forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1241 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1241 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines vectorizer utilities.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/ADT/EquivalenceClasses.h"
 | 
						|
#include "llvm/Analysis/DemandedBits.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "vectorutils"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
/// Maximum factor for an interleaved memory access.
 | 
						|
static cl::opt<unsigned> MaxInterleaveGroupFactor(
 | 
						|
    "max-interleave-group-factor", cl::Hidden,
 | 
						|
    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
 | 
						|
    cl::init(8));
 | 
						|
 | 
						|
/// Return true if all of the intrinsic's arguments and return type are scalars
 | 
						|
/// for the scalar form of the intrinsic, and vectors for the vector form of the
 | 
						|
/// intrinsic (except operands that are marked as always being scalar by
 | 
						|
/// hasVectorInstrinsicScalarOpd).
 | 
						|
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::bswap: // Begin integer bit-manipulation.
 | 
						|
  case Intrinsic::bitreverse:
 | 
						|
  case Intrinsic::ctpop:
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::fshl:
 | 
						|
  case Intrinsic::fshr:
 | 
						|
  case Intrinsic::sadd_sat:
 | 
						|
  case Intrinsic::ssub_sat:
 | 
						|
  case Intrinsic::uadd_sat:
 | 
						|
  case Intrinsic::usub_sat:
 | 
						|
  case Intrinsic::smul_fix:
 | 
						|
  case Intrinsic::smul_fix_sat:
 | 
						|
  case Intrinsic::umul_fix:
 | 
						|
  case Intrinsic::umul_fix_sat:
 | 
						|
  case Intrinsic::sqrt: // Begin floating-point.
 | 
						|
  case Intrinsic::sin:
 | 
						|
  case Intrinsic::cos:
 | 
						|
  case Intrinsic::exp:
 | 
						|
  case Intrinsic::exp2:
 | 
						|
  case Intrinsic::log:
 | 
						|
  case Intrinsic::log10:
 | 
						|
  case Intrinsic::log2:
 | 
						|
  case Intrinsic::fabs:
 | 
						|
  case Intrinsic::minnum:
 | 
						|
  case Intrinsic::maxnum:
 | 
						|
  case Intrinsic::minimum:
 | 
						|
  case Intrinsic::maximum:
 | 
						|
  case Intrinsic::copysign:
 | 
						|
  case Intrinsic::floor:
 | 
						|
  case Intrinsic::ceil:
 | 
						|
  case Intrinsic::trunc:
 | 
						|
  case Intrinsic::rint:
 | 
						|
  case Intrinsic::nearbyint:
 | 
						|
  case Intrinsic::round:
 | 
						|
  case Intrinsic::pow:
 | 
						|
  case Intrinsic::fma:
 | 
						|
  case Intrinsic::fmuladd:
 | 
						|
  case Intrinsic::powi:
 | 
						|
  case Intrinsic::canonicalize:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Identifies if the vector form of the intrinsic has a scalar operand.
 | 
						|
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
 | 
						|
                                        unsigned ScalarOpdIdx) {
 | 
						|
  switch (ID) {
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::powi:
 | 
						|
    return (ScalarOpdIdx == 1);
 | 
						|
  case Intrinsic::smul_fix:
 | 
						|
  case Intrinsic::smul_fix_sat:
 | 
						|
  case Intrinsic::umul_fix:
 | 
						|
  case Intrinsic::umul_fix_sat:
 | 
						|
    return (ScalarOpdIdx == 2);
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Returns intrinsic ID for call.
 | 
						|
/// For the input call instruction it finds mapping intrinsic and returns
 | 
						|
/// its ID, in case it does not found it return not_intrinsic.
 | 
						|
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
 | 
						|
                                                const TargetLibraryInfo *TLI) {
 | 
						|
  Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
 | 
						|
  if (ID == Intrinsic::not_intrinsic)
 | 
						|
    return Intrinsic::not_intrinsic;
 | 
						|
 | 
						|
  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
 | 
						|
      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
 | 
						|
      ID == Intrinsic::sideeffect)
 | 
						|
    return ID;
 | 
						|
  return Intrinsic::not_intrinsic;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the operand of the GEP that should be checked for consecutive
 | 
						|
/// stores. This ignores trailing indices that have no effect on the final
 | 
						|
/// pointer.
 | 
						|
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
 | 
						|
  const DataLayout &DL = Gep->getModule()->getDataLayout();
 | 
						|
  unsigned LastOperand = Gep->getNumOperands() - 1;
 | 
						|
  unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
 | 
						|
 | 
						|
  // Walk backwards and try to peel off zeros.
 | 
						|
  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
 | 
						|
    // Find the type we're currently indexing into.
 | 
						|
    gep_type_iterator GEPTI = gep_type_begin(Gep);
 | 
						|
    std::advance(GEPTI, LastOperand - 2);
 | 
						|
 | 
						|
    // If it's a type with the same allocation size as the result of the GEP we
 | 
						|
    // can peel off the zero index.
 | 
						|
    if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
 | 
						|
      break;
 | 
						|
    --LastOperand;
 | 
						|
  }
 | 
						|
 | 
						|
  return LastOperand;
 | 
						|
}
 | 
						|
 | 
						|
/// If the argument is a GEP, then returns the operand identified by
 | 
						|
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
 | 
						|
/// operand, it returns that instead.
 | 
						|
Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
 | 
						|
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | 
						|
  if (!GEP)
 | 
						|
    return Ptr;
 | 
						|
 | 
						|
  unsigned InductionOperand = getGEPInductionOperand(GEP);
 | 
						|
 | 
						|
  // Check that all of the gep indices are uniform except for our induction
 | 
						|
  // operand.
 | 
						|
  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
    if (i != InductionOperand &&
 | 
						|
        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
 | 
						|
      return Ptr;
 | 
						|
  return GEP->getOperand(InductionOperand);
 | 
						|
}
 | 
						|
 | 
						|
/// If a value has only one user that is a CastInst, return it.
 | 
						|
Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
 | 
						|
  Value *UniqueCast = nullptr;
 | 
						|
  for (User *U : Ptr->users()) {
 | 
						|
    CastInst *CI = dyn_cast<CastInst>(U);
 | 
						|
    if (CI && CI->getType() == Ty) {
 | 
						|
      if (!UniqueCast)
 | 
						|
        UniqueCast = CI;
 | 
						|
      else
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return UniqueCast;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the stride of a pointer access in a loop. Looks for symbolic
 | 
						|
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
 | 
						|
Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
 | 
						|
  auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | 
						|
  if (!PtrTy || PtrTy->isAggregateType())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Try to remove a gep instruction to make the pointer (actually index at this
 | 
						|
  // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
 | 
						|
  // pointer, otherwise, we are analyzing the index.
 | 
						|
  Value *OrigPtr = Ptr;
 | 
						|
 | 
						|
  // The size of the pointer access.
 | 
						|
  int64_t PtrAccessSize = 1;
 | 
						|
 | 
						|
  Ptr = stripGetElementPtr(Ptr, SE, Lp);
 | 
						|
  const SCEV *V = SE->getSCEV(Ptr);
 | 
						|
 | 
						|
  if (Ptr != OrigPtr)
 | 
						|
    // Strip off casts.
 | 
						|
    while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
 | 
						|
      V = C->getOperand();
 | 
						|
 | 
						|
  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
 | 
						|
  if (!S)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  V = S->getStepRecurrence(*SE);
 | 
						|
  if (!V)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Strip off the size of access multiplication if we are still analyzing the
 | 
						|
  // pointer.
 | 
						|
  if (OrigPtr == Ptr) {
 | 
						|
    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
 | 
						|
      if (M->getOperand(0)->getSCEVType() != scConstant)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
 | 
						|
 | 
						|
      // Huge step value - give up.
 | 
						|
      if (APStepVal.getBitWidth() > 64)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      int64_t StepVal = APStepVal.getSExtValue();
 | 
						|
      if (PtrAccessSize != StepVal)
 | 
						|
        return nullptr;
 | 
						|
      V = M->getOperand(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Strip off casts.
 | 
						|
  Type *StripedOffRecurrenceCast = nullptr;
 | 
						|
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
 | 
						|
    StripedOffRecurrenceCast = C->getType();
 | 
						|
    V = C->getOperand();
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for the loop invariant symbolic value.
 | 
						|
  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
 | 
						|
  if (!U)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Stride = U->getValue();
 | 
						|
  if (!Lp->isLoopInvariant(Stride))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we have stripped off the recurrence cast we have to make sure that we
 | 
						|
  // return the value that is used in this loop so that we can replace it later.
 | 
						|
  if (StripedOffRecurrenceCast)
 | 
						|
    Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
 | 
						|
 | 
						|
  return Stride;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a vector and an element number, see if the scalar value is
 | 
						|
/// already around as a register, for example if it were inserted then extracted
 | 
						|
/// from the vector.
 | 
						|
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
 | 
						|
  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | 
						|
  VectorType *VTy = cast<VectorType>(V->getType());
 | 
						|
  unsigned Width = VTy->getNumElements();
 | 
						|
  if (EltNo >= Width)  // Out of range access.
 | 
						|
    return UndefValue::get(VTy->getElementType());
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return C->getAggregateElement(EltNo);
 | 
						|
 | 
						|
  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert to a variable element, we don't know what it is.
 | 
						|
    if (!isa<ConstantInt>(III->getOperand(2)))
 | 
						|
      return nullptr;
 | 
						|
    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | 
						|
 | 
						|
    // If this is an insert to the element we are looking for, return the
 | 
						|
    // inserted value.
 | 
						|
    if (EltNo == IIElt)
 | 
						|
      return III->getOperand(1);
 | 
						|
 | 
						|
    // Otherwise, the insertelement doesn't modify the value, recurse on its
 | 
						|
    // vector input.
 | 
						|
    return findScalarElement(III->getOperand(0), EltNo);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | 
						|
    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
    int InEl = SVI->getMaskValue(EltNo);
 | 
						|
    if (InEl < 0)
 | 
						|
      return UndefValue::get(VTy->getElementType());
 | 
						|
    if (InEl < (int)LHSWidth)
 | 
						|
      return findScalarElement(SVI->getOperand(0), InEl);
 | 
						|
    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract a value from a vector add operation with a constant zero.
 | 
						|
  // TODO: Use getBinOpIdentity() to generalize this.
 | 
						|
  Value *Val; Constant *C;
 | 
						|
  if (match(V, m_Add(m_Value(Val), m_Constant(C))))
 | 
						|
    if (Constant *Elt = C->getAggregateElement(EltNo))
 | 
						|
      if (Elt->isNullValue())
 | 
						|
        return findScalarElement(Val, EltNo);
 | 
						|
 | 
						|
  // Otherwise, we don't know.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Get splat value if the input is a splat vector or return nullptr.
 | 
						|
/// This function is not fully general. It checks only 2 cases:
 | 
						|
/// the input value is (1) a splat constant vector or (2) a sequence
 | 
						|
/// of instructions that broadcasts a scalar at element 0.
 | 
						|
const llvm::Value *llvm::getSplatValue(const Value *V) {
 | 
						|
  if (isa<VectorType>(V->getType()))
 | 
						|
    if (auto *C = dyn_cast<Constant>(V))
 | 
						|
      return C->getSplatValue();
 | 
						|
 | 
						|
  // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
 | 
						|
  Value *Splat;
 | 
						|
  if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
 | 
						|
                                               m_ZeroInt()),
 | 
						|
                               m_Value(), m_ZeroInt())))
 | 
						|
    return Splat;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// This setting is based on its counterpart in value tracking, but it could be
 | 
						|
// adjusted if needed.
 | 
						|
const unsigned MaxDepth = 6;
 | 
						|
 | 
						|
bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
 | 
						|
  assert(Depth <= MaxDepth && "Limit Search Depth");
 | 
						|
 | 
						|
  if (isa<VectorType>(V->getType())) {
 | 
						|
    if (isa<UndefValue>(V))
 | 
						|
      return true;
 | 
						|
    // FIXME: We can allow undefs, but if Index was specified, we may want to
 | 
						|
    //        check that the constant is defined at that index.
 | 
						|
    if (auto *C = dyn_cast<Constant>(V))
 | 
						|
      return C->getSplatValue() != nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
 | 
						|
    // FIXME: We can safely allow undefs here. If Index was specified, we will
 | 
						|
    //        check that the mask elt is defined at the required index.
 | 
						|
    if (!Shuf->getMask()->getSplatValue())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Match any index.
 | 
						|
    if (Index == -1)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Match a specific element. The mask should be defined at and match the
 | 
						|
    // specified index.
 | 
						|
    return Shuf->getMaskValue(Index) == Index;
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining tests are all recursive, so bail out if we hit the limit.
 | 
						|
  if (Depth++ == MaxDepth)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If both operands of a binop are splats, the result is a splat.
 | 
						|
  Value *X, *Y, *Z;
 | 
						|
  if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
 | 
						|
    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
 | 
						|
 | 
						|
  // If all operands of a select are splats, the result is a splat.
 | 
						|
  if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
 | 
						|
    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
 | 
						|
           isSplatValue(Z, Index, Depth);
 | 
						|
 | 
						|
  // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
MapVector<Instruction *, uint64_t>
 | 
						|
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
 | 
						|
                               const TargetTransformInfo *TTI) {
 | 
						|
 | 
						|
  // DemandedBits will give us every value's live-out bits. But we want
 | 
						|
  // to ensure no extra casts would need to be inserted, so every DAG
 | 
						|
  // of connected values must have the same minimum bitwidth.
 | 
						|
  EquivalenceClasses<Value *> ECs;
 | 
						|
  SmallVector<Value *, 16> Worklist;
 | 
						|
  SmallPtrSet<Value *, 4> Roots;
 | 
						|
  SmallPtrSet<Value *, 16> Visited;
 | 
						|
  DenseMap<Value *, uint64_t> DBits;
 | 
						|
  SmallPtrSet<Instruction *, 4> InstructionSet;
 | 
						|
  MapVector<Instruction *, uint64_t> MinBWs;
 | 
						|
 | 
						|
  // Determine the roots. We work bottom-up, from truncs or icmps.
 | 
						|
  bool SeenExtFromIllegalType = false;
 | 
						|
  for (auto *BB : Blocks)
 | 
						|
    for (auto &I : *BB) {
 | 
						|
      InstructionSet.insert(&I);
 | 
						|
 | 
						|
      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
 | 
						|
          !TTI->isTypeLegal(I.getOperand(0)->getType()))
 | 
						|
        SeenExtFromIllegalType = true;
 | 
						|
 | 
						|
      // Only deal with non-vector integers up to 64-bits wide.
 | 
						|
      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
 | 
						|
          !I.getType()->isVectorTy() &&
 | 
						|
          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
 | 
						|
        // Don't make work for ourselves. If we know the loaded type is legal,
 | 
						|
        // don't add it to the worklist.
 | 
						|
        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        Worklist.push_back(&I);
 | 
						|
        Roots.insert(&I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  // Early exit.
 | 
						|
  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
 | 
						|
    return MinBWs;
 | 
						|
 | 
						|
  // Now proceed breadth-first, unioning values together.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Value *Val = Worklist.pop_back_val();
 | 
						|
    Value *Leader = ECs.getOrInsertLeaderValue(Val);
 | 
						|
 | 
						|
    if (Visited.count(Val))
 | 
						|
      continue;
 | 
						|
    Visited.insert(Val);
 | 
						|
 | 
						|
    // Non-instructions terminate a chain successfully.
 | 
						|
    if (!isa<Instruction>(Val))
 | 
						|
      continue;
 | 
						|
    Instruction *I = cast<Instruction>(Val);
 | 
						|
 | 
						|
    // If we encounter a type that is larger than 64 bits, we can't represent
 | 
						|
    // it so bail out.
 | 
						|
    if (DB.getDemandedBits(I).getBitWidth() > 64)
 | 
						|
      return MapVector<Instruction *, uint64_t>();
 | 
						|
 | 
						|
    uint64_t V = DB.getDemandedBits(I).getZExtValue();
 | 
						|
    DBits[Leader] |= V;
 | 
						|
    DBits[I] = V;
 | 
						|
 | 
						|
    // Casts, loads and instructions outside of our range terminate a chain
 | 
						|
    // successfully.
 | 
						|
    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
 | 
						|
        !InstructionSet.count(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Unsafe casts terminate a chain unsuccessfully. We can't do anything
 | 
						|
    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
 | 
						|
    // transform anything that relies on them.
 | 
						|
    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
 | 
						|
        !I->getType()->isIntegerTy()) {
 | 
						|
      DBits[Leader] |= ~0ULL;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't modify the types of PHIs. Reductions will already have been
 | 
						|
    // truncated if possible, and inductions' sizes will have been chosen by
 | 
						|
    // indvars.
 | 
						|
    if (isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (DBits[Leader] == ~0ULL)
 | 
						|
      // All bits demanded, no point continuing.
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (Value *O : cast<User>(I)->operands()) {
 | 
						|
      ECs.unionSets(Leader, O);
 | 
						|
      Worklist.push_back(O);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we've discovered all values, walk them to see if there are
 | 
						|
  // any users we didn't see. If there are, we can't optimize that
 | 
						|
  // chain.
 | 
						|
  for (auto &I : DBits)
 | 
						|
    for (auto *U : I.first->users())
 | 
						|
      if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
 | 
						|
        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
 | 
						|
 | 
						|
  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
 | 
						|
    uint64_t LeaderDemandedBits = 0;
 | 
						|
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
 | 
						|
      LeaderDemandedBits |= DBits[*MI];
 | 
						|
 | 
						|
    uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
 | 
						|
                     llvm::countLeadingZeros(LeaderDemandedBits);
 | 
						|
    // Round up to a power of 2
 | 
						|
    if (!isPowerOf2_64((uint64_t)MinBW))
 | 
						|
      MinBW = NextPowerOf2(MinBW);
 | 
						|
 | 
						|
    // We don't modify the types of PHIs. Reductions will already have been
 | 
						|
    // truncated if possible, and inductions' sizes will have been chosen by
 | 
						|
    // indvars.
 | 
						|
    // If we are required to shrink a PHI, abandon this entire equivalence class.
 | 
						|
    bool Abort = false;
 | 
						|
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
 | 
						|
      if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
 | 
						|
        Abort = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (Abort)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
 | 
						|
      if (!isa<Instruction>(*MI))
 | 
						|
        continue;
 | 
						|
      Type *Ty = (*MI)->getType();
 | 
						|
      if (Roots.count(*MI))
 | 
						|
        Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
 | 
						|
      if (MinBW < Ty->getScalarSizeInBits())
 | 
						|
        MinBWs[cast<Instruction>(*MI)] = MinBW;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MinBWs;
 | 
						|
}
 | 
						|
 | 
						|
/// Add all access groups in @p AccGroups to @p List.
 | 
						|
template <typename ListT>
 | 
						|
static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
 | 
						|
  // Interpret an access group as a list containing itself.
 | 
						|
  if (AccGroups->getNumOperands() == 0) {
 | 
						|
    assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
 | 
						|
    List.insert(AccGroups);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &AccGroupListOp : AccGroups->operands()) {
 | 
						|
    auto *Item = cast<MDNode>(AccGroupListOp.get());
 | 
						|
    assert(isValidAsAccessGroup(Item) && "List item must be an access group");
 | 
						|
    List.insert(Item);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
 | 
						|
  if (!AccGroups1)
 | 
						|
    return AccGroups2;
 | 
						|
  if (!AccGroups2)
 | 
						|
    return AccGroups1;
 | 
						|
  if (AccGroups1 == AccGroups2)
 | 
						|
    return AccGroups1;
 | 
						|
 | 
						|
  SmallSetVector<Metadata *, 4> Union;
 | 
						|
  addToAccessGroupList(Union, AccGroups1);
 | 
						|
  addToAccessGroupList(Union, AccGroups2);
 | 
						|
 | 
						|
  if (Union.size() == 0)
 | 
						|
    return nullptr;
 | 
						|
  if (Union.size() == 1)
 | 
						|
    return cast<MDNode>(Union.front());
 | 
						|
 | 
						|
  LLVMContext &Ctx = AccGroups1->getContext();
 | 
						|
  return MDNode::get(Ctx, Union.getArrayRef());
 | 
						|
}
 | 
						|
 | 
						|
MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
 | 
						|
                                    const Instruction *Inst2) {
 | 
						|
  bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
 | 
						|
  bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
 | 
						|
 | 
						|
  if (!MayAccessMem1 && !MayAccessMem2)
 | 
						|
    return nullptr;
 | 
						|
  if (!MayAccessMem1)
 | 
						|
    return Inst2->getMetadata(LLVMContext::MD_access_group);
 | 
						|
  if (!MayAccessMem2)
 | 
						|
    return Inst1->getMetadata(LLVMContext::MD_access_group);
 | 
						|
 | 
						|
  MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
 | 
						|
  MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
 | 
						|
  if (!MD1 || !MD2)
 | 
						|
    return nullptr;
 | 
						|
  if (MD1 == MD2)
 | 
						|
    return MD1;
 | 
						|
 | 
						|
  // Use set for scalable 'contains' check.
 | 
						|
  SmallPtrSet<Metadata *, 4> AccGroupSet2;
 | 
						|
  addToAccessGroupList(AccGroupSet2, MD2);
 | 
						|
 | 
						|
  SmallVector<Metadata *, 4> Intersection;
 | 
						|
  if (MD1->getNumOperands() == 0) {
 | 
						|
    assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
 | 
						|
    if (AccGroupSet2.count(MD1))
 | 
						|
      Intersection.push_back(MD1);
 | 
						|
  } else {
 | 
						|
    for (const MDOperand &Node : MD1->operands()) {
 | 
						|
      auto *Item = cast<MDNode>(Node.get());
 | 
						|
      assert(isValidAsAccessGroup(Item) && "List item must be an access group");
 | 
						|
      if (AccGroupSet2.count(Item))
 | 
						|
        Intersection.push_back(Item);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Intersection.size() == 0)
 | 
						|
    return nullptr;
 | 
						|
  if (Intersection.size() == 1)
 | 
						|
    return cast<MDNode>(Intersection.front());
 | 
						|
 | 
						|
  LLVMContext &Ctx = Inst1->getContext();
 | 
						|
  return MDNode::get(Ctx, Intersection);
 | 
						|
}
 | 
						|
 | 
						|
/// \returns \p I after propagating metadata from \p VL.
 | 
						|
Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
 | 
						|
  Instruction *I0 = cast<Instruction>(VL[0]);
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | 
						|
  I0->getAllMetadataOtherThanDebugLoc(Metadata);
 | 
						|
 | 
						|
  for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
 | 
						|
                    LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
 | 
						|
                    LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
 | 
						|
                    LLVMContext::MD_access_group}) {
 | 
						|
    MDNode *MD = I0->getMetadata(Kind);
 | 
						|
 | 
						|
    for (int J = 1, E = VL.size(); MD && J != E; ++J) {
 | 
						|
      const Instruction *IJ = cast<Instruction>(VL[J]);
 | 
						|
      MDNode *IMD = IJ->getMetadata(Kind);
 | 
						|
      switch (Kind) {
 | 
						|
      case LLVMContext::MD_tbaa:
 | 
						|
        MD = MDNode::getMostGenericTBAA(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_alias_scope:
 | 
						|
        MD = MDNode::getMostGenericAliasScope(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_fpmath:
 | 
						|
        MD = MDNode::getMostGenericFPMath(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_noalias:
 | 
						|
      case LLVMContext::MD_nontemporal:
 | 
						|
      case LLVMContext::MD_invariant_load:
 | 
						|
        MD = MDNode::intersect(MD, IMD);
 | 
						|
        break;
 | 
						|
      case LLVMContext::MD_access_group:
 | 
						|
        MD = intersectAccessGroups(Inst, IJ);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("unhandled metadata");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Inst->setMetadata(Kind, MD);
 | 
						|
  }
 | 
						|
 | 
						|
  return Inst;
 | 
						|
}
 | 
						|
 | 
						|
Constant *
 | 
						|
llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
 | 
						|
                           const InterleaveGroup<Instruction> &Group) {
 | 
						|
  // All 1's means mask is not needed.
 | 
						|
  if (Group.getNumMembers() == Group.getFactor())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // TODO: support reversed access.
 | 
						|
  assert(!Group.isReverse() && "Reversed group not supported.");
 | 
						|
 | 
						|
  SmallVector<Constant *, 16> Mask;
 | 
						|
  for (unsigned i = 0; i < VF; i++)
 | 
						|
    for (unsigned j = 0; j < Group.getFactor(); ++j) {
 | 
						|
      unsigned HasMember = Group.getMember(j) ? 1 : 0;
 | 
						|
      Mask.push_back(Builder.getInt1(HasMember));
 | 
						|
    }
 | 
						|
 | 
						|
  return ConstantVector::get(Mask);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 
 | 
						|
                                     unsigned ReplicationFactor, unsigned VF) {
 | 
						|
  SmallVector<Constant *, 16> MaskVec;
 | 
						|
  for (unsigned i = 0; i < VF; i++)
 | 
						|
    for (unsigned j = 0; j < ReplicationFactor; j++)
 | 
						|
      MaskVec.push_back(Builder.getInt32(i));
 | 
						|
 | 
						|
  return ConstantVector::get(MaskVec);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
 | 
						|
                                     unsigned NumVecs) {
 | 
						|
  SmallVector<Constant *, 16> Mask;
 | 
						|
  for (unsigned i = 0; i < VF; i++)
 | 
						|
    for (unsigned j = 0; j < NumVecs; j++)
 | 
						|
      Mask.push_back(Builder.getInt32(j * VF + i));
 | 
						|
 | 
						|
  return ConstantVector::get(Mask);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
 | 
						|
                                 unsigned Stride, unsigned VF) {
 | 
						|
  SmallVector<Constant *, 16> Mask;
 | 
						|
  for (unsigned i = 0; i < VF; i++)
 | 
						|
    Mask.push_back(Builder.getInt32(Start + i * Stride));
 | 
						|
 | 
						|
  return ConstantVector::get(Mask);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
 | 
						|
                                     unsigned NumInts, unsigned NumUndefs) {
 | 
						|
  SmallVector<Constant *, 16> Mask;
 | 
						|
  for (unsigned i = 0; i < NumInts; i++)
 | 
						|
    Mask.push_back(Builder.getInt32(Start + i));
 | 
						|
 | 
						|
  Constant *Undef = UndefValue::get(Builder.getInt32Ty());
 | 
						|
  for (unsigned i = 0; i < NumUndefs; i++)
 | 
						|
    Mask.push_back(Undef);
 | 
						|
 | 
						|
  return ConstantVector::get(Mask);
 | 
						|
}
 | 
						|
 | 
						|
/// A helper function for concatenating vectors. This function concatenates two
 | 
						|
/// vectors having the same element type. If the second vector has fewer
 | 
						|
/// elements than the first, it is padded with undefs.
 | 
						|
static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
 | 
						|
                                    Value *V2) {
 | 
						|
  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
 | 
						|
  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
 | 
						|
  assert(VecTy1 && VecTy2 &&
 | 
						|
         VecTy1->getScalarType() == VecTy2->getScalarType() &&
 | 
						|
         "Expect two vectors with the same element type");
 | 
						|
 | 
						|
  unsigned NumElts1 = VecTy1->getNumElements();
 | 
						|
  unsigned NumElts2 = VecTy2->getNumElements();
 | 
						|
  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
 | 
						|
 | 
						|
  if (NumElts1 > NumElts2) {
 | 
						|
    // Extend with UNDEFs.
 | 
						|
    Constant *ExtMask =
 | 
						|
        createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
 | 
						|
    V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
 | 
						|
  }
 | 
						|
 | 
						|
  Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
 | 
						|
  return Builder.CreateShuffleVector(V1, V2, Mask);
 | 
						|
}
 | 
						|
 | 
						|
Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
 | 
						|
  unsigned NumVecs = Vecs.size();
 | 
						|
  assert(NumVecs > 1 && "Should be at least two vectors");
 | 
						|
 | 
						|
  SmallVector<Value *, 8> ResList;
 | 
						|
  ResList.append(Vecs.begin(), Vecs.end());
 | 
						|
  do {
 | 
						|
    SmallVector<Value *, 8> TmpList;
 | 
						|
    for (unsigned i = 0; i < NumVecs - 1; i += 2) {
 | 
						|
      Value *V0 = ResList[i], *V1 = ResList[i + 1];
 | 
						|
      assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
 | 
						|
             "Only the last vector may have a different type");
 | 
						|
 | 
						|
      TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
 | 
						|
    }
 | 
						|
 | 
						|
    // Push the last vector if the total number of vectors is odd.
 | 
						|
    if (NumVecs % 2 != 0)
 | 
						|
      TmpList.push_back(ResList[NumVecs - 1]);
 | 
						|
 | 
						|
    ResList = TmpList;
 | 
						|
    NumVecs = ResList.size();
 | 
						|
  } while (NumVecs > 1);
 | 
						|
 | 
						|
  return ResList[0];
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
 | 
						|
  auto *ConstMask = dyn_cast<Constant>(Mask);
 | 
						|
  if (!ConstMask)
 | 
						|
    return false;
 | 
						|
  if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
 | 
						|
    return true;
 | 
						|
  for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
 | 
						|
       ++I) {
 | 
						|
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
 | 
						|
      if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
 | 
						|
        continue;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool llvm::maskIsAllOneOrUndef(Value *Mask) {
 | 
						|
  auto *ConstMask = dyn_cast<Constant>(Mask);
 | 
						|
  if (!ConstMask)
 | 
						|
    return false;
 | 
						|
  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
 | 
						|
    return true;
 | 
						|
  for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
 | 
						|
       ++I) {
 | 
						|
    if (auto *MaskElt = ConstMask->getAggregateElement(I))
 | 
						|
      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
 | 
						|
        continue;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// TODO: This is a lot like known bits, but for
 | 
						|
/// vectors.  Is there something we can common this with?
 | 
						|
APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
 | 
						|
 | 
						|
  const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
 | 
						|
  APInt DemandedElts = APInt::getAllOnesValue(VWidth);
 | 
						|
  if (auto *CV = dyn_cast<ConstantVector>(Mask))
 | 
						|
    for (unsigned i = 0; i < VWidth; i++)
 | 
						|
      if (CV->getAggregateElement(i)->isNullValue())
 | 
						|
        DemandedElts.clearBit(i);
 | 
						|
  return DemandedElts;
 | 
						|
}
 | 
						|
 | 
						|
bool InterleavedAccessInfo::isStrided(int Stride) {
 | 
						|
  unsigned Factor = std::abs(Stride);
 | 
						|
  return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
 | 
						|
}
 | 
						|
 | 
						|
void InterleavedAccessInfo::collectConstStrideAccesses(
 | 
						|
    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
 | 
						|
    const ValueToValueMap &Strides) {
 | 
						|
  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Since it's desired that the load/store instructions be maintained in
 | 
						|
  // "program order" for the interleaved access analysis, we have to visit the
 | 
						|
  // blocks in the loop in reverse postorder (i.e., in a topological order).
 | 
						|
  // Such an ordering will ensure that any load/store that may be executed
 | 
						|
  // before a second load/store will precede the second load/store in
 | 
						|
  // AccessStrideInfo.
 | 
						|
  LoopBlocksDFS DFS(TheLoop);
 | 
						|
  DFS.perform(LI);
 | 
						|
  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
 | 
						|
    for (auto &I : *BB) {
 | 
						|
      auto *LI = dyn_cast<LoadInst>(&I);
 | 
						|
      auto *SI = dyn_cast<StoreInst>(&I);
 | 
						|
      if (!LI && !SI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Value *Ptr = getLoadStorePointerOperand(&I);
 | 
						|
      // We don't check wrapping here because we don't know yet if Ptr will be
 | 
						|
      // part of a full group or a group with gaps. Checking wrapping for all
 | 
						|
      // pointers (even those that end up in groups with no gaps) will be overly
 | 
						|
      // conservative. For full groups, wrapping should be ok since if we would
 | 
						|
      // wrap around the address space we would do a memory access at nullptr
 | 
						|
      // even without the transformation. The wrapping checks are therefore
 | 
						|
      // deferred until after we've formed the interleaved groups.
 | 
						|
      int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
 | 
						|
                                    /*Assume=*/true, /*ShouldCheckWrap=*/false);
 | 
						|
 | 
						|
      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
 | 
						|
      PointerType *PtrTy = cast<PointerType>(Ptr->getType());
 | 
						|
      uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
 | 
						|
 | 
						|
      // An alignment of 0 means target ABI alignment.
 | 
						|
      MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
 | 
						|
      if (!Alignment)
 | 
						|
        Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
 | 
						|
 | 
						|
      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Analyze interleaved accesses and collect them into interleaved load and
 | 
						|
// store groups.
 | 
						|
//
 | 
						|
// When generating code for an interleaved load group, we effectively hoist all
 | 
						|
// loads in the group to the location of the first load in program order. When
 | 
						|
// generating code for an interleaved store group, we sink all stores to the
 | 
						|
// location of the last store. This code motion can change the order of load
 | 
						|
// and store instructions and may break dependences.
 | 
						|
//
 | 
						|
// The code generation strategy mentioned above ensures that we won't violate
 | 
						|
// any write-after-read (WAR) dependences.
 | 
						|
//
 | 
						|
// E.g., for the WAR dependence:  a = A[i];      // (1)
 | 
						|
//                                A[i] = b;      // (2)
 | 
						|
//
 | 
						|
// The store group of (2) is always inserted at or below (2), and the load
 | 
						|
// group of (1) is always inserted at or above (1). Thus, the instructions will
 | 
						|
// never be reordered. All other dependences are checked to ensure the
 | 
						|
// correctness of the instruction reordering.
 | 
						|
//
 | 
						|
// The algorithm visits all memory accesses in the loop in bottom-up program
 | 
						|
// order. Program order is established by traversing the blocks in the loop in
 | 
						|
// reverse postorder when collecting the accesses.
 | 
						|
//
 | 
						|
// We visit the memory accesses in bottom-up order because it can simplify the
 | 
						|
// construction of store groups in the presence of write-after-write (WAW)
 | 
						|
// dependences.
 | 
						|
//
 | 
						|
// E.g., for the WAW dependence:  A[i] = a;      // (1)
 | 
						|
//                                A[i] = b;      // (2)
 | 
						|
//                                A[i + 1] = c;  // (3)
 | 
						|
//
 | 
						|
// We will first create a store group with (3) and (2). (1) can't be added to
 | 
						|
// this group because it and (2) are dependent. However, (1) can be grouped
 | 
						|
// with other accesses that may precede it in program order. Note that a
 | 
						|
// bottom-up order does not imply that WAW dependences should not be checked.
 | 
						|
void InterleavedAccessInfo::analyzeInterleaving(
 | 
						|
                                 bool EnablePredicatedInterleavedMemAccesses) {
 | 
						|
  LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
 | 
						|
  const ValueToValueMap &Strides = LAI->getSymbolicStrides();
 | 
						|
 | 
						|
  // Holds all accesses with a constant stride.
 | 
						|
  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
 | 
						|
  collectConstStrideAccesses(AccessStrideInfo, Strides);
 | 
						|
 | 
						|
  if (AccessStrideInfo.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Collect the dependences in the loop.
 | 
						|
  collectDependences();
 | 
						|
 | 
						|
  // Holds all interleaved store groups temporarily.
 | 
						|
  SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
 | 
						|
  // Holds all interleaved load groups temporarily.
 | 
						|
  SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
 | 
						|
 | 
						|
  // Search in bottom-up program order for pairs of accesses (A and B) that can
 | 
						|
  // form interleaved load or store groups. In the algorithm below, access A
 | 
						|
  // precedes access B in program order. We initialize a group for B in the
 | 
						|
  // outer loop of the algorithm, and then in the inner loop, we attempt to
 | 
						|
  // insert each A into B's group if:
 | 
						|
  //
 | 
						|
  //  1. A and B have the same stride,
 | 
						|
  //  2. A and B have the same memory object size, and
 | 
						|
  //  3. A belongs in B's group according to its distance from B.
 | 
						|
  //
 | 
						|
  // Special care is taken to ensure group formation will not break any
 | 
						|
  // dependences.
 | 
						|
  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
 | 
						|
       BI != E; ++BI) {
 | 
						|
    Instruction *B = BI->first;
 | 
						|
    StrideDescriptor DesB = BI->second;
 | 
						|
 | 
						|
    // Initialize a group for B if it has an allowable stride. Even if we don't
 | 
						|
    // create a group for B, we continue with the bottom-up algorithm to ensure
 | 
						|
    // we don't break any of B's dependences.
 | 
						|
    InterleaveGroup<Instruction> *Group = nullptr;
 | 
						|
    if (isStrided(DesB.Stride) && 
 | 
						|
        (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
 | 
						|
      Group = getInterleaveGroup(B);
 | 
						|
      if (!Group) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
 | 
						|
                          << '\n');
 | 
						|
        Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
 | 
						|
      }
 | 
						|
      if (B->mayWriteToMemory())
 | 
						|
        StoreGroups.insert(Group);
 | 
						|
      else
 | 
						|
        LoadGroups.insert(Group);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto AI = std::next(BI); AI != E; ++AI) {
 | 
						|
      Instruction *A = AI->first;
 | 
						|
      StrideDescriptor DesA = AI->second;
 | 
						|
 | 
						|
      // Our code motion strategy implies that we can't have dependences
 | 
						|
      // between accesses in an interleaved group and other accesses located
 | 
						|
      // between the first and last member of the group. Note that this also
 | 
						|
      // means that a group can't have more than one member at a given offset.
 | 
						|
      // The accesses in a group can have dependences with other accesses, but
 | 
						|
      // we must ensure we don't extend the boundaries of the group such that
 | 
						|
      // we encompass those dependent accesses.
 | 
						|
      //
 | 
						|
      // For example, assume we have the sequence of accesses shown below in a
 | 
						|
      // stride-2 loop:
 | 
						|
      //
 | 
						|
      //  (1, 2) is a group | A[i]   = a;  // (1)
 | 
						|
      //                    | A[i-1] = b;  // (2) |
 | 
						|
      //                      A[i-3] = c;  // (3)
 | 
						|
      //                      A[i]   = d;  // (4) | (2, 4) is not a group
 | 
						|
      //
 | 
						|
      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
 | 
						|
      // but not with (4). If we did, the dependent access (3) would be within
 | 
						|
      // the boundaries of the (2, 4) group.
 | 
						|
      if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
 | 
						|
        // If a dependence exists and A is already in a group, we know that A
 | 
						|
        // must be a store since A precedes B and WAR dependences are allowed.
 | 
						|
        // Thus, A would be sunk below B. We release A's group to prevent this
 | 
						|
        // illegal code motion. A will then be free to form another group with
 | 
						|
        // instructions that precede it.
 | 
						|
        if (isInterleaved(A)) {
 | 
						|
          InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
 | 
						|
 | 
						|
          LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
 | 
						|
                               "dependence between " << *A << " and "<< *B << '\n');
 | 
						|
 | 
						|
          StoreGroups.remove(StoreGroup);
 | 
						|
          releaseGroup(StoreGroup);
 | 
						|
        }
 | 
						|
 | 
						|
        // If a dependence exists and A is not already in a group (or it was
 | 
						|
        // and we just released it), B might be hoisted above A (if B is a
 | 
						|
        // load) or another store might be sunk below A (if B is a store). In
 | 
						|
        // either case, we can't add additional instructions to B's group. B
 | 
						|
        // will only form a group with instructions that it precedes.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // At this point, we've checked for illegal code motion. If either A or B
 | 
						|
      // isn't strided, there's nothing left to do.
 | 
						|
      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Ignore A if it's already in a group or isn't the same kind of memory
 | 
						|
      // operation as B.
 | 
						|
      // Note that mayReadFromMemory() isn't mutually exclusive to
 | 
						|
      // mayWriteToMemory in the case of atomic loads. We shouldn't see those
 | 
						|
      // here, canVectorizeMemory() should have returned false - except for the
 | 
						|
      // case we asked for optimization remarks.
 | 
						|
      if (isInterleaved(A) ||
 | 
						|
          (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
 | 
						|
          (A->mayWriteToMemory() != B->mayWriteToMemory()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check rules 1 and 2. Ignore A if its stride or size is different from
 | 
						|
      // that of B.
 | 
						|
      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Ignore A if the memory object of A and B don't belong to the same
 | 
						|
      // address space
 | 
						|
      if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Calculate the distance from A to B.
 | 
						|
      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
 | 
						|
          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
 | 
						|
      if (!DistToB)
 | 
						|
        continue;
 | 
						|
      int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
 | 
						|
 | 
						|
      // Check rule 3. Ignore A if its distance to B is not a multiple of the
 | 
						|
      // size.
 | 
						|
      if (DistanceToB % static_cast<int64_t>(DesB.Size))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // All members of a predicated interleave-group must have the same predicate,
 | 
						|
      // and currently must reside in the same BB.
 | 
						|
      BasicBlock *BlockA = A->getParent();  
 | 
						|
      BasicBlock *BlockB = B->getParent();  
 | 
						|
      if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
 | 
						|
          (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // The index of A is the index of B plus A's distance to B in multiples
 | 
						|
      // of the size.
 | 
						|
      int IndexA =
 | 
						|
          Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
 | 
						|
 | 
						|
      // Try to insert A into B's group.
 | 
						|
      if (Group->insertMember(A, IndexA, DesA.Alignment)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
 | 
						|
                          << "    into the interleave group with" << *B
 | 
						|
                          << '\n');
 | 
						|
        InterleaveGroupMap[A] = Group;
 | 
						|
 | 
						|
        // Set the first load in program order as the insert position.
 | 
						|
        if (A->mayReadFromMemory())
 | 
						|
          Group->setInsertPos(A);
 | 
						|
      }
 | 
						|
    } // Iteration over A accesses.
 | 
						|
  }   // Iteration over B accesses.
 | 
						|
 | 
						|
  // Remove interleaved store groups with gaps.
 | 
						|
  for (auto *Group : StoreGroups)
 | 
						|
    if (Group->getNumMembers() != Group->getFactor()) {
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "LV: Invalidate candidate interleaved store group due "
 | 
						|
                    "to gaps.\n");
 | 
						|
      releaseGroup(Group);
 | 
						|
    }
 | 
						|
  // Remove interleaved groups with gaps (currently only loads) whose memory
 | 
						|
  // accesses may wrap around. We have to revisit the getPtrStride analysis,
 | 
						|
  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
 | 
						|
  // not check wrapping (see documentation there).
 | 
						|
  // FORNOW we use Assume=false;
 | 
						|
  // TODO: Change to Assume=true but making sure we don't exceed the threshold
 | 
						|
  // of runtime SCEV assumptions checks (thereby potentially failing to
 | 
						|
  // vectorize altogether).
 | 
						|
  // Additional optional optimizations:
 | 
						|
  // TODO: If we are peeling the loop and we know that the first pointer doesn't
 | 
						|
  // wrap then we can deduce that all pointers in the group don't wrap.
 | 
						|
  // This means that we can forcefully peel the loop in order to only have to
 | 
						|
  // check the first pointer for no-wrap. When we'll change to use Assume=true
 | 
						|
  // we'll only need at most one runtime check per interleaved group.
 | 
						|
  for (auto *Group : LoadGroups) {
 | 
						|
    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
 | 
						|
    // load would wrap around the address space we would do a memory access at
 | 
						|
    // nullptr even without the transformation.
 | 
						|
    if (Group->getNumMembers() == Group->getFactor())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Case 2: If first and last members of the group don't wrap this implies
 | 
						|
    // that all the pointers in the group don't wrap.
 | 
						|
    // So we check only group member 0 (which is always guaranteed to exist),
 | 
						|
    // and group member Factor - 1; If the latter doesn't exist we rely on
 | 
						|
    // peeling (if it is a non-reversed accsess -- see Case 3).
 | 
						|
    Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
 | 
						|
    if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
 | 
						|
                      /*ShouldCheckWrap=*/true)) {
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "LV: Invalidate candidate interleaved group due to "
 | 
						|
                    "first group member potentially pointer-wrapping.\n");
 | 
						|
      releaseGroup(Group);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
 | 
						|
    if (LastMember) {
 | 
						|
      Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
 | 
						|
      if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
 | 
						|
                        /*ShouldCheckWrap=*/true)) {
 | 
						|
        LLVM_DEBUG(
 | 
						|
            dbgs() << "LV: Invalidate candidate interleaved group due to "
 | 
						|
                      "last group member potentially pointer-wrapping.\n");
 | 
						|
        releaseGroup(Group);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Case 3: A non-reversed interleaved load group with gaps: We need
 | 
						|
      // to execute at least one scalar epilogue iteration. This will ensure
 | 
						|
      // we don't speculatively access memory out-of-bounds. We only need
 | 
						|
      // to look for a member at index factor - 1, since every group must have
 | 
						|
      // a member at index zero.
 | 
						|
      if (Group->isReverse()) {
 | 
						|
        LLVM_DEBUG(
 | 
						|
            dbgs() << "LV: Invalidate candidate interleaved group due to "
 | 
						|
                      "a reverse access with gaps.\n");
 | 
						|
        releaseGroup(Group);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
 | 
						|
      RequiresScalarEpilogue = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
 | 
						|
  // If no group had triggered the requirement to create an epilogue loop,
 | 
						|
  // there is nothing to do.
 | 
						|
  if (!requiresScalarEpilogue())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid releasing a Group twice.
 | 
						|
  SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
 | 
						|
  for (auto &I : InterleaveGroupMap) {
 | 
						|
    InterleaveGroup<Instruction> *Group = I.second;
 | 
						|
    if (Group->requiresScalarEpilogue())
 | 
						|
      DelSet.insert(Group);
 | 
						|
  }
 | 
						|
  for (auto *Ptr : DelSet) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs()
 | 
						|
        << "LV: Invalidate candidate interleaved group due to gaps that "
 | 
						|
           "require a scalar epilogue (not allowed under optsize) and cannot "
 | 
						|
           "be masked (not enabled). \n");
 | 
						|
    releaseGroup(Ptr);
 | 
						|
  }
 | 
						|
 | 
						|
  RequiresScalarEpilogue = false;
 | 
						|
}
 | 
						|
 | 
						|
template <typename InstT>
 | 
						|
void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
 | 
						|
  llvm_unreachable("addMetadata can only be used for Instruction");
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <>
 | 
						|
void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
 | 
						|
  SmallVector<Value *, 4> VL;
 | 
						|
  std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
 | 
						|
                 [](std::pair<int, Instruction *> p) { return p.second; });
 | 
						|
  propagateMetadata(NewInst, VL);
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
void VFABI::getVectorVariantNames(
 | 
						|
    const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
 | 
						|
  const StringRef S =
 | 
						|
      CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
 | 
						|
          .getValueAsString();
 | 
						|
  if (S.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<StringRef, 8> ListAttr;
 | 
						|
  S.split(ListAttr, ",");
 | 
						|
 | 
						|
  for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
 | 
						|
    Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
 | 
						|
    assert(Info.hasValue() && "Invalid name for a VFABI variant.");
 | 
						|
    assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
 | 
						|
           "Vector function is missing.");
 | 
						|
#endif
 | 
						|
    VariantMappings.push_back(std::string(S));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool VFShape::hasValidParameterList() const {
 | 
						|
  for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
 | 
						|
       ++Pos) {
 | 
						|
    assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
 | 
						|
 | 
						|
    switch (Parameters[Pos].ParamKind) {
 | 
						|
    default: // Nothing to check.
 | 
						|
      break;
 | 
						|
    case VFParamKind::OMP_Linear:
 | 
						|
    case VFParamKind::OMP_LinearRef:
 | 
						|
    case VFParamKind::OMP_LinearVal:
 | 
						|
    case VFParamKind::OMP_LinearUVal:
 | 
						|
      // Compile time linear steps must be non-zero.
 | 
						|
      if (Parameters[Pos].LinearStepOrPos == 0)
 | 
						|
        return false;
 | 
						|
      break;
 | 
						|
    case VFParamKind::OMP_LinearPos:
 | 
						|
    case VFParamKind::OMP_LinearRefPos:
 | 
						|
    case VFParamKind::OMP_LinearValPos:
 | 
						|
    case VFParamKind::OMP_LinearUValPos:
 | 
						|
      // The runtime linear step must be referring to some other
 | 
						|
      // parameters in the signature.
 | 
						|
      if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
 | 
						|
        return false;
 | 
						|
      // The linear step parameter must be marked as uniform.
 | 
						|
      if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
 | 
						|
          VFParamKind::OMP_Uniform)
 | 
						|
        return false;
 | 
						|
      // The linear step parameter can't point at itself.
 | 
						|
      if (Parameters[Pos].LinearStepOrPos == int(Pos))
 | 
						|
        return false;
 | 
						|
      break;
 | 
						|
    case VFParamKind::GlobalPredicate:
 | 
						|
      // The global predicate must be the unique. Can be placed anywhere in the
 | 
						|
      // signature.
 | 
						|
      for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
 | 
						|
        if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
 | 
						|
          return false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 |