forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1124 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1124 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file "describes" induction and recurrence variables.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/IVDescriptors.h"
 | 
						|
#include "llvm/ADT/ScopeExit.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/MustExecute.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "iv-descriptors"
 | 
						|
 | 
						|
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
 | 
						|
                                        SmallPtrSetImpl<Instruction *> &Set) {
 | 
						|
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
 | 
						|
    if (!Set.count(dyn_cast<Instruction>(*Use)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case RK_IntegerAdd:
 | 
						|
  case RK_IntegerMult:
 | 
						|
  case RK_IntegerOr:
 | 
						|
  case RK_IntegerAnd:
 | 
						|
  case RK_IntegerXor:
 | 
						|
  case RK_IntegerMinMax:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
 | 
						|
  return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case RK_IntegerAdd:
 | 
						|
  case RK_IntegerMult:
 | 
						|
  case RK_FloatAdd:
 | 
						|
  case RK_FloatMult:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Determines if Phi may have been type-promoted. If Phi has a single user
 | 
						|
/// that ANDs the Phi with a type mask, return the user. RT is updated to
 | 
						|
/// account for the narrower bit width represented by the mask, and the AND
 | 
						|
/// instruction is added to CI.
 | 
						|
static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
 | 
						|
                                   SmallPtrSetImpl<Instruction *> &Visited,
 | 
						|
                                   SmallPtrSetImpl<Instruction *> &CI) {
 | 
						|
  if (!Phi->hasOneUse())
 | 
						|
    return Phi;
 | 
						|
 | 
						|
  const APInt *M = nullptr;
 | 
						|
  Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
 | 
						|
 | 
						|
  // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
 | 
						|
  // with a new integer type of the corresponding bit width.
 | 
						|
  if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
 | 
						|
    int32_t Bits = (*M + 1).exactLogBase2();
 | 
						|
    if (Bits > 0) {
 | 
						|
      RT = IntegerType::get(Phi->getContext(), Bits);
 | 
						|
      Visited.insert(Phi);
 | 
						|
      CI.insert(J);
 | 
						|
      return J;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Phi;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the minimal bit width needed to represent a reduction whose exit
 | 
						|
/// instruction is given by Exit.
 | 
						|
static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
 | 
						|
                                                     DemandedBits *DB,
 | 
						|
                                                     AssumptionCache *AC,
 | 
						|
                                                     DominatorTree *DT) {
 | 
						|
  bool IsSigned = false;
 | 
						|
  const DataLayout &DL = Exit->getModule()->getDataLayout();
 | 
						|
  uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
 | 
						|
 | 
						|
  if (DB) {
 | 
						|
    // Use the demanded bits analysis to determine the bits that are live out
 | 
						|
    // of the exit instruction, rounding up to the nearest power of two. If the
 | 
						|
    // use of demanded bits results in a smaller bit width, we know the value
 | 
						|
    // must be positive (i.e., IsSigned = false), because if this were not the
 | 
						|
    // case, the sign bit would have been demanded.
 | 
						|
    auto Mask = DB->getDemandedBits(Exit);
 | 
						|
    MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
 | 
						|
    // If demanded bits wasn't able to limit the bit width, we can try to use
 | 
						|
    // value tracking instead. This can be the case, for example, if the value
 | 
						|
    // may be negative.
 | 
						|
    auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
 | 
						|
    auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
 | 
						|
    MaxBitWidth = NumTypeBits - NumSignBits;
 | 
						|
    KnownBits Bits = computeKnownBits(Exit, DL);
 | 
						|
    if (!Bits.isNonNegative()) {
 | 
						|
      // If the value is not known to be non-negative, we set IsSigned to true,
 | 
						|
      // meaning that we will use sext instructions instead of zext
 | 
						|
      // instructions to restore the original type.
 | 
						|
      IsSigned = true;
 | 
						|
      if (!Bits.isNegative())
 | 
						|
        // If the value is not known to be negative, we don't known what the
 | 
						|
        // upper bit is, and therefore, we don't know what kind of extend we
 | 
						|
        // will need. In this case, just increase the bit width by one bit and
 | 
						|
        // use sext.
 | 
						|
        ++MaxBitWidth;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!isPowerOf2_64(MaxBitWidth))
 | 
						|
    MaxBitWidth = NextPowerOf2(MaxBitWidth);
 | 
						|
 | 
						|
  return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
 | 
						|
                        IsSigned);
 | 
						|
}
 | 
						|
 | 
						|
/// Collect cast instructions that can be ignored in the vectorizer's cost
 | 
						|
/// model, given a reduction exit value and the minimal type in which the
 | 
						|
/// reduction can be represented.
 | 
						|
static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
 | 
						|
                                 Type *RecurrenceType,
 | 
						|
                                 SmallPtrSetImpl<Instruction *> &Casts) {
 | 
						|
 | 
						|
  SmallVector<Instruction *, 8> Worklist;
 | 
						|
  SmallPtrSet<Instruction *, 8> Visited;
 | 
						|
  Worklist.push_back(Exit);
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *Val = Worklist.pop_back_val();
 | 
						|
    Visited.insert(Val);
 | 
						|
    if (auto *Cast = dyn_cast<CastInst>(Val))
 | 
						|
      if (Cast->getSrcTy() == RecurrenceType) {
 | 
						|
        // If the source type of a cast instruction is equal to the recurrence
 | 
						|
        // type, it will be eliminated, and should be ignored in the vectorizer
 | 
						|
        // cost model.
 | 
						|
        Casts.insert(Cast);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    // Add all operands to the work list if they are loop-varying values that
 | 
						|
    // we haven't yet visited.
 | 
						|
    for (Value *O : cast<User>(Val)->operands())
 | 
						|
      if (auto *I = dyn_cast<Instruction>(O))
 | 
						|
        if (TheLoop->contains(I) && !Visited.count(I))
 | 
						|
          Worklist.push_back(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
 | 
						|
                                           Loop *TheLoop, bool HasFunNoNaNAttr,
 | 
						|
                                           RecurrenceDescriptor &RedDes,
 | 
						|
                                           DemandedBits *DB,
 | 
						|
                                           AssumptionCache *AC,
 | 
						|
                                           DominatorTree *DT) {
 | 
						|
  if (Phi->getNumIncomingValues() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Reduction variables are only found in the loop header block.
 | 
						|
  if (Phi->getParent() != TheLoop->getHeader())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Obtain the reduction start value from the value that comes from the loop
 | 
						|
  // preheader.
 | 
						|
  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
 | 
						|
 | 
						|
  // ExitInstruction is the single value which is used outside the loop.
 | 
						|
  // We only allow for a single reduction value to be used outside the loop.
 | 
						|
  // This includes users of the reduction, variables (which form a cycle
 | 
						|
  // which ends in the phi node).
 | 
						|
  Instruction *ExitInstruction = nullptr;
 | 
						|
  // Indicates that we found a reduction operation in our scan.
 | 
						|
  bool FoundReduxOp = false;
 | 
						|
 | 
						|
  // We start with the PHI node and scan for all of the users of this
 | 
						|
  // instruction. All users must be instructions that can be used as reduction
 | 
						|
  // variables (such as ADD). We must have a single out-of-block user. The cycle
 | 
						|
  // must include the original PHI.
 | 
						|
  bool FoundStartPHI = false;
 | 
						|
 | 
						|
  // To recognize min/max patterns formed by a icmp select sequence, we store
 | 
						|
  // the number of instruction we saw from the recognized min/max pattern,
 | 
						|
  //  to make sure we only see exactly the two instructions.
 | 
						|
  unsigned NumCmpSelectPatternInst = 0;
 | 
						|
  InstDesc ReduxDesc(false, nullptr);
 | 
						|
 | 
						|
  // Data used for determining if the recurrence has been type-promoted.
 | 
						|
  Type *RecurrenceType = Phi->getType();
 | 
						|
  SmallPtrSet<Instruction *, 4> CastInsts;
 | 
						|
  Instruction *Start = Phi;
 | 
						|
  bool IsSigned = false;
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 8> VisitedInsts;
 | 
						|
  SmallVector<Instruction *, 8> Worklist;
 | 
						|
 | 
						|
  // Return early if the recurrence kind does not match the type of Phi. If the
 | 
						|
  // recurrence kind is arithmetic, we attempt to look through AND operations
 | 
						|
  // resulting from the type promotion performed by InstCombine.  Vector
 | 
						|
  // operations are not limited to the legal integer widths, so we may be able
 | 
						|
  // to evaluate the reduction in the narrower width.
 | 
						|
  if (RecurrenceType->isFloatingPointTy()) {
 | 
						|
    if (!isFloatingPointRecurrenceKind(Kind))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (!isIntegerRecurrenceKind(Kind))
 | 
						|
      return false;
 | 
						|
    if (isArithmeticRecurrenceKind(Kind))
 | 
						|
      Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
 | 
						|
  }
 | 
						|
 | 
						|
  Worklist.push_back(Start);
 | 
						|
  VisitedInsts.insert(Start);
 | 
						|
 | 
						|
  // Start with all flags set because we will intersect this with the reduction
 | 
						|
  // flags from all the reduction operations.
 | 
						|
  FastMathFlags FMF = FastMathFlags::getFast();
 | 
						|
 | 
						|
  // A value in the reduction can be used:
 | 
						|
  //  - By the reduction:
 | 
						|
  //      - Reduction operation:
 | 
						|
  //        - One use of reduction value (safe).
 | 
						|
  //        - Multiple use of reduction value (not safe).
 | 
						|
  //      - PHI:
 | 
						|
  //        - All uses of the PHI must be the reduction (safe).
 | 
						|
  //        - Otherwise, not safe.
 | 
						|
  //  - By instructions outside of the loop (safe).
 | 
						|
  //      * One value may have several outside users, but all outside
 | 
						|
  //        uses must be of the same value.
 | 
						|
  //  - By an instruction that is not part of the reduction (not safe).
 | 
						|
  //    This is either:
 | 
						|
  //      * An instruction type other than PHI or the reduction operation.
 | 
						|
  //      * A PHI in the header other than the initial PHI.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Instruction *Cur = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
 | 
						|
    // No Users.
 | 
						|
    // If the instruction has no users then this is a broken chain and can't be
 | 
						|
    // a reduction variable.
 | 
						|
    if (Cur->use_empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool IsAPhi = isa<PHINode>(Cur);
 | 
						|
 | 
						|
    // A header PHI use other than the original PHI.
 | 
						|
    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Reductions of instructions such as Div, and Sub is only possible if the
 | 
						|
    // LHS is the reduction variable.
 | 
						|
    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
 | 
						|
        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
 | 
						|
        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Any reduction instruction must be of one of the allowed kinds. We ignore
 | 
						|
    // the starting value (the Phi or an AND instruction if the Phi has been
 | 
						|
    // type-promoted).
 | 
						|
    if (Cur != Start) {
 | 
						|
      ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
 | 
						|
      if (!ReduxDesc.isRecurrence())
 | 
						|
        return false;
 | 
						|
      // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
 | 
						|
      if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi)
 | 
						|
        FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
 | 
						|
    }
 | 
						|
 | 
						|
    bool IsASelect = isa<SelectInst>(Cur);
 | 
						|
 | 
						|
    // A conditional reduction operation must only have 2 or less uses in
 | 
						|
    // VisitedInsts.
 | 
						|
    if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
 | 
						|
        hasMultipleUsesOf(Cur, VisitedInsts, 2))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // A reduction operation must only have one use of the reduction value.
 | 
						|
    if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
 | 
						|
        Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // All inputs to a PHI node must be a reduction value.
 | 
						|
    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Kind == RK_IntegerMinMax &&
 | 
						|
        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
 | 
						|
      ++NumCmpSelectPatternInst;
 | 
						|
    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
 | 
						|
      ++NumCmpSelectPatternInst;
 | 
						|
 | 
						|
    // Check  whether we found a reduction operator.
 | 
						|
    FoundReduxOp |= !IsAPhi && Cur != Start;
 | 
						|
 | 
						|
    // Process users of current instruction. Push non-PHI nodes after PHI nodes
 | 
						|
    // onto the stack. This way we are going to have seen all inputs to PHI
 | 
						|
    // nodes once we get to them.
 | 
						|
    SmallVector<Instruction *, 8> NonPHIs;
 | 
						|
    SmallVector<Instruction *, 8> PHIs;
 | 
						|
    for (User *U : Cur->users()) {
 | 
						|
      Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
      // Check if we found the exit user.
 | 
						|
      BasicBlock *Parent = UI->getParent();
 | 
						|
      if (!TheLoop->contains(Parent)) {
 | 
						|
        // If we already know this instruction is used externally, move on to
 | 
						|
        // the next user.
 | 
						|
        if (ExitInstruction == Cur)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Exit if you find multiple values used outside or if the header phi
 | 
						|
        // node is being used. In this case the user uses the value of the
 | 
						|
        // previous iteration, in which case we would loose "VF-1" iterations of
 | 
						|
        // the reduction operation if we vectorize.
 | 
						|
        if (ExitInstruction != nullptr || Cur == Phi)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // The instruction used by an outside user must be the last instruction
 | 
						|
        // before we feed back to the reduction phi. Otherwise, we loose VF-1
 | 
						|
        // operations on the value.
 | 
						|
        if (!is_contained(Phi->operands(), Cur))
 | 
						|
          return false;
 | 
						|
 | 
						|
        ExitInstruction = Cur;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Process instructions only once (termination). Each reduction cycle
 | 
						|
      // value must only be used once, except by phi nodes and min/max
 | 
						|
      // reductions which are represented as a cmp followed by a select.
 | 
						|
      InstDesc IgnoredVal(false, nullptr);
 | 
						|
      if (VisitedInsts.insert(UI).second) {
 | 
						|
        if (isa<PHINode>(UI))
 | 
						|
          PHIs.push_back(UI);
 | 
						|
        else
 | 
						|
          NonPHIs.push_back(UI);
 | 
						|
      } else if (!isa<PHINode>(UI) &&
 | 
						|
                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
 | 
						|
                   !isa<SelectInst>(UI)) ||
 | 
						|
                  (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
 | 
						|
                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Remember that we completed the cycle.
 | 
						|
      if (UI == Phi)
 | 
						|
        FoundStartPHI = true;
 | 
						|
    }
 | 
						|
    Worklist.append(PHIs.begin(), PHIs.end());
 | 
						|
    Worklist.append(NonPHIs.begin(), NonPHIs.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // This means we have seen one but not the other instruction of the
 | 
						|
  // pattern or more than just a select and cmp.
 | 
						|
  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
 | 
						|
      NumCmpSelectPatternInst != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Start != Phi) {
 | 
						|
    // If the starting value is not the same as the phi node, we speculatively
 | 
						|
    // looked through an 'and' instruction when evaluating a potential
 | 
						|
    // arithmetic reduction to determine if it may have been type-promoted.
 | 
						|
    //
 | 
						|
    // We now compute the minimal bit width that is required to represent the
 | 
						|
    // reduction. If this is the same width that was indicated by the 'and', we
 | 
						|
    // can represent the reduction in the smaller type. The 'and' instruction
 | 
						|
    // will be eliminated since it will essentially be a cast instruction that
 | 
						|
    // can be ignore in the cost model. If we compute a different type than we
 | 
						|
    // did when evaluating the 'and', the 'and' will not be eliminated, and we
 | 
						|
    // will end up with different kinds of operations in the recurrence
 | 
						|
    // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
 | 
						|
    // the case.
 | 
						|
    //
 | 
						|
    // The vectorizer relies on InstCombine to perform the actual
 | 
						|
    // type-shrinking. It does this by inserting instructions to truncate the
 | 
						|
    // exit value of the reduction to the width indicated by RecurrenceType and
 | 
						|
    // then extend this value back to the original width. If IsSigned is false,
 | 
						|
    // a 'zext' instruction will be generated; otherwise, a 'sext' will be
 | 
						|
    // used.
 | 
						|
    //
 | 
						|
    // TODO: We should not rely on InstCombine to rewrite the reduction in the
 | 
						|
    //       smaller type. We should just generate a correctly typed expression
 | 
						|
    //       to begin with.
 | 
						|
    Type *ComputedType;
 | 
						|
    std::tie(ComputedType, IsSigned) =
 | 
						|
        computeRecurrenceType(ExitInstruction, DB, AC, DT);
 | 
						|
    if (ComputedType != RecurrenceType)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The recurrence expression will be represented in a narrower type. If
 | 
						|
    // there are any cast instructions that will be unnecessary, collect them
 | 
						|
    // in CastInsts. Note that the 'and' instruction was already included in
 | 
						|
    // this list.
 | 
						|
    //
 | 
						|
    // TODO: A better way to represent this may be to tag in some way all the
 | 
						|
    //       instructions that are a part of the reduction. The vectorizer cost
 | 
						|
    //       model could then apply the recurrence type to these instructions,
 | 
						|
    //       without needing a white list of instructions to ignore.
 | 
						|
    collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
 | 
						|
  }
 | 
						|
 | 
						|
  // We found a reduction var if we have reached the original phi node and we
 | 
						|
  // only have a single instruction with out-of-loop users.
 | 
						|
 | 
						|
  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
 | 
						|
  // is saved as part of the RecurrenceDescriptor.
 | 
						|
 | 
						|
  // Save the description of this reduction variable.
 | 
						|
  RecurrenceDescriptor RD(
 | 
						|
      RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(),
 | 
						|
      ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
 | 
						|
  RedDes = RD;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | 
						|
/// pattern corresponding to a min(X, Y) or max(X, Y).
 | 
						|
RecurrenceDescriptor::InstDesc
 | 
						|
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
 | 
						|
 | 
						|
  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
 | 
						|
         "Expect a select instruction");
 | 
						|
  Instruction *Cmp = nullptr;
 | 
						|
  SelectInst *Select = nullptr;
 | 
						|
 | 
						|
  // We must handle the select(cmp()) as a single instruction. Advance to the
 | 
						|
  // select.
 | 
						|
  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
 | 
						|
    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
 | 
						|
      return InstDesc(false, I);
 | 
						|
    return InstDesc(Select, Prev.getMinMaxKind());
 | 
						|
  }
 | 
						|
 | 
						|
  // Only handle single use cases for now.
 | 
						|
  if (!(Select = dyn_cast<SelectInst>(I)))
 | 
						|
    return InstDesc(false, I);
 | 
						|
  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
 | 
						|
      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
 | 
						|
    return InstDesc(false, I);
 | 
						|
  if (!Cmp->hasOneUse())
 | 
						|
    return InstDesc(false, I);
 | 
						|
 | 
						|
  Value *CmpLeft;
 | 
						|
  Value *CmpRight;
 | 
						|
 | 
						|
  // Look for a min/max pattern.
 | 
						|
  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_UIntMin);
 | 
						|
  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_UIntMax);
 | 
						|
  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_SIntMax);
 | 
						|
  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_SIntMin);
 | 
						|
  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMin);
 | 
						|
  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMax);
 | 
						|
  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMin);
 | 
						|
  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | 
						|
    return InstDesc(Select, MRK_FloatMax);
 | 
						|
 | 
						|
  return InstDesc(false, I);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the select instruction has users in the compare-and-add
 | 
						|
/// reduction pattern below. The select instruction argument is the last one
 | 
						|
/// in the sequence.
 | 
						|
///
 | 
						|
/// %sum.1 = phi ...
 | 
						|
/// ...
 | 
						|
/// %cmp = fcmp pred %0, %CFP
 | 
						|
/// %add = fadd %0, %sum.1
 | 
						|
/// %sum.2 = select %cmp, %add, %sum.1
 | 
						|
RecurrenceDescriptor::InstDesc
 | 
						|
RecurrenceDescriptor::isConditionalRdxPattern(
 | 
						|
    RecurrenceKind Kind, Instruction *I) {
 | 
						|
  SelectInst *SI = dyn_cast<SelectInst>(I);
 | 
						|
  if (!SI)
 | 
						|
    return InstDesc(false, I);
 | 
						|
 | 
						|
  CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
 | 
						|
  // Only handle single use cases for now.
 | 
						|
  if (!CI || !CI->hasOneUse())
 | 
						|
    return InstDesc(false, I);
 | 
						|
 | 
						|
  Value *TrueVal = SI->getTrueValue();
 | 
						|
  Value *FalseVal = SI->getFalseValue();
 | 
						|
  // Handle only when either of operands of select instruction is a PHI
 | 
						|
  // node for now.
 | 
						|
  if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
 | 
						|
      (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
 | 
						|
    return InstDesc(false, I);
 | 
						|
 | 
						|
  Instruction *I1 =
 | 
						|
      isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
 | 
						|
                             : dyn_cast<Instruction>(TrueVal);
 | 
						|
  if (!I1 || !I1->isBinaryOp())
 | 
						|
    return InstDesc(false, I);
 | 
						|
 | 
						|
  Value *Op1, *Op2;
 | 
						|
  if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
 | 
						|
       m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
 | 
						|
      I1->isFast())
 | 
						|
    return InstDesc(Kind == RK_FloatAdd, SI);
 | 
						|
 | 
						|
  if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
 | 
						|
    return InstDesc(Kind == RK_FloatMult, SI);
 | 
						|
 | 
						|
  return InstDesc(false, I);
 | 
						|
}
 | 
						|
 | 
						|
RecurrenceDescriptor::InstDesc
 | 
						|
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
 | 
						|
                                        InstDesc &Prev, bool HasFunNoNaNAttr) {
 | 
						|
  Instruction *UAI = Prev.getUnsafeAlgebraInst();
 | 
						|
  if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
 | 
						|
    UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return InstDesc(false, I);
 | 
						|
  case Instruction::PHI:
 | 
						|
    return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Add:
 | 
						|
    return InstDesc(Kind == RK_IntegerAdd, I);
 | 
						|
  case Instruction::Mul:
 | 
						|
    return InstDesc(Kind == RK_IntegerMult, I);
 | 
						|
  case Instruction::And:
 | 
						|
    return InstDesc(Kind == RK_IntegerAnd, I);
 | 
						|
  case Instruction::Or:
 | 
						|
    return InstDesc(Kind == RK_IntegerOr, I);
 | 
						|
  case Instruction::Xor:
 | 
						|
    return InstDesc(Kind == RK_IntegerXor, I);
 | 
						|
  case Instruction::FMul:
 | 
						|
    return InstDesc(Kind == RK_FloatMult, I, UAI);
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::FAdd:
 | 
						|
    return InstDesc(Kind == RK_FloatAdd, I, UAI);
 | 
						|
  case Instruction::Select:
 | 
						|
    if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
 | 
						|
      return isConditionalRdxPattern(Kind, I);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case Instruction::FCmp:
 | 
						|
  case Instruction::ICmp:
 | 
						|
    if (Kind != RK_IntegerMinMax &&
 | 
						|
        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
 | 
						|
      return InstDesc(false, I);
 | 
						|
    return isMinMaxSelectCmpPattern(I, Prev);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::hasMultipleUsesOf(
 | 
						|
    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
 | 
						|
    unsigned MaxNumUses) {
 | 
						|
  unsigned NumUses = 0;
 | 
						|
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
 | 
						|
       ++Use) {
 | 
						|
    if (Insts.count(dyn_cast<Instruction>(*Use)))
 | 
						|
      ++NumUses;
 | 
						|
    if (NumUses > MaxNumUses)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
 | 
						|
                                          RecurrenceDescriptor &RedDes,
 | 
						|
                                          DemandedBits *DB, AssumptionCache *AC,
 | 
						|
                                          DominatorTree *DT) {
 | 
						|
 | 
						|
  BasicBlock *Header = TheLoop->getHeader();
 | 
						|
  Function &F = *Header->getParent();
 | 
						|
  bool HasFunNoNaNAttr =
 | 
						|
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
 | 
						|
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
 | 
						|
                      DB, AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
 | 
						|
                      AC, DT)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
 | 
						|
                      << "\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Not a reduction of known type.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool RecurrenceDescriptor::isFirstOrderRecurrence(
 | 
						|
    PHINode *Phi, Loop *TheLoop,
 | 
						|
    DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
 | 
						|
 | 
						|
  // Ensure the phi node is in the loop header and has two incoming values.
 | 
						|
  if (Phi->getParent() != TheLoop->getHeader() ||
 | 
						|
      Phi->getNumIncomingValues() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure the loop has a preheader and a single latch block. The loop
 | 
						|
  // vectorizer will need the latch to set up the next iteration of the loop.
 | 
						|
  auto *Preheader = TheLoop->getLoopPreheader();
 | 
						|
  auto *Latch = TheLoop->getLoopLatch();
 | 
						|
  if (!Preheader || !Latch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure the phi node's incoming blocks are the loop preheader and latch.
 | 
						|
  if (Phi->getBasicBlockIndex(Preheader) < 0 ||
 | 
						|
      Phi->getBasicBlockIndex(Latch) < 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the previous value. The previous value comes from the latch edge while
 | 
						|
  // the initial value comes form the preheader edge.
 | 
						|
  auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
 | 
						|
  if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
 | 
						|
      SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ensure every user of the phi node is dominated by the previous value.
 | 
						|
  // The dominance requirement ensures the loop vectorizer will not need to
 | 
						|
  // vectorize the initial value prior to the first iteration of the loop.
 | 
						|
  // TODO: Consider extending this sinking to handle memory instructions and
 | 
						|
  // phis with multiple users.
 | 
						|
 | 
						|
  // Returns true, if all users of I are dominated by DominatedBy.
 | 
						|
  auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) {
 | 
						|
    return all_of(I->uses(), [DT, DominatedBy](Use &U) {
 | 
						|
      return DT->dominates(DominatedBy, U);
 | 
						|
    });
 | 
						|
  };
 | 
						|
 | 
						|
  if (Phi->hasOneUse()) {
 | 
						|
    Instruction *I = Phi->user_back();
 | 
						|
 | 
						|
    // If the user of the PHI is also the incoming value, we potentially have a
 | 
						|
    // reduction and which cannot be handled by sinking.
 | 
						|
    if (Previous == I)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We cannot sink terminator instructions.
 | 
						|
    if (I->getParent()->getTerminator() == I)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Do not try to sink an instruction multiple times (if multiple operands
 | 
						|
    // are first order recurrences).
 | 
						|
    // TODO: We can support this case, by sinking the instruction after the
 | 
						|
    // 'deepest' previous instruction.
 | 
						|
    if (SinkAfter.find(I) != SinkAfter.end())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (DT->dominates(Previous, I)) // We already are good w/o sinking.
 | 
						|
      return true;
 | 
						|
 | 
						|
    // We can sink any instruction without side effects, as long as all users
 | 
						|
    // are dominated by the instruction we are sinking after.
 | 
						|
    if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() &&
 | 
						|
        allUsesDominatedBy(I, Previous)) {
 | 
						|
      SinkAfter[I] = Previous;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return allUsesDominatedBy(Phi, Previous);
 | 
						|
}
 | 
						|
 | 
						|
/// This function returns the identity element (or neutral element) for
 | 
						|
/// the operation K.
 | 
						|
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
 | 
						|
                                                      Type *Tp) {
 | 
						|
  switch (K) {
 | 
						|
  case RK_IntegerXor:
 | 
						|
  case RK_IntegerAdd:
 | 
						|
  case RK_IntegerOr:
 | 
						|
    // Adding, Xoring, Oring zero to a number does not change it.
 | 
						|
    return ConstantInt::get(Tp, 0);
 | 
						|
  case RK_IntegerMult:
 | 
						|
    // Multiplying a number by 1 does not change it.
 | 
						|
    return ConstantInt::get(Tp, 1);
 | 
						|
  case RK_IntegerAnd:
 | 
						|
    // AND-ing a number with an all-1 value does not change it.
 | 
						|
    return ConstantInt::get(Tp, -1, true);
 | 
						|
  case RK_FloatMult:
 | 
						|
    // Multiplying a number by 1 does not change it.
 | 
						|
    return ConstantFP::get(Tp, 1.0L);
 | 
						|
  case RK_FloatAdd:
 | 
						|
    // Adding zero to a number does not change it.
 | 
						|
    return ConstantFP::get(Tp, 0.0L);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown recurrence kind");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// This function translates the recurrence kind to an LLVM binary operator.
 | 
						|
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  case RK_IntegerAdd:
 | 
						|
    return Instruction::Add;
 | 
						|
  case RK_IntegerMult:
 | 
						|
    return Instruction::Mul;
 | 
						|
  case RK_IntegerOr:
 | 
						|
    return Instruction::Or;
 | 
						|
  case RK_IntegerAnd:
 | 
						|
    return Instruction::And;
 | 
						|
  case RK_IntegerXor:
 | 
						|
    return Instruction::Xor;
 | 
						|
  case RK_FloatMult:
 | 
						|
    return Instruction::FMul;
 | 
						|
  case RK_FloatAdd:
 | 
						|
    return Instruction::FAdd;
 | 
						|
  case RK_IntegerMinMax:
 | 
						|
    return Instruction::ICmp;
 | 
						|
  case RK_FloatMinMax:
 | 
						|
    return Instruction::FCmp;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown recurrence operation");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
 | 
						|
                                         const SCEV *Step, BinaryOperator *BOp,
 | 
						|
                                         SmallVectorImpl<Instruction *> *Casts)
 | 
						|
    : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
 | 
						|
  assert(IK != IK_NoInduction && "Not an induction");
 | 
						|
 | 
						|
  // Start value type should match the induction kind and the value
 | 
						|
  // itself should not be null.
 | 
						|
  assert(StartValue && "StartValue is null");
 | 
						|
  assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
 | 
						|
         "StartValue is not a pointer for pointer induction");
 | 
						|
  assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
 | 
						|
         "StartValue is not an integer for integer induction");
 | 
						|
 | 
						|
  // Check the Step Value. It should be non-zero integer value.
 | 
						|
  assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
 | 
						|
         "Step value is zero");
 | 
						|
 | 
						|
  assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
 | 
						|
         "Step value should be constant for pointer induction");
 | 
						|
  assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
 | 
						|
         "StepValue is not an integer");
 | 
						|
 | 
						|
  assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
 | 
						|
         "StepValue is not FP for FpInduction");
 | 
						|
  assert((IK != IK_FpInduction ||
 | 
						|
          (InductionBinOp &&
 | 
						|
           (InductionBinOp->getOpcode() == Instruction::FAdd ||
 | 
						|
            InductionBinOp->getOpcode() == Instruction::FSub))) &&
 | 
						|
         "Binary opcode should be specified for FP induction");
 | 
						|
 | 
						|
  if (Casts) {
 | 
						|
    for (auto &Inst : *Casts) {
 | 
						|
      RedundantCasts.push_back(Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
int InductionDescriptor::getConsecutiveDirection() const {
 | 
						|
  ConstantInt *ConstStep = getConstIntStepValue();
 | 
						|
  if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
 | 
						|
    return ConstStep->getSExtValue();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt *InductionDescriptor::getConstIntStepValue() const {
 | 
						|
  if (isa<SCEVConstant>(Step))
 | 
						|
    return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | 
						|
                                           ScalarEvolution *SE,
 | 
						|
                                           InductionDescriptor &D) {
 | 
						|
 | 
						|
  // Here we only handle FP induction variables.
 | 
						|
  assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
 | 
						|
 | 
						|
  if (TheLoop->getHeader() != Phi->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The loop may have multiple entrances or multiple exits; we can analyze
 | 
						|
  // this phi if it has a unique entry value and a unique backedge value.
 | 
						|
  if (Phi->getNumIncomingValues() != 2)
 | 
						|
    return false;
 | 
						|
  Value *BEValue = nullptr, *StartValue = nullptr;
 | 
						|
  if (TheLoop->contains(Phi->getIncomingBlock(0))) {
 | 
						|
    BEValue = Phi->getIncomingValue(0);
 | 
						|
    StartValue = Phi->getIncomingValue(1);
 | 
						|
  } else {
 | 
						|
    assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
 | 
						|
           "Unexpected Phi node in the loop");
 | 
						|
    BEValue = Phi->getIncomingValue(1);
 | 
						|
    StartValue = Phi->getIncomingValue(0);
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
 | 
						|
  if (!BOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Addend = nullptr;
 | 
						|
  if (BOp->getOpcode() == Instruction::FAdd) {
 | 
						|
    if (BOp->getOperand(0) == Phi)
 | 
						|
      Addend = BOp->getOperand(1);
 | 
						|
    else if (BOp->getOperand(1) == Phi)
 | 
						|
      Addend = BOp->getOperand(0);
 | 
						|
  } else if (BOp->getOpcode() == Instruction::FSub)
 | 
						|
    if (BOp->getOperand(0) == Phi)
 | 
						|
      Addend = BOp->getOperand(1);
 | 
						|
 | 
						|
  if (!Addend)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The addend should be loop invariant
 | 
						|
  if (auto *I = dyn_cast<Instruction>(Addend))
 | 
						|
    if (TheLoop->contains(I))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // FP Step has unknown SCEV
 | 
						|
  const SCEV *Step = SE->getUnknown(Addend);
 | 
						|
  D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This function is called when we suspect that the update-chain of a phi node
 | 
						|
/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
 | 
						|
/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
 | 
						|
/// predicate P under which the SCEV expression for the phi can be the
 | 
						|
/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
 | 
						|
/// cast instructions that are involved in the update-chain of this induction.
 | 
						|
/// A caller that adds the required runtime predicate can be free to drop these
 | 
						|
/// cast instructions, and compute the phi using \p AR (instead of some scev
 | 
						|
/// expression with casts).
 | 
						|
///
 | 
						|
/// For example, without a predicate the scev expression can take the following
 | 
						|
/// form:
 | 
						|
///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
 | 
						|
///
 | 
						|
/// It corresponds to the following IR sequence:
 | 
						|
/// %for.body:
 | 
						|
///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
 | 
						|
///   %casted_phi = "ExtTrunc i64 %x"
 | 
						|
///   %add = add i64 %casted_phi, %step
 | 
						|
///
 | 
						|
/// where %x is given in \p PN,
 | 
						|
/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
 | 
						|
/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
 | 
						|
/// several forms, for example, such as:
 | 
						|
///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
 | 
						|
/// or:
 | 
						|
///   ExtTrunc2:    %t = shl %x, m
 | 
						|
///                 %casted_phi = ashr %t, m
 | 
						|
///
 | 
						|
/// If we are able to find such sequence, we return the instructions
 | 
						|
/// we found, namely %casted_phi and the instructions on its use-def chain up
 | 
						|
/// to the phi (not including the phi).
 | 
						|
static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
 | 
						|
                                    const SCEVUnknown *PhiScev,
 | 
						|
                                    const SCEVAddRecExpr *AR,
 | 
						|
                                    SmallVectorImpl<Instruction *> &CastInsts) {
 | 
						|
 | 
						|
  assert(CastInsts.empty() && "CastInsts is expected to be empty.");
 | 
						|
  auto *PN = cast<PHINode>(PhiScev->getValue());
 | 
						|
  assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
 | 
						|
  const Loop *L = AR->getLoop();
 | 
						|
 | 
						|
  // Find any cast instructions that participate in the def-use chain of
 | 
						|
  // PhiScev in the loop.
 | 
						|
  // FORNOW/TODO: We currently expect the def-use chain to include only
 | 
						|
  // two-operand instructions, where one of the operands is an invariant.
 | 
						|
  // createAddRecFromPHIWithCasts() currently does not support anything more
 | 
						|
  // involved than that, so we keep the search simple. This can be
 | 
						|
  // extended/generalized as needed.
 | 
						|
 | 
						|
  auto getDef = [&](const Value *Val) -> Value * {
 | 
						|
    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
 | 
						|
    if (!BinOp)
 | 
						|
      return nullptr;
 | 
						|
    Value *Op0 = BinOp->getOperand(0);
 | 
						|
    Value *Op1 = BinOp->getOperand(1);
 | 
						|
    Value *Def = nullptr;
 | 
						|
    if (L->isLoopInvariant(Op0))
 | 
						|
      Def = Op1;
 | 
						|
    else if (L->isLoopInvariant(Op1))
 | 
						|
      Def = Op0;
 | 
						|
    return Def;
 | 
						|
  };
 | 
						|
 | 
						|
  // Look for the instruction that defines the induction via the
 | 
						|
  // loop backedge.
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (!Latch)
 | 
						|
    return false;
 | 
						|
  Value *Val = PN->getIncomingValueForBlock(Latch);
 | 
						|
  if (!Val)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Follow the def-use chain until the induction phi is reached.
 | 
						|
  // If on the way we encounter a Value that has the same SCEV Expr as the
 | 
						|
  // phi node, we can consider the instructions we visit from that point
 | 
						|
  // as part of the cast-sequence that can be ignored.
 | 
						|
  bool InCastSequence = false;
 | 
						|
  auto *Inst = dyn_cast<Instruction>(Val);
 | 
						|
  while (Val != PN) {
 | 
						|
    // If we encountered a phi node other than PN, or if we left the loop,
 | 
						|
    // we bail out.
 | 
						|
    if (!Inst || !L->contains(Inst)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
 | 
						|
    if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
 | 
						|
      InCastSequence = true;
 | 
						|
    if (InCastSequence) {
 | 
						|
      // Only the last instruction in the cast sequence is expected to have
 | 
						|
      // uses outside the induction def-use chain.
 | 
						|
      if (!CastInsts.empty())
 | 
						|
        if (!Inst->hasOneUse())
 | 
						|
          return false;
 | 
						|
      CastInsts.push_back(Inst);
 | 
						|
    }
 | 
						|
    Val = getDef(Val);
 | 
						|
    if (!Val)
 | 
						|
      return false;
 | 
						|
    Inst = dyn_cast<Instruction>(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  return InCastSequence;
 | 
						|
}
 | 
						|
 | 
						|
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | 
						|
                                         PredicatedScalarEvolution &PSE,
 | 
						|
                                         InductionDescriptor &D, bool Assume) {
 | 
						|
  Type *PhiTy = Phi->getType();
 | 
						|
 | 
						|
  // Handle integer and pointer inductions variables.
 | 
						|
  // Now we handle also FP induction but not trying to make a
 | 
						|
  // recurrent expression from the PHI node in-place.
 | 
						|
 | 
						|
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
 | 
						|
      !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (PhiTy->isFloatingPointTy())
 | 
						|
    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
 | 
						|
 | 
						|
  const SCEV *PhiScev = PSE.getSCEV(Phi);
 | 
						|
  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | 
						|
 | 
						|
  // We need this expression to be an AddRecExpr.
 | 
						|
  if (Assume && !AR)
 | 
						|
    AR = PSE.getAsAddRec(Phi);
 | 
						|
 | 
						|
  if (!AR) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Record any Cast instructions that participate in the induction update
 | 
						|
  const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
 | 
						|
  // If we started from an UnknownSCEV, and managed to build an addRecurrence
 | 
						|
  // only after enabling Assume with PSCEV, this means we may have encountered
 | 
						|
  // cast instructions that required adding a runtime check in order to
 | 
						|
  // guarantee the correctness of the AddRecurrence respresentation of the
 | 
						|
  // induction.
 | 
						|
  if (PhiScev != AR && SymbolicPhi) {
 | 
						|
    SmallVector<Instruction *, 2> Casts;
 | 
						|
    if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
 | 
						|
      return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
 | 
						|
  }
 | 
						|
 | 
						|
  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
 | 
						|
}
 | 
						|
 | 
						|
bool InductionDescriptor::isInductionPHI(
 | 
						|
    PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
 | 
						|
    InductionDescriptor &D, const SCEV *Expr,
 | 
						|
    SmallVectorImpl<Instruction *> *CastsToIgnore) {
 | 
						|
  Type *PhiTy = Phi->getType();
 | 
						|
  // We only handle integer and pointer inductions variables.
 | 
						|
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the PHI is consecutive.
 | 
						|
  const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | 
						|
 | 
						|
  if (!AR) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (AR->getLoop() != TheLoop) {
 | 
						|
    // FIXME: We should treat this as a uniform. Unfortunately, we
 | 
						|
    // don't currently know how to handled uniform PHIs.
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *StartValue =
 | 
						|
      Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
 | 
						|
 | 
						|
  BasicBlock *Latch = AR->getLoop()->getLoopLatch();
 | 
						|
  if (!Latch)
 | 
						|
    return false;
 | 
						|
  BinaryOperator *BOp =
 | 
						|
      dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
 | 
						|
 | 
						|
  const SCEV *Step = AR->getStepRecurrence(*SE);
 | 
						|
  // Calculate the pointer stride and check if it is consecutive.
 | 
						|
  // The stride may be a constant or a loop invariant integer value.
 | 
						|
  const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
 | 
						|
  if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (PhiTy->isIntegerTy()) {
 | 
						|
    D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
 | 
						|
                            CastsToIgnore);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | 
						|
  // Pointer induction should be a constant.
 | 
						|
  if (!ConstStep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *CV = ConstStep->getValue();
 | 
						|
  Type *PointerElementType = PhiTy->getPointerElementType();
 | 
						|
  // The pointer stride cannot be determined if the pointer element type is not
 | 
						|
  // sized.
 | 
						|
  if (!PointerElementType->isSized())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = Phi->getModule()->getDataLayout();
 | 
						|
  int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
 | 
						|
  if (!Size)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int64_t CVSize = CV->getSExtValue();
 | 
						|
  if (CVSize % Size)
 | 
						|
    return false;
 | 
						|
  auto *StepValue =
 | 
						|
      SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
 | 
						|
  D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
 | 
						|
  return true;
 | 
						|
}
 |