forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			661 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			661 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// This file defines CFLGraph, an auxiliary data structure used by CFL-based
 | 
						|
/// alias analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H
 | 
						|
#define LLVM_LIB_ANALYSIS_CFLGRAPH_H
 | 
						|
 | 
						|
#include "AliasAnalysisSummary.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
namespace cflaa {
 | 
						|
 | 
						|
/// The Program Expression Graph (PEG) of CFL analysis
 | 
						|
/// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
 | 
						|
/// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
 | 
						|
/// the main purpose of this graph is to abstract away unrelated facts and
 | 
						|
/// translate the rest into a form that can be easily digested by CFL analyses.
 | 
						|
/// Each Node in the graph is an InstantiatedValue, and each edge represent a
 | 
						|
/// pointer assignment between InstantiatedValue. Pointer
 | 
						|
/// references/dereferences are not explicitly stored in the graph: we
 | 
						|
/// implicitly assume that for each node (X, I) it has a dereference edge to (X,
 | 
						|
/// I+1) and a reference edge to (X, I-1).
 | 
						|
class CFLGraph {
 | 
						|
public:
 | 
						|
  using Node = InstantiatedValue;
 | 
						|
 | 
						|
  struct Edge {
 | 
						|
    Node Other;
 | 
						|
    int64_t Offset;
 | 
						|
  };
 | 
						|
 | 
						|
  using EdgeList = std::vector<Edge>;
 | 
						|
 | 
						|
  struct NodeInfo {
 | 
						|
    EdgeList Edges, ReverseEdges;
 | 
						|
    AliasAttrs Attr;
 | 
						|
  };
 | 
						|
 | 
						|
  class ValueInfo {
 | 
						|
    std::vector<NodeInfo> Levels;
 | 
						|
 | 
						|
  public:
 | 
						|
    bool addNodeToLevel(unsigned Level) {
 | 
						|
      auto NumLevels = Levels.size();
 | 
						|
      if (NumLevels > Level)
 | 
						|
        return false;
 | 
						|
      Levels.resize(Level + 1);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    NodeInfo &getNodeInfoAtLevel(unsigned Level) {
 | 
						|
      assert(Level < Levels.size());
 | 
						|
      return Levels[Level];
 | 
						|
    }
 | 
						|
    const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
 | 
						|
      assert(Level < Levels.size());
 | 
						|
      return Levels[Level];
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getNumLevels() const { return Levels.size(); }
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  using ValueMap = DenseMap<Value *, ValueInfo>;
 | 
						|
 | 
						|
  ValueMap ValueImpls;
 | 
						|
 | 
						|
  NodeInfo *getNode(Node N) {
 | 
						|
    auto Itr = ValueImpls.find(N.Val);
 | 
						|
    if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
 | 
						|
      return nullptr;
 | 
						|
    return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  using const_value_iterator = ValueMap::const_iterator;
 | 
						|
 | 
						|
  bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
 | 
						|
    assert(N.Val != nullptr);
 | 
						|
    auto &ValInfo = ValueImpls[N.Val];
 | 
						|
    auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
 | 
						|
    ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  void addAttr(Node N, AliasAttrs Attr) {
 | 
						|
    auto *Info = getNode(N);
 | 
						|
    assert(Info != nullptr);
 | 
						|
    Info->Attr |= Attr;
 | 
						|
  }
 | 
						|
 | 
						|
  void addEdge(Node From, Node To, int64_t Offset = 0) {
 | 
						|
    auto *FromInfo = getNode(From);
 | 
						|
    assert(FromInfo != nullptr);
 | 
						|
    auto *ToInfo = getNode(To);
 | 
						|
    assert(ToInfo != nullptr);
 | 
						|
 | 
						|
    FromInfo->Edges.push_back(Edge{To, Offset});
 | 
						|
    ToInfo->ReverseEdges.push_back(Edge{From, Offset});
 | 
						|
  }
 | 
						|
 | 
						|
  const NodeInfo *getNode(Node N) const {
 | 
						|
    auto Itr = ValueImpls.find(N.Val);
 | 
						|
    if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
 | 
						|
      return nullptr;
 | 
						|
    return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
 | 
						|
  }
 | 
						|
 | 
						|
  AliasAttrs attrFor(Node N) const {
 | 
						|
    auto *Info = getNode(N);
 | 
						|
    assert(Info != nullptr);
 | 
						|
    return Info->Attr;
 | 
						|
  }
 | 
						|
 | 
						|
  iterator_range<const_value_iterator> value_mappings() const {
 | 
						|
    return make_range<const_value_iterator>(ValueImpls.begin(),
 | 
						|
                                            ValueImpls.end());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// A builder class used to create CFLGraph instance from a given function
 | 
						|
/// The CFL-AA that uses this builder must provide its own type as a template
 | 
						|
/// argument. This is necessary for interprocedural processing: CFLGraphBuilder
 | 
						|
/// needs a way of obtaining the summary of other functions when callinsts are
 | 
						|
/// encountered.
 | 
						|
/// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
 | 
						|
/// member function that takes a Function& and returns the corresponding summary
 | 
						|
/// as a const AliasSummary*.
 | 
						|
template <typename CFLAA> class CFLGraphBuilder {
 | 
						|
  // Input of the builder
 | 
						|
  CFLAA &Analysis;
 | 
						|
  const TargetLibraryInfo &TLI;
 | 
						|
 | 
						|
  // Output of the builder
 | 
						|
  CFLGraph Graph;
 | 
						|
  SmallVector<Value *, 4> ReturnedValues;
 | 
						|
 | 
						|
  // Helper class
 | 
						|
  /// Gets the edges our graph should have, based on an Instruction*
 | 
						|
  class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
 | 
						|
    CFLAA &AA;
 | 
						|
    const DataLayout &DL;
 | 
						|
    const TargetLibraryInfo &TLI;
 | 
						|
 | 
						|
    CFLGraph &Graph;
 | 
						|
    SmallVectorImpl<Value *> &ReturnValues;
 | 
						|
 | 
						|
    static bool hasUsefulEdges(ConstantExpr *CE) {
 | 
						|
      // ConstantExpr doesn't have terminators, invokes, or fences, so only
 | 
						|
      // needs to check for compares.
 | 
						|
      return CE->getOpcode() != Instruction::ICmp &&
 | 
						|
             CE->getOpcode() != Instruction::FCmp;
 | 
						|
    }
 | 
						|
 | 
						|
    // Returns possible functions called by CS into the given SmallVectorImpl.
 | 
						|
    // Returns true if targets found, false otherwise.
 | 
						|
    static bool getPossibleTargets(CallBase &Call,
 | 
						|
                                   SmallVectorImpl<Function *> &Output) {
 | 
						|
      if (auto *Fn = Call.getCalledFunction()) {
 | 
						|
        Output.push_back(Fn);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // TODO: If the call is indirect, we might be able to enumerate all
 | 
						|
      // potential targets of the call and return them, rather than just
 | 
						|
      // failing.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
 | 
						|
      assert(Val != nullptr && Val->getType()->isPointerTy());
 | 
						|
      if (auto GVal = dyn_cast<GlobalValue>(Val)) {
 | 
						|
        if (Graph.addNode(InstantiatedValue{GVal, 0},
 | 
						|
                          getGlobalOrArgAttrFromValue(*GVal)))
 | 
						|
          Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
 | 
						|
      } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
 | 
						|
        if (hasUsefulEdges(CExpr)) {
 | 
						|
          if (Graph.addNode(InstantiatedValue{CExpr, 0}))
 | 
						|
            visitConstantExpr(CExpr);
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        Graph.addNode(InstantiatedValue{Val, 0}, Attr);
 | 
						|
    }
 | 
						|
 | 
						|
    void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
 | 
						|
      assert(From != nullptr && To != nullptr);
 | 
						|
      if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
 | 
						|
        return;
 | 
						|
      addNode(From);
 | 
						|
      if (To != From) {
 | 
						|
        addNode(To);
 | 
						|
        Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
 | 
						|
                      Offset);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void addDerefEdge(Value *From, Value *To, bool IsRead) {
 | 
						|
      assert(From != nullptr && To != nullptr);
 | 
						|
      // FIXME: This is subtly broken, due to how we model some instructions
 | 
						|
      // (e.g. extractvalue, extractelement) as loads. Since those take
 | 
						|
      // non-pointer operands, we'll entirely skip adding edges for those.
 | 
						|
      //
 | 
						|
      // addAssignEdge seems to have a similar issue with insertvalue, etc.
 | 
						|
      if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
 | 
						|
        return;
 | 
						|
      addNode(From);
 | 
						|
      addNode(To);
 | 
						|
      if (IsRead) {
 | 
						|
        Graph.addNode(InstantiatedValue{From, 1});
 | 
						|
        Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
 | 
						|
      } else {
 | 
						|
        Graph.addNode(InstantiatedValue{To, 1});
 | 
						|
        Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
 | 
						|
    void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
 | 
						|
 | 
						|
  public:
 | 
						|
    GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
 | 
						|
        : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
 | 
						|
          ReturnValues(Builder.ReturnedValues) {}
 | 
						|
 | 
						|
    void visitInstruction(Instruction &) {
 | 
						|
      llvm_unreachable("Unsupported instruction encountered");
 | 
						|
    }
 | 
						|
 | 
						|
    void visitReturnInst(ReturnInst &Inst) {
 | 
						|
      if (auto RetVal = Inst.getReturnValue()) {
 | 
						|
        if (RetVal->getType()->isPointerTy()) {
 | 
						|
          addNode(RetVal);
 | 
						|
          ReturnValues.push_back(RetVal);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void visitPtrToIntInst(PtrToIntInst &Inst) {
 | 
						|
      auto *Ptr = Inst.getOperand(0);
 | 
						|
      addNode(Ptr, getAttrEscaped());
 | 
						|
    }
 | 
						|
 | 
						|
    void visitIntToPtrInst(IntToPtrInst &Inst) {
 | 
						|
      auto *Ptr = &Inst;
 | 
						|
      addNode(Ptr, getAttrUnknown());
 | 
						|
    }
 | 
						|
 | 
						|
    void visitCastInst(CastInst &Inst) {
 | 
						|
      auto *Src = Inst.getOperand(0);
 | 
						|
      addAssignEdge(Src, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitBinaryOperator(BinaryOperator &Inst) {
 | 
						|
      auto *Op1 = Inst.getOperand(0);
 | 
						|
      auto *Op2 = Inst.getOperand(1);
 | 
						|
      addAssignEdge(Op1, &Inst);
 | 
						|
      addAssignEdge(Op2, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitUnaryOperator(UnaryOperator &Inst) {
 | 
						|
      auto *Src = Inst.getOperand(0);
 | 
						|
      addAssignEdge(Src, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
 | 
						|
      auto *Ptr = Inst.getPointerOperand();
 | 
						|
      auto *Val = Inst.getNewValOperand();
 | 
						|
      addStoreEdge(Val, Ptr);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitAtomicRMWInst(AtomicRMWInst &Inst) {
 | 
						|
      auto *Ptr = Inst.getPointerOperand();
 | 
						|
      auto *Val = Inst.getValOperand();
 | 
						|
      addStoreEdge(Val, Ptr);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitPHINode(PHINode &Inst) {
 | 
						|
      for (Value *Val : Inst.incoming_values())
 | 
						|
        addAssignEdge(Val, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitGEP(GEPOperator &GEPOp) {
 | 
						|
      uint64_t Offset = UnknownOffset;
 | 
						|
      APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
 | 
						|
                     0);
 | 
						|
      if (GEPOp.accumulateConstantOffset(DL, APOffset))
 | 
						|
        Offset = APOffset.getSExtValue();
 | 
						|
 | 
						|
      auto *Op = GEPOp.getPointerOperand();
 | 
						|
      addAssignEdge(Op, &GEPOp, Offset);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &Inst) {
 | 
						|
      auto *GEPOp = cast<GEPOperator>(&Inst);
 | 
						|
      visitGEP(*GEPOp);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitSelectInst(SelectInst &Inst) {
 | 
						|
      // Condition is not processed here (The actual statement producing
 | 
						|
      // the condition result is processed elsewhere). For select, the
 | 
						|
      // condition is evaluated, but not loaded, stored, or assigned
 | 
						|
      // simply as a result of being the condition of a select.
 | 
						|
 | 
						|
      auto *TrueVal = Inst.getTrueValue();
 | 
						|
      auto *FalseVal = Inst.getFalseValue();
 | 
						|
      addAssignEdge(TrueVal, &Inst);
 | 
						|
      addAssignEdge(FalseVal, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
 | 
						|
 | 
						|
    void visitLoadInst(LoadInst &Inst) {
 | 
						|
      auto *Ptr = Inst.getPointerOperand();
 | 
						|
      auto *Val = &Inst;
 | 
						|
      addLoadEdge(Ptr, Val);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitStoreInst(StoreInst &Inst) {
 | 
						|
      auto *Ptr = Inst.getPointerOperand();
 | 
						|
      auto *Val = Inst.getValueOperand();
 | 
						|
      addStoreEdge(Val, Ptr);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitVAArgInst(VAArgInst &Inst) {
 | 
						|
      // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
 | 
						|
      // does
 | 
						|
      // two things:
 | 
						|
      //  1. Loads a value from *((T*)*Ptr).
 | 
						|
      //  2. Increments (stores to) *Ptr by some target-specific amount.
 | 
						|
      // For now, we'll handle this like a landingpad instruction (by placing
 | 
						|
      // the
 | 
						|
      // result in its own group, and having that group alias externals).
 | 
						|
      if (Inst.getType()->isPointerTy())
 | 
						|
        addNode(&Inst, getAttrUnknown());
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isFunctionExternal(Function *Fn) {
 | 
						|
      return !Fn->hasExactDefinition();
 | 
						|
    }
 | 
						|
 | 
						|
    bool tryInterproceduralAnalysis(CallBase &Call,
 | 
						|
                                    const SmallVectorImpl<Function *> &Fns) {
 | 
						|
      assert(Fns.size() > 0);
 | 
						|
 | 
						|
      if (Call.arg_size() > MaxSupportedArgsInSummary)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Exit early if we'll fail anyway
 | 
						|
      for (auto *Fn : Fns) {
 | 
						|
        if (isFunctionExternal(Fn) || Fn->isVarArg())
 | 
						|
          return false;
 | 
						|
        // Fail if the caller does not provide enough arguments
 | 
						|
        assert(Fn->arg_size() <= Call.arg_size());
 | 
						|
        if (!AA.getAliasSummary(*Fn))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
 | 
						|
      for (auto *Fn : Fns) {
 | 
						|
        auto Summary = AA.getAliasSummary(*Fn);
 | 
						|
        assert(Summary != nullptr);
 | 
						|
 | 
						|
        auto &RetParamRelations = Summary->RetParamRelations;
 | 
						|
        for (auto &Relation : RetParamRelations) {
 | 
						|
          auto IRelation = instantiateExternalRelation(Relation, Call);
 | 
						|
          if (IRelation.hasValue()) {
 | 
						|
            Graph.addNode(IRelation->From);
 | 
						|
            Graph.addNode(IRelation->To);
 | 
						|
            Graph.addEdge(IRelation->From, IRelation->To);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        auto &RetParamAttributes = Summary->RetParamAttributes;
 | 
						|
        for (auto &Attribute : RetParamAttributes) {
 | 
						|
          auto IAttr = instantiateExternalAttribute(Attribute, Call);
 | 
						|
          if (IAttr.hasValue())
 | 
						|
            Graph.addNode(IAttr->IValue, IAttr->Attr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void visitCallBase(CallBase &Call) {
 | 
						|
      // Make sure all arguments and return value are added to the graph first
 | 
						|
      for (Value *V : Call.args())
 | 
						|
        if (V->getType()->isPointerTy())
 | 
						|
          addNode(V);
 | 
						|
      if (Call.getType()->isPointerTy())
 | 
						|
        addNode(&Call);
 | 
						|
 | 
						|
      // Check if Inst is a call to a library function that
 | 
						|
      // allocates/deallocates on the heap. Those kinds of functions do not
 | 
						|
      // introduce any aliases.
 | 
						|
      // TODO: address other common library functions such as realloc(),
 | 
						|
      // strdup(), etc.
 | 
						|
      if (isMallocOrCallocLikeFn(&Call, &TLI) || isFreeCall(&Call, &TLI))
 | 
						|
        return;
 | 
						|
 | 
						|
      // TODO: Add support for noalias args/all the other fun function
 | 
						|
      // attributes that we can tack on.
 | 
						|
      SmallVector<Function *, 4> Targets;
 | 
						|
      if (getPossibleTargets(Call, Targets))
 | 
						|
        if (tryInterproceduralAnalysis(Call, Targets))
 | 
						|
          return;
 | 
						|
 | 
						|
      // Because the function is opaque, we need to note that anything
 | 
						|
      // could have happened to the arguments (unless the function is marked
 | 
						|
      // readonly or readnone), and that the result could alias just about
 | 
						|
      // anything, too (unless the result is marked noalias).
 | 
						|
      if (!Call.onlyReadsMemory())
 | 
						|
        for (Value *V : Call.args()) {
 | 
						|
          if (V->getType()->isPointerTy()) {
 | 
						|
            // The argument itself escapes.
 | 
						|
            Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
 | 
						|
            // The fate of argument memory is unknown. Note that since
 | 
						|
            // AliasAttrs is transitive with respect to dereference, we only
 | 
						|
            // need to specify it for the first-level memory.
 | 
						|
            Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      if (Call.getType()->isPointerTy()) {
 | 
						|
        auto *Fn = Call.getCalledFunction();
 | 
						|
        if (Fn == nullptr || !Fn->returnDoesNotAlias())
 | 
						|
          // No need to call addNode() since we've added Inst at the
 | 
						|
          // beginning of this function and we know it is not a global.
 | 
						|
          Graph.addAttr(InstantiatedValue{&Call, 0}, getAttrUnknown());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Because vectors/aggregates are immutable and unaddressable, there's
 | 
						|
    /// nothing we can do to coax a value out of them, other than calling
 | 
						|
    /// Extract{Element,Value}. We can effectively treat them as pointers to
 | 
						|
    /// arbitrary memory locations we can store in and load from.
 | 
						|
    void visitExtractElementInst(ExtractElementInst &Inst) {
 | 
						|
      auto *Ptr = Inst.getVectorOperand();
 | 
						|
      auto *Val = &Inst;
 | 
						|
      addLoadEdge(Ptr, Val);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitInsertElementInst(InsertElementInst &Inst) {
 | 
						|
      auto *Vec = Inst.getOperand(0);
 | 
						|
      auto *Val = Inst.getOperand(1);
 | 
						|
      addAssignEdge(Vec, &Inst);
 | 
						|
      addStoreEdge(Val, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitLandingPadInst(LandingPadInst &Inst) {
 | 
						|
      // Exceptions come from "nowhere", from our analysis' perspective.
 | 
						|
      // So we place the instruction its own group, noting that said group may
 | 
						|
      // alias externals
 | 
						|
      if (Inst.getType()->isPointerTy())
 | 
						|
        addNode(&Inst, getAttrUnknown());
 | 
						|
    }
 | 
						|
 | 
						|
    void visitInsertValueInst(InsertValueInst &Inst) {
 | 
						|
      auto *Agg = Inst.getOperand(0);
 | 
						|
      auto *Val = Inst.getOperand(1);
 | 
						|
      addAssignEdge(Agg, &Inst);
 | 
						|
      addStoreEdge(Val, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitExtractValueInst(ExtractValueInst &Inst) {
 | 
						|
      auto *Ptr = Inst.getAggregateOperand();
 | 
						|
      addLoadEdge(Ptr, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
 | 
						|
      auto *From1 = Inst.getOperand(0);
 | 
						|
      auto *From2 = Inst.getOperand(1);
 | 
						|
      addAssignEdge(From1, &Inst);
 | 
						|
      addAssignEdge(From2, &Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitConstantExpr(ConstantExpr *CE) {
 | 
						|
      switch (CE->getOpcode()) {
 | 
						|
      case Instruction::GetElementPtr: {
 | 
						|
        auto GEPOp = cast<GEPOperator>(CE);
 | 
						|
        visitGEP(*GEPOp);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::PtrToInt: {
 | 
						|
        addNode(CE->getOperand(0), getAttrEscaped());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::IntToPtr: {
 | 
						|
        addNode(CE, getAttrUnknown());
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::BitCast:
 | 
						|
      case Instruction::AddrSpaceCast:
 | 
						|
      case Instruction::Trunc:
 | 
						|
      case Instruction::ZExt:
 | 
						|
      case Instruction::SExt:
 | 
						|
      case Instruction::FPExt:
 | 
						|
      case Instruction::FPTrunc:
 | 
						|
      case Instruction::UIToFP:
 | 
						|
      case Instruction::SIToFP:
 | 
						|
      case Instruction::FPToUI:
 | 
						|
      case Instruction::FPToSI: {
 | 
						|
        addAssignEdge(CE->getOperand(0), CE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::Select: {
 | 
						|
        addAssignEdge(CE->getOperand(1), CE);
 | 
						|
        addAssignEdge(CE->getOperand(2), CE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::InsertElement:
 | 
						|
      case Instruction::InsertValue: {
 | 
						|
        addAssignEdge(CE->getOperand(0), CE);
 | 
						|
        addStoreEdge(CE->getOperand(1), CE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::ExtractElement:
 | 
						|
      case Instruction::ExtractValue: {
 | 
						|
        addLoadEdge(CE->getOperand(0), CE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::Add:
 | 
						|
      case Instruction::FAdd:
 | 
						|
      case Instruction::Sub:
 | 
						|
      case Instruction::FSub:
 | 
						|
      case Instruction::Mul:
 | 
						|
      case Instruction::FMul:
 | 
						|
      case Instruction::UDiv:
 | 
						|
      case Instruction::SDiv:
 | 
						|
      case Instruction::FDiv:
 | 
						|
      case Instruction::URem:
 | 
						|
      case Instruction::SRem:
 | 
						|
      case Instruction::FRem:
 | 
						|
      case Instruction::And:
 | 
						|
      case Instruction::Or:
 | 
						|
      case Instruction::Xor:
 | 
						|
      case Instruction::Shl:
 | 
						|
      case Instruction::LShr:
 | 
						|
      case Instruction::AShr:
 | 
						|
      case Instruction::ICmp:
 | 
						|
      case Instruction::FCmp:
 | 
						|
      case Instruction::ShuffleVector: {
 | 
						|
        addAssignEdge(CE->getOperand(0), CE);
 | 
						|
        addAssignEdge(CE->getOperand(1), CE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::FNeg: {
 | 
						|
        addAssignEdge(CE->getOperand(0), CE);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown instruction type encountered!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Helper functions
 | 
						|
 | 
						|
  // Determines whether or not we an instruction is useless to us (e.g.
 | 
						|
  // FenceInst)
 | 
						|
  static bool hasUsefulEdges(Instruction *Inst) {
 | 
						|
    bool IsNonInvokeRetTerminator = Inst->isTerminator() &&
 | 
						|
                                    !isa<InvokeInst>(Inst) &&
 | 
						|
                                    !isa<ReturnInst>(Inst);
 | 
						|
    return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
 | 
						|
           !IsNonInvokeRetTerminator;
 | 
						|
  }
 | 
						|
 | 
						|
  void addArgumentToGraph(Argument &Arg) {
 | 
						|
    if (Arg.getType()->isPointerTy()) {
 | 
						|
      Graph.addNode(InstantiatedValue{&Arg, 0},
 | 
						|
                    getGlobalOrArgAttrFromValue(Arg));
 | 
						|
      // Pointees of a formal parameter is known to the caller
 | 
						|
      Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Given an Instruction, this will add it to the graph, along with any
 | 
						|
  // Instructions that are potentially only available from said Instruction
 | 
						|
  // For example, given the following line:
 | 
						|
  //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
 | 
						|
  // addInstructionToGraph would add both the `load` and `getelementptr`
 | 
						|
  // instructions to the graph appropriately.
 | 
						|
  void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
 | 
						|
    if (!hasUsefulEdges(&Inst))
 | 
						|
      return;
 | 
						|
 | 
						|
    Visitor.visit(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // Builds the graph needed for constructing the StratifiedSets for the given
 | 
						|
  // function
 | 
						|
  void buildGraphFrom(Function &Fn) {
 | 
						|
    GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
 | 
						|
 | 
						|
    for (auto &Bb : Fn.getBasicBlockList())
 | 
						|
      for (auto &Inst : Bb.getInstList())
 | 
						|
        addInstructionToGraph(Visitor, Inst);
 | 
						|
 | 
						|
    for (auto &Arg : Fn.args())
 | 
						|
      addArgumentToGraph(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
 | 
						|
      : Analysis(Analysis), TLI(TLI) {
 | 
						|
    buildGraphFrom(Fn);
 | 
						|
  }
 | 
						|
 | 
						|
  const CFLGraph &getCFLGraph() const { return Graph; }
 | 
						|
  const SmallVector<Value *, 4> &getReturnValues() const {
 | 
						|
    return ReturnedValues;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace cflaa
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H
 |