forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			522 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			522 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Loads.cpp - Local load analysis ------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines simple local analyses for load instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static MaybeAlign getBaseAlign(const Value *Base, const DataLayout &DL) {
 | 
						|
  if (const MaybeAlign PA = Base->getPointerAlignment(DL))
 | 
						|
    return *PA;
 | 
						|
  Type *const Ty = Base->getType()->getPointerElementType();
 | 
						|
  if (!Ty->isSized())
 | 
						|
    return None;
 | 
						|
  return Align(DL.getABITypeAlignment(Ty));
 | 
						|
}
 | 
						|
 | 
						|
static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
 | 
						|
                      const DataLayout &DL) {
 | 
						|
  if (MaybeAlign BA = getBaseAlign(Base, DL)) {
 | 
						|
    const APInt APBaseAlign(Offset.getBitWidth(), BA->value());
 | 
						|
    const APInt APAlign(Offset.getBitWidth(), Alignment.value());
 | 
						|
    assert(APAlign.isPowerOf2() && "must be a power of 2!");
 | 
						|
    return APBaseAlign.uge(APAlign) && !(Offset & (APAlign - 1));
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Test if V is always a pointer to allocated and suitably aligned memory for
 | 
						|
/// a simple load or store.
 | 
						|
static bool isDereferenceableAndAlignedPointer(
 | 
						|
    const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
 | 
						|
    const Instruction *CtxI, const DominatorTree *DT,
 | 
						|
    SmallPtrSetImpl<const Value *> &Visited, unsigned MaxDepth) {
 | 
						|
 | 
						|
  // Recursion limit.
 | 
						|
  if (MaxDepth-- == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Already visited?  Bail out, we've likely hit unreachable code.
 | 
						|
  if (!Visited.insert(V).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Note that it is not safe to speculate into a malloc'd region because
 | 
						|
  // malloc may return null.
 | 
						|
 | 
						|
  // bitcast instructions are no-ops as far as dereferenceability is concerned.
 | 
						|
  if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
 | 
						|
    return isDereferenceableAndAlignedPointer(BC->getOperand(0), Alignment,
 | 
						|
                                              Size, DL, CtxI, DT, Visited,
 | 
						|
                                              MaxDepth);
 | 
						|
 | 
						|
  bool CheckForNonNull = false;
 | 
						|
  APInt KnownDerefBytes(Size.getBitWidth(),
 | 
						|
                        V->getPointerDereferenceableBytes(DL, CheckForNonNull));
 | 
						|
  if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
 | 
						|
    if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
 | 
						|
      // As we recursed through GEPs to get here, we've incrementally checked
 | 
						|
      // that each step advanced by a multiple of the alignment. If our base is
 | 
						|
      // properly aligned, then the original offset accessed must also be.  
 | 
						|
      Type *Ty = V->getType();
 | 
						|
      assert(Ty->isSized() && "must be sized");
 | 
						|
      APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
 | 
						|
      return isAligned(V, Offset, Alignment, DL);
 | 
						|
    }
 | 
						|
 | 
						|
  // For GEPs, determine if the indexing lands within the allocated object.
 | 
						|
  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | 
						|
    const Value *Base = GEP->getPointerOperand();
 | 
						|
 | 
						|
    APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
 | 
						|
    if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
 | 
						|
        !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
 | 
						|
             .isMinValue())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If the base pointer is dereferenceable for Offset+Size bytes, then the
 | 
						|
    // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
 | 
						|
    // pointer is aligned to Align bytes, and the Offset is divisible by Align
 | 
						|
    // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
 | 
						|
    // aligned to Align bytes.
 | 
						|
 | 
						|
    // Offset and Size may have different bit widths if we have visited an
 | 
						|
    // addrspacecast, so we can't do arithmetic directly on the APInt values.
 | 
						|
    return isDereferenceableAndAlignedPointer(
 | 
						|
        Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
 | 
						|
        CtxI, DT, Visited, MaxDepth);
 | 
						|
  }
 | 
						|
 | 
						|
  // For gc.relocate, look through relocations
 | 
						|
  if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
 | 
						|
    return isDereferenceableAndAlignedPointer(
 | 
						|
      RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, DT, Visited, MaxDepth);
 | 
						|
 | 
						|
  if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
 | 
						|
    return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
 | 
						|
                                              Size, DL, CtxI, DT, Visited, MaxDepth);
 | 
						|
 | 
						|
  if (const auto *Call = dyn_cast<CallBase>(V))
 | 
						|
    if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
 | 
						|
      return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
 | 
						|
                                                DT, Visited, MaxDepth);
 | 
						|
 | 
						|
  // If we don't know, assume the worst.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
 | 
						|
                                              const APInt &Size,
 | 
						|
                                              const DataLayout &DL,
 | 
						|
                                              const Instruction *CtxI,
 | 
						|
                                              const DominatorTree *DT) {
 | 
						|
  // Note: At the moment, Size can be zero.  This ends up being interpreted as
 | 
						|
  // a query of whether [Base, V] is dereferenceable and V is aligned (since
 | 
						|
  // that's what the implementation happened to do).  It's unclear if this is
 | 
						|
  // the desired semantic, but at least SelectionDAG does exercise this case.
 | 
						|
 | 
						|
  SmallPtrSet<const Value *, 32> Visited;
 | 
						|
  return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT,
 | 
						|
                                              Visited, 16);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
 | 
						|
                                              MaybeAlign MA,
 | 
						|
                                              const DataLayout &DL,
 | 
						|
                                              const Instruction *CtxI,
 | 
						|
                                              const DominatorTree *DT) {
 | 
						|
  // For unsized types or scalable vectors we don't know exactly how many bytes
 | 
						|
  // are dereferenced, so bail out.
 | 
						|
  if (!Ty->isSized() || (Ty->isVectorTy() && Ty->getVectorIsScalable()))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // When dereferenceability information is provided by a dereferenceable
 | 
						|
  // attribute, we know exactly how many bytes are dereferenceable. If we can
 | 
						|
  // determine the exact offset to the attributed variable, we can use that
 | 
						|
  // information here.
 | 
						|
 | 
						|
  // Require ABI alignment for loads without alignment specification
 | 
						|
  const Align Alignment = DL.getValueOrABITypeAlignment(MA, Ty);
 | 
						|
  APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
 | 
						|
                   DL.getTypeStoreSize(Ty));
 | 
						|
  return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
 | 
						|
                                            DT);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
 | 
						|
                                    const DataLayout &DL,
 | 
						|
                                    const Instruction *CtxI,
 | 
						|
                                    const DominatorTree *DT) {
 | 
						|
  return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, DT);
 | 
						|
}
 | 
						|
 | 
						|
/// Test if A and B will obviously have the same value.
 | 
						|
///
 | 
						|
/// This includes recognizing that %t0 and %t1 will have the same
 | 
						|
/// value in code like this:
 | 
						|
/// \code
 | 
						|
///   %t0 = getelementptr \@a, 0, 3
 | 
						|
///   store i32 0, i32* %t0
 | 
						|
///   %t1 = getelementptr \@a, 0, 3
 | 
						|
///   %t2 = load i32* %t1
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
 | 
						|
  // Test if the values are trivially equivalent.
 | 
						|
  if (A == B)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Test if the values come from identical arithmetic instructions.
 | 
						|
  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
 | 
						|
  // this function is only used when one address use dominates the
 | 
						|
  // other, which means that they'll always either have the same
 | 
						|
  // value or one of them will have an undefined value.
 | 
						|
  if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
 | 
						|
      isa<GetElementPtrInst>(A))
 | 
						|
    if (const Instruction *BI = dyn_cast<Instruction>(B))
 | 
						|
      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | 
						|
        return true;
 | 
						|
 | 
						|
  // Otherwise they may not be equivalent.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
 | 
						|
                                             ScalarEvolution &SE,
 | 
						|
                                             DominatorTree &DT) {
 | 
						|
  auto &DL = LI->getModule()->getDataLayout();
 | 
						|
  Value *Ptr = LI->getPointerOperand();
 | 
						|
 | 
						|
  APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
 | 
						|
                DL.getTypeStoreSize(LI->getType()));
 | 
						|
  const Align Alignment = DL.getValueOrABITypeAlignment(
 | 
						|
      MaybeAlign(LI->getAlignment()), LI->getType());
 | 
						|
 | 
						|
  Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
 | 
						|
 | 
						|
  // If given a uniform (i.e. non-varying) address, see if we can prove the
 | 
						|
  // access is safe within the loop w/o needing predication.
 | 
						|
  if (L->isLoopInvariant(Ptr))
 | 
						|
    return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
 | 
						|
                                              HeaderFirstNonPHI, &DT);
 | 
						|
 | 
						|
  // Otherwise, check to see if we have a repeating access pattern where we can
 | 
						|
  // prove that all accesses are well aligned and dereferenceable.
 | 
						|
  auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
 | 
						|
  if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
 | 
						|
    return false;
 | 
						|
  auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
 | 
						|
  if (!Step)
 | 
						|
    return false;
 | 
						|
  // TODO: generalize to access patterns which have gaps
 | 
						|
  if (Step->getAPInt() != EltSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: If the symbolic trip count has a small bound (max count), we might
 | 
						|
  // be able to prove safety.
 | 
						|
  auto TC = SE.getSmallConstantTripCount(L);
 | 
						|
  if (!TC)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const APInt AccessSize = TC * EltSize;
 | 
						|
 | 
						|
  auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart());
 | 
						|
  if (!StartS)
 | 
						|
    return false;
 | 
						|
  assert(SE.isLoopInvariant(StartS, L) && "implied by addrec definition");
 | 
						|
  Value *Base = StartS->getValue();
 | 
						|
 | 
						|
  // For the moment, restrict ourselves to the case where the access size is a
 | 
						|
  // multiple of the requested alignment and the base is aligned.
 | 
						|
  // TODO: generalize if a case found which warrants
 | 
						|
  if (EltSize.urem(Alignment.value()) != 0)
 | 
						|
    return false;
 | 
						|
  return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
 | 
						|
                                            HeaderFirstNonPHI, &DT);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if executing a load of this pointer value cannot trap.
 | 
						|
///
 | 
						|
/// If DT and ScanFrom are specified this method performs context-sensitive
 | 
						|
/// analysis and returns true if it is safe to load immediately before ScanFrom.
 | 
						|
///
 | 
						|
/// If it is not obviously safe to load from the specified pointer, we do
 | 
						|
/// a quick local scan of the basic block containing \c ScanFrom, to determine
 | 
						|
/// if the address is already accessed.
 | 
						|
///
 | 
						|
/// This uses the pointee type to determine how many bytes need to be safe to
 | 
						|
/// load from the pointer.
 | 
						|
bool llvm::isSafeToLoadUnconditionally(Value *V, MaybeAlign MA, APInt &Size,
 | 
						|
                                       const DataLayout &DL,
 | 
						|
                                       Instruction *ScanFrom,
 | 
						|
                                       const DominatorTree *DT) {
 | 
						|
  // Zero alignment means that the load has the ABI alignment for the target
 | 
						|
  const Align Alignment =
 | 
						|
      DL.getValueOrABITypeAlignment(MA, V->getType()->getPointerElementType());
 | 
						|
 | 
						|
  // If DT is not specified we can't make context-sensitive query
 | 
						|
  const Instruction* CtxI = DT ? ScanFrom : nullptr;
 | 
						|
  if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, DT))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!ScanFrom)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Size.getBitWidth() > 64)
 | 
						|
    return false;
 | 
						|
  const uint64_t LoadSize = Size.getZExtValue();
 | 
						|
 | 
						|
  // Otherwise, be a little bit aggressive by scanning the local block where we
 | 
						|
  // want to check to see if the pointer is already being loaded or stored
 | 
						|
  // from/to.  If so, the previous load or store would have already trapped,
 | 
						|
  // so there is no harm doing an extra load (also, CSE will later eliminate
 | 
						|
  // the load entirely).
 | 
						|
  BasicBlock::iterator BBI = ScanFrom->getIterator(),
 | 
						|
                       E = ScanFrom->getParent()->begin();
 | 
						|
 | 
						|
  // We can at least always strip pointer casts even though we can't use the
 | 
						|
  // base here.
 | 
						|
  V = V->stripPointerCasts();
 | 
						|
 | 
						|
  while (BBI != E) {
 | 
						|
    --BBI;
 | 
						|
 | 
						|
    // If we see a free or a call which may write to memory (i.e. which might do
 | 
						|
    // a free) the pointer could be marked invalid.
 | 
						|
    if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
 | 
						|
        !isa<DbgInfoIntrinsic>(BBI))
 | 
						|
      return false;
 | 
						|
 | 
						|
    Value *AccessedPtr;
 | 
						|
    MaybeAlign MaybeAccessedAlign;
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
      // Ignore volatile loads. The execution of a volatile load cannot
 | 
						|
      // be used to prove an address is backed by regular memory; it can,
 | 
						|
      // for example, point to an MMIO register.
 | 
						|
      if (LI->isVolatile())
 | 
						|
        continue;
 | 
						|
      AccessedPtr = LI->getPointerOperand();
 | 
						|
      MaybeAccessedAlign = MaybeAlign(LI->getAlignment());
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
 | 
						|
      // Ignore volatile stores (see comment for loads).
 | 
						|
      if (SI->isVolatile())
 | 
						|
        continue;
 | 
						|
      AccessedPtr = SI->getPointerOperand();
 | 
						|
      MaybeAccessedAlign = MaybeAlign(SI->getAlignment());
 | 
						|
    } else
 | 
						|
      continue;
 | 
						|
 | 
						|
    Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
 | 
						|
 | 
						|
    const Align AccessedAlign =
 | 
						|
        DL.getValueOrABITypeAlignment(MaybeAccessedAlign, AccessedTy);
 | 
						|
    if (AccessedAlign < Alignment)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Handle trivial cases.
 | 
						|
    if (AccessedPtr == V &&
 | 
						|
        LoadSize <= DL.getTypeStoreSize(AccessedTy))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
 | 
						|
        LoadSize <= DL.getTypeStoreSize(AccessedTy))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, MaybeAlign Alignment,
 | 
						|
                                       const DataLayout &DL,
 | 
						|
                                       Instruction *ScanFrom,
 | 
						|
                                       const DominatorTree *DT) {
 | 
						|
  APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
 | 
						|
  return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, DT);
 | 
						|
}
 | 
						|
 | 
						|
  /// DefMaxInstsToScan - the default number of maximum instructions
 | 
						|
/// to scan in the block, used by FindAvailableLoadedValue().
 | 
						|
/// FindAvailableLoadedValue() was introduced in r60148, to improve jump
 | 
						|
/// threading in part by eliminating partially redundant loads.
 | 
						|
/// At that point, the value of MaxInstsToScan was already set to '6'
 | 
						|
/// without documented explanation.
 | 
						|
cl::opt<unsigned>
 | 
						|
llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
 | 
						|
  cl::desc("Use this to specify the default maximum number of instructions "
 | 
						|
           "to scan backward from a given instruction, when searching for "
 | 
						|
           "available loaded value"));
 | 
						|
 | 
						|
Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
 | 
						|
                                      BasicBlock *ScanBB,
 | 
						|
                                      BasicBlock::iterator &ScanFrom,
 | 
						|
                                      unsigned MaxInstsToScan,
 | 
						|
                                      AliasAnalysis *AA, bool *IsLoad,
 | 
						|
                                      unsigned *NumScanedInst) {
 | 
						|
  // Don't CSE load that is volatile or anything stronger than unordered.
 | 
						|
  if (!Load->isUnordered())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return FindAvailablePtrLoadStore(
 | 
						|
      Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
 | 
						|
      ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
 | 
						|
}
 | 
						|
 | 
						|
// Check if the load and the store have the same base, constant offsets and
 | 
						|
// non-overlapping access ranges.
 | 
						|
static bool AreNonOverlapSameBaseLoadAndStore(
 | 
						|
    Value *LoadPtr, Type *LoadTy, Value *StorePtr, Type *StoreTy,
 | 
						|
    const DataLayout &DL) {
 | 
						|
  APInt LoadOffset(DL.getTypeSizeInBits(LoadPtr->getType()), 0);
 | 
						|
  APInt StoreOffset(DL.getTypeSizeInBits(StorePtr->getType()), 0);
 | 
						|
  Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
 | 
						|
      DL, LoadOffset, /* AllowNonInbounds */ false);
 | 
						|
  Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
 | 
						|
      DL, StoreOffset, /* AllowNonInbounds */ false);
 | 
						|
  if (LoadBase != StoreBase)
 | 
						|
    return false;
 | 
						|
  auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
 | 
						|
  auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
 | 
						|
  ConstantRange LoadRange(LoadOffset,
 | 
						|
                          LoadOffset + LoadAccessSize.toRaw());
 | 
						|
  ConstantRange StoreRange(StoreOffset,
 | 
						|
                           StoreOffset + StoreAccessSize.toRaw());
 | 
						|
  return LoadRange.intersectWith(StoreRange).isEmptySet();
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
 | 
						|
                                       bool AtLeastAtomic, BasicBlock *ScanBB,
 | 
						|
                                       BasicBlock::iterator &ScanFrom,
 | 
						|
                                       unsigned MaxInstsToScan,
 | 
						|
                                       AliasAnalysis *AA, bool *IsLoadCSE,
 | 
						|
                                       unsigned *NumScanedInst) {
 | 
						|
  if (MaxInstsToScan == 0)
 | 
						|
    MaxInstsToScan = ~0U;
 | 
						|
 | 
						|
  const DataLayout &DL = ScanBB->getModule()->getDataLayout();
 | 
						|
  Value *StrippedPtr = Ptr->stripPointerCasts();
 | 
						|
 | 
						|
  while (ScanFrom != ScanBB->begin()) {
 | 
						|
    // We must ignore debug info directives when counting (otherwise they
 | 
						|
    // would affect codegen).
 | 
						|
    Instruction *Inst = &*--ScanFrom;
 | 
						|
    if (isa<DbgInfoIntrinsic>(Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Restore ScanFrom to expected value in case next test succeeds
 | 
						|
    ScanFrom++;
 | 
						|
 | 
						|
    if (NumScanedInst)
 | 
						|
      ++(*NumScanedInst);
 | 
						|
 | 
						|
    // Don't scan huge blocks.
 | 
						|
    if (MaxInstsToScan-- == 0)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    --ScanFrom;
 | 
						|
    // If this is a load of Ptr, the loaded value is available.
 | 
						|
    // (This is true even if the load is volatile or atomic, although
 | 
						|
    // those cases are unlikely.)
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | 
						|
      if (AreEquivalentAddressValues(
 | 
						|
              LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
 | 
						|
          CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
 | 
						|
 | 
						|
        // We can value forward from an atomic to a non-atomic, but not the
 | 
						|
        // other way around.
 | 
						|
        if (LI->isAtomic() < AtLeastAtomic)
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        if (IsLoadCSE)
 | 
						|
            *IsLoadCSE = true;
 | 
						|
        return LI;
 | 
						|
      }
 | 
						|
 | 
						|
    // Try to get the store size for the type.
 | 
						|
    auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
 | 
						|
      // If this is a store through Ptr, the value is available!
 | 
						|
      // (This is true even if the store is volatile or atomic, although
 | 
						|
      // those cases are unlikely.)
 | 
						|
      if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
 | 
						|
          CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
 | 
						|
                                               AccessTy, DL)) {
 | 
						|
 | 
						|
        // We can value forward from an atomic to a non-atomic, but not the
 | 
						|
        // other way around.
 | 
						|
        if (SI->isAtomic() < AtLeastAtomic)
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        if (IsLoadCSE)
 | 
						|
          *IsLoadCSE = false;
 | 
						|
        return SI->getOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      // If both StrippedPtr and StorePtr reach all the way to an alloca or
 | 
						|
      // global and they are different, ignore the store. This is a trivial form
 | 
						|
      // of alias analysis that is important for reg2mem'd code.
 | 
						|
      if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
 | 
						|
          (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
 | 
						|
          StrippedPtr != StorePtr)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!AA) {
 | 
						|
        // When AA isn't available, but if the load and the store have the same
 | 
						|
        // base, constant offsets and non-overlapping access ranges, ignore the
 | 
						|
        // store. This is a simple form of alias analysis that is used by the
 | 
						|
        // inliner. FIXME: use BasicAA if possible.
 | 
						|
        if (AreNonOverlapSameBaseLoadAndStore(
 | 
						|
                Ptr, AccessTy, SI->getPointerOperand(),
 | 
						|
                SI->getValueOperand()->getType(), DL))
 | 
						|
          continue;
 | 
						|
      } else {
 | 
						|
        // If we have alias analysis and it says the store won't modify the
 | 
						|
        // loaded value, ignore the store.
 | 
						|
        if (!isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise the store that may or may not alias the pointer, bail out.
 | 
						|
      ++ScanFrom;
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is some other instruction that may clobber Ptr, bail out.
 | 
						|
    if (Inst->mayWriteToMemory()) {
 | 
						|
      // If alias analysis claims that it really won't modify the load,
 | 
						|
      // ignore it.
 | 
						|
      if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // May modify the pointer, bail out.
 | 
						|
      ++ScanFrom;
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Got to the start of the block, we didn't find it, but are done for this
 | 
						|
  // block.
 | 
						|
  return nullptr;
 | 
						|
}
 |