->getType()->isPointerTy() ||
 | 
						|
          (!Call->doesNotCapture(OperandNo) &&
 | 
						|
           OperandNo < Call->getNumArgOperands() &&
 | 
						|
           !Call->isByValArgument(OperandNo)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Call doesn't access memory through this operand, so we don't care
 | 
						|
      // if it aliases with Object.
 | 
						|
      if (Call->doesNotAccessMemory(OperandNo))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If this is a no-capture pointer argument, see if we can tell that it
 | 
						|
      // is impossible to alias the pointer we're checking.
 | 
						|
      AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
 | 
						|
                                                MemoryLocation(Object), AAQI);
 | 
						|
      if (AR != MustAlias)
 | 
						|
        IsMustAlias = false;
 | 
						|
      // Operand doesn't alias 'Object', continue looking for other aliases
 | 
						|
      if (AR == NoAlias)
 | 
						|
        continue;
 | 
						|
      // Operand aliases 'Object', but call doesn't modify it. Strengthen
 | 
						|
      // initial assumption and keep looking in case if there are more aliases.
 | 
						|
      if (Call->onlyReadsMemory(OperandNo)) {
 | 
						|
        Result = setRef(Result);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Operand aliases 'Object' but call only writes into it.
 | 
						|
      if (Call->doesNotReadMemory(OperandNo)) {
 | 
						|
        Result = setMod(Result);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // This operand aliases 'Object' and call reads and writes into it.
 | 
						|
      // Setting ModRef will not yield an early return below, MustAlias is not
 | 
						|
      // used further.
 | 
						|
      Result = ModRefInfo::ModRef;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // No operand aliases, reset Must bit. Add below if at least one aliases
 | 
						|
    // and all aliases found are MustAlias.
 | 
						|
    if (isNoModRef(Result))
 | 
						|
      IsMustAlias = false;
 | 
						|
 | 
						|
    // Early return if we improved mod ref information
 | 
						|
    if (!isModAndRefSet(Result)) {
 | 
						|
      if (isNoModRef(Result))
 | 
						|
        return ModRefInfo::NoModRef;
 | 
						|
      return IsMustAlias ? setMust(Result) : clearMust(Result);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the call is to malloc or calloc, we can assume that it doesn't
 | 
						|
  // modify any IR visible value.  This is only valid because we assume these
 | 
						|
  // routines do not read values visible in the IR.  TODO: Consider special
 | 
						|
  // casing realloc and strdup routines which access only their arguments as
 | 
						|
  // well.  Or alternatively, replace all of this with inaccessiblememonly once
 | 
						|
  // that's implemented fully.
 | 
						|
  if (isMallocOrCallocLikeFn(Call, &TLI)) {
 | 
						|
    // Be conservative if the accessed pointer may alias the allocation -
 | 
						|
    // fallback to the generic handling below.
 | 
						|
    if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // The semantics of memcpy intrinsics forbid overlap between their respective
 | 
						|
  // operands, i.e., source and destination of any given memcpy must no-alias.
 | 
						|
  // If Loc must-aliases either one of these two locations, then it necessarily
 | 
						|
  // no-aliases the other.
 | 
						|
  if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
 | 
						|
    AliasResult SrcAA, DestAA;
 | 
						|
 | 
						|
    if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
 | 
						|
                                          Loc, AAQI)) == MustAlias)
 | 
						|
      // Loc is exactly the memcpy source thus disjoint from memcpy dest.
 | 
						|
      return ModRefInfo::Ref;
 | 
						|
    if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
 | 
						|
                                           Loc, AAQI)) == MustAlias)
 | 
						|
      // The converse case.
 | 
						|
      return ModRefInfo::Mod;
 | 
						|
 | 
						|
    // It's also possible for Loc to alias both src and dest, or neither.
 | 
						|
    ModRefInfo rv = ModRefInfo::NoModRef;
 | 
						|
    if (SrcAA != NoAlias)
 | 
						|
      rv = setRef(rv);
 | 
						|
    if (DestAA != NoAlias)
 | 
						|
      rv = setMod(rv);
 | 
						|
    return rv;
 | 
						|
  }
 | 
						|
 | 
						|
  // While the assume intrinsic is marked as arbitrarily writing so that
 | 
						|
  // proper control dependencies will be maintained, it never aliases any
 | 
						|
  // particular memory location.
 | 
						|
  if (isIntrinsicCall(Call, Intrinsic::assume))
 | 
						|
    return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
 | 
						|
  // that proper control dependencies are maintained but they never mods any
 | 
						|
  // particular memory location.
 | 
						|
  //
 | 
						|
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
 | 
						|
  // heap state at the point the guard is issued needs to be consistent in case
 | 
						|
  // the guard invokes the "deopt" continuation.
 | 
						|
  if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
 | 
						|
    return ModRefInfo::Ref;
 | 
						|
 | 
						|
  // Like assumes, invariant.start intrinsics were also marked as arbitrarily
 | 
						|
  // writing so that proper control dependencies are maintained but they never
 | 
						|
  // mod any particular memory location visible to the IR.
 | 
						|
  // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
 | 
						|
  // intrinsic is now modeled as reading memory. This prevents hoisting the
 | 
						|
  // invariant.start intrinsic over stores. Consider:
 | 
						|
  // *ptr = 40;
 | 
						|
  // *ptr = 50;
 | 
						|
  // invariant_start(ptr)
 | 
						|
  // int val = *ptr;
 | 
						|
  // print(val);
 | 
						|
  //
 | 
						|
  // This cannot be transformed to:
 | 
						|
  //
 | 
						|
  // *ptr = 40;
 | 
						|
  // invariant_start(ptr)
 | 
						|
  // *ptr = 50;
 | 
						|
  // int val = *ptr;
 | 
						|
  // print(val);
 | 
						|
  //
 | 
						|
  // The transformation will cause the second store to be ignored (based on
 | 
						|
  // rules of invariant.start)  and print 40, while the first program always
 | 
						|
  // prints 50.
 | 
						|
  if (isIntrinsicCall(Call, Intrinsic::invariant_start))
 | 
						|
    return ModRefInfo::Ref;
 | 
						|
 | 
						|
  // The AAResultBase base class has some smarts, lets use them.
 | 
						|
  return AAResultBase::getModRefInfo(Call, Loc, AAQI);
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
 | 
						|
                                        const CallBase *Call2,
 | 
						|
                                        AAQueryInfo &AAQI) {
 | 
						|
  // While the assume intrinsic is marked as arbitrarily writing so that
 | 
						|
  // proper control dependencies will be maintained, it never aliases any
 | 
						|
  // particular memory location.
 | 
						|
  if (isIntrinsicCall(Call1, Intrinsic::assume) ||
 | 
						|
      isIntrinsicCall(Call2, Intrinsic::assume))
 | 
						|
    return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
 | 
						|
  // that proper control dependencies are maintained but they never mod any
 | 
						|
  // particular memory location.
 | 
						|
  //
 | 
						|
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
 | 
						|
  // heap state at the point the guard is issued needs to be consistent in case
 | 
						|
  // the guard invokes the "deopt" continuation.
 | 
						|
 | 
						|
  // NB! This function is *not* commutative, so we special case two
 | 
						|
  // possibilities for guard intrinsics.
 | 
						|
 | 
						|
  if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
 | 
						|
    return isModSet(createModRefInfo(getModRefBehavior(Call2)))
 | 
						|
               ? ModRefInfo::Ref
 | 
						|
               : ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
 | 
						|
    return isModSet(createModRefInfo(getModRefBehavior(Call1)))
 | 
						|
               ? ModRefInfo::Mod
 | 
						|
               : ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  // The AAResultBase base class has some smarts, lets use them.
 | 
						|
  return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
 | 
						|
}
 | 
						|
 | 
						|
/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
 | 
						|
/// both having the exact same pointer operand.
 | 
						|
static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
 | 
						|
                                            LocationSize MaybeV1Size,
 | 
						|
                                            const GEPOperator *GEP2,
 | 
						|
                                            LocationSize MaybeV2Size,
 | 
						|
                                            const DataLayout &DL) {
 | 
						|
  assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
 | 
						|
             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
 | 
						|
         GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
 | 
						|
         "Expected GEPs with the same pointer operand");
 | 
						|
 | 
						|
  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
 | 
						|
  // such that the struct field accesses provably cannot alias.
 | 
						|
  // We also need at least two indices (the pointer, and the struct field).
 | 
						|
  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
 | 
						|
      GEP1->getNumIndices() < 2)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If we don't know the size of the accesses through both GEPs, we can't
 | 
						|
  // determine whether the struct fields accessed can't alias.
 | 
						|
  if (MaybeV1Size == LocationSize::unknown() ||
 | 
						|
      MaybeV2Size == LocationSize::unknown())
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  const uint64_t V1Size = MaybeV1Size.getValue();
 | 
						|
  const uint64_t V2Size = MaybeV2Size.getValue();
 | 
						|
 | 
						|
  ConstantInt *C1 =
 | 
						|
      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
 | 
						|
  ConstantInt *C2 =
 | 
						|
      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
 | 
						|
 | 
						|
  // If the last (struct) indices are constants and are equal, the other indices
 | 
						|
  // might be also be dynamically equal, so the GEPs can alias.
 | 
						|
  if (C1 && C2) {
 | 
						|
    unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
 | 
						|
    if (C1->getValue().sextOrSelf(BitWidth) ==
 | 
						|
        C2->getValue().sextOrSelf(BitWidth))
 | 
						|
      return MayAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the last-indexed type of the GEP, i.e., the type you'd get if
 | 
						|
  // you stripped the last index.
 | 
						|
  // On the way, look at each indexed type.  If there's something other
 | 
						|
  // than an array, different indices can lead to different final types.
 | 
						|
  SmallVector<Value *, 8> IntermediateIndices;
 | 
						|
 | 
						|
  // Insert the first index; we don't need to check the type indexed
 | 
						|
  // through it as it only drops the pointer indirection.
 | 
						|
  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
 | 
						|
  IntermediateIndices.push_back(GEP1->getOperand(1));
 | 
						|
 | 
						|
  // Insert all the remaining indices but the last one.
 | 
						|
  // Also, check that they all index through arrays.
 | 
						|
  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
 | 
						|
    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
 | 
						|
            GEP1->getSourceElementType(), IntermediateIndices)))
 | 
						|
      return MayAlias;
 | 
						|
    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
 | 
						|
  }
 | 
						|
 | 
						|
  auto *Ty = GetElementPtrInst::getIndexedType(
 | 
						|
    GEP1->getSourceElementType(), IntermediateIndices);
 | 
						|
  StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
 | 
						|
 | 
						|
  if (isa<SequentialType>(Ty)) {
 | 
						|
    // We know that:
 | 
						|
    // - both GEPs begin indexing from the exact same pointer;
 | 
						|
    // - the last indices in both GEPs are constants, indexing into a sequential
 | 
						|
    //   type (array or pointer);
 | 
						|
    // - both GEPs only index through arrays prior to that.
 | 
						|
    //
 | 
						|
    // Because array indices greater than the number of elements are valid in
 | 
						|
    // GEPs, unless we know the intermediate indices are identical between
 | 
						|
    // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
 | 
						|
    // partially overlap. We also need to check that the loaded size matches
 | 
						|
    // the element size, otherwise we could still have overlap.
 | 
						|
    const uint64_t ElementSize =
 | 
						|
        DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
 | 
						|
    if (V1Size != ElementSize || V2Size != ElementSize)
 | 
						|
      return MayAlias;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
 | 
						|
      if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
 | 
						|
        return MayAlias;
 | 
						|
 | 
						|
    // Now we know that the array/pointer that GEP1 indexes into and that
 | 
						|
    // that GEP2 indexes into must either precisely overlap or be disjoint.
 | 
						|
    // Because they cannot partially overlap and because fields in an array
 | 
						|
    // cannot overlap, if we can prove the final indices are different between
 | 
						|
    // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
 | 
						|
 | 
						|
    // If the last indices are constants, we've already checked they don't
 | 
						|
    // equal each other so we can exit early.
 | 
						|
    if (C1 && C2)
 | 
						|
      return NoAlias;
 | 
						|
    {
 | 
						|
      Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
 | 
						|
      Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
 | 
						|
      if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
 | 
						|
        // If one of the indices is a PHI node, be safe and only use
 | 
						|
        // computeKnownBits so we don't make any assumptions about the
 | 
						|
        // relationships between the two indices. This is important if we're
 | 
						|
        // asking about values from different loop iterations. See PR32314.
 | 
						|
        // TODO: We may be able to change the check so we only do this when
 | 
						|
        // we definitely looked through a PHINode.
 | 
						|
        if (GEP1LastIdx != GEP2LastIdx &&
 | 
						|
            GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
 | 
						|
          KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
 | 
						|
          KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
 | 
						|
          if (Known1.Zero.intersects(Known2.One) ||
 | 
						|
              Known1.One.intersects(Known2.Zero))
 | 
						|
            return NoAlias;
 | 
						|
        }
 | 
						|
      } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
 | 
						|
        return NoAlias;
 | 
						|
    }
 | 
						|
    return MayAlias;
 | 
						|
  } else if (!LastIndexedStruct || !C1 || !C2) {
 | 
						|
    return MayAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  if (C1->getValue().getActiveBits() > 64 ||
 | 
						|
      C2->getValue().getActiveBits() > 64)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // We know that:
 | 
						|
  // - both GEPs begin indexing from the exact same pointer;
 | 
						|
  // - the last indices in both GEPs are constants, indexing into a struct;
 | 
						|
  // - said indices are different, hence, the pointed-to fields are different;
 | 
						|
  // - both GEPs only index through arrays prior to that.
 | 
						|
  //
 | 
						|
  // This lets us determine that the struct that GEP1 indexes into and the
 | 
						|
  // struct that GEP2 indexes into must either precisely overlap or be
 | 
						|
  // completely disjoint.  Because they cannot partially overlap, indexing into
 | 
						|
  // different non-overlapping fields of the struct will never alias.
 | 
						|
 | 
						|
  // Therefore, the only remaining thing needed to show that both GEPs can't
 | 
						|
  // alias is that the fields are not overlapping.
 | 
						|
  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
 | 
						|
  const uint64_t StructSize = SL->getSizeInBytes();
 | 
						|
  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
 | 
						|
  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
 | 
						|
 | 
						|
  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
 | 
						|
                                      uint64_t V2Off, uint64_t V2Size) {
 | 
						|
    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
 | 
						|
           ((V2Off + V2Size <= StructSize) ||
 | 
						|
            (V2Off + V2Size - StructSize <= V1Off));
 | 
						|
  };
 | 
						|
 | 
						|
  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
 | 
						|
      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  return MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
 | 
						|
// beginning of the object the GEP points would have a negative offset with
 | 
						|
// repsect to the alloca, that means the GEP can not alias pointer (b).
 | 
						|
// Note that the pointer based on the alloca may not be a GEP. For
 | 
						|
// example, it may be the alloca itself.
 | 
						|
// The same applies if (b) is based on a GlobalVariable. Note that just being
 | 
						|
// based on isIdentifiedObject() is not enough - we need an identified object
 | 
						|
// that does not permit access to negative offsets. For example, a negative
 | 
						|
// offset from a noalias argument or call can be inbounds w.r.t the actual
 | 
						|
// underlying object.
 | 
						|
//
 | 
						|
// For example, consider:
 | 
						|
//
 | 
						|
//   struct { int f0, int f1, ...} foo;
 | 
						|
//   foo alloca;
 | 
						|
//   foo* random = bar(alloca);
 | 
						|
//   int *f0 = &alloca.f0
 | 
						|
//   int *f1 = &random->f1;
 | 
						|
//
 | 
						|
// Which is lowered, approximately, to:
 | 
						|
//
 | 
						|
//  %alloca = alloca %struct.foo
 | 
						|
//  %random = call %struct.foo* @random(%struct.foo* %alloca)
 | 
						|
//  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
 | 
						|
//  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
 | 
						|
//
 | 
						|
// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
 | 
						|
// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
 | 
						|
// point into the same object. But since %f0 points to the beginning of %alloca,
 | 
						|
// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
 | 
						|
// than (%alloca - 1), and so is not inbounds, a contradiction.
 | 
						|
bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
 | 
						|
      const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
 | 
						|
      LocationSize MaybeObjectAccessSize) {
 | 
						|
  // If the object access size is unknown, or the GEP isn't inbounds, bail.
 | 
						|
  if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
 | 
						|
 | 
						|
  // We need the object to be an alloca or a globalvariable, and want to know
 | 
						|
  // the offset of the pointer from the object precisely, so no variable
 | 
						|
  // indices are allowed.
 | 
						|
  if (!(isa<AllocaInst>(DecompObject.Base) ||
 | 
						|
        isa<GlobalVariable>(DecompObject.Base)) ||
 | 
						|
      !DecompObject.VarIndices.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  APInt ObjectBaseOffset = DecompObject.StructOffset +
 | 
						|
                           DecompObject.OtherOffset;
 | 
						|
 | 
						|
  // If the GEP has no variable indices, we know the precise offset
 | 
						|
  // from the base, then use it. If the GEP has variable indices,
 | 
						|
  // we can't get exact GEP offset to identify pointer alias. So return
 | 
						|
  // false in that case.
 | 
						|
  if (!DecompGEP.VarIndices.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  APInt GEPBaseOffset = DecompGEP.StructOffset;
 | 
						|
  GEPBaseOffset += DecompGEP.OtherOffset;
 | 
						|
 | 
						|
  return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
 | 
						|
}
 | 
						|
 | 
						|
/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
 | 
						|
/// another pointer.
 | 
						|
///
 | 
						|
/// We know that V1 is a GEP, but we don't know anything about V2.
 | 
						|
/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
 | 
						|
/// V2.
 | 
						|
AliasResult BasicAAResult::aliasGEP(
 | 
						|
    const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
 | 
						|
    const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
 | 
						|
    const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
 | 
						|
  DecomposedGEP DecompGEP1, DecompGEP2;
 | 
						|
  unsigned MaxPointerSize = getMaxPointerSize(DL);
 | 
						|
  DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
 | 
						|
  DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
 | 
						|
 | 
						|
  bool GEP1MaxLookupReached =
 | 
						|
    DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
 | 
						|
  bool GEP2MaxLookupReached =
 | 
						|
    DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
 | 
						|
 | 
						|
  APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
 | 
						|
  APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
 | 
						|
 | 
						|
  assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
 | 
						|
         "DecomposeGEPExpression returned a result different from "
 | 
						|
         "GetUnderlyingObject");
 | 
						|
 | 
						|
  // If the GEP's offset relative to its base is such that the base would
 | 
						|
  // fall below the start of the object underlying V2, then the GEP and V2
 | 
						|
  // cannot alias.
 | 
						|
  if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
 | 
						|
      isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
 | 
						|
    return NoAlias;
 | 
						|
  // If we have two gep instructions with must-alias or not-alias'ing base
 | 
						|
  // pointers, figure out if the indexes to the GEP tell us anything about the
 | 
						|
  // derived pointer.
 | 
						|
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
 | 
						|
    // Check for the GEP base being at a negative offset, this time in the other
 | 
						|
    // direction.
 | 
						|
    if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
 | 
						|
        isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
 | 
						|
      return NoAlias;
 | 
						|
    // Do the base pointers alias?
 | 
						|
    AliasResult BaseAlias =
 | 
						|
        aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
 | 
						|
                   UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
 | 
						|
 | 
						|
    // Check for geps of non-aliasing underlying pointers where the offsets are
 | 
						|
    // identical.
 | 
						|
    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
 | 
						|
      // Do the base pointers alias assuming type and size.
 | 
						|
      AliasResult PreciseBaseAlias = aliasCheck(
 | 
						|
          UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
 | 
						|
      if (PreciseBaseAlias == NoAlias) {
 | 
						|
        // See if the computed offset from the common pointer tells us about the
 | 
						|
        // relation of the resulting pointer.
 | 
						|
        // If the max search depth is reached the result is undefined
 | 
						|
        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
 | 
						|
          return MayAlias;
 | 
						|
 | 
						|
        // Same offsets.
 | 
						|
        if (GEP1BaseOffset == GEP2BaseOffset &&
 | 
						|
            DecompGEP1.VarIndices == DecompGEP2.VarIndices)
 | 
						|
          return NoAlias;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we get a No or May, then return it immediately, no amount of analysis
 | 
						|
    // will improve this situation.
 | 
						|
    if (BaseAlias != MustAlias) {
 | 
						|
      assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
 | 
						|
      return BaseAlias;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
 | 
						|
    // exactly, see if the computed offset from the common pointer tells us
 | 
						|
    // about the relation of the resulting pointer.
 | 
						|
    // If we know the two GEPs are based off of the exact same pointer (and not
 | 
						|
    // just the same underlying object), see if that tells us anything about
 | 
						|
    // the resulting pointers.
 | 
						|
    if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
 | 
						|
            GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
 | 
						|
        GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
 | 
						|
      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
 | 
						|
      // If we couldn't find anything interesting, don't abandon just yet.
 | 
						|
      if (R != MayAlias)
 | 
						|
        return R;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the max search depth is reached, the result is undefined
 | 
						|
    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
 | 
						|
      return MayAlias;
 | 
						|
 | 
						|
    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
 | 
						|
    // symbolic difference.
 | 
						|
    GEP1BaseOffset -= GEP2BaseOffset;
 | 
						|
    GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Check to see if these two pointers are related by the getelementptr
 | 
						|
    // instruction.  If one pointer is a GEP with a non-zero index of the other
 | 
						|
    // pointer, we know they cannot alias.
 | 
						|
 | 
						|
    // If both accesses are unknown size, we can't do anything useful here.
 | 
						|
    if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
 | 
						|
      return MayAlias;
 | 
						|
 | 
						|
    AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
 | 
						|
                               AAMDNodes(), V2, LocationSize::unknown(),
 | 
						|
                               V2AAInfo, AAQI, nullptr, UnderlyingV2);
 | 
						|
    if (R != MustAlias) {
 | 
						|
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
 | 
						|
      // If V2 is known not to alias GEP base pointer, then the two values
 | 
						|
      // cannot alias per GEP semantics: "Any memory access must be done through
 | 
						|
      // a pointer value associated with an address range of the memory access,
 | 
						|
      // otherwise the behavior is undefined.".
 | 
						|
      assert(R == NoAlias || R == MayAlias);
 | 
						|
      return R;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the max search depth is reached the result is undefined
 | 
						|
    if (GEP1MaxLookupReached)
 | 
						|
      return MayAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // In the two GEP Case, if there is no difference in the offsets of the
 | 
						|
  // computed pointers, the resultant pointers are a must alias.  This
 | 
						|
  // happens when we have two lexically identical GEP's (for example).
 | 
						|
  //
 | 
						|
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
 | 
						|
  // must aliases the GEP, the end result is a must alias also.
 | 
						|
  if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
 | 
						|
    return MustAlias;
 | 
						|
 | 
						|
  // If there is a constant difference between the pointers, but the difference
 | 
						|
  // is less than the size of the associated memory object, then we know
 | 
						|
  // that the objects are partially overlapping.  If the difference is
 | 
						|
  // greater, we know they do not overlap.
 | 
						|
  if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
 | 
						|
    if (GEP1BaseOffset.sge(0)) {
 | 
						|
      if (V2Size != LocationSize::unknown()) {
 | 
						|
        if (GEP1BaseOffset.ult(V2Size.getValue()))
 | 
						|
          return PartialAlias;
 | 
						|
        return NoAlias;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // We have the situation where:
 | 
						|
      // +                +
 | 
						|
      // | BaseOffset     |
 | 
						|
      // ---------------->|
 | 
						|
      // |-->V1Size       |-------> V2Size
 | 
						|
      // GEP1             V2
 | 
						|
      // We need to know that V2Size is not unknown, otherwise we might have
 | 
						|
      // stripped a gep with negative index ('gep <ptr>, -1, ...).
 | 
						|
      if (V1Size != LocationSize::unknown() &&
 | 
						|
          V2Size != LocationSize::unknown()) {
 | 
						|
        if ((-GEP1BaseOffset).ult(V1Size.getValue()))
 | 
						|
          return PartialAlias;
 | 
						|
        return NoAlias;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DecompGEP1.VarIndices.empty()) {
 | 
						|
    APInt Modulo(MaxPointerSize, 0);
 | 
						|
    bool AllPositive = true;
 | 
						|
    for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
 | 
						|
 | 
						|
      // Try to distinguish something like &A[i][1] against &A[42][0].
 | 
						|
      // Grab the least significant bit set in any of the scales. We
 | 
						|
      // don't need std::abs here (even if the scale's negative) as we'll
 | 
						|
      // be ^'ing Modulo with itself later.
 | 
						|
      Modulo |= DecompGEP1.VarIndices[i].Scale;
 | 
						|
 | 
						|
      if (AllPositive) {
 | 
						|
        // If the Value could change between cycles, then any reasoning about
 | 
						|
        // the Value this cycle may not hold in the next cycle. We'll just
 | 
						|
        // give up if we can't determine conditions that hold for every cycle:
 | 
						|
        const Value *V = DecompGEP1.VarIndices[i].V;
 | 
						|
 | 
						|
        KnownBits Known =
 | 
						|
            computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
 | 
						|
        bool SignKnownZero = Known.isNonNegative();
 | 
						|
        bool SignKnownOne = Known.isNegative();
 | 
						|
 | 
						|
        // Zero-extension widens the variable, and so forces the sign
 | 
						|
        // bit to zero.
 | 
						|
        bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
 | 
						|
        SignKnownZero |= IsZExt;
 | 
						|
        SignKnownOne &= !IsZExt;
 | 
						|
 | 
						|
        // If the variable begins with a zero then we know it's
 | 
						|
        // positive, regardless of whether the value is signed or
 | 
						|
        // unsigned.
 | 
						|
        APInt Scale = DecompGEP1.VarIndices[i].Scale;
 | 
						|
        AllPositive =
 | 
						|
            (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Modulo = Modulo ^ (Modulo & (Modulo - 1));
 | 
						|
 | 
						|
    // We can compute the difference between the two addresses
 | 
						|
    // mod Modulo. Check whether that difference guarantees that the
 | 
						|
    // two locations do not alias.
 | 
						|
    APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
 | 
						|
    if (V1Size != LocationSize::unknown() &&
 | 
						|
        V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
 | 
						|
        (Modulo - ModOffset).uge(V1Size.getValue()))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
 | 
						|
    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
 | 
						|
    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
 | 
						|
    if (AllPositive && GEP1BaseOffset.sgt(0) &&
 | 
						|
        V2Size != LocationSize::unknown() &&
 | 
						|
        GEP1BaseOffset.uge(V2Size.getValue()))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
 | 
						|
                                GEP1BaseOffset, &AC, DT))
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // Statically, we can see that the base objects are the same, but the
 | 
						|
  // pointers have dynamic offsets which we can't resolve. And none of our
 | 
						|
  // little tricks above worked.
 | 
						|
  return MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
 | 
						|
  // If the results agree, take it.
 | 
						|
  if (A == B)
 | 
						|
    return A;
 | 
						|
  // A mix of PartialAlias and MustAlias is PartialAlias.
 | 
						|
  if ((A == PartialAlias && B == MustAlias) ||
 | 
						|
      (B == PartialAlias && A == MustAlias))
 | 
						|
    return PartialAlias;
 | 
						|
  // Otherwise, we don't know anything.
 | 
						|
  return MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
 | 
						|
/// against another.
 | 
						|
AliasResult
 | 
						|
BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
 | 
						|
                           const AAMDNodes &SIAAInfo, const Value *V2,
 | 
						|
                           LocationSize V2Size, const AAMDNodes &V2AAInfo,
 | 
						|
                           const Value *UnderV2, AAQueryInfo &AAQI) {
 | 
						|
  // If the values are Selects with the same condition, we can do a more precise
 | 
						|
  // check: just check for aliases between the values on corresponding arms.
 | 
						|
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
 | 
						|
    if (SI->getCondition() == SI2->getCondition()) {
 | 
						|
      AliasResult Alias =
 | 
						|
          aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
 | 
						|
                     V2Size, V2AAInfo, AAQI);
 | 
						|
      if (Alias == MayAlias)
 | 
						|
        return MayAlias;
 | 
						|
      AliasResult ThisAlias =
 | 
						|
          aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
 | 
						|
                     SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
 | 
						|
      return MergeAliasResults(ThisAlias, Alias);
 | 
						|
    }
 | 
						|
 | 
						|
  // If both arms of the Select node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
 | 
						|
                                 SISize, SIAAInfo, AAQI, UnderV2);
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
 | 
						|
                                     SISize, SIAAInfo, AAQI, UnderV2);
 | 
						|
  return MergeAliasResults(ThisAlias, Alias);
 | 
						|
}
 | 
						|
 | 
						|
/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
 | 
						|
/// another.
 | 
						|
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
 | 
						|
                                    const AAMDNodes &PNAAInfo, const Value *V2,
 | 
						|
                                    LocationSize V2Size,
 | 
						|
                                    const AAMDNodes &V2AAInfo,
 | 
						|
                                    const Value *UnderV2, AAQueryInfo &AAQI) {
 | 
						|
  // Track phi nodes we have visited. We use this information when we determine
 | 
						|
  // value equivalence.
 | 
						|
  VisitedPhiBBs.insert(PN->getParent());
 | 
						|
 | 
						|
  // If the values are PHIs in the same block, we can do a more precise
 | 
						|
  // as well as efficient check: just check for aliases between the values
 | 
						|
  // on corresponding edges.
 | 
						|
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
 | 
						|
    if (PN2->getParent() == PN->getParent()) {
 | 
						|
      AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
 | 
						|
                                MemoryLocation(V2, V2Size, V2AAInfo));
 | 
						|
      if (PN > V2)
 | 
						|
        std::swap(Locs.first, Locs.second);
 | 
						|
      // Analyse the PHIs' inputs under the assumption that the PHIs are
 | 
						|
      // NoAlias.
 | 
						|
      // If the PHIs are May/MustAlias there must be (recursively) an input
 | 
						|
      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
 | 
						|
      // there must be an operation on the PHIs within the PHIs' value cycle
 | 
						|
      // that causes a MayAlias.
 | 
						|
      // Pretend the phis do not alias.
 | 
						|
      AliasResult Alias = NoAlias;
 | 
						|
      AliasResult OrigAliasResult;
 | 
						|
      {
 | 
						|
        // Limited lifetime iterator invalidated by the aliasCheck call below.
 | 
						|
        auto CacheIt = AAQI.AliasCache.find(Locs);
 | 
						|
        assert((CacheIt != AAQI.AliasCache.end()) &&
 | 
						|
               "There must exist an entry for the phi node");
 | 
						|
        OrigAliasResult = CacheIt->second;
 | 
						|
        CacheIt->second = NoAlias;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        AliasResult ThisAlias =
 | 
						|
            aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
 | 
						|
                       PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
 | 
						|
                       V2Size, V2AAInfo, AAQI);
 | 
						|
        Alias = MergeAliasResults(ThisAlias, Alias);
 | 
						|
        if (Alias == MayAlias)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Reset if speculation failed.
 | 
						|
      if (Alias != NoAlias) {
 | 
						|
        auto Pair =
 | 
						|
            AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
 | 
						|
        assert(!Pair.second && "Entry must have existed");
 | 
						|
        Pair.first->second = OrigAliasResult;
 | 
						|
      }
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
  SmallVector<Value *, 4> V1Srcs;
 | 
						|
  bool isRecursive = false;
 | 
						|
  if (PV)  {
 | 
						|
    // If we have PhiValues then use it to get the underlying phi values.
 | 
						|
    const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
 | 
						|
    // If we have more phi values than the search depth then return MayAlias
 | 
						|
    // conservatively to avoid compile time explosion. The worst possible case
 | 
						|
    // is if both sides are PHI nodes. In which case, this is O(m x n) time
 | 
						|
    // where 'm' and 'n' are the number of PHI sources.
 | 
						|
    if (PhiValueSet.size() > MaxLookupSearchDepth)
 | 
						|
      return MayAlias;
 | 
						|
    // Add the values to V1Srcs
 | 
						|
    for (Value *PV1 : PhiValueSet) {
 | 
						|
      if (EnableRecPhiAnalysis) {
 | 
						|
        if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
 | 
						|
          // Check whether the incoming value is a GEP that advances the pointer
 | 
						|
          // result of this PHI node (e.g. in a loop). If this is the case, we
 | 
						|
          // would recurse and always get a MayAlias. Handle this case specially
 | 
						|
          // below.
 | 
						|
          if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
 | 
						|
              isa<ConstantInt>(PV1GEP->idx_begin())) {
 | 
						|
            isRecursive = true;
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      V1Srcs.push_back(PV1);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If we don't have PhiInfo then just look at the operands of the phi itself
 | 
						|
    // FIXME: Remove this once we can guarantee that we have PhiInfo always
 | 
						|
    SmallPtrSet<Value *, 4> UniqueSrc;
 | 
						|
    for (Value *PV1 : PN->incoming_values()) {
 | 
						|
      if (isa<PHINode>(PV1))
 | 
						|
        // If any of the source itself is a PHI, return MayAlias conservatively
 | 
						|
        // to avoid compile time explosion. The worst possible case is if both
 | 
						|
        // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
 | 
						|
        // and 'n' are the number of PHI sources.
 | 
						|
        return MayAlias;
 | 
						|
 | 
						|
      if (EnableRecPhiAnalysis)
 | 
						|
        if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
 | 
						|
          // Check whether the incoming value is a GEP that advances the pointer
 | 
						|
          // result of this PHI node (e.g. in a loop). If this is the case, we
 | 
						|
          // would recurse and always get a MayAlias. Handle this case specially
 | 
						|
          // below.
 | 
						|
          if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
 | 
						|
              isa<ConstantInt>(PV1GEP->idx_begin())) {
 | 
						|
            isRecursive = true;
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      if (UniqueSrc.insert(PV1).second)
 | 
						|
        V1Srcs.push_back(PV1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If V1Srcs is empty then that means that the phi has no underlying non-phi
 | 
						|
  // value. This should only be possible in blocks unreachable from the entry
 | 
						|
  // block, but return MayAlias just in case.
 | 
						|
  if (V1Srcs.empty())
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If this PHI node is recursive, set the size of the accessed memory to
 | 
						|
  // unknown to represent all the possible values the GEP could advance the
 | 
						|
  // pointer to.
 | 
						|
  if (isRecursive)
 | 
						|
    PNSize = LocationSize::unknown();
 | 
						|
 | 
						|
  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
 | 
						|
                                 PNAAInfo, AAQI, UnderV2);
 | 
						|
 | 
						|
  // Early exit if the check of the first PHI source against V2 is MayAlias.
 | 
						|
  // Other results are not possible.
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
 | 
						|
    Value *V = V1Srcs[i];
 | 
						|
 | 
						|
    AliasResult ThisAlias =
 | 
						|
        aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
 | 
						|
    Alias = MergeAliasResults(ThisAlias, Alias);
 | 
						|
    if (Alias == MayAlias)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Alias;
 | 
						|
}
 | 
						|
 | 
						|
/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
 | 
						|
/// array references.
 | 
						|
AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
 | 
						|
                                      AAMDNodes V1AAInfo, const Value *V2,
 | 
						|
                                      LocationSize V2Size, AAMDNodes V2AAInfo,
 | 
						|
                                      AAQueryInfo &AAQI, const Value *O1,
 | 
						|
                                      const Value *O2) {
 | 
						|
  // If either of the memory references is empty, it doesn't matter what the
 | 
						|
  // pointer values are.
 | 
						|
  if (V1Size.isZero() || V2Size.isZero())
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  // Strip off any casts if they exist.
 | 
						|
  V1 = V1->stripPointerCastsAndInvariantGroups();
 | 
						|
  V2 = V2->stripPointerCastsAndInvariantGroups();
 | 
						|
 | 
						|
  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
 | 
						|
  // value for undef that aliases nothing in the program.
 | 
						|
  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  // Are we checking for alias of the same value?
 | 
						|
  // Because we look 'through' phi nodes, we could look at "Value" pointers from
 | 
						|
  // different iterations. We must therefore make sure that this is not the
 | 
						|
  // case. The function isValueEqualInPotentialCycles ensures that this cannot
 | 
						|
  // happen by looking at the visited phi nodes and making sure they cannot
 | 
						|
  // reach the value.
 | 
						|
  if (isValueEqualInPotentialCycles(V1, V2))
 | 
						|
    return MustAlias;
 | 
						|
 | 
						|
  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
 | 
						|
    return NoAlias; // Scalars cannot alias each other
 | 
						|
 | 
						|
  // Figure out what objects these things are pointing to if we can.
 | 
						|
  if (O1 == nullptr)
 | 
						|
    O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
 | 
						|
 | 
						|
  if (O2 == nullptr)
 | 
						|
    O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
 | 
						|
 | 
						|
  // Null values in the default address space don't point to any object, so they
 | 
						|
  // don't alias any other pointer.
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
 | 
						|
    if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
 | 
						|
      return NoAlias;
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
 | 
						|
    if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
  if (O1 != O2) {
 | 
						|
    // If V1/V2 point to two different objects, we know that we have no alias.
 | 
						|
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Constant pointers can't alias with non-const isIdentifiedObject objects.
 | 
						|
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
 | 
						|
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Function arguments can't alias with things that are known to be
 | 
						|
    // unambigously identified at the function level.
 | 
						|
    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
 | 
						|
        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // If one pointer is the result of a call/invoke or load and the other is a
 | 
						|
    // non-escaping local object within the same function, then we know the
 | 
						|
    // object couldn't escape to a point where the call could return it.
 | 
						|
    //
 | 
						|
    // Note that if the pointers are in different functions, there are a
 | 
						|
    // variety of complications. A call with a nocapture argument may still
 | 
						|
    // temporary store the nocapture argument's value in a temporary memory
 | 
						|
    // location if that memory location doesn't escape. Or it may pass a
 | 
						|
    // nocapture value to other functions as long as they don't capture it.
 | 
						|
    if (isEscapeSource(O1) &&
 | 
						|
        isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
 | 
						|
      return NoAlias;
 | 
						|
    if (isEscapeSource(O2) &&
 | 
						|
        isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the size of one access is larger than the entire object on the other
 | 
						|
  // side, then we know such behavior is undefined and can assume no alias.
 | 
						|
  bool NullIsValidLocation = NullPointerIsDefined(&F);
 | 
						|
  if ((isObjectSmallerThan(
 | 
						|
          O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
 | 
						|
          TLI, NullIsValidLocation)) ||
 | 
						|
      (isObjectSmallerThan(
 | 
						|
          O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
 | 
						|
          TLI, NullIsValidLocation)))
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  // Check the cache before climbing up use-def chains. This also terminates
 | 
						|
  // otherwise infinitely recursive queries.
 | 
						|
  AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
 | 
						|
                            MemoryLocation(V2, V2Size, V2AAInfo));
 | 
						|
  if (V1 > V2)
 | 
						|
    std::swap(Locs.first, Locs.second);
 | 
						|
  std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
 | 
						|
      AAQI.AliasCache.try_emplace(Locs, MayAlias);
 | 
						|
  if (!Pair.second)
 | 
						|
    return Pair.first->second;
 | 
						|
 | 
						|
  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
 | 
						|
  // GEP can't simplify, we don't even look at the PHI cases.
 | 
						|
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(O1, O2);
 | 
						|
    std::swap(V1AAInfo, V2AAInfo);
 | 
						|
  }
 | 
						|
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
 | 
						|
    AliasResult Result =
 | 
						|
        aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
 | 
						|
    if (Result != MayAlias) {
 | 
						|
      auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
 | 
						|
      assert(!ItInsPair.second && "Entry must have existed");
 | 
						|
      ItInsPair.first->second = Result;
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(O1, O2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(V1AAInfo, V2AAInfo);
 | 
						|
  }
 | 
						|
  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
 | 
						|
    AliasResult Result =
 | 
						|
        aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
 | 
						|
    if (Result != MayAlias) {
 | 
						|
      Pair = AAQI.AliasCache.try_emplace(Locs, Result);
 | 
						|
      assert(!Pair.second && "Entry must have existed");
 | 
						|
      return Pair.first->second = Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(O1, O2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(V1AAInfo, V2AAInfo);
 | 
						|
  }
 | 
						|
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
 | 
						|
    AliasResult Result =
 | 
						|
        aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
 | 
						|
    if (Result != MayAlias) {
 | 
						|
      Pair = AAQI.AliasCache.try_emplace(Locs, Result);
 | 
						|
      assert(!Pair.second && "Entry must have existed");
 | 
						|
      return Pair.first->second = Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If both pointers are pointing into the same object and one of them
 | 
						|
  // accesses the entire object, then the accesses must overlap in some way.
 | 
						|
  if (O1 == O2)
 | 
						|
    if (V1Size.isPrecise() && V2Size.isPrecise() &&
 | 
						|
        (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
 | 
						|
         isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
 | 
						|
      Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
 | 
						|
      assert(!Pair.second && "Entry must have existed");
 | 
						|
      return Pair.first->second = PartialAlias;
 | 
						|
    }
 | 
						|
 | 
						|
  // Recurse back into the best AA results we have, potentially with refined
 | 
						|
  // memory locations. We have already ensured that BasicAA has a MayAlias
 | 
						|
  // cache result for these, so any recursion back into BasicAA won't loop.
 | 
						|
  AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
 | 
						|
  Pair = AAQI.AliasCache.try_emplace(Locs, Result);
 | 
						|
  assert(!Pair.second && "Entry must have existed");
 | 
						|
  return Pair.first->second = Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether two Values can be considered equivalent.
 | 
						|
///
 | 
						|
/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
 | 
						|
/// they can not be part of a cycle in the value graph by looking at all
 | 
						|
/// visited phi nodes an making sure that the phis cannot reach the value. We
 | 
						|
/// have to do this because we are looking through phi nodes (That is we say
 | 
						|
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
 | 
						|
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
 | 
						|
                                                  const Value *V2) {
 | 
						|
  if (V != V2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Instruction *Inst = dyn_cast<Instruction>(V);
 | 
						|
  if (!Inst)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (VisitedPhiBBs.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that the visited phis cannot reach the Value. This ensures that
 | 
						|
  // the Values cannot come from different iterations of a potential cycle the
 | 
						|
  // phi nodes could be involved in.
 | 
						|
  for (auto *P : VisitedPhiBBs)
 | 
						|
    if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Computes the symbolic difference between two de-composed GEPs.
 | 
						|
///
 | 
						|
/// Dest and Src are the variable indices from two decomposed GetElementPtr
 | 
						|
/// instructions GEP1 and GEP2 which have common base pointers.
 | 
						|
void BasicAAResult::GetIndexDifference(
 | 
						|
    SmallVectorImpl<VariableGEPIndex> &Dest,
 | 
						|
    const SmallVectorImpl<VariableGEPIndex> &Src) {
 | 
						|
  if (Src.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
 | 
						|
    const Value *V = Src[i].V;
 | 
						|
    unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
 | 
						|
    APInt Scale = Src[i].Scale;
 | 
						|
 | 
						|
    // Find V in Dest.  This is N^2, but pointer indices almost never have more
 | 
						|
    // than a few variable indexes.
 | 
						|
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
 | 
						|
      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
 | 
						|
          Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we found it, subtract off Scale V's from the entry in Dest.  If it
 | 
						|
      // goes to zero, remove the entry.
 | 
						|
      if (Dest[j].Scale != Scale)
 | 
						|
        Dest[j].Scale -= Scale;
 | 
						|
      else
 | 
						|
        Dest.erase(Dest.begin() + j);
 | 
						|
      Scale = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we didn't consume this entry, add it to the end of the Dest list.
 | 
						|
    if (!!Scale) {
 | 
						|
      VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
 | 
						|
      Dest.push_back(Entry);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BasicAAResult::constantOffsetHeuristic(
 | 
						|
    const SmallVectorImpl<VariableGEPIndex> &VarIndices,
 | 
						|
    LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
 | 
						|
    AssumptionCache *AC, DominatorTree *DT) {
 | 
						|
  if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
 | 
						|
      MaybeV2Size == LocationSize::unknown())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const uint64_t V1Size = MaybeV1Size.getValue();
 | 
						|
  const uint64_t V2Size = MaybeV2Size.getValue();
 | 
						|
 | 
						|
  const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
 | 
						|
 | 
						|
  if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
 | 
						|
      Var0.Scale != -Var1.Scale)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Width = Var1.V->getType()->getIntegerBitWidth();
 | 
						|
 | 
						|
  // We'll strip off the Extensions of Var0 and Var1 and do another round
 | 
						|
  // of GetLinearExpression decomposition. In the example above, if Var0
 | 
						|
  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
 | 
						|
 | 
						|
  APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
 | 
						|
      V1Offset(Width, 0);
 | 
						|
  bool NSW = true, NUW = true;
 | 
						|
  unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
 | 
						|
  const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
 | 
						|
                                        V0SExtBits, DL, 0, AC, DT, NSW, NUW);
 | 
						|
  NSW = true;
 | 
						|
  NUW = true;
 | 
						|
  const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
 | 
						|
                                        V1SExtBits, DL, 0, AC, DT, NSW, NUW);
 | 
						|
 | 
						|
  if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
 | 
						|
      V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We have a hit - Var0 and Var1 only differ by a constant offset!
 | 
						|
 | 
						|
  // If we've been sext'ed then zext'd the maximum difference between Var0 and
 | 
						|
  // Var1 is possible to calculate, but we're just interested in the absolute
 | 
						|
  // minimum difference between the two. The minimum distance may occur due to
 | 
						|
  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
 | 
						|
  // the minimum distance between %i and %i + 5 is 3.
 | 
						|
  APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
 | 
						|
  MinDiff = APIntOps::umin(MinDiff, Wrapped);
 | 
						|
  APInt MinDiffBytes =
 | 
						|
    MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
 | 
						|
 | 
						|
  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
 | 
						|
  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
 | 
						|
  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
 | 
						|
  // V2Size can fit in the MinDiffBytes gap.
 | 
						|
  return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
 | 
						|
         MinDiffBytes.uge(V2Size + BaseOffset.abs());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BasicAliasAnalysis Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
AnalysisKey BasicAA::Key;
 | 
						|
 | 
						|
BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  return BasicAAResult(F.getParent()->getDataLayout(),
 | 
						|
                       F,
 | 
						|
                       AM.getResult<TargetLibraryAnalysis>(F),
 | 
						|
                       AM.getResult<AssumptionAnalysis>(F),
 | 
						|
                       &AM.getResult<DominatorTreeAnalysis>(F),
 | 
						|
                       AM.getCachedResult<LoopAnalysis>(F),
 | 
						|
                       AM.getCachedResult<PhiValuesAnalysis>(F));
 | 
						|
}
 | 
						|
 | 
						|
BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
 | 
						|
  initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
char BasicAAWrapperPass::ID = 0;
 | 
						|
 | 
						|
void BasicAAWrapperPass::anchor() {}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
 | 
						|
                      "Basic Alias Analysis (stateless AA impl)", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
 | 
						|
                    "Basic Alias Analysis (stateless AA impl)", false, true)
 | 
						|
 | 
						|
FunctionPass *llvm::createBasicAAWrapperPass() {
 | 
						|
  return new BasicAAWrapperPass();
 | 
						|
}
 | 
						|
 | 
						|
bool BasicAAWrapperPass::runOnFunction(Function &F) {
 | 
						|
  auto &ACT = getAnalysis<AssumptionCacheTracker>();
 | 
						|
  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
 | 
						|
  auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
 | 
						|
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | 
						|
  auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
 | 
						|
 | 
						|
  Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
 | 
						|
                                 TLIWP.getTLI(F), ACT.getAssumptionCache(F),
 | 
						|
                                 &DTWP.getDomTree(),
 | 
						|
                                 LIWP ? &LIWP->getLoopInfo() : nullptr,
 | 
						|
                                 PVWP ? &PVWP->getResult() : nullptr));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<PhiValuesWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
 | 
						|
  return BasicAAResult(
 | 
						|
      F.getParent()->getDataLayout(), F,
 | 
						|
      P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
 | 
						|
      P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
 | 
						|
}
 |