forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2332 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2332 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements inline cost analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "inline-cost"
 | 
						|
 | 
						|
STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
 | 
						|
 | 
						|
static cl::opt<int> InlineThreshold(
 | 
						|
    "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
 | 
						|
    cl::desc("Control the amount of inlining to perform (default = 225)"));
 | 
						|
 | 
						|
static cl::opt<int> HintThreshold(
 | 
						|
    "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
 | 
						|
    cl::desc("Threshold for inlining functions with inline hint"));
 | 
						|
 | 
						|
static cl::opt<int>
 | 
						|
    ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
 | 
						|
                          cl::init(45), cl::ZeroOrMore,
 | 
						|
                          cl::desc("Threshold for inlining cold callsites"));
 | 
						|
 | 
						|
// We introduce this threshold to help performance of instrumentation based
 | 
						|
// PGO before we actually hook up inliner with analysis passes such as BPI and
 | 
						|
// BFI.
 | 
						|
static cl::opt<int> ColdThreshold(
 | 
						|
    "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
 | 
						|
    cl::desc("Threshold for inlining functions with cold attribute"));
 | 
						|
 | 
						|
static cl::opt<int>
 | 
						|
    HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
 | 
						|
                         cl::ZeroOrMore,
 | 
						|
                         cl::desc("Threshold for hot callsites "));
 | 
						|
 | 
						|
static cl::opt<int> LocallyHotCallSiteThreshold(
 | 
						|
    "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
 | 
						|
    cl::desc("Threshold for locally hot callsites "));
 | 
						|
 | 
						|
static cl::opt<int> ColdCallSiteRelFreq(
 | 
						|
    "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
 | 
						|
    cl::desc("Maximum block frequency, expressed as a percentage of caller's "
 | 
						|
             "entry frequency, for a callsite to be cold in the absence of "
 | 
						|
             "profile information."));
 | 
						|
 | 
						|
static cl::opt<int> HotCallSiteRelFreq(
 | 
						|
    "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
 | 
						|
    cl::desc("Minimum block frequency, expressed as a multiple of caller's "
 | 
						|
             "entry frequency, for a callsite to be hot in the absence of "
 | 
						|
             "profile information."));
 | 
						|
 | 
						|
static cl::opt<bool> OptComputeFullInlineCost(
 | 
						|
    "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
 | 
						|
    cl::desc("Compute the full inline cost of a call site even when the cost "
 | 
						|
             "exceeds the threshold."));
 | 
						|
 | 
						|
namespace {
 | 
						|
class InlineCostCallAnalyzer;
 | 
						|
class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
 | 
						|
  typedef InstVisitor<CallAnalyzer, bool> Base;
 | 
						|
  friend class InstVisitor<CallAnalyzer, bool>;
 | 
						|
 | 
						|
protected:
 | 
						|
  virtual ~CallAnalyzer() {}
 | 
						|
  /// The TargetTransformInfo available for this compilation.
 | 
						|
  const TargetTransformInfo &TTI;
 | 
						|
 | 
						|
  /// Getter for the cache of @llvm.assume intrinsics.
 | 
						|
  std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
 | 
						|
 | 
						|
  /// Getter for BlockFrequencyInfo
 | 
						|
  Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
 | 
						|
 | 
						|
  /// Profile summary information.
 | 
						|
  ProfileSummaryInfo *PSI;
 | 
						|
 | 
						|
  /// The called function.
 | 
						|
  Function &F;
 | 
						|
 | 
						|
  // Cache the DataLayout since we use it a lot.
 | 
						|
  const DataLayout &DL;
 | 
						|
 | 
						|
  /// The OptimizationRemarkEmitter available for this compilation.
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
 | 
						|
  /// The candidate callsite being analyzed. Please do not use this to do
 | 
						|
  /// analysis in the caller function; we want the inline cost query to be
 | 
						|
  /// easily cacheable. Instead, use the cover function paramHasAttr.
 | 
						|
  CallBase &CandidateCall;
 | 
						|
 | 
						|
  /// Extension points for handling callsite features.
 | 
						|
  /// Called after a basic block was analyzed.
 | 
						|
  virtual void onBlockAnalyzed(const BasicBlock *BB) {}
 | 
						|
 | 
						|
  /// Called at the end of the analysis of the callsite. Return the outcome of
 | 
						|
  /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
 | 
						|
  /// the reason it can't.
 | 
						|
  virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
 | 
						|
  /// Called when we're about to start processing a basic block, and every time
 | 
						|
  /// we are done processing an instruction. Return true if there is no point in
 | 
						|
  /// continuing the analysis (e.g. we've determined already the call site is
 | 
						|
  /// too expensive to inline)
 | 
						|
  virtual bool shouldStop() { return false; }
 | 
						|
 | 
						|
  /// Called before the analysis of the callee body starts (with callsite
 | 
						|
  /// contexts propagated).  It checks callsite-specific information. Return a
 | 
						|
  /// reason analysis can't continue if that's the case, or 'true' if it may
 | 
						|
  /// continue.
 | 
						|
  virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
 | 
						|
  /// Called if the analysis engine decides SROA cannot be done for the given
 | 
						|
  /// alloca.
 | 
						|
  virtual void onDisableSROA(AllocaInst *Arg) {}
 | 
						|
 | 
						|
  /// Called the analysis engine determines load elimination won't happen.
 | 
						|
  virtual void onDisableLoadElimination() {}
 | 
						|
 | 
						|
  /// Called to account for a call.
 | 
						|
  virtual void onCallPenalty() {}
 | 
						|
 | 
						|
  /// Called to account for the expectation the inlining would result in a load
 | 
						|
  /// elimination.
 | 
						|
  virtual void onLoadEliminationOpportunity() {}
 | 
						|
 | 
						|
  /// Called to account for the cost of argument setup for the Call in the
 | 
						|
  /// callee's body (not the callsite currently under analysis).
 | 
						|
  virtual void onCallArgumentSetup(const CallBase &Call) {}
 | 
						|
 | 
						|
  /// Called to account for a load relative intrinsic.
 | 
						|
  virtual void onLoadRelativeIntrinsic() {}
 | 
						|
 | 
						|
  /// Called to account for a lowered call.
 | 
						|
  virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
 | 
						|
  }
 | 
						|
 | 
						|
  /// Account for a jump table of given size. Return false to stop further
 | 
						|
  /// processing the switch instruction
 | 
						|
  virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
 | 
						|
 | 
						|
  /// Account for a case cluster of given size. Return false to stop further
 | 
						|
  /// processing of the instruction.
 | 
						|
  virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
 | 
						|
 | 
						|
  /// Called at the end of processing a switch instruction, with the given
 | 
						|
  /// number of case clusters.
 | 
						|
  virtual void onFinalizeSwitch(unsigned JumpTableSize,
 | 
						|
                                unsigned NumCaseCluster) {}
 | 
						|
 | 
						|
  /// Called to account for any other instruction not specifically accounted
 | 
						|
  /// for.
 | 
						|
  virtual void onMissedSimplification() {}
 | 
						|
 | 
						|
  /// Start accounting potential benefits due to SROA for the given alloca.
 | 
						|
  virtual void onInitializeSROAArg(AllocaInst *Arg) {}
 | 
						|
 | 
						|
  /// Account SROA savings for the AllocaInst value.
 | 
						|
  virtual void onAggregateSROAUse(AllocaInst *V) {}
 | 
						|
 | 
						|
  bool handleSROA(Value *V, bool DoNotDisable) {
 | 
						|
    // Check for SROA candidates in comparisons.
 | 
						|
    if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
 | 
						|
      if (DoNotDisable) {
 | 
						|
        onAggregateSROAUse(SROAArg);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      disableSROAForArg(SROAArg);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsCallerRecursive = false;
 | 
						|
  bool IsRecursiveCall = false;
 | 
						|
  bool ExposesReturnsTwice = false;
 | 
						|
  bool HasDynamicAlloca = false;
 | 
						|
  bool ContainsNoDuplicateCall = false;
 | 
						|
  bool HasReturn = false;
 | 
						|
  bool HasIndirectBr = false;
 | 
						|
  bool HasUninlineableIntrinsic = false;
 | 
						|
  bool InitsVargArgs = false;
 | 
						|
 | 
						|
  /// Number of bytes allocated statically by the callee.
 | 
						|
  uint64_t AllocatedSize = 0;
 | 
						|
  unsigned NumInstructions = 0;
 | 
						|
  unsigned NumVectorInstructions = 0;
 | 
						|
 | 
						|
  /// While we walk the potentially-inlined instructions, we build up and
 | 
						|
  /// maintain a mapping of simplified values specific to this callsite. The
 | 
						|
  /// idea is to propagate any special information we have about arguments to
 | 
						|
  /// this call through the inlinable section of the function, and account for
 | 
						|
  /// likely simplifications post-inlining. The most important aspect we track
 | 
						|
  /// is CFG altering simplifications -- when we prove a basic block dead, that
 | 
						|
  /// can cause dramatic shifts in the cost of inlining a function.
 | 
						|
  DenseMap<Value *, Constant *> SimplifiedValues;
 | 
						|
 | 
						|
  /// Keep track of the values which map back (through function arguments) to
 | 
						|
  /// allocas on the caller stack which could be simplified through SROA.
 | 
						|
  DenseMap<Value *, AllocaInst *> SROAArgValues;
 | 
						|
 | 
						|
  /// Keep track of Allocas for which we believe we may get SROA optimization.
 | 
						|
  DenseSet<AllocaInst *> EnabledSROAAllocas;
 | 
						|
 | 
						|
  /// Keep track of values which map to a pointer base and constant offset.
 | 
						|
  DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
 | 
						|
 | 
						|
  /// Keep track of dead blocks due to the constant arguments.
 | 
						|
  SetVector<BasicBlock *> DeadBlocks;
 | 
						|
 | 
						|
  /// The mapping of the blocks to their known unique successors due to the
 | 
						|
  /// constant arguments.
 | 
						|
  DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
 | 
						|
 | 
						|
  /// Model the elimination of repeated loads that is expected to happen
 | 
						|
  /// whenever we simplify away the stores that would otherwise cause them to be
 | 
						|
  /// loads.
 | 
						|
  bool EnableLoadElimination;
 | 
						|
  SmallPtrSet<Value *, 16> LoadAddrSet;
 | 
						|
 | 
						|
  AllocaInst *getSROAArgForValueOrNull(Value *V) const {
 | 
						|
    auto It = SROAArgValues.find(V);
 | 
						|
    if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
 | 
						|
      return nullptr;
 | 
						|
    return It->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Custom simplification helper routines.
 | 
						|
  bool isAllocaDerivedArg(Value *V);
 | 
						|
  void disableSROAForArg(AllocaInst *SROAArg);
 | 
						|
  void disableSROA(Value *V);
 | 
						|
  void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
 | 
						|
  void disableLoadElimination();
 | 
						|
  bool isGEPFree(GetElementPtrInst &GEP);
 | 
						|
  bool canFoldInboundsGEP(GetElementPtrInst &I);
 | 
						|
  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
 | 
						|
  bool simplifyCallSite(Function *F, CallBase &Call);
 | 
						|
  template <typename Callable>
 | 
						|
  bool simplifyInstruction(Instruction &I, Callable Evaluate);
 | 
						|
  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
 | 
						|
 | 
						|
  /// Return true if the given argument to the function being considered for
 | 
						|
  /// inlining has the given attribute set either at the call site or the
 | 
						|
  /// function declaration.  Primarily used to inspect call site specific
 | 
						|
  /// attributes since these can be more precise than the ones on the callee
 | 
						|
  /// itself.
 | 
						|
  bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
 | 
						|
 | 
						|
  /// Return true if the given value is known non null within the callee if
 | 
						|
  /// inlined through this particular callsite.
 | 
						|
  bool isKnownNonNullInCallee(Value *V);
 | 
						|
 | 
						|
  /// Return true if size growth is allowed when inlining the callee at \p Call.
 | 
						|
  bool allowSizeGrowth(CallBase &Call);
 | 
						|
 | 
						|
  // Custom analysis routines.
 | 
						|
  InlineResult analyzeBlock(BasicBlock *BB,
 | 
						|
                            SmallPtrSetImpl<const Value *> &EphValues);
 | 
						|
 | 
						|
  // Disable several entry points to the visitor so we don't accidentally use
 | 
						|
  // them by declaring but not defining them here.
 | 
						|
  void visit(Module *);
 | 
						|
  void visit(Module &);
 | 
						|
  void visit(Function *);
 | 
						|
  void visit(Function &);
 | 
						|
  void visit(BasicBlock *);
 | 
						|
  void visit(BasicBlock &);
 | 
						|
 | 
						|
  // Provide base case for our instruction visit.
 | 
						|
  bool visitInstruction(Instruction &I);
 | 
						|
 | 
						|
  // Our visit overrides.
 | 
						|
  bool visitAlloca(AllocaInst &I);
 | 
						|
  bool visitPHI(PHINode &I);
 | 
						|
  bool visitGetElementPtr(GetElementPtrInst &I);
 | 
						|
  bool visitBitCast(BitCastInst &I);
 | 
						|
  bool visitPtrToInt(PtrToIntInst &I);
 | 
						|
  bool visitIntToPtr(IntToPtrInst &I);
 | 
						|
  bool visitCastInst(CastInst &I);
 | 
						|
  bool visitUnaryInstruction(UnaryInstruction &I);
 | 
						|
  bool visitCmpInst(CmpInst &I);
 | 
						|
  bool visitSub(BinaryOperator &I);
 | 
						|
  bool visitBinaryOperator(BinaryOperator &I);
 | 
						|
  bool visitFNeg(UnaryOperator &I);
 | 
						|
  bool visitLoad(LoadInst &I);
 | 
						|
  bool visitStore(StoreInst &I);
 | 
						|
  bool visitExtractValue(ExtractValueInst &I);
 | 
						|
  bool visitInsertValue(InsertValueInst &I);
 | 
						|
  bool visitCallBase(CallBase &Call);
 | 
						|
  bool visitReturnInst(ReturnInst &RI);
 | 
						|
  bool visitBranchInst(BranchInst &BI);
 | 
						|
  bool visitSelectInst(SelectInst &SI);
 | 
						|
  bool visitSwitchInst(SwitchInst &SI);
 | 
						|
  bool visitIndirectBrInst(IndirectBrInst &IBI);
 | 
						|
  bool visitResumeInst(ResumeInst &RI);
 | 
						|
  bool visitCleanupReturnInst(CleanupReturnInst &RI);
 | 
						|
  bool visitCatchReturnInst(CatchReturnInst &RI);
 | 
						|
  bool visitUnreachableInst(UnreachableInst &I);
 | 
						|
 | 
						|
public:
 | 
						|
  CallAnalyzer(const TargetTransformInfo &TTI,
 | 
						|
               std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
 | 
						|
               Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
 | 
						|
               ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
 | 
						|
               Function &Callee, CallBase &Call)
 | 
						|
      : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
 | 
						|
        PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
 | 
						|
        CandidateCall(Call), EnableLoadElimination(true) {}
 | 
						|
 | 
						|
  InlineResult analyze();
 | 
						|
 | 
						|
  // Keep a bunch of stats about the cost savings found so we can print them
 | 
						|
  // out when debugging.
 | 
						|
  unsigned NumConstantArgs = 0;
 | 
						|
  unsigned NumConstantOffsetPtrArgs = 0;
 | 
						|
  unsigned NumAllocaArgs = 0;
 | 
						|
  unsigned NumConstantPtrCmps = 0;
 | 
						|
  unsigned NumConstantPtrDiffs = 0;
 | 
						|
  unsigned NumInstructionsSimplified = 0;
 | 
						|
 | 
						|
  void dump();
 | 
						|
};
 | 
						|
 | 
						|
/// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
 | 
						|
/// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
 | 
						|
class InlineCostCallAnalyzer final : public CallAnalyzer {
 | 
						|
  const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
 | 
						|
  const bool ComputeFullInlineCost;
 | 
						|
  int LoadEliminationCost = 0;
 | 
						|
  /// Bonus to be applied when percentage of vector instructions in callee is
 | 
						|
  /// high (see more details in updateThreshold).
 | 
						|
  int VectorBonus = 0;
 | 
						|
  /// Bonus to be applied when the callee has only one reachable basic block.
 | 
						|
  int SingleBBBonus = 0;
 | 
						|
 | 
						|
  /// Tunable parameters that control the analysis.
 | 
						|
  const InlineParams &Params;
 | 
						|
 | 
						|
  /// Upper bound for the inlining cost. Bonuses are being applied to account
 | 
						|
  /// for speculative "expected profit" of the inlining decision.
 | 
						|
  int Threshold = 0;
 | 
						|
 | 
						|
  /// Attempt to evaluate indirect calls to boost its inline cost.
 | 
						|
  const bool BoostIndirectCalls;
 | 
						|
 | 
						|
  /// Inlining cost measured in abstract units, accounts for all the
 | 
						|
  /// instructions expected to be executed for a given function invocation.
 | 
						|
  /// Instructions that are statically proven to be dead based on call-site
 | 
						|
  /// arguments are not counted here.
 | 
						|
  int Cost = 0;
 | 
						|
 | 
						|
  bool SingleBB = true;
 | 
						|
 | 
						|
  unsigned SROACostSavings = 0;
 | 
						|
  unsigned SROACostSavingsLost = 0;
 | 
						|
 | 
						|
  /// The mapping of caller Alloca values to their accumulated cost savings. If
 | 
						|
  /// we have to disable SROA for one of the allocas, this tells us how much
 | 
						|
  /// cost must be added.
 | 
						|
  DenseMap<AllocaInst *, int> SROAArgCosts;
 | 
						|
 | 
						|
  /// Return true if \p Call is a cold callsite.
 | 
						|
  bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
 | 
						|
 | 
						|
  /// Update Threshold based on callsite properties such as callee
 | 
						|
  /// attributes and callee hotness for PGO builds. The Callee is explicitly
 | 
						|
  /// passed to support analyzing indirect calls whose target is inferred by
 | 
						|
  /// analysis.
 | 
						|
  void updateThreshold(CallBase &Call, Function &Callee);
 | 
						|
  /// Return a higher threshold if \p Call is a hot callsite.
 | 
						|
  Optional<int> getHotCallSiteThreshold(CallBase &Call,
 | 
						|
                                        BlockFrequencyInfo *CallerBFI);
 | 
						|
 | 
						|
  /// Handle a capped 'int' increment for Cost.
 | 
						|
  void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
 | 
						|
    assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
 | 
						|
    Cost = (int)std::min(UpperBound, Cost + Inc);
 | 
						|
  }
 | 
						|
 | 
						|
  void onDisableSROA(AllocaInst *Arg) override {
 | 
						|
    auto CostIt = SROAArgCosts.find(Arg);
 | 
						|
    if (CostIt == SROAArgCosts.end())
 | 
						|
      return;
 | 
						|
    addCost(CostIt->second);
 | 
						|
    SROACostSavings -= CostIt->second;
 | 
						|
    SROACostSavingsLost += CostIt->second;
 | 
						|
    SROAArgCosts.erase(CostIt);
 | 
						|
  }
 | 
						|
 | 
						|
  void onDisableLoadElimination() override {
 | 
						|
    addCost(LoadEliminationCost);
 | 
						|
    LoadEliminationCost = 0;
 | 
						|
  }
 | 
						|
  void onCallPenalty() override { addCost(InlineConstants::CallPenalty); }
 | 
						|
  void onCallArgumentSetup(const CallBase &Call) override {
 | 
						|
    // Pay the price of the argument setup. We account for the average 1
 | 
						|
    // instruction per call argument setup here.
 | 
						|
    addCost(Call.arg_size() * InlineConstants::InstrCost);
 | 
						|
  }
 | 
						|
  void onLoadRelativeIntrinsic() override {
 | 
						|
    // This is normally lowered to 4 LLVM instructions.
 | 
						|
    addCost(3 * InlineConstants::InstrCost);
 | 
						|
  }
 | 
						|
  void onLoweredCall(Function *F, CallBase &Call,
 | 
						|
                     bool IsIndirectCall) override {
 | 
						|
    // We account for the average 1 instruction per call argument setup here.
 | 
						|
    addCost(Call.arg_size() * InlineConstants::InstrCost);
 | 
						|
 | 
						|
    // If we have a constant that we are calling as a function, we can peer
 | 
						|
    // through it and see the function target. This happens not infrequently
 | 
						|
    // during devirtualization and so we want to give it a hefty bonus for
 | 
						|
    // inlining, but cap that bonus in the event that inlining wouldn't pan out.
 | 
						|
    // Pretend to inline the function, with a custom threshold.
 | 
						|
    if (IsIndirectCall && BoostIndirectCalls) {
 | 
						|
      auto IndirectCallParams = Params;
 | 
						|
      IndirectCallParams.DefaultThreshold =
 | 
						|
          InlineConstants::IndirectCallThreshold;
 | 
						|
      /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
 | 
						|
      /// to instantiate the derived class.
 | 
						|
      InlineCostCallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F,
 | 
						|
                                Call, IndirectCallParams, false);
 | 
						|
      if (CA.analyze().isSuccess()) {
 | 
						|
        // We were able to inline the indirect call! Subtract the cost from the
 | 
						|
        // threshold to get the bonus we want to apply, but don't go below zero.
 | 
						|
        Cost -= std::max(0, CA.getThreshold() - CA.getCost());
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      // Otherwise simply add the cost for merely making the call.
 | 
						|
      addCost(InlineConstants::CallPenalty);
 | 
						|
  }
 | 
						|
 | 
						|
  void onFinalizeSwitch(unsigned JumpTableSize,
 | 
						|
                        unsigned NumCaseCluster) override {
 | 
						|
    // If suitable for a jump table, consider the cost for the table size and
 | 
						|
    // branch to destination.
 | 
						|
    // Maximum valid cost increased in this function.
 | 
						|
    if (JumpTableSize) {
 | 
						|
      int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
 | 
						|
                       4 * InlineConstants::InstrCost;
 | 
						|
 | 
						|
      addCost(JTCost, (int64_t)CostUpperBound);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // Considering forming a binary search, we should find the number of nodes
 | 
						|
    // which is same as the number of comparisons when lowered. For a given
 | 
						|
    // number of clusters, n, we can define a recursive function, f(n), to find
 | 
						|
    // the number of nodes in the tree. The recursion is :
 | 
						|
    // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
 | 
						|
    // and f(n) = n, when n <= 3.
 | 
						|
    // This will lead a binary tree where the leaf should be either f(2) or f(3)
 | 
						|
    // when n > 3.  So, the number of comparisons from leaves should be n, while
 | 
						|
    // the number of non-leaf should be :
 | 
						|
    //   2^(log2(n) - 1) - 1
 | 
						|
    //   = 2^log2(n) * 2^-1 - 1
 | 
						|
    //   = n / 2 - 1.
 | 
						|
    // Considering comparisons from leaf and non-leaf nodes, we can estimate the
 | 
						|
    // number of comparisons in a simple closed form :
 | 
						|
    //   n + n / 2 - 1 = n * 3 / 2 - 1
 | 
						|
    if (NumCaseCluster <= 3) {
 | 
						|
      // Suppose a comparison includes one compare and one conditional branch.
 | 
						|
      addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
 | 
						|
    int64_t SwitchCost =
 | 
						|
        ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
 | 
						|
 | 
						|
    addCost(SwitchCost, (int64_t)CostUpperBound);
 | 
						|
  }
 | 
						|
  void onMissedSimplification() override {
 | 
						|
    addCost(InlineConstants::InstrCost);
 | 
						|
  }
 | 
						|
 | 
						|
  void onInitializeSROAArg(AllocaInst *Arg) override {
 | 
						|
    assert(Arg != nullptr &&
 | 
						|
           "Should not initialize SROA costs for null value.");
 | 
						|
    SROAArgCosts[Arg] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  void onAggregateSROAUse(AllocaInst *SROAArg) override {
 | 
						|
    auto CostIt = SROAArgCosts.find(SROAArg);
 | 
						|
    assert(CostIt != SROAArgCosts.end() &&
 | 
						|
           "expected this argument to have a cost");
 | 
						|
    CostIt->second += InlineConstants::InstrCost;
 | 
						|
    SROACostSavings += InlineConstants::InstrCost;
 | 
						|
  }
 | 
						|
 | 
						|
  void onBlockAnalyzed(const BasicBlock *BB) override {
 | 
						|
    auto *TI = BB->getTerminator();
 | 
						|
    // If we had any successors at this point, than post-inlining is likely to
 | 
						|
    // have them as well. Note that we assume any basic blocks which existed
 | 
						|
    // due to branches or switches which folded above will also fold after
 | 
						|
    // inlining.
 | 
						|
    if (SingleBB && TI->getNumSuccessors() > 1) {
 | 
						|
      // Take off the bonus we applied to the threshold.
 | 
						|
      Threshold -= SingleBBBonus;
 | 
						|
      SingleBB = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  InlineResult finalizeAnalysis() override {
 | 
						|
    // Loops generally act a lot like calls in that they act like barriers to
 | 
						|
    // movement, require a certain amount of setup, etc. So when optimising for
 | 
						|
    // size, we penalise any call sites that perform loops. We do this after all
 | 
						|
    // other costs here, so will likely only be dealing with relatively small
 | 
						|
    // functions (and hence DT and LI will hopefully be cheap).
 | 
						|
    auto *Caller = CandidateCall.getFunction();
 | 
						|
    if (Caller->hasMinSize()) {
 | 
						|
      DominatorTree DT(F);
 | 
						|
      LoopInfo LI(DT);
 | 
						|
      int NumLoops = 0;
 | 
						|
      for (Loop *L : LI) {
 | 
						|
        // Ignore loops that will not be executed
 | 
						|
        if (DeadBlocks.count(L->getHeader()))
 | 
						|
          continue;
 | 
						|
        NumLoops++;
 | 
						|
      }
 | 
						|
      addCost(NumLoops * InlineConstants::CallPenalty);
 | 
						|
    }
 | 
						|
 | 
						|
    // We applied the maximum possible vector bonus at the beginning. Now,
 | 
						|
    // subtract the excess bonus, if any, from the Threshold before
 | 
						|
    // comparing against Cost.
 | 
						|
    if (NumVectorInstructions <= NumInstructions / 10)
 | 
						|
      Threshold -= VectorBonus;
 | 
						|
    else if (NumVectorInstructions <= NumInstructions / 2)
 | 
						|
      Threshold -= VectorBonus / 2;
 | 
						|
 | 
						|
    if (Cost < std::max(1, Threshold))
 | 
						|
      return InlineResult::success();
 | 
						|
    return InlineResult::failure("Cost over threshold.");
 | 
						|
  }
 | 
						|
  bool shouldStop() override {
 | 
						|
    // Bail out the moment we cross the threshold. This means we'll under-count
 | 
						|
    // the cost, but only when undercounting doesn't matter.
 | 
						|
    return Cost >= Threshold && !ComputeFullInlineCost;
 | 
						|
  }
 | 
						|
 | 
						|
  void onLoadEliminationOpportunity() override {
 | 
						|
    LoadEliminationCost += InlineConstants::InstrCost;
 | 
						|
  }
 | 
						|
 | 
						|
  InlineResult onAnalysisStart() override {
 | 
						|
    // Perform some tweaks to the cost and threshold based on the direct
 | 
						|
    // callsite information.
 | 
						|
 | 
						|
    // We want to more aggressively inline vector-dense kernels, so up the
 | 
						|
    // threshold, and we'll lower it if the % of vector instructions gets too
 | 
						|
    // low. Note that these bonuses are some what arbitrary and evolved over
 | 
						|
    // time by accident as much as because they are principled bonuses.
 | 
						|
    //
 | 
						|
    // FIXME: It would be nice to remove all such bonuses. At least it would be
 | 
						|
    // nice to base the bonus values on something more scientific.
 | 
						|
    assert(NumInstructions == 0);
 | 
						|
    assert(NumVectorInstructions == 0);
 | 
						|
 | 
						|
    // Update the threshold based on callsite properties
 | 
						|
    updateThreshold(CandidateCall, F);
 | 
						|
 | 
						|
    // While Threshold depends on commandline options that can take negative
 | 
						|
    // values, we want to enforce the invariant that the computed threshold and
 | 
						|
    // bonuses are non-negative.
 | 
						|
    assert(Threshold >= 0);
 | 
						|
    assert(SingleBBBonus >= 0);
 | 
						|
    assert(VectorBonus >= 0);
 | 
						|
 | 
						|
    // Speculatively apply all possible bonuses to Threshold. If cost exceeds
 | 
						|
    // this Threshold any time, and cost cannot decrease, we can stop processing
 | 
						|
    // the rest of the function body.
 | 
						|
    Threshold += (SingleBBBonus + VectorBonus);
 | 
						|
 | 
						|
    // Give out bonuses for the callsite, as the instructions setting them up
 | 
						|
    // will be gone after inlining.
 | 
						|
    addCost(-getCallsiteCost(this->CandidateCall, DL));
 | 
						|
 | 
						|
    // If this function uses the coldcc calling convention, prefer not to inline
 | 
						|
    // it.
 | 
						|
    if (F.getCallingConv() == CallingConv::Cold)
 | 
						|
      Cost += InlineConstants::ColdccPenalty;
 | 
						|
 | 
						|
    // Check if we're done. This can happen due to bonuses and penalties.
 | 
						|
    if (Cost >= Threshold && !ComputeFullInlineCost)
 | 
						|
      return InlineResult::failure("high cost");
 | 
						|
 | 
						|
    return InlineResult::success();
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  InlineCostCallAnalyzer(
 | 
						|
      const TargetTransformInfo &TTI,
 | 
						|
      std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
 | 
						|
      Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
 | 
						|
      ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
 | 
						|
      CallBase &Call, const InlineParams &Params, bool BoostIndirect = true)
 | 
						|
      : CallAnalyzer(TTI, GetAssumptionCache, GetBFI, PSI, ORE, Callee, Call),
 | 
						|
        ComputeFullInlineCost(OptComputeFullInlineCost ||
 | 
						|
                              Params.ComputeFullInlineCost || ORE),
 | 
						|
        Params(Params), Threshold(Params.DefaultThreshold),
 | 
						|
        BoostIndirectCalls(BoostIndirect) {}
 | 
						|
  void dump();
 | 
						|
 | 
						|
  virtual ~InlineCostCallAnalyzer() {}
 | 
						|
  int getThreshold() { return Threshold; }
 | 
						|
  int getCost() { return Cost; }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// Test whether the given value is an Alloca-derived function argument.
 | 
						|
bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
 | 
						|
  return SROAArgValues.count(V);
 | 
						|
}
 | 
						|
 | 
						|
void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
 | 
						|
  onDisableSROA(SROAArg);
 | 
						|
  EnabledSROAAllocas.erase(SROAArg);
 | 
						|
  disableLoadElimination();
 | 
						|
}
 | 
						|
/// If 'V' maps to a SROA candidate, disable SROA for it.
 | 
						|
void CallAnalyzer::disableSROA(Value *V) {
 | 
						|
  if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
 | 
						|
    disableSROAForArg(SROAArg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CallAnalyzer::disableLoadElimination() {
 | 
						|
  if (EnableLoadElimination) {
 | 
						|
    onDisableLoadElimination();
 | 
						|
    EnableLoadElimination = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Accumulate a constant GEP offset into an APInt if possible.
 | 
						|
///
 | 
						|
/// Returns false if unable to compute the offset for any reason. Respects any
 | 
						|
/// simplified values known during the analysis of this callsite.
 | 
						|
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
 | 
						|
  unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
 | 
						|
  assert(IntPtrWidth == Offset.getBitWidth());
 | 
						|
 | 
						|
  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
 | 
						|
       GTI != GTE; ++GTI) {
 | 
						|
    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
 | 
						|
    if (!OpC)
 | 
						|
      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
 | 
						|
        OpC = dyn_cast<ConstantInt>(SimpleOp);
 | 
						|
    if (!OpC)
 | 
						|
      return false;
 | 
						|
    if (OpC->isZero())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Handle a struct index, which adds its field offset to the pointer.
 | 
						|
    if (StructType *STy = GTI.getStructTypeOrNull()) {
 | 
						|
      unsigned ElementIdx = OpC->getZExtValue();
 | 
						|
      const StructLayout *SL = DL.getStructLayout(STy);
 | 
						|
      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
 | 
						|
    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Use TTI to check whether a GEP is free.
 | 
						|
///
 | 
						|
/// Respects any simplified values known during the analysis of this callsite.
 | 
						|
bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
 | 
						|
  SmallVector<Value *, 4> Operands;
 | 
						|
  Operands.push_back(GEP.getOperand(0));
 | 
						|
  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
 | 
						|
    if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
 | 
						|
      Operands.push_back(SimpleOp);
 | 
						|
    else
 | 
						|
      Operands.push_back(*I);
 | 
						|
  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitAlloca(AllocaInst &I) {
 | 
						|
  // Check whether inlining will turn a dynamic alloca into a static
 | 
						|
  // alloca and handle that case.
 | 
						|
  if (I.isArrayAllocation()) {
 | 
						|
    Constant *Size = SimplifiedValues.lookup(I.getArraySize());
 | 
						|
    if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
 | 
						|
      Type *Ty = I.getAllocatedType();
 | 
						|
      AllocatedSize = SaturatingMultiplyAdd(
 | 
						|
          AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(),
 | 
						|
          AllocatedSize);
 | 
						|
      return Base::visitAlloca(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Accumulate the allocated size.
 | 
						|
  if (I.isStaticAlloca()) {
 | 
						|
    Type *Ty = I.getAllocatedType();
 | 
						|
    AllocatedSize =
 | 
						|
        SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // We will happily inline static alloca instructions.
 | 
						|
  if (I.isStaticAlloca())
 | 
						|
    return Base::visitAlloca(I);
 | 
						|
 | 
						|
  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
 | 
						|
  // a variety of reasons, and so we would like to not inline them into
 | 
						|
  // functions which don't currently have a dynamic alloca. This simply
 | 
						|
  // disables inlining altogether in the presence of a dynamic alloca.
 | 
						|
  HasDynamicAlloca = true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitPHI(PHINode &I) {
 | 
						|
  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
 | 
						|
  // though we don't want to propagate it's bonuses. The idea is to disable
 | 
						|
  // SROA if it *might* be used in an inappropriate manner.
 | 
						|
 | 
						|
  // Phi nodes are always zero-cost.
 | 
						|
  // FIXME: Pointer sizes may differ between different address spaces, so do we
 | 
						|
  // need to use correct address space in the call to getPointerSizeInBits here?
 | 
						|
  // Or could we skip the getPointerSizeInBits call completely? As far as I can
 | 
						|
  // see the ZeroOffset is used as a dummy value, so we can probably use any
 | 
						|
  // bit width for the ZeroOffset?
 | 
						|
  APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
 | 
						|
  bool CheckSROA = I.getType()->isPointerTy();
 | 
						|
 | 
						|
  // Track the constant or pointer with constant offset we've seen so far.
 | 
						|
  Constant *FirstC = nullptr;
 | 
						|
  std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
 | 
						|
  Value *FirstV = nullptr;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *Pred = I.getIncomingBlock(i);
 | 
						|
    // If the incoming block is dead, skip the incoming block.
 | 
						|
    if (DeadBlocks.count(Pred))
 | 
						|
      continue;
 | 
						|
    // If the parent block of phi is not the known successor of the incoming
 | 
						|
    // block, skip the incoming block.
 | 
						|
    BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
 | 
						|
    if (KnownSuccessor && KnownSuccessor != I.getParent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *V = I.getIncomingValue(i);
 | 
						|
    // If the incoming value is this phi itself, skip the incoming value.
 | 
						|
    if (&I == V)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Constant *C = dyn_cast<Constant>(V);
 | 
						|
    if (!C)
 | 
						|
      C = SimplifiedValues.lookup(V);
 | 
						|
 | 
						|
    std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
 | 
						|
    if (!C && CheckSROA)
 | 
						|
      BaseAndOffset = ConstantOffsetPtrs.lookup(V);
 | 
						|
 | 
						|
    if (!C && !BaseAndOffset.first)
 | 
						|
      // The incoming value is neither a constant nor a pointer with constant
 | 
						|
      // offset, exit early.
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (FirstC) {
 | 
						|
      if (FirstC == C)
 | 
						|
        // If we've seen a constant incoming value before and it is the same
 | 
						|
        // constant we see this time, continue checking the next incoming value.
 | 
						|
        continue;
 | 
						|
      // Otherwise early exit because we either see a different constant or saw
 | 
						|
      // a constant before but we have a pointer with constant offset this time.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FirstV) {
 | 
						|
      // The same logic as above, but check pointer with constant offset here.
 | 
						|
      if (FirstBaseAndOffset == BaseAndOffset)
 | 
						|
        continue;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (C) {
 | 
						|
      // This is the 1st time we've seen a constant, record it.
 | 
						|
      FirstC = C;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The remaining case is that this is the 1st time we've seen a pointer with
 | 
						|
    // constant offset, record it.
 | 
						|
    FirstV = V;
 | 
						|
    FirstBaseAndOffset = BaseAndOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we can map phi to a constant.
 | 
						|
  if (FirstC) {
 | 
						|
    SimplifiedValues[&I] = FirstC;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if we can map phi to a pointer with constant offset.
 | 
						|
  if (FirstBaseAndOffset.first) {
 | 
						|
    ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
 | 
						|
 | 
						|
    if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
 | 
						|
      SROAArgValues[&I] = SROAArg;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check we can fold GEPs of constant-offset call site argument pointers.
 | 
						|
/// This requires target data and inbounds GEPs.
 | 
						|
///
 | 
						|
/// \return true if the specified GEP can be folded.
 | 
						|
bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
 | 
						|
  // Check if we have a base + offset for the pointer.
 | 
						|
  std::pair<Value *, APInt> BaseAndOffset =
 | 
						|
      ConstantOffsetPtrs.lookup(I.getPointerOperand());
 | 
						|
  if (!BaseAndOffset.first)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the offset of this GEP is constant, and if so accumulate it
 | 
						|
  // into Offset.
 | 
						|
  if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Add the result as a new mapping to Base + Offset.
 | 
						|
  ConstantOffsetPtrs[&I] = BaseAndOffset;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
 | 
						|
  auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
 | 
						|
 | 
						|
  // Lambda to check whether a GEP's indices are all constant.
 | 
						|
  auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
 | 
						|
    for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
 | 
						|
      if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
 | 
						|
    if (SROAArg)
 | 
						|
      SROAArgValues[&I] = SROAArg;
 | 
						|
 | 
						|
    // Constant GEPs are modeled as free.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Variable GEPs will require math and will disable SROA.
 | 
						|
  if (SROAArg)
 | 
						|
    disableSROAForArg(SROAArg);
 | 
						|
  return isGEPFree(I);
 | 
						|
}
 | 
						|
 | 
						|
/// Simplify \p I if its operands are constants and update SimplifiedValues.
 | 
						|
/// \p Evaluate is a callable specific to instruction type that evaluates the
 | 
						|
/// instruction when all the operands are constants.
 | 
						|
template <typename Callable>
 | 
						|
bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
 | 
						|
  SmallVector<Constant *, 2> COps;
 | 
						|
  for (Value *Op : I.operands()) {
 | 
						|
    Constant *COp = dyn_cast<Constant>(Op);
 | 
						|
    if (!COp)
 | 
						|
      COp = SimplifiedValues.lookup(Op);
 | 
						|
    if (!COp)
 | 
						|
      return false;
 | 
						|
    COps.push_back(COp);
 | 
						|
  }
 | 
						|
  auto *C = Evaluate(COps);
 | 
						|
  if (!C)
 | 
						|
    return false;
 | 
						|
  SimplifiedValues[&I] = C;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitBitCast(BitCastInst &I) {
 | 
						|
  // Propagate constants through bitcasts.
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantExpr::getBitCast(COps[0], I.getType());
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Track base/offsets through casts
 | 
						|
  std::pair<Value *, APInt> BaseAndOffset =
 | 
						|
      ConstantOffsetPtrs.lookup(I.getOperand(0));
 | 
						|
  // Casts don't change the offset, just wrap it up.
 | 
						|
  if (BaseAndOffset.first)
 | 
						|
    ConstantOffsetPtrs[&I] = BaseAndOffset;
 | 
						|
 | 
						|
  // Also look for SROA candidates here.
 | 
						|
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
 | 
						|
    SROAArgValues[&I] = SROAArg;
 | 
						|
 | 
						|
  // Bitcasts are always zero cost.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
 | 
						|
  // Propagate constants through ptrtoint.
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantExpr::getPtrToInt(COps[0], I.getType());
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Track base/offset pairs when converted to a plain integer provided the
 | 
						|
  // integer is large enough to represent the pointer.
 | 
						|
  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
 | 
						|
  unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
 | 
						|
  if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
 | 
						|
    std::pair<Value *, APInt> BaseAndOffset =
 | 
						|
        ConstantOffsetPtrs.lookup(I.getOperand(0));
 | 
						|
    if (BaseAndOffset.first)
 | 
						|
      ConstantOffsetPtrs[&I] = BaseAndOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  // This is really weird. Technically, ptrtoint will disable SROA. However,
 | 
						|
  // unless that ptrtoint is *used* somewhere in the live basic blocks after
 | 
						|
  // inlining, it will be nuked, and SROA should proceed. All of the uses which
 | 
						|
  // would block SROA would also block SROA if applied directly to a pointer,
 | 
						|
  // and so we can just add the integer in here. The only places where SROA is
 | 
						|
  // preserved either cannot fire on an integer, or won't in-and-of themselves
 | 
						|
  // disable SROA (ext) w/o some later use that we would see and disable.
 | 
						|
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
 | 
						|
    SROAArgValues[&I] = SROAArg;
 | 
						|
 | 
						|
  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
 | 
						|
  // Propagate constants through ptrtoint.
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantExpr::getIntToPtr(COps[0], I.getType());
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Track base/offset pairs when round-tripped through a pointer without
 | 
						|
  // modifications provided the integer is not too large.
 | 
						|
  Value *Op = I.getOperand(0);
 | 
						|
  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
 | 
						|
  if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
 | 
						|
    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
 | 
						|
    if (BaseAndOffset.first)
 | 
						|
      ConstantOffsetPtrs[&I] = BaseAndOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
 | 
						|
  if (auto *SROAArg = getSROAArgForValueOrNull(Op))
 | 
						|
    SROAArgValues[&I] = SROAArg;
 | 
						|
 | 
						|
  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitCastInst(CastInst &I) {
 | 
						|
  // Propagate constants through casts.
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
 | 
						|
  disableSROA(I.getOperand(0));
 | 
						|
 | 
						|
  // If this is a floating-point cast, and the target says this operation
 | 
						|
  // is expensive, this may eventually become a library call. Treat the cost
 | 
						|
  // as such.
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
    if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
 | 
						|
      onCallPenalty();
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
 | 
						|
  Value *Operand = I.getOperand(0);
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantFoldInstOperands(&I, COps[0], DL);
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Disable any SROA on the argument to arbitrary unary instructions.
 | 
						|
  disableSROA(Operand);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
 | 
						|
  return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
 | 
						|
  // Does the *call site* have the NonNull attribute set on an argument?  We
 | 
						|
  // use the attribute on the call site to memoize any analysis done in the
 | 
						|
  // caller. This will also trip if the callee function has a non-null
 | 
						|
  // parameter attribute, but that's a less interesting case because hopefully
 | 
						|
  // the callee would already have been simplified based on that.
 | 
						|
  if (Argument *A = dyn_cast<Argument>(V))
 | 
						|
    if (paramHasAttr(A, Attribute::NonNull))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Is this an alloca in the caller?  This is distinct from the attribute case
 | 
						|
  // above because attributes aren't updated within the inliner itself and we
 | 
						|
  // always want to catch the alloca derived case.
 | 
						|
  if (isAllocaDerivedArg(V))
 | 
						|
    // We can actually predict the result of comparisons between an
 | 
						|
    // alloca-derived value and null. Note that this fires regardless of
 | 
						|
    // SROA firing.
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
 | 
						|
  // If the normal destination of the invoke or the parent block of the call
 | 
						|
  // site is unreachable-terminated, there is little point in inlining this
 | 
						|
  // unless there is literally zero cost.
 | 
						|
  // FIXME: Note that it is possible that an unreachable-terminated block has a
 | 
						|
  // hot entry. For example, in below scenario inlining hot_call_X() may be
 | 
						|
  // beneficial :
 | 
						|
  // main() {
 | 
						|
  //   hot_call_1();
 | 
						|
  //   ...
 | 
						|
  //   hot_call_N()
 | 
						|
  //   exit(0);
 | 
						|
  // }
 | 
						|
  // For now, we are not handling this corner case here as it is rare in real
 | 
						|
  // code. In future, we should elaborate this based on BPI and BFI in more
 | 
						|
  // general threshold adjusting heuristics in updateThreshold().
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
 | 
						|
    if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
 | 
						|
      return false;
 | 
						|
  } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
 | 
						|
                                            BlockFrequencyInfo *CallerBFI) {
 | 
						|
  // If global profile summary is available, then callsite's coldness is
 | 
						|
  // determined based on that.
 | 
						|
  if (PSI && PSI->hasProfileSummary())
 | 
						|
    return PSI->isColdCallSite(CallSite(&Call), CallerBFI);
 | 
						|
 | 
						|
  // Otherwise we need BFI to be available.
 | 
						|
  if (!CallerBFI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Determine if the callsite is cold relative to caller's entry. We could
 | 
						|
  // potentially cache the computation of scaled entry frequency, but the added
 | 
						|
  // complexity is not worth it unless this scaling shows up high in the
 | 
						|
  // profiles.
 | 
						|
  const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
 | 
						|
  auto CallSiteBB = Call.getParent();
 | 
						|
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
 | 
						|
  auto CallerEntryFreq =
 | 
						|
      CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
 | 
						|
  return CallSiteFreq < CallerEntryFreq * ColdProb;
 | 
						|
}
 | 
						|
 | 
						|
Optional<int>
 | 
						|
InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
 | 
						|
                                                BlockFrequencyInfo *CallerBFI) {
 | 
						|
 | 
						|
  // If global profile summary is available, then callsite's hotness is
 | 
						|
  // determined based on that.
 | 
						|
  if (PSI && PSI->hasProfileSummary() &&
 | 
						|
      PSI->isHotCallSite(CallSite(&Call), CallerBFI))
 | 
						|
    return Params.HotCallSiteThreshold;
 | 
						|
 | 
						|
  // Otherwise we need BFI to be available and to have a locally hot callsite
 | 
						|
  // threshold.
 | 
						|
  if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Determine if the callsite is hot relative to caller's entry. We could
 | 
						|
  // potentially cache the computation of scaled entry frequency, but the added
 | 
						|
  // complexity is not worth it unless this scaling shows up high in the
 | 
						|
  // profiles.
 | 
						|
  auto CallSiteBB = Call.getParent();
 | 
						|
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
 | 
						|
  auto CallerEntryFreq = CallerBFI->getEntryFreq();
 | 
						|
  if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
 | 
						|
    return Params.LocallyHotCallSiteThreshold;
 | 
						|
 | 
						|
  // Otherwise treat it normally.
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
 | 
						|
  // If no size growth is allowed for this inlining, set Threshold to 0.
 | 
						|
  if (!allowSizeGrowth(Call)) {
 | 
						|
    Threshold = 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Function *Caller = Call.getCaller();
 | 
						|
 | 
						|
  // return min(A, B) if B is valid.
 | 
						|
  auto MinIfValid = [](int A, Optional<int> B) {
 | 
						|
    return B ? std::min(A, B.getValue()) : A;
 | 
						|
  };
 | 
						|
 | 
						|
  // return max(A, B) if B is valid.
 | 
						|
  auto MaxIfValid = [](int A, Optional<int> B) {
 | 
						|
    return B ? std::max(A, B.getValue()) : A;
 | 
						|
  };
 | 
						|
 | 
						|
  // Various bonus percentages. These are multiplied by Threshold to get the
 | 
						|
  // bonus values.
 | 
						|
  // SingleBBBonus: This bonus is applied if the callee has a single reachable
 | 
						|
  // basic block at the given callsite context. This is speculatively applied
 | 
						|
  // and withdrawn if more than one basic block is seen.
 | 
						|
  //
 | 
						|
  // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
 | 
						|
  // of the last call to a static function as inlining such functions is
 | 
						|
  // guaranteed to reduce code size.
 | 
						|
  //
 | 
						|
  // These bonus percentages may be set to 0 based on properties of the caller
 | 
						|
  // and the callsite.
 | 
						|
  int SingleBBBonusPercent = 50;
 | 
						|
  int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
 | 
						|
  int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
 | 
						|
 | 
						|
  // Lambda to set all the above bonus and bonus percentages to 0.
 | 
						|
  auto DisallowAllBonuses = [&]() {
 | 
						|
    SingleBBBonusPercent = 0;
 | 
						|
    VectorBonusPercent = 0;
 | 
						|
    LastCallToStaticBonus = 0;
 | 
						|
  };
 | 
						|
 | 
						|
  // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
 | 
						|
  // and reduce the threshold if the caller has the necessary attribute.
 | 
						|
  if (Caller->hasMinSize()) {
 | 
						|
    Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
 | 
						|
    // For minsize, we want to disable the single BB bonus and the vector
 | 
						|
    // bonuses, but not the last-call-to-static bonus. Inlining the last call to
 | 
						|
    // a static function will, at the minimum, eliminate the parameter setup and
 | 
						|
    // call/return instructions.
 | 
						|
    SingleBBBonusPercent = 0;
 | 
						|
    VectorBonusPercent = 0;
 | 
						|
  } else if (Caller->hasOptSize())
 | 
						|
    Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
 | 
						|
 | 
						|
  // Adjust the threshold based on inlinehint attribute and profile based
 | 
						|
  // hotness information if the caller does not have MinSize attribute.
 | 
						|
  if (!Caller->hasMinSize()) {
 | 
						|
    if (Callee.hasFnAttribute(Attribute::InlineHint))
 | 
						|
      Threshold = MaxIfValid(Threshold, Params.HintThreshold);
 | 
						|
 | 
						|
    // FIXME: After switching to the new passmanager, simplify the logic below
 | 
						|
    // by checking only the callsite hotness/coldness as we will reliably
 | 
						|
    // have local profile information.
 | 
						|
    //
 | 
						|
    // Callsite hotness and coldness can be determined if sample profile is
 | 
						|
    // used (which adds hotness metadata to calls) or if caller's
 | 
						|
    // BlockFrequencyInfo is available.
 | 
						|
    BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
 | 
						|
    auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
 | 
						|
    if (!Caller->hasOptSize() && HotCallSiteThreshold) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Hot callsite.\n");
 | 
						|
      // FIXME: This should update the threshold only if it exceeds the
 | 
						|
      // current threshold, but AutoFDO + ThinLTO currently relies on this
 | 
						|
      // behavior to prevent inlining of hot callsites during ThinLTO
 | 
						|
      // compile phase.
 | 
						|
      Threshold = HotCallSiteThreshold.getValue();
 | 
						|
    } else if (isColdCallSite(Call, CallerBFI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Cold callsite.\n");
 | 
						|
      // Do not apply bonuses for a cold callsite including the
 | 
						|
      // LastCallToStatic bonus. While this bonus might result in code size
 | 
						|
      // reduction, it can cause the size of a non-cold caller to increase
 | 
						|
      // preventing it from being inlined.
 | 
						|
      DisallowAllBonuses();
 | 
						|
      Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
 | 
						|
    } else if (PSI) {
 | 
						|
      // Use callee's global profile information only if we have no way of
 | 
						|
      // determining this via callsite information.
 | 
						|
      if (PSI->isFunctionEntryHot(&Callee)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Hot callee.\n");
 | 
						|
        // If callsite hotness can not be determined, we may still know
 | 
						|
        // that the callee is hot and treat it as a weaker hint for threshold
 | 
						|
        // increase.
 | 
						|
        Threshold = MaxIfValid(Threshold, Params.HintThreshold);
 | 
						|
      } else if (PSI->isFunctionEntryCold(&Callee)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Cold callee.\n");
 | 
						|
        // Do not apply bonuses for a cold callee including the
 | 
						|
        // LastCallToStatic bonus. While this bonus might result in code size
 | 
						|
        // reduction, it can cause the size of a non-cold caller to increase
 | 
						|
        // preventing it from being inlined.
 | 
						|
        DisallowAllBonuses();
 | 
						|
        Threshold = MinIfValid(Threshold, Params.ColdThreshold);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, take the target-specific inlining threshold multiplier into
 | 
						|
  // account.
 | 
						|
  Threshold *= TTI.getInliningThresholdMultiplier();
 | 
						|
 | 
						|
  SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
 | 
						|
  VectorBonus = Threshold * VectorBonusPercent / 100;
 | 
						|
 | 
						|
  bool OnlyOneCallAndLocalLinkage =
 | 
						|
      F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
 | 
						|
  // If there is only one call of the function, and it has internal linkage,
 | 
						|
  // the cost of inlining it drops dramatically. It may seem odd to update
 | 
						|
  // Cost in updateThreshold, but the bonus depends on the logic in this method.
 | 
						|
  if (OnlyOneCallAndLocalLinkage)
 | 
						|
    Cost -= LastCallToStaticBonus;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitCmpInst(CmpInst &I) {
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
  // First try to handle simplified comparisons.
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (I.getOpcode() == Instruction::FCmp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise look for a comparison between constant offset pointers with
 | 
						|
  // a common base.
 | 
						|
  Value *LHSBase, *RHSBase;
 | 
						|
  APInt LHSOffset, RHSOffset;
 | 
						|
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
 | 
						|
  if (LHSBase) {
 | 
						|
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
 | 
						|
    if (RHSBase && LHSBase == RHSBase) {
 | 
						|
      // We have common bases, fold the icmp to a constant based on the
 | 
						|
      // offsets.
 | 
						|
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
 | 
						|
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
 | 
						|
      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
 | 
						|
        SimplifiedValues[&I] = C;
 | 
						|
        ++NumConstantPtrCmps;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the comparison is an equality comparison with null, we can simplify it
 | 
						|
  // if we know the value (argument) can't be null
 | 
						|
  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
 | 
						|
      isKnownNonNullInCallee(I.getOperand(0))) {
 | 
						|
    bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
 | 
						|
    SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
 | 
						|
                                      : ConstantInt::getFalse(I.getType());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitSub(BinaryOperator &I) {
 | 
						|
  // Try to handle a special case: we can fold computing the difference of two
 | 
						|
  // constant-related pointers.
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
  Value *LHSBase, *RHSBase;
 | 
						|
  APInt LHSOffset, RHSOffset;
 | 
						|
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
 | 
						|
  if (LHSBase) {
 | 
						|
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
 | 
						|
    if (RHSBase && LHSBase == RHSBase) {
 | 
						|
      // We have common bases, fold the subtract to a constant based on the
 | 
						|
      // offsets.
 | 
						|
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
 | 
						|
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
 | 
						|
      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
 | 
						|
        SimplifiedValues[&I] = C;
 | 
						|
        ++NumConstantPtrDiffs;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, fall back to the generic logic for simplifying and handling
 | 
						|
  // instructions.
 | 
						|
  return Base::visitSub(I);
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
  Constant *CLHS = dyn_cast<Constant>(LHS);
 | 
						|
  if (!CLHS)
 | 
						|
    CLHS = SimplifiedValues.lookup(LHS);
 | 
						|
  Constant *CRHS = dyn_cast<Constant>(RHS);
 | 
						|
  if (!CRHS)
 | 
						|
    CRHS = SimplifiedValues.lookup(RHS);
 | 
						|
 | 
						|
  Value *SimpleV = nullptr;
 | 
						|
  if (auto FI = dyn_cast<FPMathOperator>(&I))
 | 
						|
    SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
 | 
						|
                            FI->getFastMathFlags(), DL);
 | 
						|
  else
 | 
						|
    SimpleV =
 | 
						|
        SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
 | 
						|
    SimplifiedValues[&I] = C;
 | 
						|
 | 
						|
  if (SimpleV)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
 | 
						|
  disableSROA(LHS);
 | 
						|
  disableSROA(RHS);
 | 
						|
 | 
						|
  // If the instruction is floating point, and the target says this operation
 | 
						|
  // is expensive, this may eventually become a library call. Treat the cost
 | 
						|
  // as such. Unless it's fneg which can be implemented with an xor.
 | 
						|
  using namespace llvm::PatternMatch;
 | 
						|
  if (I.getType()->isFloatingPointTy() &&
 | 
						|
      TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
 | 
						|
      !match(&I, m_FNeg(m_Value())))
 | 
						|
    onCallPenalty();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
 | 
						|
  Value *Op = I.getOperand(0);
 | 
						|
  Constant *COp = dyn_cast<Constant>(Op);
 | 
						|
  if (!COp)
 | 
						|
    COp = SimplifiedValues.lookup(Op);
 | 
						|
 | 
						|
  Value *SimpleV = SimplifyFNegInst(
 | 
						|
      COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
 | 
						|
    SimplifiedValues[&I] = C;
 | 
						|
 | 
						|
  if (SimpleV)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Disable any SROA on arguments to arbitrary, unsimplified fneg.
 | 
						|
  disableSROA(Op);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitLoad(LoadInst &I) {
 | 
						|
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the data is already loaded from this address and hasn't been clobbered
 | 
						|
  // by any stores or calls, this load is likely to be redundant and can be
 | 
						|
  // eliminated.
 | 
						|
  if (EnableLoadElimination &&
 | 
						|
      !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
 | 
						|
    onLoadEliminationOpportunity();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitStore(StoreInst &I) {
 | 
						|
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The store can potentially clobber loads and prevent repeated loads from
 | 
						|
  // being eliminated.
 | 
						|
  // FIXME:
 | 
						|
  // 1. We can probably keep an initial set of eliminatable loads substracted
 | 
						|
  // from the cost even when we finally see a store. We just need to disable
 | 
						|
  // *further* accumulation of elimination savings.
 | 
						|
  // 2. We should probably at some point thread MemorySSA for the callee into
 | 
						|
  // this and then use that to actually compute *really* precise savings.
 | 
						|
  disableLoadElimination();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
 | 
						|
  // Constant folding for extract value is trivial.
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantExpr::getExtractValue(COps[0], I.getIndices());
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // SROA can look through these but give them a cost.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
 | 
						|
  // Constant folding for insert value is trivial.
 | 
						|
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
 | 
						|
        return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
 | 
						|
                                            /*InsertedValueOperand*/ COps[1],
 | 
						|
                                            I.getIndices());
 | 
						|
      }))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // SROA can look through these but give them a cost.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to simplify a call site.
 | 
						|
///
 | 
						|
/// Takes a concrete function and callsite and tries to actually simplify it by
 | 
						|
/// analyzing the arguments and call itself with instsimplify. Returns true if
 | 
						|
/// it has simplified the callsite to some other entity (a constant), making it
 | 
						|
/// free.
 | 
						|
bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
 | 
						|
  // FIXME: Using the instsimplify logic directly for this is inefficient
 | 
						|
  // because we have to continually rebuild the argument list even when no
 | 
						|
  // simplifications can be performed. Until that is fixed with remapping
 | 
						|
  // inside of instsimplify, directly constant fold calls here.
 | 
						|
  if (!canConstantFoldCallTo(&Call, F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Try to re-map the arguments to constants.
 | 
						|
  SmallVector<Constant *, 4> ConstantArgs;
 | 
						|
  ConstantArgs.reserve(Call.arg_size());
 | 
						|
  for (Value *I : Call.args()) {
 | 
						|
    Constant *C = dyn_cast<Constant>(I);
 | 
						|
    if (!C)
 | 
						|
      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
 | 
						|
    if (!C)
 | 
						|
      return false; // This argument doesn't map to a constant.
 | 
						|
 | 
						|
    ConstantArgs.push_back(C);
 | 
						|
  }
 | 
						|
  if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
 | 
						|
    SimplifiedValues[&Call] = C;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitCallBase(CallBase &Call) {
 | 
						|
  if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
 | 
						|
      !F.hasFnAttribute(Attribute::ReturnsTwice)) {
 | 
						|
    // This aborts the entire analysis.
 | 
						|
    ExposesReturnsTwice = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
 | 
						|
    ContainsNoDuplicateCall = true;
 | 
						|
 | 
						|
  Value *Callee = Call.getCalledOperand();
 | 
						|
  Function *F = dyn_cast_or_null<Function>(Callee);
 | 
						|
  bool IsIndirectCall = !F;
 | 
						|
  if (IsIndirectCall) {
 | 
						|
    // Check if this happens to be an indirect function call to a known function
 | 
						|
    // in this inline context. If not, we've done all we can.
 | 
						|
    F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
 | 
						|
    if (!F) {
 | 
						|
      onCallArgumentSetup(Call);
 | 
						|
 | 
						|
      if (!Call.onlyReadsMemory())
 | 
						|
        disableLoadElimination();
 | 
						|
      return Base::visitCallBase(Call);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(F && "Expected a call to a known function");
 | 
						|
 | 
						|
  // When we have a concrete function, first try to simplify it directly.
 | 
						|
  if (simplifyCallSite(F, Call))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Next check if it is an intrinsic we know about.
 | 
						|
  // FIXME: Lift this into part of the InstVisitor.
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default:
 | 
						|
      if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
 | 
						|
        disableLoadElimination();
 | 
						|
      return Base::visitCallBase(Call);
 | 
						|
 | 
						|
    case Intrinsic::load_relative:
 | 
						|
      onLoadRelativeIntrinsic();
 | 
						|
      return false;
 | 
						|
 | 
						|
    case Intrinsic::memset:
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
    case Intrinsic::memmove:
 | 
						|
      disableLoadElimination();
 | 
						|
      // SROA can usually chew through these intrinsics, but they aren't free.
 | 
						|
      return false;
 | 
						|
    case Intrinsic::icall_branch_funnel:
 | 
						|
    case Intrinsic::localescape:
 | 
						|
      HasUninlineableIntrinsic = true;
 | 
						|
      return false;
 | 
						|
    case Intrinsic::vastart:
 | 
						|
      InitsVargArgs = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (F == Call.getFunction()) {
 | 
						|
    // This flag will fully abort the analysis, so don't bother with anything
 | 
						|
    // else.
 | 
						|
    IsRecursiveCall = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TTI.isLoweredToCall(F)) {
 | 
						|
    onLoweredCall(F, Call, IsIndirectCall);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
 | 
						|
    disableLoadElimination();
 | 
						|
  return Base::visitCallBase(Call);
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
 | 
						|
  // At least one return instruction will be free after inlining.
 | 
						|
  bool Free = !HasReturn;
 | 
						|
  HasReturn = true;
 | 
						|
  return Free;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
 | 
						|
  // We model unconditional branches as essentially free -- they really
 | 
						|
  // shouldn't exist at all, but handling them makes the behavior of the
 | 
						|
  // inliner more regular and predictable. Interestingly, conditional branches
 | 
						|
  // which will fold away are also free.
 | 
						|
  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
 | 
						|
         dyn_cast_or_null<ConstantInt>(
 | 
						|
             SimplifiedValues.lookup(BI.getCondition()));
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
 | 
						|
  bool CheckSROA = SI.getType()->isPointerTy();
 | 
						|
  Value *TrueVal = SI.getTrueValue();
 | 
						|
  Value *FalseVal = SI.getFalseValue();
 | 
						|
 | 
						|
  Constant *TrueC = dyn_cast<Constant>(TrueVal);
 | 
						|
  if (!TrueC)
 | 
						|
    TrueC = SimplifiedValues.lookup(TrueVal);
 | 
						|
  Constant *FalseC = dyn_cast<Constant>(FalseVal);
 | 
						|
  if (!FalseC)
 | 
						|
    FalseC = SimplifiedValues.lookup(FalseVal);
 | 
						|
  Constant *CondC =
 | 
						|
      dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
 | 
						|
 | 
						|
  if (!CondC) {
 | 
						|
    // Select C, X, X => X
 | 
						|
    if (TrueC == FalseC && TrueC) {
 | 
						|
      SimplifiedValues[&SI] = TrueC;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CheckSROA)
 | 
						|
      return Base::visitSelectInst(SI);
 | 
						|
 | 
						|
    std::pair<Value *, APInt> TrueBaseAndOffset =
 | 
						|
        ConstantOffsetPtrs.lookup(TrueVal);
 | 
						|
    std::pair<Value *, APInt> FalseBaseAndOffset =
 | 
						|
        ConstantOffsetPtrs.lookup(FalseVal);
 | 
						|
    if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
 | 
						|
      ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
 | 
						|
 | 
						|
      if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
 | 
						|
        SROAArgValues[&SI] = SROAArg;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return Base::visitSelectInst(SI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Select condition is a constant.
 | 
						|
  Value *SelectedV = CondC->isAllOnesValue()
 | 
						|
                         ? TrueVal
 | 
						|
                         : (CondC->isNullValue()) ? FalseVal : nullptr;
 | 
						|
  if (!SelectedV) {
 | 
						|
    // Condition is a vector constant that is not all 1s or all 0s.  If all
 | 
						|
    // operands are constants, ConstantExpr::getSelect() can handle the cases
 | 
						|
    // such as select vectors.
 | 
						|
    if (TrueC && FalseC) {
 | 
						|
      if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
 | 
						|
        SimplifiedValues[&SI] = C;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Base::visitSelectInst(SI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Condition is either all 1s or all 0s. SI can be simplified.
 | 
						|
  if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
 | 
						|
    SimplifiedValues[&SI] = SelectedC;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CheckSROA)
 | 
						|
    return true;
 | 
						|
 | 
						|
  std::pair<Value *, APInt> BaseAndOffset =
 | 
						|
      ConstantOffsetPtrs.lookup(SelectedV);
 | 
						|
  if (BaseAndOffset.first) {
 | 
						|
    ConstantOffsetPtrs[&SI] = BaseAndOffset;
 | 
						|
 | 
						|
    if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
 | 
						|
      SROAArgValues[&SI] = SROAArg;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  // We model unconditional switches as free, see the comments on handling
 | 
						|
  // branches.
 | 
						|
  if (isa<ConstantInt>(SI.getCondition()))
 | 
						|
    return true;
 | 
						|
  if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
 | 
						|
    if (isa<ConstantInt>(V))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Assume the most general case where the switch is lowered into
 | 
						|
  // either a jump table, bit test, or a balanced binary tree consisting of
 | 
						|
  // case clusters without merging adjacent clusters with the same
 | 
						|
  // destination. We do not consider the switches that are lowered with a mix
 | 
						|
  // of jump table/bit test/binary search tree. The cost of the switch is
 | 
						|
  // proportional to the size of the tree or the size of jump table range.
 | 
						|
  //
 | 
						|
  // NB: We convert large switches which are just used to initialize large phi
 | 
						|
  // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
 | 
						|
  // inlining those. It will prevent inlining in cases where the optimization
 | 
						|
  // does not (yet) fire.
 | 
						|
 | 
						|
  unsigned JumpTableSize = 0;
 | 
						|
  BlockFrequencyInfo *BFI = GetBFI ? &((*GetBFI)(F)) : nullptr;
 | 
						|
  unsigned NumCaseCluster =
 | 
						|
      TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
 | 
						|
 | 
						|
  onFinalizeSwitch(JumpTableSize, NumCaseCluster);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
 | 
						|
  // We never want to inline functions that contain an indirectbr.  This is
 | 
						|
  // incorrect because all the blockaddress's (in static global initializers
 | 
						|
  // for example) would be referring to the original function, and this
 | 
						|
  // indirect jump would jump from the inlined copy of the function into the
 | 
						|
  // original function which is extremely undefined behavior.
 | 
						|
  // FIXME: This logic isn't really right; we can safely inline functions with
 | 
						|
  // indirectbr's as long as no other function or global references the
 | 
						|
  // blockaddress of a block within the current function.
 | 
						|
  HasIndirectBr = true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
 | 
						|
  // FIXME: It's not clear that a single instruction is an accurate model for
 | 
						|
  // the inline cost of a resume instruction.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
 | 
						|
  // FIXME: It's not clear that a single instruction is an accurate model for
 | 
						|
  // the inline cost of a cleanupret instruction.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
 | 
						|
  // FIXME: It's not clear that a single instruction is an accurate model for
 | 
						|
  // the inline cost of a catchret instruction.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
 | 
						|
  // FIXME: It might be reasonably to discount the cost of instructions leading
 | 
						|
  // to unreachable as they have the lowest possible impact on both runtime and
 | 
						|
  // code size.
 | 
						|
  return true; // No actual code is needed for unreachable.
 | 
						|
}
 | 
						|
 | 
						|
bool CallAnalyzer::visitInstruction(Instruction &I) {
 | 
						|
  // Some instructions are free. All of the free intrinsics can also be
 | 
						|
  // handled by SROA, etc.
 | 
						|
  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We found something we don't understand or can't handle. Mark any SROA-able
 | 
						|
  // values in the operand list as no longer viable.
 | 
						|
  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
 | 
						|
    disableSROA(*OI);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze a basic block for its contribution to the inline cost.
 | 
						|
///
 | 
						|
/// This method walks the analyzer over every instruction in the given basic
 | 
						|
/// block and accounts for their cost during inlining at this callsite. It
 | 
						|
/// aborts early if the threshold has been exceeded or an impossible to inline
 | 
						|
/// construct has been detected. It returns false if inlining is no longer
 | 
						|
/// viable, and true if inlining remains viable.
 | 
						|
InlineResult
 | 
						|
CallAnalyzer::analyzeBlock(BasicBlock *BB,
 | 
						|
                           SmallPtrSetImpl<const Value *> &EphValues) {
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    // FIXME: Currently, the number of instructions in a function regardless of
 | 
						|
    // our ability to simplify them during inline to constants or dead code,
 | 
						|
    // are actually used by the vector bonus heuristic. As long as that's true,
 | 
						|
    // we have to special case debug intrinsics here to prevent differences in
 | 
						|
    // inlining due to debug symbols. Eventually, the number of unsimplified
 | 
						|
    // instructions shouldn't factor into the cost computation, but until then,
 | 
						|
    // hack around it here.
 | 
						|
    if (isa<DbgInfoIntrinsic>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip ephemeral values.
 | 
						|
    if (EphValues.count(&*I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    ++NumInstructions;
 | 
						|
    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
 | 
						|
      ++NumVectorInstructions;
 | 
						|
 | 
						|
    // If the instruction simplified to a constant, there is no cost to this
 | 
						|
    // instruction. Visit the instructions using our InstVisitor to account for
 | 
						|
    // all of the per-instruction logic. The visit tree returns true if we
 | 
						|
    // consumed the instruction in any way, and false if the instruction's base
 | 
						|
    // cost should count against inlining.
 | 
						|
    if (Base::visit(&*I))
 | 
						|
      ++NumInstructionsSimplified;
 | 
						|
    else
 | 
						|
      onMissedSimplification();
 | 
						|
 | 
						|
    using namespace ore;
 | 
						|
    // If the visit this instruction detected an uninlinable pattern, abort.
 | 
						|
    InlineResult IR = InlineResult::success();
 | 
						|
    if (IsRecursiveCall)
 | 
						|
      IR = InlineResult::failure("recursive");
 | 
						|
    else if (ExposesReturnsTwice)
 | 
						|
      IR = InlineResult::failure("exposes returns twice");
 | 
						|
    else if (HasDynamicAlloca)
 | 
						|
      IR = InlineResult::failure("dynamic alloca");
 | 
						|
    else if (HasIndirectBr)
 | 
						|
      IR = InlineResult::failure("indirect branch");
 | 
						|
    else if (HasUninlineableIntrinsic)
 | 
						|
      IR = InlineResult::failure("uninlinable intrinsic");
 | 
						|
    else if (InitsVargArgs)
 | 
						|
      IR = InlineResult::failure("varargs");
 | 
						|
    if (!IR.isSuccess()) {
 | 
						|
      if (ORE)
 | 
						|
        ORE->emit([&]() {
 | 
						|
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
 | 
						|
                                          &CandidateCall)
 | 
						|
                 << NV("Callee", &F) << " has uninlinable pattern ("
 | 
						|
                 << NV("InlineResult", IR.getFailureReason())
 | 
						|
                 << ") and cost is not fully computed";
 | 
						|
        });
 | 
						|
      return IR;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the caller is a recursive function then we don't want to inline
 | 
						|
    // functions which allocate a lot of stack space because it would increase
 | 
						|
    // the caller stack usage dramatically.
 | 
						|
    if (IsCallerRecursive &&
 | 
						|
        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
 | 
						|
      auto IR =
 | 
						|
          InlineResult::failure("recursive and allocates too much stack space");
 | 
						|
      if (ORE)
 | 
						|
        ORE->emit([&]() {
 | 
						|
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
 | 
						|
                                          &CandidateCall)
 | 
						|
                 << NV("Callee", &F) << " is "
 | 
						|
                 << NV("InlineResult", IR.getFailureReason())
 | 
						|
                 << ". Cost is not fully computed";
 | 
						|
        });
 | 
						|
      return IR;
 | 
						|
    }
 | 
						|
 | 
						|
    if (shouldStop())
 | 
						|
      return InlineResult::failure(
 | 
						|
          "Call site analysis is not favorable to inlining.");
 | 
						|
  }
 | 
						|
 | 
						|
  return InlineResult::success();
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the base pointer and cumulative constant offsets for V.
 | 
						|
///
 | 
						|
/// This strips all constant offsets off of V, leaving it the base pointer, and
 | 
						|
/// accumulates the total constant offset applied in the returned constant. It
 | 
						|
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
 | 
						|
/// no constant offsets applied.
 | 
						|
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
 | 
						|
  if (!V->getType()->isPointerTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned AS = V->getType()->getPointerAddressSpace();
 | 
						|
  unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
 | 
						|
  APInt Offset = APInt::getNullValue(IntPtrWidth);
 | 
						|
 | 
						|
  // Even though we don't look through PHI nodes, we could be called on an
 | 
						|
  // instruction in an unreachable block, which may be on a cycle.
 | 
						|
  SmallPtrSet<Value *, 4> Visited;
 | 
						|
  Visited.insert(V);
 | 
						|
  do {
 | 
						|
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | 
						|
      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
 | 
						|
        return nullptr;
 | 
						|
      V = GEP->getPointerOperand();
 | 
						|
    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | 
						|
      V = cast<Operator>(V)->getOperand(0);
 | 
						|
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | 
						|
      if (GA->isInterposable())
 | 
						|
        break;
 | 
						|
      V = GA->getAliasee();
 | 
						|
    } else {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | 
						|
  } while (Visited.insert(V).second);
 | 
						|
 | 
						|
  Type *IdxPtrTy = DL.getIndexType(V->getType());
 | 
						|
  return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
 | 
						|
}
 | 
						|
 | 
						|
/// Find dead blocks due to deleted CFG edges during inlining.
 | 
						|
///
 | 
						|
/// If we know the successor of the current block, \p CurrBB, has to be \p
 | 
						|
/// NextBB, the other successors of \p CurrBB are dead if these successors have
 | 
						|
/// no live incoming CFG edges.  If one block is found to be dead, we can
 | 
						|
/// continue growing the dead block list by checking the successors of the dead
 | 
						|
/// blocks to see if all their incoming edges are dead or not.
 | 
						|
void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
 | 
						|
  auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
 | 
						|
    // A CFG edge is dead if the predecessor is dead or the predecessor has a
 | 
						|
    // known successor which is not the one under exam.
 | 
						|
    return (DeadBlocks.count(Pred) ||
 | 
						|
            (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
 | 
						|
  };
 | 
						|
 | 
						|
  auto IsNewlyDead = [&](BasicBlock *BB) {
 | 
						|
    // If all the edges to a block are dead, the block is also dead.
 | 
						|
    return (!DeadBlocks.count(BB) &&
 | 
						|
            llvm::all_of(predecessors(BB),
 | 
						|
                         [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
 | 
						|
  };
 | 
						|
 | 
						|
  for (BasicBlock *Succ : successors(CurrBB)) {
 | 
						|
    if (Succ == NextBB || !IsNewlyDead(Succ))
 | 
						|
      continue;
 | 
						|
    SmallVector<BasicBlock *, 4> NewDead;
 | 
						|
    NewDead.push_back(Succ);
 | 
						|
    while (!NewDead.empty()) {
 | 
						|
      BasicBlock *Dead = NewDead.pop_back_val();
 | 
						|
      if (DeadBlocks.insert(Dead))
 | 
						|
        // Continue growing the dead block lists.
 | 
						|
        for (BasicBlock *S : successors(Dead))
 | 
						|
          if (IsNewlyDead(S))
 | 
						|
            NewDead.push_back(S);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze a call site for potential inlining.
 | 
						|
///
 | 
						|
/// Returns true if inlining this call is viable, and false if it is not
 | 
						|
/// viable. It computes the cost and adjusts the threshold based on numerous
 | 
						|
/// factors and heuristics. If this method returns false but the computed cost
 | 
						|
/// is below the computed threshold, then inlining was forcibly disabled by
 | 
						|
/// some artifact of the routine.
 | 
						|
InlineResult CallAnalyzer::analyze() {
 | 
						|
  ++NumCallsAnalyzed;
 | 
						|
 | 
						|
  auto Result = onAnalysisStart();
 | 
						|
  if (!Result.isSuccess())
 | 
						|
    return Result;
 | 
						|
 | 
						|
  if (F.empty())
 | 
						|
    return InlineResult::success();
 | 
						|
 | 
						|
  Function *Caller = CandidateCall.getFunction();
 | 
						|
  // Check if the caller function is recursive itself.
 | 
						|
  for (User *U : Caller->users()) {
 | 
						|
    CallBase *Call = dyn_cast<CallBase>(U);
 | 
						|
    if (Call && Call->getFunction() == Caller) {
 | 
						|
      IsCallerRecursive = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Populate our simplified values by mapping from function arguments to call
 | 
						|
  // arguments with known important simplifications.
 | 
						|
  auto CAI = CandidateCall.arg_begin();
 | 
						|
  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
 | 
						|
       FAI != FAE; ++FAI, ++CAI) {
 | 
						|
    assert(CAI != CandidateCall.arg_end());
 | 
						|
    if (Constant *C = dyn_cast<Constant>(CAI))
 | 
						|
      SimplifiedValues[&*FAI] = C;
 | 
						|
 | 
						|
    Value *PtrArg = *CAI;
 | 
						|
    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
 | 
						|
      ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
 | 
						|
 | 
						|
      // We can SROA any pointer arguments derived from alloca instructions.
 | 
						|
      if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
 | 
						|
        SROAArgValues[&*FAI] = SROAArg;
 | 
						|
        onInitializeSROAArg(SROAArg);
 | 
						|
        EnabledSROAAllocas.insert(SROAArg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  NumConstantArgs = SimplifiedValues.size();
 | 
						|
  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
 | 
						|
  NumAllocaArgs = SROAArgValues.size();
 | 
						|
 | 
						|
  // FIXME: If a caller has multiple calls to a callee, we end up recomputing
 | 
						|
  // the ephemeral values multiple times (and they're completely determined by
 | 
						|
  // the callee, so this is purely duplicate work).
 | 
						|
  SmallPtrSet<const Value *, 32> EphValues;
 | 
						|
  CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
 | 
						|
 | 
						|
  // The worklist of live basic blocks in the callee *after* inlining. We avoid
 | 
						|
  // adding basic blocks of the callee which can be proven to be dead for this
 | 
						|
  // particular call site in order to get more accurate cost estimates. This
 | 
						|
  // requires a somewhat heavyweight iteration pattern: we need to walk the
 | 
						|
  // basic blocks in a breadth-first order as we insert live successors. To
 | 
						|
  // accomplish this, prioritizing for small iterations because we exit after
 | 
						|
  // crossing our threshold, we use a small-size optimized SetVector.
 | 
						|
  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
 | 
						|
                    SmallPtrSet<BasicBlock *, 16>>
 | 
						|
      BBSetVector;
 | 
						|
  BBSetVector BBWorklist;
 | 
						|
  BBWorklist.insert(&F.getEntryBlock());
 | 
						|
 | 
						|
  // Note that we *must not* cache the size, this loop grows the worklist.
 | 
						|
  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
 | 
						|
    if (shouldStop())
 | 
						|
      break;
 | 
						|
 | 
						|
    BasicBlock *BB = BBWorklist[Idx];
 | 
						|
    if (BB->empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Disallow inlining a blockaddress with uses other than strictly callbr.
 | 
						|
    // A blockaddress only has defined behavior for an indirect branch in the
 | 
						|
    // same function, and we do not currently support inlining indirect
 | 
						|
    // branches.  But, the inliner may not see an indirect branch that ends up
 | 
						|
    // being dead code at a particular call site. If the blockaddress escapes
 | 
						|
    // the function, e.g., via a global variable, inlining may lead to an
 | 
						|
    // invalid cross-function reference.
 | 
						|
    // FIXME: pr/39560: continue relaxing this overt restriction.
 | 
						|
    if (BB->hasAddressTaken())
 | 
						|
      for (User *U : BlockAddress::get(&*BB)->users())
 | 
						|
        if (!isa<CallBrInst>(*U))
 | 
						|
          return InlineResult::failure("blockaddress used outside of callbr");
 | 
						|
 | 
						|
    // Analyze the cost of this block. If we blow through the threshold, this
 | 
						|
    // returns false, and we can bail on out.
 | 
						|
    InlineResult IR = analyzeBlock(BB, EphValues);
 | 
						|
    if (!IR.isSuccess())
 | 
						|
      return IR;
 | 
						|
 | 
						|
    Instruction *TI = BB->getTerminator();
 | 
						|
 | 
						|
    // Add in the live successors by first checking whether we have terminator
 | 
						|
    // that may be simplified based on the values simplified by this call.
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      if (BI->isConditional()) {
 | 
						|
        Value *Cond = BI->getCondition();
 | 
						|
        if (ConstantInt *SimpleCond =
 | 
						|
                dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
 | 
						|
          BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
 | 
						|
          BBWorklist.insert(NextBB);
 | 
						|
          KnownSuccessors[BB] = NextBB;
 | 
						|
          findDeadBlocks(BB, NextBB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
      Value *Cond = SI->getCondition();
 | 
						|
      if (ConstantInt *SimpleCond =
 | 
						|
              dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
 | 
						|
        BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
 | 
						|
        BBWorklist.insert(NextBB);
 | 
						|
        KnownSuccessors[BB] = NextBB;
 | 
						|
        findDeadBlocks(BB, NextBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're unable to select a particular successor, just count all of
 | 
						|
    // them.
 | 
						|
    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
 | 
						|
         ++TIdx)
 | 
						|
      BBWorklist.insert(TI->getSuccessor(TIdx));
 | 
						|
 | 
						|
    onBlockAnalyzed(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
 | 
						|
                                    &F == CandidateCall.getCalledFunction();
 | 
						|
  // If this is a noduplicate call, we can still inline as long as
 | 
						|
  // inlining this would cause the removal of the caller (so the instruction
 | 
						|
  // is not actually duplicated, just moved).
 | 
						|
  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
 | 
						|
    return InlineResult::failure("noduplicate");
 | 
						|
 | 
						|
  return finalizeAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
/// Dump stats about this call's analysis.
 | 
						|
LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() {
 | 
						|
#define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
 | 
						|
  DEBUG_PRINT_STAT(NumConstantArgs);
 | 
						|
  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
 | 
						|
  DEBUG_PRINT_STAT(NumAllocaArgs);
 | 
						|
  DEBUG_PRINT_STAT(NumConstantPtrCmps);
 | 
						|
  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
 | 
						|
  DEBUG_PRINT_STAT(NumInstructionsSimplified);
 | 
						|
  DEBUG_PRINT_STAT(NumInstructions);
 | 
						|
  DEBUG_PRINT_STAT(SROACostSavings);
 | 
						|
  DEBUG_PRINT_STAT(SROACostSavingsLost);
 | 
						|
  DEBUG_PRINT_STAT(LoadEliminationCost);
 | 
						|
  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
 | 
						|
  DEBUG_PRINT_STAT(Cost);
 | 
						|
  DEBUG_PRINT_STAT(Threshold);
 | 
						|
#undef DEBUG_PRINT_STAT
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// Test that there are no attribute conflicts between Caller and Callee
 | 
						|
///        that prevent inlining.
 | 
						|
static bool functionsHaveCompatibleAttributes(Function *Caller,
 | 
						|
                                              Function *Callee,
 | 
						|
                                              TargetTransformInfo &TTI) {
 | 
						|
  return TTI.areInlineCompatible(Caller, Callee) &&
 | 
						|
         AttributeFuncs::areInlineCompatible(*Caller, *Callee);
 | 
						|
}
 | 
						|
 | 
						|
int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
 | 
						|
  int Cost = 0;
 | 
						|
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
 | 
						|
    if (Call.isByValArgument(I)) {
 | 
						|
      // We approximate the number of loads and stores needed by dividing the
 | 
						|
      // size of the byval type by the target's pointer size.
 | 
						|
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
 | 
						|
      unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
 | 
						|
      unsigned AS = PTy->getAddressSpace();
 | 
						|
      unsigned PointerSize = DL.getPointerSizeInBits(AS);
 | 
						|
      // Ceiling division.
 | 
						|
      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
 | 
						|
 | 
						|
      // If it generates more than 8 stores it is likely to be expanded as an
 | 
						|
      // inline memcpy so we take that as an upper bound. Otherwise we assume
 | 
						|
      // one load and one store per word copied.
 | 
						|
      // FIXME: The maxStoresPerMemcpy setting from the target should be used
 | 
						|
      // here instead of a magic number of 8, but it's not available via
 | 
						|
      // DataLayout.
 | 
						|
      NumStores = std::min(NumStores, 8U);
 | 
						|
 | 
						|
      Cost += 2 * NumStores * InlineConstants::InstrCost;
 | 
						|
    } else {
 | 
						|
      // For non-byval arguments subtract off one instruction per call
 | 
						|
      // argument.
 | 
						|
      Cost += InlineConstants::InstrCost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // The call instruction also disappears after inlining.
 | 
						|
  Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
InlineCost llvm::getInlineCost(
 | 
						|
    CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
 | 
						|
    std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
 | 
						|
    Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
 | 
						|
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
 | 
						|
  return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
 | 
						|
                       GetAssumptionCache, GetBFI, PSI, ORE);
 | 
						|
}
 | 
						|
 | 
						|
InlineCost llvm::getInlineCost(
 | 
						|
    CallBase &Call, Function *Callee, const InlineParams &Params,
 | 
						|
    TargetTransformInfo &CalleeTTI,
 | 
						|
    std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
 | 
						|
    Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
 | 
						|
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
 | 
						|
 | 
						|
  // Cannot inline indirect calls.
 | 
						|
  if (!Callee)
 | 
						|
    return llvm::InlineCost::getNever("indirect call");
 | 
						|
 | 
						|
  // Never inline calls with byval arguments that does not have the alloca
 | 
						|
  // address space. Since byval arguments can be replaced with a copy to an
 | 
						|
  // alloca, the inlined code would need to be adjusted to handle that the
 | 
						|
  // argument is in the alloca address space (so it is a little bit complicated
 | 
						|
  // to solve).
 | 
						|
  unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
 | 
						|
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
 | 
						|
    if (Call.isByValArgument(I)) {
 | 
						|
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
 | 
						|
      if (PTy->getAddressSpace() != AllocaAS)
 | 
						|
        return llvm::InlineCost::getNever("byval arguments without alloca"
 | 
						|
                                          " address space");
 | 
						|
    }
 | 
						|
 | 
						|
  // Calls to functions with always-inline attributes should be inlined
 | 
						|
  // whenever possible.
 | 
						|
  if (Call.hasFnAttr(Attribute::AlwaysInline)) {
 | 
						|
    auto IsViable = isInlineViable(*Callee);
 | 
						|
    if (IsViable.isSuccess())
 | 
						|
      return llvm::InlineCost::getAlways("always inline attribute");
 | 
						|
    return llvm::InlineCost::getNever(IsViable.getFailureReason());
 | 
						|
  }
 | 
						|
 | 
						|
  // Never inline functions with conflicting attributes (unless callee has
 | 
						|
  // always-inline attribute).
 | 
						|
  Function *Caller = Call.getCaller();
 | 
						|
  if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
 | 
						|
    return llvm::InlineCost::getNever("conflicting attributes");
 | 
						|
 | 
						|
  // Don't inline this call if the caller has the optnone attribute.
 | 
						|
  if (Caller->hasOptNone())
 | 
						|
    return llvm::InlineCost::getNever("optnone attribute");
 | 
						|
 | 
						|
  // Don't inline a function that treats null pointer as valid into a caller
 | 
						|
  // that does not have this attribute.
 | 
						|
  if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
 | 
						|
    return llvm::InlineCost::getNever("nullptr definitions incompatible");
 | 
						|
 | 
						|
  // Don't inline functions which can be interposed at link-time.
 | 
						|
  if (Callee->isInterposable())
 | 
						|
    return llvm::InlineCost::getNever("interposable");
 | 
						|
 | 
						|
  // Don't inline functions marked noinline.
 | 
						|
  if (Callee->hasFnAttribute(Attribute::NoInline))
 | 
						|
    return llvm::InlineCost::getNever("noinline function attribute");
 | 
						|
 | 
						|
  // Don't inline call sites marked noinline.
 | 
						|
  if (Call.isNoInline())
 | 
						|
    return llvm::InlineCost::getNever("noinline call site attribute");
 | 
						|
 | 
						|
  LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
 | 
						|
                          << "... (caller:" << Caller->getName() << ")\n");
 | 
						|
 | 
						|
  InlineCostCallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE,
 | 
						|
                            *Callee, Call, Params);
 | 
						|
  InlineResult ShouldInline = CA.analyze();
 | 
						|
 | 
						|
  LLVM_DEBUG(CA.dump());
 | 
						|
 | 
						|
  // Check if there was a reason to force inlining or no inlining.
 | 
						|
  if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold())
 | 
						|
    return InlineCost::getNever(ShouldInline.getFailureReason());
 | 
						|
  if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold())
 | 
						|
    return InlineCost::getAlways("empty function");
 | 
						|
 | 
						|
  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
 | 
						|
}
 | 
						|
 | 
						|
InlineResult llvm::isInlineViable(Function &F) {
 | 
						|
  bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
 | 
						|
  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
 | 
						|
    // Disallow inlining of functions which contain indirect branches.
 | 
						|
    if (isa<IndirectBrInst>(BI->getTerminator()))
 | 
						|
      return InlineResult::failure("contains indirect branches");
 | 
						|
 | 
						|
    // Disallow inlining of blockaddresses which are used by non-callbr
 | 
						|
    // instructions.
 | 
						|
    if (BI->hasAddressTaken())
 | 
						|
      for (User *U : BlockAddress::get(&*BI)->users())
 | 
						|
        if (!isa<CallBrInst>(*U))
 | 
						|
          return InlineResult::failure("blockaddress used outside of callbr");
 | 
						|
 | 
						|
    for (auto &II : *BI) {
 | 
						|
      CallBase *Call = dyn_cast<CallBase>(&II);
 | 
						|
      if (!Call)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Disallow recursive calls.
 | 
						|
      if (&F == Call->getCalledFunction())
 | 
						|
        return InlineResult::failure("recursive call");
 | 
						|
 | 
						|
      // Disallow calls which expose returns-twice to a function not previously
 | 
						|
      // attributed as such.
 | 
						|
      if (!ReturnsTwice && isa<CallInst>(Call) &&
 | 
						|
          cast<CallInst>(Call)->canReturnTwice())
 | 
						|
        return InlineResult::failure("exposes returns-twice attribute");
 | 
						|
 | 
						|
      if (Call->getCalledFunction())
 | 
						|
        switch (Call->getCalledFunction()->getIntrinsicID()) {
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        case llvm::Intrinsic::icall_branch_funnel:
 | 
						|
          // Disallow inlining of @llvm.icall.branch.funnel because current
 | 
						|
          // backend can't separate call targets from call arguments.
 | 
						|
          return InlineResult::failure(
 | 
						|
              "disallowed inlining of @llvm.icall.branch.funnel");
 | 
						|
        case llvm::Intrinsic::localescape:
 | 
						|
          // Disallow inlining functions that call @llvm.localescape. Doing this
 | 
						|
          // correctly would require major changes to the inliner.
 | 
						|
          return InlineResult::failure(
 | 
						|
              "disallowed inlining of @llvm.localescape");
 | 
						|
        case llvm::Intrinsic::vastart:
 | 
						|
          // Disallow inlining of functions that initialize VarArgs with
 | 
						|
          // va_start.
 | 
						|
          return InlineResult::failure(
 | 
						|
              "contains VarArgs initialized with va_start");
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return InlineResult::success();
 | 
						|
}
 | 
						|
 | 
						|
// APIs to create InlineParams based on command line flags and/or other
 | 
						|
// parameters.
 | 
						|
 | 
						|
InlineParams llvm::getInlineParams(int Threshold) {
 | 
						|
  InlineParams Params;
 | 
						|
 | 
						|
  // This field is the threshold to use for a callee by default. This is
 | 
						|
  // derived from one or more of:
 | 
						|
  //  * optimization or size-optimization levels,
 | 
						|
  //  * a value passed to createFunctionInliningPass function, or
 | 
						|
  //  * the -inline-threshold flag.
 | 
						|
  //  If the -inline-threshold flag is explicitly specified, that is used
 | 
						|
  //  irrespective of anything else.
 | 
						|
  if (InlineThreshold.getNumOccurrences() > 0)
 | 
						|
    Params.DefaultThreshold = InlineThreshold;
 | 
						|
  else
 | 
						|
    Params.DefaultThreshold = Threshold;
 | 
						|
 | 
						|
  // Set the HintThreshold knob from the -inlinehint-threshold.
 | 
						|
  Params.HintThreshold = HintThreshold;
 | 
						|
 | 
						|
  // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
 | 
						|
  Params.HotCallSiteThreshold = HotCallSiteThreshold;
 | 
						|
 | 
						|
  // If the -locally-hot-callsite-threshold is explicitly specified, use it to
 | 
						|
  // populate LocallyHotCallSiteThreshold. Later, we populate
 | 
						|
  // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
 | 
						|
  // we know that optimization level is O3 (in the getInlineParams variant that
 | 
						|
  // takes the opt and size levels).
 | 
						|
  // FIXME: Remove this check (and make the assignment unconditional) after
 | 
						|
  // addressing size regression issues at O2.
 | 
						|
  if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
 | 
						|
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
 | 
						|
 | 
						|
  // Set the ColdCallSiteThreshold knob from the
 | 
						|
  // -inline-cold-callsite-threshold.
 | 
						|
  Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
 | 
						|
 | 
						|
  // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
 | 
						|
  // -inlinehint-threshold commandline option is not explicitly given. If that
 | 
						|
  // option is present, then its value applies even for callees with size and
 | 
						|
  // minsize attributes.
 | 
						|
  // If the -inline-threshold is not specified, set the ColdThreshold from the
 | 
						|
  // -inlinecold-threshold even if it is not explicitly passed. If
 | 
						|
  // -inline-threshold is specified, then -inlinecold-threshold needs to be
 | 
						|
  // explicitly specified to set the ColdThreshold knob
 | 
						|
  if (InlineThreshold.getNumOccurrences() == 0) {
 | 
						|
    Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
 | 
						|
    Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
 | 
						|
    Params.ColdThreshold = ColdThreshold;
 | 
						|
  } else if (ColdThreshold.getNumOccurrences() > 0) {
 | 
						|
    Params.ColdThreshold = ColdThreshold;
 | 
						|
  }
 | 
						|
  return Params;
 | 
						|
}
 | 
						|
 | 
						|
InlineParams llvm::getInlineParams() {
 | 
						|
  return getInlineParams(InlineThreshold);
 | 
						|
}
 | 
						|
 | 
						|
// Compute the default threshold for inlining based on the opt level and the
 | 
						|
// size opt level.
 | 
						|
static int computeThresholdFromOptLevels(unsigned OptLevel,
 | 
						|
                                         unsigned SizeOptLevel) {
 | 
						|
  if (OptLevel > 2)
 | 
						|
    return InlineConstants::OptAggressiveThreshold;
 | 
						|
  if (SizeOptLevel == 1) // -Os
 | 
						|
    return InlineConstants::OptSizeThreshold;
 | 
						|
  if (SizeOptLevel == 2) // -Oz
 | 
						|
    return InlineConstants::OptMinSizeThreshold;
 | 
						|
  return InlineThreshold;
 | 
						|
}
 | 
						|
 | 
						|
InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
 | 
						|
  auto Params =
 | 
						|
      getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
 | 
						|
  // At O3, use the value of -locally-hot-callsite-threshold option to populate
 | 
						|
  // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
 | 
						|
  // when it is specified explicitly.
 | 
						|
  if (OptLevel > 2)
 | 
						|
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
 | 
						|
  return Params;
 | 
						|
}
 |