forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			630 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			630 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// \file
 | 
						|
/// This file defines the implementation for the loop cache analysis.
 | 
						|
/// The implementation is largely based on the following paper:
 | 
						|
///
 | 
						|
///       Compiler Optimizations for Improving Data Locality
 | 
						|
///       By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
 | 
						|
///       http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
 | 
						|
///
 | 
						|
/// The general approach taken to estimate the number of cache lines used by the
 | 
						|
/// memory references in an inner loop is:
 | 
						|
///    1. Partition memory references that exhibit temporal or spacial reuse
 | 
						|
///       into reference groups.
 | 
						|
///    2. For each loop L in the a loop nest LN:
 | 
						|
///       a. Compute the cost of the reference group
 | 
						|
///       b. Compute the loop cost by summing up the reference groups costs
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopCacheAnalysis.h"
 | 
						|
#include "llvm/ADT/BreadthFirstIterator.h"
 | 
						|
#include "llvm/ADT/Sequence.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-cache-cost"
 | 
						|
 | 
						|
static cl::opt<unsigned> DefaultTripCount(
 | 
						|
    "default-trip-count", cl::init(100), cl::Hidden,
 | 
						|
    cl::desc("Use this to specify the default trip count of a loop"));
 | 
						|
 | 
						|
// In this analysis two array references are considered to exhibit temporal
 | 
						|
// reuse if they access either the same memory location, or a memory location
 | 
						|
// with distance smaller than a configurable threshold.
 | 
						|
static cl::opt<unsigned> TemporalReuseThreshold(
 | 
						|
    "temporal-reuse-threshold", cl::init(2), cl::Hidden,
 | 
						|
    cl::desc("Use this to specify the max. distance between array elements "
 | 
						|
             "accessed in a loop so that the elements are classified to have "
 | 
						|
             "temporal reuse"));
 | 
						|
 | 
						|
/// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
 | 
						|
/// nullptr if any loops in the loop vector supplied has more than one sibling.
 | 
						|
/// The loop vector is expected to contain loops collected in breadth-first
 | 
						|
/// order.
 | 
						|
static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
 | 
						|
  assert(!Loops.empty() && "Expecting a non-empy loop vector");
 | 
						|
 | 
						|
  Loop *LastLoop = Loops.back();
 | 
						|
  Loop *ParentLoop = LastLoop->getParentLoop();
 | 
						|
 | 
						|
  if (ParentLoop == nullptr) {
 | 
						|
    assert(Loops.size() == 1 && "Expecting a single loop");
 | 
						|
    return LastLoop;
 | 
						|
  }
 | 
						|
 | 
						|
  return (std::is_sorted(Loops.begin(), Loops.end(),
 | 
						|
                         [](const Loop *L1, const Loop *L2) {
 | 
						|
                           return L1->getLoopDepth() < L2->getLoopDepth();
 | 
						|
                         }))
 | 
						|
             ? LastLoop
 | 
						|
             : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
 | 
						|
                                  const Loop &L, ScalarEvolution &SE) {
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
 | 
						|
  if (!AR || !AR->isAffine())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(AR->getLoop() && "AR should have a loop");
 | 
						|
 | 
						|
  // Check that start and increment are not add recurrences.
 | 
						|
  const SCEV *Start = AR->getStart();
 | 
						|
  const SCEV *Step = AR->getStepRecurrence(SE);
 | 
						|
  if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that start and increment are both invariant in the loop.
 | 
						|
  if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return AR->getStepRecurrence(SE) == &ElemSize;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the trip count for the given loop \p L. Return the SCEV expression
 | 
						|
/// for the trip count or nullptr if it cannot be computed.
 | 
						|
static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
 | 
						|
  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
 | 
						|
      !isa<SCEVConstant>(BackedgeTakenCount))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return SE.getAddExpr(BackedgeTakenCount,
 | 
						|
                       SE.getOne(BackedgeTakenCount->getType()));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// IndexedReference implementation
 | 
						|
//
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
 | 
						|
  if (!R.IsValid) {
 | 
						|
    OS << R.StoreOrLoadInst;
 | 
						|
    OS << ", IsValid=false.";
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
  OS << *R.BasePointer;
 | 
						|
  for (const SCEV *Subscript : R.Subscripts)
 | 
						|
    OS << "[" << *Subscript << "]";
 | 
						|
 | 
						|
  OS << ", Sizes: ";
 | 
						|
  for (const SCEV *Size : R.Sizes)
 | 
						|
    OS << "[" << *Size << "]";
 | 
						|
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
 | 
						|
                                   const LoopInfo &LI, ScalarEvolution &SE)
 | 
						|
    : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
 | 
						|
  assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
 | 
						|
         "Expecting a load or store instruction");
 | 
						|
 | 
						|
  IsValid = delinearize(LI);
 | 
						|
  if (IsValid)
 | 
						|
    LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
 | 
						|
                                << "\n");
 | 
						|
}
 | 
						|
 | 
						|
Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
 | 
						|
                                                 unsigned CLS,
 | 
						|
                                                 AliasAnalysis &AA) const {
 | 
						|
  assert(IsValid && "Expecting a valid reference");
 | 
						|
 | 
						|
  if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
 | 
						|
    LLVM_DEBUG(dbgs().indent(2)
 | 
						|
               << "No spacial reuse: different base pointers\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumSubscripts = getNumSubscripts();
 | 
						|
  if (NumSubscripts != Other.getNumSubscripts()) {
 | 
						|
    LLVM_DEBUG(dbgs().indent(2)
 | 
						|
               << "No spacial reuse: different number of subscripts\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // all subscripts must be equal, except the leftmost one (the last one).
 | 
						|
  for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
 | 
						|
    if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
 | 
						|
      LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
 | 
						|
                                  << "\n\t" << *getSubscript(SubNum) << "\n\t"
 | 
						|
                                  << *Other.getSubscript(SubNum) << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // the difference between the last subscripts must be less than the cache line
 | 
						|
  // size.
 | 
						|
  const SCEV *LastSubscript = getLastSubscript();
 | 
						|
  const SCEV *OtherLastSubscript = Other.getLastSubscript();
 | 
						|
  const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
 | 
						|
      SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
 | 
						|
 | 
						|
  if (Diff == nullptr) {
 | 
						|
    LLVM_DEBUG(dbgs().indent(2)
 | 
						|
               << "No spacial reuse, difference between subscript:\n\t"
 | 
						|
               << *LastSubscript << "\n\t" << OtherLastSubscript
 | 
						|
               << "\nis not constant.\n");
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    if (InSameCacheLine)
 | 
						|
      dbgs().indent(2) << "Found spacial reuse.\n";
 | 
						|
    else
 | 
						|
      dbgs().indent(2) << "No spacial reuse.\n";
 | 
						|
  });
 | 
						|
 | 
						|
  return InSameCacheLine;
 | 
						|
}
 | 
						|
 | 
						|
Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
 | 
						|
                                                  unsigned MaxDistance,
 | 
						|
                                                  const Loop &L,
 | 
						|
                                                  DependenceInfo &DI,
 | 
						|
                                                  AliasAnalysis &AA) const {
 | 
						|
  assert(IsValid && "Expecting a valid reference");
 | 
						|
 | 
						|
  if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
 | 
						|
    LLVM_DEBUG(dbgs().indent(2)
 | 
						|
               << "No temporal reuse: different base pointer\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<Dependence> D =
 | 
						|
      DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
 | 
						|
 | 
						|
  if (D == nullptr) {
 | 
						|
    LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D->isLoopIndependent()) {
 | 
						|
    LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the dependence distance at every loop level. There is temporal reuse
 | 
						|
  // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
 | 
						|
  // it is zero at every other loop level.
 | 
						|
  int LoopDepth = L.getLoopDepth();
 | 
						|
  int Levels = D->getLevels();
 | 
						|
  for (int Level = 1; Level <= Levels; ++Level) {
 | 
						|
    const SCEV *Distance = D->getDistance(Level);
 | 
						|
    const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
 | 
						|
 | 
						|
    if (SCEVConst == nullptr) {
 | 
						|
      LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    const ConstantInt &CI = *SCEVConst->getValue();
 | 
						|
    if (Level != LoopDepth && !CI.isZero()) {
 | 
						|
      LLVM_DEBUG(dbgs().indent(2)
 | 
						|
                 << "No temporal reuse: distance is not zero at depth=" << Level
 | 
						|
                 << "\n");
 | 
						|
      return false;
 | 
						|
    } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs().indent(2)
 | 
						|
          << "No temporal reuse: distance is greater than MaxDistance at depth="
 | 
						|
          << Level << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
CacheCostTy IndexedReference::computeRefCost(const Loop &L,
 | 
						|
                                             unsigned CLS) const {
 | 
						|
  assert(IsValid && "Expecting a valid reference");
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs().indent(2) << "Computing cache cost for:\n";
 | 
						|
    dbgs().indent(4) << *this << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  // If the indexed reference is loop invariant the cost is one.
 | 
						|
  if (isLoopInvariant(L)) {
 | 
						|
    LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *TripCount = computeTripCount(L, SE);
 | 
						|
  if (!TripCount) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
 | 
						|
                      << " could not be computed, using DefaultTripCount\n");
 | 
						|
    const SCEV *ElemSize = Sizes.back();
 | 
						|
    TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
 | 
						|
 | 
						|
  // If the indexed reference is 'consecutive' the cost is
 | 
						|
  // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
 | 
						|
  const SCEV *RefCost = TripCount;
 | 
						|
 | 
						|
  if (isConsecutive(L, CLS)) {
 | 
						|
    const SCEV *Coeff = getLastCoefficient();
 | 
						|
    const SCEV *ElemSize = Sizes.back();
 | 
						|
    const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
 | 
						|
    const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
 | 
						|
    Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
 | 
						|
    Stride = SE.getNoopOrSignExtend(Stride, WiderType);
 | 
						|
    TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
 | 
						|
    const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
 | 
						|
    RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
 | 
						|
    LLVM_DEBUG(dbgs().indent(4)
 | 
						|
               << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
 | 
						|
               << *RefCost << "\n");
 | 
						|
  } else
 | 
						|
    LLVM_DEBUG(dbgs().indent(4)
 | 
						|
               << "Access is not consecutive: RefCost=TripCount=" << *RefCost
 | 
						|
               << "\n");
 | 
						|
 | 
						|
  // Attempt to fold RefCost into a constant.
 | 
						|
  if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
 | 
						|
    return ConstantCost->getValue()->getSExtValue();
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs().indent(4)
 | 
						|
             << "RefCost is not a constant! Setting to RefCost=InvalidCost "
 | 
						|
                "(invalid value).\n");
 | 
						|
 | 
						|
  return CacheCost::InvalidCost;
 | 
						|
}
 | 
						|
 | 
						|
bool IndexedReference::delinearize(const LoopInfo &LI) {
 | 
						|
  assert(Subscripts.empty() && "Subscripts should be empty");
 | 
						|
  assert(Sizes.empty() && "Sizes should be empty");
 | 
						|
  assert(!IsValid && "Should be called once from the constructor");
 | 
						|
  LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
 | 
						|
 | 
						|
  const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
 | 
						|
  const BasicBlock *BB = StoreOrLoadInst.getParent();
 | 
						|
 | 
						|
  if (Loop *L = LI.getLoopFor(BB)) {
 | 
						|
    const SCEV *AccessFn =
 | 
						|
        SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
 | 
						|
 | 
						|
    BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
 | 
						|
    if (BasePointer == nullptr) {
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs().indent(2)
 | 
						|
          << "ERROR: failed to delinearize, can't identify base pointer\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
 | 
						|
                                << "', AccessFn: " << *AccessFn << "\n");
 | 
						|
 | 
						|
    SE.delinearize(AccessFn, Subscripts, Sizes,
 | 
						|
                   SE.getElementSize(&StoreOrLoadInst));
 | 
						|
 | 
						|
    if (Subscripts.empty() || Sizes.empty() ||
 | 
						|
        Subscripts.size() != Sizes.size()) {
 | 
						|
      // Attempt to determine whether we have a single dimensional array access.
 | 
						|
      // before giving up.
 | 
						|
      if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
 | 
						|
        LLVM_DEBUG(dbgs().indent(2)
 | 
						|
                   << "ERROR: failed to delinearize reference\n");
 | 
						|
        Subscripts.clear();
 | 
						|
        Sizes.clear();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
 | 
						|
      Subscripts.push_back(Div);
 | 
						|
      Sizes.push_back(ElemSize);
 | 
						|
    }
 | 
						|
 | 
						|
    return all_of(Subscripts, [&](const SCEV *Subscript) {
 | 
						|
      return isSimpleAddRecurrence(*Subscript, *L);
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool IndexedReference::isLoopInvariant(const Loop &L) const {
 | 
						|
  Value *Addr = getPointerOperand(&StoreOrLoadInst);
 | 
						|
  assert(Addr != nullptr && "Expecting either a load or a store instruction");
 | 
						|
  assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
 | 
						|
 | 
						|
  if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The indexed reference is loop invariant if none of the coefficients use
 | 
						|
  // the loop induction variable.
 | 
						|
  bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
 | 
						|
    return isCoeffForLoopZeroOrInvariant(*Subscript, L);
 | 
						|
  });
 | 
						|
 | 
						|
  return allCoeffForLoopAreZero;
 | 
						|
}
 | 
						|
 | 
						|
bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
 | 
						|
  // The indexed reference is 'consecutive' if the only coefficient that uses
 | 
						|
  // the loop induction variable is the last one...
 | 
						|
  const SCEV *LastSubscript = Subscripts.back();
 | 
						|
  for (const SCEV *Subscript : Subscripts) {
 | 
						|
    if (Subscript == LastSubscript)
 | 
						|
      continue;
 | 
						|
    if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // ...and the access stride is less than the cache line size.
 | 
						|
  const SCEV *Coeff = getLastCoefficient();
 | 
						|
  const SCEV *ElemSize = Sizes.back();
 | 
						|
  const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
 | 
						|
  const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
 | 
						|
 | 
						|
  return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *IndexedReference::getLastCoefficient() const {
 | 
						|
  const SCEV *LastSubscript = getLastSubscript();
 | 
						|
  assert(isa<SCEVAddRecExpr>(LastSubscript) &&
 | 
						|
         "Expecting a SCEV add recurrence expression");
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript);
 | 
						|
  return AR->getStepRecurrence(SE);
 | 
						|
}
 | 
						|
 | 
						|
bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
 | 
						|
                                                     const Loop &L) const {
 | 
						|
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
 | 
						|
  return (AR != nullptr) ? AR->getLoop() != &L
 | 
						|
                         : SE.isLoopInvariant(&Subscript, &L);
 | 
						|
}
 | 
						|
 | 
						|
bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
 | 
						|
                                             const Loop &L) const {
 | 
						|
  if (!isa<SCEVAddRecExpr>(Subscript))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
 | 
						|
  assert(AR->getLoop() && "AR should have a loop");
 | 
						|
 | 
						|
  if (!AR->isAffine())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SCEV *Start = AR->getStart();
 | 
						|
  const SCEV *Step = AR->getStepRecurrence(SE);
 | 
						|
 | 
						|
  if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool IndexedReference::isAliased(const IndexedReference &Other,
 | 
						|
                                 AliasAnalysis &AA) const {
 | 
						|
  const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
 | 
						|
  const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
 | 
						|
  return AA.isMustAlias(Loc1, Loc2);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CacheCost implementation
 | 
						|
//
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
 | 
						|
  for (const auto &LC : CC.LoopCosts) {
 | 
						|
    const Loop *L = LC.first;
 | 
						|
    OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
 | 
						|
                     ScalarEvolution &SE, TargetTransformInfo &TTI,
 | 
						|
                     AliasAnalysis &AA, DependenceInfo &DI,
 | 
						|
                     Optional<unsigned> TRT)
 | 
						|
    : Loops(Loops), TripCounts(), LoopCosts(),
 | 
						|
      TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
 | 
						|
      LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
 | 
						|
  assert(!Loops.empty() && "Expecting a non-empty loop vector.");
 | 
						|
 | 
						|
  for (const Loop *L : Loops) {
 | 
						|
    unsigned TripCount = SE.getSmallConstantTripCount(L);
 | 
						|
    TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
 | 
						|
    TripCounts.push_back({L, TripCount});
 | 
						|
  }
 | 
						|
 | 
						|
  calculateCacheFootprint();
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<CacheCost>
 | 
						|
CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
 | 
						|
                        DependenceInfo &DI, Optional<unsigned> TRT) {
 | 
						|
  if (Root.getParentLoop()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  LoopVectorTy Loops;
 | 
						|
  for (Loop *L : breadth_first(&Root))
 | 
						|
    Loops.push_back(L);
 | 
						|
 | 
						|
  if (!getInnerMostLoop(Loops)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
 | 
						|
                         "than one innermost loop\n");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
 | 
						|
}
 | 
						|
 | 
						|
void CacheCost::calculateCacheFootprint() {
 | 
						|
  LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
 | 
						|
  ReferenceGroupsTy RefGroups;
 | 
						|
  if (!populateReferenceGroups(RefGroups))
 | 
						|
    return;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
 | 
						|
  for (const Loop *L : Loops) {
 | 
						|
    assert((std::find_if(LoopCosts.begin(), LoopCosts.end(),
 | 
						|
                         [L](const LoopCacheCostTy &LCC) {
 | 
						|
                           return LCC.first == L;
 | 
						|
                         }) == LoopCosts.end()) &&
 | 
						|
           "Should not add duplicate element");
 | 
						|
    CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
 | 
						|
    LoopCosts.push_back(std::make_pair(L, LoopCost));
 | 
						|
  }
 | 
						|
 | 
						|
  sortLoopCosts();
 | 
						|
  RefGroups.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
 | 
						|
  assert(RefGroups.empty() && "Reference groups should be empty");
 | 
						|
 | 
						|
  unsigned CLS = TTI.getCacheLineSize();
 | 
						|
  Loop *InnerMostLoop = getInnerMostLoop(Loops);
 | 
						|
  assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
 | 
						|
 | 
						|
  for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
 | 
						|
        continue;
 | 
						|
 | 
						|
      std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
 | 
						|
      if (!R->isValid())
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool Added = false;
 | 
						|
      for (ReferenceGroupTy &RefGroup : RefGroups) {
 | 
						|
        const IndexedReference &Representative = *RefGroup.front().get();
 | 
						|
        LLVM_DEBUG({
 | 
						|
          dbgs() << "References:\n";
 | 
						|
          dbgs().indent(2) << *R << "\n";
 | 
						|
          dbgs().indent(2) << Representative << "\n";
 | 
						|
        });
 | 
						|
 | 
						|
        Optional<bool> HasTemporalReuse =
 | 
						|
            R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
 | 
						|
        Optional<bool> HasSpacialReuse =
 | 
						|
            R->hasSpacialReuse(Representative, CLS, AA);
 | 
						|
 | 
						|
        if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
 | 
						|
            (HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
 | 
						|
          RefGroup.push_back(std::move(R));
 | 
						|
          Added = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Added) {
 | 
						|
        ReferenceGroupTy RG;
 | 
						|
        RG.push_back(std::move(R));
 | 
						|
        RefGroups.push_back(std::move(RG));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (RefGroups.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
 | 
						|
    int n = 1;
 | 
						|
    for (const ReferenceGroupTy &RG : RefGroups) {
 | 
						|
      dbgs().indent(2) << "RefGroup " << n << ":\n";
 | 
						|
      for (const auto &IR : RG)
 | 
						|
        dbgs().indent(4) << *IR << "\n";
 | 
						|
      n++;
 | 
						|
    }
 | 
						|
    dbgs() << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
CacheCostTy
 | 
						|
CacheCost::computeLoopCacheCost(const Loop &L,
 | 
						|
                                const ReferenceGroupsTy &RefGroups) const {
 | 
						|
  if (!L.isLoopSimplifyForm())
 | 
						|
    return InvalidCost;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
 | 
						|
                    << "' as innermost loop.\n");
 | 
						|
 | 
						|
  // Compute the product of the trip counts of each other loop in the nest.
 | 
						|
  CacheCostTy TripCountsProduct = 1;
 | 
						|
  for (const auto &TC : TripCounts) {
 | 
						|
    if (TC.first == &L)
 | 
						|
      continue;
 | 
						|
    TripCountsProduct *= TC.second;
 | 
						|
  }
 | 
						|
 | 
						|
  CacheCostTy LoopCost = 0;
 | 
						|
  for (const ReferenceGroupTy &RG : RefGroups) {
 | 
						|
    CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
 | 
						|
    LoopCost += RefGroupCost * TripCountsProduct;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
 | 
						|
                              << "' has cost=" << LoopCost << "\n");
 | 
						|
 | 
						|
  return LoopCost;
 | 
						|
}
 | 
						|
 | 
						|
CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
 | 
						|
                                                const Loop &L) const {
 | 
						|
  assert(!RG.empty() && "Reference group should have at least one member.");
 | 
						|
 | 
						|
  const IndexedReference *Representative = RG.front().get();
 | 
						|
  return Representative->computeRefCost(L, TTI.getCacheLineSize());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoopCachePrinterPass implementation
 | 
						|
//
 | 
						|
PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                                            LoopStandardAnalysisResults &AR,
 | 
						|
                                            LPMUpdater &U) {
 | 
						|
  Function *F = L.getHeader()->getParent();
 | 
						|
  DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
 | 
						|
 | 
						|
  if (auto CC = CacheCost::getCacheCost(L, AR, DI))
 | 
						|
    OS << *CC;
 | 
						|
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 |