forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			484 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			484 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file This pass attempts to replace out argument usage with a return of a
 | 
						|
/// struct.
 | 
						|
///
 | 
						|
/// We can support returning a lot of values directly in registers, but
 | 
						|
/// idiomatic C code frequently uses a pointer argument to return a second value
 | 
						|
/// rather than returning a struct by value. GPU stack access is also quite
 | 
						|
/// painful, so we want to avoid that if possible. Passing a stack object
 | 
						|
/// pointer to a function also requires an additional address expansion code
 | 
						|
/// sequence to convert the pointer to be relative to the kernel's scratch wave
 | 
						|
/// offset register since the callee doesn't know what stack frame the incoming
 | 
						|
/// pointer is relative to.
 | 
						|
///
 | 
						|
/// The goal is to try rewriting code that looks like this:
 | 
						|
///
 | 
						|
///  int foo(int a, int b, int* out) {
 | 
						|
///     *out = bar();
 | 
						|
///     return a + b;
 | 
						|
/// }
 | 
						|
///
 | 
						|
/// into something like this:
 | 
						|
///
 | 
						|
///  std::pair<int, int> foo(int a, int b) {
 | 
						|
///     return std::make_pair(a + b, bar());
 | 
						|
/// }
 | 
						|
///
 | 
						|
/// Typically the incoming pointer is a simple alloca for a temporary variable
 | 
						|
/// to use the API, which if replaced with a struct return will be easily SROA'd
 | 
						|
/// out when the stub function we create is inlined
 | 
						|
///
 | 
						|
/// This pass introduces the struct return, but leaves the unused pointer
 | 
						|
/// arguments and introduces a new stub function calling the struct returning
 | 
						|
/// body. DeadArgumentElimination should be run after this to clean these up.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AMDGPU.h"
 | 
						|
#include "Utils/AMDGPUBaseInfo.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#define DEBUG_TYPE "amdgpu-rewrite-out-arguments"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> AnyAddressSpace(
 | 
						|
  "amdgpu-any-address-space-out-arguments",
 | 
						|
  cl::desc("Replace pointer out arguments with "
 | 
						|
           "struct returns for non-private address space"),
 | 
						|
  cl::Hidden,
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
static cl::opt<unsigned> MaxNumRetRegs(
 | 
						|
  "amdgpu-max-return-arg-num-regs",
 | 
						|
  cl::desc("Approximately limit number of return registers for replacing out arguments"),
 | 
						|
  cl::Hidden,
 | 
						|
  cl::init(16));
 | 
						|
 | 
						|
STATISTIC(NumOutArgumentsReplaced,
 | 
						|
          "Number out arguments moved to struct return values");
 | 
						|
STATISTIC(NumOutArgumentFunctionsReplaced,
 | 
						|
          "Number of functions with out arguments moved to struct return values");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class AMDGPURewriteOutArguments : public FunctionPass {
 | 
						|
private:
 | 
						|
  const DataLayout *DL = nullptr;
 | 
						|
  MemoryDependenceResults *MDA = nullptr;
 | 
						|
 | 
						|
  bool checkArgumentUses(Value &Arg) const;
 | 
						|
  bool isOutArgumentCandidate(Argument &Arg) const;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const;
 | 
						|
#endif
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  AMDGPURewriteOutArguments() : FunctionPass(ID) {}
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<MemoryDependenceWrapperPass>();
 | 
						|
    FunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  bool doInitialization(Module &M) override;
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE,
 | 
						|
                      "AMDGPU Rewrite Out Arguments", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | 
						|
INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE,
 | 
						|
                    "AMDGPU Rewrite Out Arguments", false, false)
 | 
						|
 | 
						|
char AMDGPURewriteOutArguments::ID = 0;
 | 
						|
 | 
						|
bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const {
 | 
						|
  const int MaxUses = 10;
 | 
						|
  int UseCount = 0;
 | 
						|
 | 
						|
  for (Use &U : Arg.uses()) {
 | 
						|
    StoreInst *SI = dyn_cast<StoreInst>(U.getUser());
 | 
						|
    if (UseCount > MaxUses)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!SI) {
 | 
						|
      auto *BCI = dyn_cast<BitCastInst>(U.getUser());
 | 
						|
      if (!BCI || !BCI->hasOneUse())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // We don't handle multiple stores currently, so stores to aggregate
 | 
						|
      // pointers aren't worth the trouble since they are canonically split up.
 | 
						|
      Type *DestEltTy = BCI->getType()->getPointerElementType();
 | 
						|
      if (DestEltTy->isAggregateType())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // We could handle these if we had a convenient way to bitcast between
 | 
						|
      // them.
 | 
						|
      Type *SrcEltTy = Arg.getType()->getPointerElementType();
 | 
						|
      if (SrcEltTy->isArrayTy())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Special case handle structs with single members. It is useful to handle
 | 
						|
      // some casts between structs and non-structs, but we can't bitcast
 | 
						|
      // directly between them.  directly bitcast between them.  Blender uses
 | 
						|
      // some casts that look like { <3 x float> }* to <4 x float>*
 | 
						|
      if ((SrcEltTy->isStructTy() && (SrcEltTy->getStructNumElements() != 1)))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Clang emits OpenCL 3-vector type accesses with a bitcast to the
 | 
						|
      // equivalent 4-element vector and accesses that, and we're looking for
 | 
						|
      // this pointer cast.
 | 
						|
      if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy))
 | 
						|
        return false;
 | 
						|
 | 
						|
      return checkArgumentUses(*BCI);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!SI->isSimple() ||
 | 
						|
        U.getOperandNo() != StoreInst::getPointerOperandIndex())
 | 
						|
      return false;
 | 
						|
 | 
						|
    ++UseCount;
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip unused arguments.
 | 
						|
  return UseCount > 0;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const {
 | 
						|
  const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs;
 | 
						|
  PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType());
 | 
						|
 | 
						|
  // TODO: It might be useful for any out arguments, not just privates.
 | 
						|
  if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() &&
 | 
						|
                 !AnyAddressSpace) ||
 | 
						|
      Arg.hasByValAttr() || Arg.hasStructRetAttr() ||
 | 
						|
      DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return checkArgumentUses(Arg);
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPURewriteOutArguments::doInitialization(Module &M) {
 | 
						|
  DL = &M.getDataLayout();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const {
 | 
						|
  VectorType *VT0 = dyn_cast<VectorType>(Ty0);
 | 
						|
  VectorType *VT1 = dyn_cast<VectorType>(Ty1);
 | 
						|
  if (!VT0 || !VT1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT0->getNumElements() != 3 ||
 | 
						|
      VT1->getNumElements() != 4)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return DL->getTypeSizeInBits(VT0->getElementType()) ==
 | 
						|
         DL->getTypeSizeInBits(VT1->getElementType());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool AMDGPURewriteOutArguments::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: Could probably handle variadic functions.
 | 
						|
  if (F.isVarArg() || F.hasStructRetAttr() ||
 | 
						|
      AMDGPU::isEntryFunctionCC(F.getCallingConv()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | 
						|
 | 
						|
  unsigned ReturnNumRegs = 0;
 | 
						|
  SmallSet<int, 4> OutArgIndexes;
 | 
						|
  SmallVector<Type *, 4> ReturnTypes;
 | 
						|
  Type *RetTy = F.getReturnType();
 | 
						|
  if (!RetTy->isVoidTy()) {
 | 
						|
    ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4;
 | 
						|
 | 
						|
    if (ReturnNumRegs >= MaxNumRetRegs)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ReturnTypes.push_back(RetTy);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Argument *, 4> OutArgs;
 | 
						|
  for (Argument &Arg : F.args()) {
 | 
						|
    if (isOutArgumentCandidate(Arg)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg
 | 
						|
                        << " in function " << F.getName() << '\n');
 | 
						|
      OutArgs.push_back(&Arg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (OutArgs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>;
 | 
						|
 | 
						|
  DenseMap<ReturnInst *, ReplacementVec> Replacements;
 | 
						|
 | 
						|
  SmallVector<ReturnInst *, 4> Returns;
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back()))
 | 
						|
      Returns.push_back(RI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Returns.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changing;
 | 
						|
 | 
						|
  do {
 | 
						|
    Changing = false;
 | 
						|
 | 
						|
    // Keep retrying if we are able to successfully eliminate an argument. This
 | 
						|
    // helps with cases with multiple arguments which may alias, such as in a
 | 
						|
    // sincos implemntation. If we have 2 stores to arguments, on the first
 | 
						|
    // attempt the MDA query will succeed for the second store but not the
 | 
						|
    // first. On the second iteration we've removed that out clobbering argument
 | 
						|
    // (by effectively moving it into another function) and will find the second
 | 
						|
    // argument is OK to move.
 | 
						|
    for (Argument *OutArg : OutArgs) {
 | 
						|
      bool ThisReplaceable = true;
 | 
						|
      SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores;
 | 
						|
 | 
						|
      Type *ArgTy = OutArg->getType()->getPointerElementType();
 | 
						|
 | 
						|
      // Skip this argument if converting it will push us over the register
 | 
						|
      // count to return limit.
 | 
						|
 | 
						|
      // TODO: This is an approximation. When legalized this could be more. We
 | 
						|
      // can ask TLI for exactly how many.
 | 
						|
      unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4;
 | 
						|
      if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // An argument is convertible only if all exit blocks are able to replace
 | 
						|
      // it.
 | 
						|
      for (ReturnInst *RI : Returns) {
 | 
						|
        BasicBlock *BB = RI->getParent();
 | 
						|
 | 
						|
        MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg),
 | 
						|
                                                       true, BB->end(), BB, RI);
 | 
						|
        StoreInst *SI = nullptr;
 | 
						|
        if (Q.isDef())
 | 
						|
          SI = dyn_cast<StoreInst>(Q.getInst());
 | 
						|
 | 
						|
        if (SI) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n');
 | 
						|
          ReplaceableStores.emplace_back(RI, SI);
 | 
						|
        } else {
 | 
						|
          ThisReplaceable = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!ThisReplaceable)
 | 
						|
        continue; // Try the next argument candidate.
 | 
						|
 | 
						|
      for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) {
 | 
						|
        Value *ReplVal = Store.second->getValueOperand();
 | 
						|
 | 
						|
        auto &ValVec = Replacements[Store.first];
 | 
						|
        if (llvm::find_if(ValVec,
 | 
						|
              [OutArg](const std::pair<Argument *, Value *> &Entry) {
 | 
						|
                 return Entry.first == OutArg;}) != ValVec.end()) {
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "Saw multiple out arg stores" << *OutArg << '\n');
 | 
						|
          // It is possible to see stores to the same argument multiple times,
 | 
						|
          // but we expect these would have been optimized out already.
 | 
						|
          ThisReplaceable = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        ValVec.emplace_back(OutArg, ReplVal);
 | 
						|
        Store.second->eraseFromParent();
 | 
						|
      }
 | 
						|
 | 
						|
      if (ThisReplaceable) {
 | 
						|
        ReturnTypes.push_back(ArgTy);
 | 
						|
        OutArgIndexes.insert(OutArg->getArgNo());
 | 
						|
        ++NumOutArgumentsReplaced;
 | 
						|
        Changing = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (Changing);
 | 
						|
 | 
						|
  if (Replacements.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVMContext &Ctx = F.getParent()->getContext();
 | 
						|
  StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName());
 | 
						|
 | 
						|
  FunctionType *NewFuncTy = FunctionType::get(NewRetTy,
 | 
						|
                                              F.getFunctionType()->params(),
 | 
						|
                                              F.isVarArg());
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n');
 | 
						|
 | 
						|
  Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage,
 | 
						|
                                       F.getName() + ".body");
 | 
						|
  F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc);
 | 
						|
  NewFunc->copyAttributesFrom(&F);
 | 
						|
  NewFunc->setComdat(F.getComdat());
 | 
						|
 | 
						|
  // We want to preserve the function and param attributes, but need to strip
 | 
						|
  // off any return attributes, e.g. zeroext doesn't make sense with a struct.
 | 
						|
  NewFunc->stealArgumentListFrom(F);
 | 
						|
 | 
						|
  AttrBuilder RetAttrs;
 | 
						|
  RetAttrs.addAttribute(Attribute::SExt);
 | 
						|
  RetAttrs.addAttribute(Attribute::ZExt);
 | 
						|
  RetAttrs.addAttribute(Attribute::NoAlias);
 | 
						|
  NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs);
 | 
						|
  // TODO: How to preserve metadata?
 | 
						|
 | 
						|
  // Move the body of the function into the new rewritten function, and replace
 | 
						|
  // this function with a stub.
 | 
						|
  NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList());
 | 
						|
 | 
						|
  for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) {
 | 
						|
    ReturnInst *RI = Replacement.first;
 | 
						|
    IRBuilder<> B(RI);
 | 
						|
    B.SetCurrentDebugLocation(RI->getDebugLoc());
 | 
						|
 | 
						|
    int RetIdx = 0;
 | 
						|
    Value *NewRetVal = UndefValue::get(NewRetTy);
 | 
						|
 | 
						|
    Value *RetVal = RI->getReturnValue();
 | 
						|
    if (RetVal)
 | 
						|
      NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++);
 | 
						|
 | 
						|
    for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) {
 | 
						|
      Argument *Arg = ReturnPoint.first;
 | 
						|
      Value *Val = ReturnPoint.second;
 | 
						|
      Type *EltTy = Arg->getType()->getPointerElementType();
 | 
						|
      if (Val->getType() != EltTy) {
 | 
						|
        Type *EffectiveEltTy = EltTy;
 | 
						|
        if (StructType *CT = dyn_cast<StructType>(EltTy)) {
 | 
						|
          assert(CT->getNumElements() == 1);
 | 
						|
          EffectiveEltTy = CT->getElementType(0);
 | 
						|
        }
 | 
						|
 | 
						|
        if (DL->getTypeSizeInBits(EffectiveEltTy) !=
 | 
						|
            DL->getTypeSizeInBits(Val->getType())) {
 | 
						|
          assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType()));
 | 
						|
          Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()),
 | 
						|
                                      { 0, 1, 2 });
 | 
						|
        }
 | 
						|
 | 
						|
        Val = B.CreateBitCast(Val, EffectiveEltTy);
 | 
						|
 | 
						|
        // Re-create single element composite.
 | 
						|
        if (EltTy != EffectiveEltTy)
 | 
						|
          Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0);
 | 
						|
      }
 | 
						|
 | 
						|
      NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RetVal)
 | 
						|
      RI->setOperand(0, NewRetVal);
 | 
						|
    else {
 | 
						|
      B.CreateRet(NewRetVal);
 | 
						|
      RI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Value *, 16> StubCallArgs;
 | 
						|
  for (Argument &Arg : F.args()) {
 | 
						|
    if (OutArgIndexes.count(Arg.getArgNo())) {
 | 
						|
      // It's easier to preserve the type of the argument list. We rely on
 | 
						|
      // DeadArgumentElimination to take care of these.
 | 
						|
      StubCallArgs.push_back(UndefValue::get(Arg.getType()));
 | 
						|
    } else {
 | 
						|
      StubCallArgs.push_back(&Arg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F);
 | 
						|
  IRBuilder<> B(StubBB);
 | 
						|
  CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs);
 | 
						|
 | 
						|
  int RetIdx = RetTy->isVoidTy() ? 0 : 1;
 | 
						|
  for (Argument &Arg : F.args()) {
 | 
						|
    if (!OutArgIndexes.count(Arg.getArgNo()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    PointerType *ArgType = cast<PointerType>(Arg.getType());
 | 
						|
 | 
						|
    auto *EltTy = ArgType->getElementType();
 | 
						|
    const auto Align =
 | 
						|
        DL->getValueOrABITypeAlignment(Arg.getParamAlign(), EltTy);
 | 
						|
 | 
						|
    Value *Val = B.CreateExtractValue(StubCall, RetIdx++);
 | 
						|
    Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace());
 | 
						|
 | 
						|
    // We can peek through bitcasts, so the type may not match.
 | 
						|
    Value *PtrVal = B.CreateBitCast(&Arg, PtrTy);
 | 
						|
 | 
						|
    B.CreateAlignedStore(Val, PtrVal, Align);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!RetTy->isVoidTy()) {
 | 
						|
    B.CreateRet(B.CreateExtractValue(StubCall, 0));
 | 
						|
  } else {
 | 
						|
    B.CreateRetVoid();
 | 
						|
  }
 | 
						|
 | 
						|
  // The function is now a stub we want to inline.
 | 
						|
  F.addFnAttr(Attribute::AlwaysInline);
 | 
						|
 | 
						|
  ++NumOutArgumentFunctionsReplaced;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() {
 | 
						|
  return new AMDGPURewriteOutArguments();
 | 
						|
}
 |