forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1068 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1068 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
 | 
						|
/// instructions into machine operations.
 | 
						|
/// The expectation is that the loop contains three pseudo instructions:
 | 
						|
/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
 | 
						|
///   form should be in the preheader, whereas the while form should be in the
 | 
						|
///   preheaders only predecessor.
 | 
						|
/// - t2LoopDec - placed within in the loop body.
 | 
						|
/// - t2LoopEnd - the loop latch terminator.
 | 
						|
///
 | 
						|
/// In addition to this, we also look for the presence of the VCTP instruction,
 | 
						|
/// which determines whether we can generated the tail-predicated low-overhead
 | 
						|
/// loop form.
 | 
						|
///
 | 
						|
/// Assumptions and Dependencies:
 | 
						|
/// Low-overhead loops are constructed and executed using a setup instruction:
 | 
						|
/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
 | 
						|
/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
 | 
						|
/// but fixed polarity: WLS can only branch forwards and LE can only branch
 | 
						|
/// backwards. These restrictions mean that this pass is dependent upon block
 | 
						|
/// layout and block sizes, which is why it's the last pass to run. The same is
 | 
						|
/// true for ConstantIslands, but this pass does not increase the size of the
 | 
						|
/// basic blocks, nor does it change the CFG. Instructions are mainly removed
 | 
						|
/// during the transform and pseudo instructions are replaced by real ones. In
 | 
						|
/// some cases, when we have to revert to a 'normal' loop, we have to introduce
 | 
						|
/// multiple instructions for a single pseudo (see RevertWhile and
 | 
						|
/// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
 | 
						|
/// are defined to be as large as this maximum sequence of replacement
 | 
						|
/// instructions.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ARM.h"
 | 
						|
#include "ARMBaseInstrInfo.h"
 | 
						|
#include "ARMBaseRegisterInfo.h"
 | 
						|
#include "ARMBasicBlockInfo.h"
 | 
						|
#include "ARMSubtarget.h"
 | 
						|
#include "Thumb2InstrInfo.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/CodeGen/LivePhysRegs.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopUtils.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/ReachingDefAnalysis.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "arm-low-overhead-loops"
 | 
						|
#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class PostOrderLoopTraversal {
 | 
						|
    MachineLoop &ML;
 | 
						|
    MachineLoopInfo &MLI;
 | 
						|
    SmallPtrSet<MachineBasicBlock*, 4> Visited;
 | 
						|
    SmallVector<MachineBasicBlock*, 4> Order;
 | 
						|
 | 
						|
  public:
 | 
						|
    PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
 | 
						|
      : ML(ML), MLI(MLI) { }
 | 
						|
 | 
						|
    const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
 | 
						|
      return Order;
 | 
						|
    }
 | 
						|
 | 
						|
    // Visit all the blocks within the loop, as well as exit blocks and any
 | 
						|
    // blocks properly dominating the header.
 | 
						|
    void ProcessLoop() {
 | 
						|
      std::function<void(MachineBasicBlock*)> Search = [this, &Search]
 | 
						|
        (MachineBasicBlock *MBB) -> void {
 | 
						|
        if (Visited.count(MBB))
 | 
						|
          return;
 | 
						|
 | 
						|
        Visited.insert(MBB);
 | 
						|
        for (auto *Succ : MBB->successors()) {
 | 
						|
          if (!ML.contains(Succ))
 | 
						|
            continue;
 | 
						|
          Search(Succ);
 | 
						|
        }
 | 
						|
        Order.push_back(MBB);
 | 
						|
      };
 | 
						|
 | 
						|
      // Insert exit blocks.
 | 
						|
      SmallVector<MachineBasicBlock*, 2> ExitBlocks;
 | 
						|
      ML.getExitBlocks(ExitBlocks);
 | 
						|
      for (auto *MBB : ExitBlocks)
 | 
						|
        Order.push_back(MBB);
 | 
						|
 | 
						|
      // Then add the loop body.
 | 
						|
      Search(ML.getHeader());
 | 
						|
 | 
						|
      // Then try the preheader and its predecessors.
 | 
						|
      std::function<void(MachineBasicBlock*)> GetPredecessor =
 | 
						|
        [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
 | 
						|
        Order.push_back(MBB);
 | 
						|
        if (MBB->pred_size() == 1)
 | 
						|
          GetPredecessor(*MBB->pred_begin());
 | 
						|
      };
 | 
						|
 | 
						|
      if (auto *Preheader = ML.getLoopPreheader())
 | 
						|
        GetPredecessor(Preheader);
 | 
						|
      else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
 | 
						|
        GetPredecessor(Preheader);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct PredicatedMI {
 | 
						|
    MachineInstr *MI = nullptr;
 | 
						|
    SetVector<MachineInstr*> Predicates;
 | 
						|
 | 
						|
  public:
 | 
						|
    PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) :
 | 
						|
      MI(I) { Predicates.insert(Preds.begin(), Preds.end()); }
 | 
						|
  };
 | 
						|
 | 
						|
  // Represent a VPT block, a list of instructions that begins with a VPST and
 | 
						|
  // has a maximum of four proceeding instructions. All instructions within the
 | 
						|
  // block are predicated upon the vpr and we allow instructions to define the
 | 
						|
  // vpr within in the block too.
 | 
						|
  class VPTBlock {
 | 
						|
    std::unique_ptr<PredicatedMI> VPST;
 | 
						|
    PredicatedMI *Divergent = nullptr;
 | 
						|
    SmallVector<PredicatedMI, 4> Insts;
 | 
						|
 | 
						|
  public:
 | 
						|
    VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
 | 
						|
      VPST = std::make_unique<PredicatedMI>(MI, Preds);
 | 
						|
    }
 | 
						|
 | 
						|
    void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI);
 | 
						|
      if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) {
 | 
						|
        Divergent = &Insts.back();
 | 
						|
        LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI);
 | 
						|
      }
 | 
						|
      Insts.emplace_back(MI, Preds);
 | 
						|
      assert(Insts.size() <= 4 && "Too many instructions in VPT block!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Have we found an instruction within the block which defines the vpr? If
 | 
						|
    // so, not all the instructions in the block will have the same predicate.
 | 
						|
    bool HasNonUniformPredicate() const {
 | 
						|
      return Divergent != nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Is the given instruction part of the predicate set controlling the entry
 | 
						|
    // to the block.
 | 
						|
    bool IsPredicatedOn(MachineInstr *MI) const {
 | 
						|
      return VPST->Predicates.count(MI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Is the given instruction the only predicate which controls the entry to
 | 
						|
    // the block.
 | 
						|
    bool IsOnlyPredicatedOn(MachineInstr *MI) const {
 | 
						|
      return IsPredicatedOn(MI) && VPST->Predicates.size() == 1;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned size() const { return Insts.size(); }
 | 
						|
    SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; }
 | 
						|
    MachineInstr *getVPST() const { return VPST->MI; }
 | 
						|
    PredicatedMI *getDivergent() const { return Divergent; }
 | 
						|
  };
 | 
						|
 | 
						|
  struct LowOverheadLoop {
 | 
						|
 | 
						|
    MachineLoop *ML = nullptr;
 | 
						|
    MachineLoopInfo *MLI = nullptr;
 | 
						|
    ReachingDefAnalysis *RDA = nullptr;
 | 
						|
    MachineFunction *MF = nullptr;
 | 
						|
    MachineInstr *InsertPt = nullptr;
 | 
						|
    MachineInstr *Start = nullptr;
 | 
						|
    MachineInstr *Dec = nullptr;
 | 
						|
    MachineInstr *End = nullptr;
 | 
						|
    MachineInstr *VCTP = nullptr;
 | 
						|
    VPTBlock *CurrentBlock = nullptr;
 | 
						|
    SetVector<MachineInstr*> CurrentPredicate;
 | 
						|
    SmallVector<VPTBlock, 4> VPTBlocks;
 | 
						|
    SmallPtrSet<MachineInstr*, 4> ToRemove;
 | 
						|
    bool Revert = false;
 | 
						|
    bool CannotTailPredicate = false;
 | 
						|
 | 
						|
    LowOverheadLoop(MachineLoop *ML, MachineLoopInfo *MLI,
 | 
						|
                    ReachingDefAnalysis *RDA) : ML(ML), MLI(MLI), RDA(RDA) {
 | 
						|
      MF = ML->getHeader()->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an MVE instruction, check that we know how to use tail
 | 
						|
    // predication with it. Record VPT blocks and return whether the
 | 
						|
    // instruction is valid for tail predication.
 | 
						|
    bool ValidateMVEInst(MachineInstr *MI);
 | 
						|
 | 
						|
    void AnalyseMVEInst(MachineInstr *MI) {
 | 
						|
      CannotTailPredicate = !ValidateMVEInst(MI);
 | 
						|
    }
 | 
						|
 | 
						|
    bool IsTailPredicationLegal() const {
 | 
						|
      // For now, let's keep things really simple and only support a single
 | 
						|
      // block for tail predication.
 | 
						|
      return !Revert && FoundAllComponents() && VCTP &&
 | 
						|
             !CannotTailPredicate && ML->getNumBlocks() == 1;
 | 
						|
    }
 | 
						|
 | 
						|
    bool ValidateTailPredicate(MachineInstr *StartInsertPt);
 | 
						|
 | 
						|
    // Is it safe to define LR with DLS/WLS?
 | 
						|
    // LR can be defined if it is the operand to start, because it's the same
 | 
						|
    // value, or if it's going to be equivalent to the operand to Start.
 | 
						|
    MachineInstr *isSafeToDefineLR();
 | 
						|
 | 
						|
    // Check the branch targets are within range and we satisfy our
 | 
						|
    // restrictions.
 | 
						|
    void CheckLegality(ARMBasicBlockUtils *BBUtils);
 | 
						|
 | 
						|
    bool FoundAllComponents() const {
 | 
						|
      return Start && Dec && End;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; }
 | 
						|
 | 
						|
    // Return the loop iteration count, or the number of elements if we're tail
 | 
						|
    // predicating.
 | 
						|
    MachineOperand &getCount() {
 | 
						|
      return IsTailPredicationLegal() ?
 | 
						|
        VCTP->getOperand(1) : Start->getOperand(0);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getStartOpcode() const {
 | 
						|
      bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
 | 
						|
      if (!IsTailPredicationLegal())
 | 
						|
        return IsDo ? ARM::t2DLS : ARM::t2WLS;
 | 
						|
 | 
						|
      return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo);
 | 
						|
    }
 | 
						|
 | 
						|
    void dump() const {
 | 
						|
      if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
 | 
						|
      if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
 | 
						|
      if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
 | 
						|
      if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP;
 | 
						|
      if (!FoundAllComponents())
 | 
						|
        dbgs() << "ARM Loops: Not a low-overhead loop.\n";
 | 
						|
      else if (!(Start && Dec && End))
 | 
						|
        dbgs() << "ARM Loops: Failed to find all loop components.\n";
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  class ARMLowOverheadLoops : public MachineFunctionPass {
 | 
						|
    MachineFunction           *MF = nullptr;
 | 
						|
    MachineLoopInfo           *MLI = nullptr;
 | 
						|
    ReachingDefAnalysis       *RDA = nullptr;
 | 
						|
    const ARMBaseInstrInfo    *TII = nullptr;
 | 
						|
    MachineRegisterInfo       *MRI = nullptr;
 | 
						|
    const TargetRegisterInfo  *TRI = nullptr;
 | 
						|
    std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addRequired<ReachingDefAnalysis>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
      return MachineFunctionProperties().set(
 | 
						|
          MachineFunctionProperties::Property::NoVRegs).set(
 | 
						|
          MachineFunctionProperties::Property::TracksLiveness);
 | 
						|
    }
 | 
						|
 | 
						|
    StringRef getPassName() const override {
 | 
						|
      return ARM_LOW_OVERHEAD_LOOPS_NAME;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool ProcessLoop(MachineLoop *ML);
 | 
						|
 | 
						|
    bool RevertNonLoops();
 | 
						|
 | 
						|
    void RevertWhile(MachineInstr *MI) const;
 | 
						|
 | 
						|
    bool RevertLoopDec(MachineInstr *MI) const;
 | 
						|
 | 
						|
    void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
 | 
						|
 | 
						|
    void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
 | 
						|
 | 
						|
    MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
 | 
						|
 | 
						|
    void Expand(LowOverheadLoop &LoLoop);
 | 
						|
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char ARMLowOverheadLoops::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
 | 
						|
                false, false)
 | 
						|
 | 
						|
MachineInstr *LowOverheadLoop::isSafeToDefineLR() {
 | 
						|
  // We can define LR because LR already contains the same value.
 | 
						|
  if (Start->getOperand(0).getReg() == ARM::LR)
 | 
						|
    return Start;
 | 
						|
 | 
						|
  unsigned CountReg = Start->getOperand(0).getReg();
 | 
						|
  auto IsMoveLR = [&CountReg](MachineInstr *MI) {
 | 
						|
    return MI->getOpcode() == ARM::tMOVr &&
 | 
						|
           MI->getOperand(0).getReg() == ARM::LR &&
 | 
						|
           MI->getOperand(1).getReg() == CountReg &&
 | 
						|
           MI->getOperand(2).getImm() == ARMCC::AL;
 | 
						|
   };
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = Start->getParent();
 | 
						|
 | 
						|
  // Find an insertion point:
 | 
						|
  // - Is there a (mov lr, Count) before Start? If so, and nothing else writes
 | 
						|
  //   to Count before Start, we can insert at that mov.
 | 
						|
  if (auto *LRDef = RDA->getReachingMIDef(Start, ARM::LR))
 | 
						|
    if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg))
 | 
						|
      return LRDef;
 | 
						|
 | 
						|
  // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
 | 
						|
  //   to Count after Start, we can insert at that mov.
 | 
						|
  if (auto *LRDef = RDA->getLocalLiveOutMIDef(MBB, ARM::LR))
 | 
						|
    if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg))
 | 
						|
      return LRDef;
 | 
						|
 | 
						|
  // We've found no suitable LR def and Start doesn't use LR directly. Can we
 | 
						|
  // just define LR anyway?
 | 
						|
  return RDA->isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) {
 | 
						|
  assert(VCTP && "VCTP instruction expected but is not set");
 | 
						|
  // All predication within the loop should be based on vctp. If the block
 | 
						|
  // isn't predicated on entry, check whether the vctp is within the block
 | 
						|
  // and that all other instructions are then predicated on it.
 | 
						|
  for (auto &Block : VPTBlocks) {
 | 
						|
    if (Block.IsPredicatedOn(VCTP))
 | 
						|
      continue;
 | 
						|
    if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: "
 | 
						|
                 << *Block.getDivergent()->MI);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
 | 
						|
    for (auto &PredMI : Insts) {
 | 
						|
      if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI))
 | 
						|
        continue;
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI
 | 
						|
                 << " - which is predicated on:\n";
 | 
						|
                 for (auto *MI : PredMI.Predicates)
 | 
						|
                   dbgs() << "   - " << *MI);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For tail predication, we need to provide the number of elements, instead
 | 
						|
  // of the iteration count, to the loop start instruction. The number of
 | 
						|
  // elements is provided to the vctp instruction, so we need to check that
 | 
						|
  // we can use this register at InsertPt.
 | 
						|
  Register NumElements = VCTP->getOperand(1).getReg();
 | 
						|
 | 
						|
  // If the register is defined within loop, then we can't perform TP.
 | 
						|
  // TODO: Check whether this is just a mov of a register that would be
 | 
						|
  // available.
 | 
						|
  if (RDA->hasLocalDefBefore(VCTP, NumElements)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // The element count register maybe defined after InsertPt, in which case we
 | 
						|
  // need to try to move either InsertPt or the def so that the [w|d]lstp can
 | 
						|
  // use the value.
 | 
						|
  MachineBasicBlock *InsertBB = StartInsertPt->getParent();
 | 
						|
  if (!RDA->isReachingDefLiveOut(StartInsertPt, NumElements)) {
 | 
						|
    if (auto *ElemDef = RDA->getLocalLiveOutMIDef(InsertBB, NumElements)) {
 | 
						|
      if (RDA->isSafeToMoveForwards(ElemDef, StartInsertPt)) {
 | 
						|
        ElemDef->removeFromParent();
 | 
						|
        InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef);
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
 | 
						|
                   << *ElemDef);
 | 
						|
      } else if (RDA->isSafeToMoveBackwards(StartInsertPt, ElemDef)) {
 | 
						|
        StartInsertPt->removeFromParent();
 | 
						|
        InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
 | 
						|
                              StartInsertPt);
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
 | 
						|
      } else {
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop "
 | 
						|
                   << "start instruction.\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Especially in the case of while loops, InsertBB may not be the
 | 
						|
  // preheader, so we need to check that the register isn't redefined
 | 
						|
  // before entering the loop.
 | 
						|
  auto CannotProvideElements = [this](MachineBasicBlock *MBB,
 | 
						|
                                      Register NumElements) {
 | 
						|
    // NumElements is redefined in this block.
 | 
						|
    if (RDA->hasLocalDefBefore(&MBB->back(), NumElements))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Don't continue searching up through multiple predecessors.
 | 
						|
    if (MBB->pred_size() > 1)
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // First, find the block that looks like the preheader.
 | 
						|
  MachineBasicBlock *MBB = MLI->findLoopPreheader(ML, true);
 | 
						|
  if (!MBB) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Then search backwards for a def, until we get to InsertBB.
 | 
						|
  while (MBB != InsertBB) {
 | 
						|
    if (CannotProvideElements(MBB, NumElements)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    MBB = *MBB->pred_begin();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the value change of the element count is what we expect and
 | 
						|
  // that the predication will be equivalent. For this we need:
 | 
						|
  // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
 | 
						|
  // and we can also allow register copies within the chain too.
 | 
						|
  auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) {
 | 
						|
    unsigned ImmOpIdx = 0;
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("unhandled sub opcode");
 | 
						|
    case ARM::tSUBi3:
 | 
						|
    case ARM::tSUBi8:
 | 
						|
      ImmOpIdx = 3;
 | 
						|
      break;
 | 
						|
    case ARM::t2SUBri:
 | 
						|
    case ARM::t2SUBri12:
 | 
						|
      ImmOpIdx = 2;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth;
 | 
						|
  };
 | 
						|
 | 
						|
  MBB = VCTP->getParent();
 | 
						|
  if (MachineInstr *Def = RDA->getReachingMIDef(&MBB->back(), NumElements)) {
 | 
						|
    SmallPtrSet<MachineInstr*, 2> ElementChain;
 | 
						|
    SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP };
 | 
						|
    unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
 | 
						|
 | 
						|
    if (RDA->isSafeToRemove(Def, ElementChain, Ignore)) {
 | 
						|
      bool FoundSub = false;
 | 
						|
 | 
						|
      for (auto *MI : ElementChain) {
 | 
						|
        if (isMovRegOpcode(MI->getOpcode()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (isSubImmOpcode(MI->getOpcode())) {
 | 
						|
          if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth))
 | 
						|
            return false;
 | 
						|
          FoundSub = true;
 | 
						|
        } else
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n";
 | 
						|
                 for (auto *MI : ElementChain)
 | 
						|
                   dbgs() << " - " << *MI);
 | 
						|
      ToRemove.insert(ElementChain.begin(), ElementChain.end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) {
 | 
						|
  if (Revert)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!End->getOperand(1).isMBB())
 | 
						|
    report_fatal_error("Expected LoopEnd to target basic block");
 | 
						|
 | 
						|
  // TODO Maybe there's cases where the target doesn't have to be the header,
 | 
						|
  // but for now be safe and revert.
 | 
						|
  if (End->getOperand(1).getMBB() != ML->getHeader()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n");
 | 
						|
    Revert = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The WLS and LE instructions have 12-bits for the label offset. WLS
 | 
						|
  // requires a positive offset, while LE uses negative.
 | 
						|
  if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML->getHeader()) ||
 | 
						|
      !BBUtils->isBBInRange(End, ML->getHeader(), 4094)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
 | 
						|
    Revert = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Start->getOpcode() == ARM::t2WhileLoopStart &&
 | 
						|
      (BBUtils->getOffsetOf(Start) >
 | 
						|
       BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
 | 
						|
       !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
 | 
						|
    Revert = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  InsertPt = Revert ? nullptr : isSafeToDefineLR();
 | 
						|
  if (!InsertPt) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
 | 
						|
    Revert = true;
 | 
						|
    return;
 | 
						|
  } else
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt);
 | 
						|
 | 
						|
  if (!IsTailPredicationLegal()) {
 | 
						|
    LLVM_DEBUG(if (!VCTP)
 | 
						|
                 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
 | 
						|
               dbgs() << "ARM Loops: Tail-predication is not valid.\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ML->getBlocks().size() == 1 &&
 | 
						|
         "Shouldn't be processing a loop with more than one block");
 | 
						|
  CannotTailPredicate = !ValidateTailPredicate(InsertPt);
 | 
						|
  LLVM_DEBUG(if (CannotTailPredicate)
 | 
						|
             dbgs() << "ARM Loops: Couldn't validate tail predicate.\n");
 | 
						|
}
 | 
						|
 | 
						|
bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
 | 
						|
  if (CannotTailPredicate)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only support a single vctp.
 | 
						|
  if (isVCTP(MI) && VCTP)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Start a new vpt block when we discover a vpt.
 | 
						|
  if (MI->getOpcode() == ARM::MVE_VPST) {
 | 
						|
    VPTBlocks.emplace_back(MI, CurrentPredicate);
 | 
						|
    CurrentBlock = &VPTBlocks.back();
 | 
						|
    return true;
 | 
						|
  } else if (isVCTP(MI))
 | 
						|
    VCTP = MI;
 | 
						|
  else if (MI->getOpcode() == ARM::MVE_VPSEL ||
 | 
						|
           MI->getOpcode() == ARM::MVE_VPNOT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: Allow VPSEL and VPNOT, we currently cannot because:
 | 
						|
  // 1) It will use the VPR as a predicate operand, but doesn't have to be
 | 
						|
  //    instead a VPT block, which means we can assert while building up
 | 
						|
  //    the VPT block because we don't find another VPST to being a new
 | 
						|
  //    one.
 | 
						|
  // 2) VPSEL still requires a VPR operand even after tail predicating,
 | 
						|
  //    which means we can't remove it unless there is another
 | 
						|
  //    instruction, such as vcmp, that can provide the VPR def.
 | 
						|
 | 
						|
  bool IsUse = false;
 | 
						|
  bool IsDef = false;
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || MO.getReg() != ARM::VPR)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MO.isDef()) {
 | 
						|
      CurrentPredicate.insert(MI);
 | 
						|
      IsDef = true;
 | 
						|
    } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) {
 | 
						|
      CurrentBlock->addInst(MI, CurrentPredicate);
 | 
						|
      IsUse = true;
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we find a vpr def that is not already predicated on the vctp, we've
 | 
						|
  // got disjoint predicates that may not be equivalent when we do the
 | 
						|
  // conversion.
 | 
						|
  if (IsDef && !IsUse && VCTP && !isVCTP(MI)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t Flags = MCID.TSFlags;
 | 
						|
  if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we find an instruction that has been marked as not valid for tail
 | 
						|
  // predication, only allow the instruction if it's contained within a valid
 | 
						|
  // VPT block.
 | 
						|
  if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
 | 
						|
  if (!ST.hasLOB())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MF = &mf;
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
 | 
						|
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  RDA = &getAnalysis<ReachingDefAnalysis>();
 | 
						|
  MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
 | 
						|
  MRI = &MF->getRegInfo();
 | 
						|
  TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
 | 
						|
  TRI = ST.getRegisterInfo();
 | 
						|
  BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
 | 
						|
  BBUtils->computeAllBlockSizes();
 | 
						|
  BBUtils->adjustBBOffsetsAfter(&MF->front());
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto ML : *MLI) {
 | 
						|
    if (!ML->getParentLoop())
 | 
						|
      Changed |= ProcessLoop(ML);
 | 
						|
  }
 | 
						|
  Changed |= RevertNonLoops();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Process inner loops first.
 | 
						|
  for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
 | 
						|
    Changed |= ProcessLoop(*I);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
 | 
						|
             if (auto *Preheader = ML->getLoopPreheader())
 | 
						|
               dbgs() << " - " << Preheader->getName() << "\n";
 | 
						|
             else if (auto *Preheader = MLI->findLoopPreheader(ML))
 | 
						|
               dbgs() << " - " << Preheader->getName() << "\n";
 | 
						|
             else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
 | 
						|
               dbgs() << " - " << Preheader->getName() << "\n";
 | 
						|
             for (auto *MBB : ML->getBlocks())
 | 
						|
               dbgs() << " - " << MBB->getName() << "\n";
 | 
						|
            );
 | 
						|
 | 
						|
  // Search the given block for a loop start instruction. If one isn't found,
 | 
						|
  // and there's only one predecessor block, search that one too.
 | 
						|
  std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
 | 
						|
    [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
 | 
						|
    for (auto &MI : *MBB) {
 | 
						|
      if (isLoopStart(MI))
 | 
						|
        return &MI;
 | 
						|
    }
 | 
						|
    if (MBB->pred_size() == 1)
 | 
						|
      return SearchForStart(*MBB->pred_begin());
 | 
						|
    return nullptr;
 | 
						|
  };
 | 
						|
 | 
						|
  LowOverheadLoop LoLoop(ML, MLI, RDA);
 | 
						|
  // Search the preheader for the start intrinsic.
 | 
						|
  // FIXME: I don't see why we shouldn't be supporting multiple predecessors
 | 
						|
  // with potentially multiple set.loop.iterations, so we need to enable this.
 | 
						|
  if (auto *Preheader = ML->getLoopPreheader())
 | 
						|
    LoLoop.Start = SearchForStart(Preheader);
 | 
						|
  else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
 | 
						|
    LoLoop.Start = SearchForStart(Preheader);
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the low-overhead loop components and decide whether or not to fall
 | 
						|
  // back to a normal loop. Also look for a vctp instructions and decide
 | 
						|
  // whether we can convert that predicate using tail predication.
 | 
						|
  for (auto *MBB : reverse(ML->getBlocks())) {
 | 
						|
    for (auto &MI : *MBB) {
 | 
						|
      if (MI.isDebugValue())
 | 
						|
        continue;
 | 
						|
      else if (MI.getOpcode() == ARM::t2LoopDec)
 | 
						|
        LoLoop.Dec = &MI;
 | 
						|
      else if (MI.getOpcode() == ARM::t2LoopEnd)
 | 
						|
        LoLoop.End = &MI;
 | 
						|
      else if (isLoopStart(MI))
 | 
						|
        LoLoop.Start = &MI;
 | 
						|
      else if (MI.getDesc().isCall()) {
 | 
						|
        // TODO: Though the call will require LE to execute again, does this
 | 
						|
        // mean we should revert? Always executing LE hopefully should be
 | 
						|
        // faster than performing a sub,cmp,br or even subs,br.
 | 
						|
        LoLoop.Revert = true;
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
 | 
						|
      } else {
 | 
						|
        // Record VPR defs and build up their corresponding vpt blocks.
 | 
						|
        // Check we know how to tail predicate any mve instructions.
 | 
						|
        LoLoop.AnalyseMVEInst(&MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(LoLoop.dump());
 | 
						|
  if (!LoLoop.FoundAllComponents()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallPtrSet<MachineInstr*, 2> Ignore = { LoLoop.End };
 | 
						|
  SmallPtrSet<MachineInstr*, 4> Remove;
 | 
						|
  if (!RDA->isSafeToRemove(LoLoop.Dec, Remove, Ignore)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove loop count chain.\n");
 | 
						|
    LoLoop.Revert = true;
 | 
						|
  } else {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Will need to remove:\n";
 | 
						|
               for (auto *I : Remove)
 | 
						|
                 dbgs() << " - " << *I);
 | 
						|
    LoLoop.ToRemove.insert(Remove.begin(), Remove.end());
 | 
						|
  }
 | 
						|
 | 
						|
  LoLoop.CheckLegality(BBUtils.get());
 | 
						|
  Expand(LoLoop);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
 | 
						|
// beq that branches to the exit branch.
 | 
						|
// TODO: We could also try to generate a cbz if the value in LR is also in
 | 
						|
// another low register.
 | 
						|
void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
 | 
						|
                                    TII->get(ARM::t2CMPri));
 | 
						|
  MIB.add(MI->getOperand(0));
 | 
						|
  MIB.addImm(0);
 | 
						|
  MIB.addImm(ARMCC::AL);
 | 
						|
  MIB.addReg(ARM::NoRegister);
 | 
						|
 | 
						|
  MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
 | 
						|
  unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
 | 
						|
    ARM::tBcc : ARM::t2Bcc;
 | 
						|
 | 
						|
  MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
 | 
						|
  MIB.add(MI->getOperand(1));   // branch target
 | 
						|
  MIB.addImm(ARMCC::EQ);        // condition code
 | 
						|
  MIB.addReg(ARM::CPSR);
 | 
						|
  MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MachineInstr *Last = &MBB->back();
 | 
						|
  SmallPtrSet<MachineInstr*, 1> Ignore;
 | 
						|
  if (Last->getOpcode() == ARM::t2LoopEnd)
 | 
						|
    Ignore.insert(Last);
 | 
						|
 | 
						|
  // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
 | 
						|
  bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
 | 
						|
 | 
						|
  MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
 | 
						|
                                    TII->get(ARM::t2SUBri));
 | 
						|
  MIB.addDef(ARM::LR);
 | 
						|
  MIB.add(MI->getOperand(1));
 | 
						|
  MIB.add(MI->getOperand(2));
 | 
						|
  MIB.addImm(ARMCC::AL);
 | 
						|
  MIB.addReg(0);
 | 
						|
 | 
						|
  if (SetFlags) {
 | 
						|
    MIB.addReg(ARM::CPSR);
 | 
						|
    MIB->getOperand(5).setIsDef(true);
 | 
						|
  } else
 | 
						|
    MIB.addReg(0);
 | 
						|
 | 
						|
  MI->eraseFromParent();
 | 
						|
  return SetFlags;
 | 
						|
}
 | 
						|
 | 
						|
// Generate a subs, or sub and cmp, and a branch instead of an LE.
 | 
						|
void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  // Create cmp
 | 
						|
  if (!SkipCmp) {
 | 
						|
    MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
 | 
						|
                                      TII->get(ARM::t2CMPri));
 | 
						|
    MIB.addReg(ARM::LR);
 | 
						|
    MIB.addImm(0);
 | 
						|
    MIB.addImm(ARMCC::AL);
 | 
						|
    MIB.addReg(ARM::NoRegister);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
 | 
						|
  unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
 | 
						|
    ARM::tBcc : ARM::t2Bcc;
 | 
						|
 | 
						|
  // Create bne
 | 
						|
  MachineInstrBuilder MIB =
 | 
						|
    BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
 | 
						|
  MIB.add(MI->getOperand(1));   // branch target
 | 
						|
  MIB.addImm(ARMCC::NE);        // condition code
 | 
						|
  MIB.addReg(ARM::CPSR);
 | 
						|
  MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
 | 
						|
  // When using tail-predication, try to delete the dead code that was used to
 | 
						|
  // calculate the number of loop iterations.
 | 
						|
  if (LoLoop.IsTailPredicationLegal()) {
 | 
						|
    SmallVector<MachineInstr*, 4> Killed;
 | 
						|
    SmallVector<MachineInstr*, 4> Dead;
 | 
						|
    if (auto *Def = RDA->getReachingMIDef(LoLoop.Start,
 | 
						|
                                      LoLoop.Start->getOperand(0).getReg())) {
 | 
						|
      SmallPtrSet<MachineInstr*, 4> Remove;
 | 
						|
      SmallPtrSet<MachineInstr*, 4> Ignore = { LoLoop.Start, LoLoop.Dec,
 | 
						|
                                               LoLoop.End, LoLoop.InsertPt };
 | 
						|
      SmallVector<MachineInstr*, 4> Chain = { Def };
 | 
						|
      while (!Chain.empty()) {
 | 
						|
        MachineInstr *MI = Chain.back();
 | 
						|
        Chain.pop_back();
 | 
						|
        if (TII->getPredicate(*MI) != ARMCC::AL)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (RDA->isSafeToRemove(MI, Remove, Ignore)) {
 | 
						|
          for (auto &MO : MI->operands()) {
 | 
						|
            if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
 | 
						|
              continue;
 | 
						|
            if (auto *Op = RDA->getReachingMIDef(MI, MO.getReg()))
 | 
						|
              Chain.push_back(Op);
 | 
						|
          }
 | 
						|
          Ignore.insert(MI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      LoLoop.ToRemove.insert(Remove.begin(), Remove.end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MachineInstr *InsertPt = LoLoop.InsertPt;
 | 
						|
  MachineInstr *Start = LoLoop.Start;
 | 
						|
  MachineBasicBlock *MBB = InsertPt->getParent();
 | 
						|
  bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
 | 
						|
  unsigned Opc = LoLoop.getStartOpcode();
 | 
						|
  MachineOperand &Count = LoLoop.getCount();
 | 
						|
 | 
						|
  MachineInstrBuilder MIB =
 | 
						|
    BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc));
 | 
						|
 | 
						|
  MIB.addDef(ARM::LR);
 | 
						|
  MIB.add(Count);
 | 
						|
  if (!IsDo)
 | 
						|
    MIB.add(Start->getOperand(1));
 | 
						|
 | 
						|
  // If we're inserting at a mov lr, then remove it as it's redundant.
 | 
						|
  if (InsertPt != Start)
 | 
						|
    LoLoop.ToRemove.insert(InsertPt);
 | 
						|
  LoLoop.ToRemove.insert(Start);
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
 | 
						|
  return &*MIB;
 | 
						|
}
 | 
						|
 | 
						|
void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
 | 
						|
  auto RemovePredicate = [](MachineInstr *MI) {
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
 | 
						|
    if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
 | 
						|
      assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
 | 
						|
             "Expected Then predicate!");
 | 
						|
      MI->getOperand(PIdx).setImm(ARMVCC::None);
 | 
						|
      MI->getOperand(PIdx+1).setReg(0);
 | 
						|
    } else
 | 
						|
      llvm_unreachable("trying to unpredicate a non-predicated instruction");
 | 
						|
  };
 | 
						|
 | 
						|
  // There are a few scenarios which we have to fix up:
 | 
						|
  // 1) A VPT block with is only predicated by the vctp and has no internal vpr
 | 
						|
  //    defs.
 | 
						|
  // 2) A VPT block which is only predicated by the vctp but has an internal
 | 
						|
  //    vpr def.
 | 
						|
  // 3) A VPT block which is predicated upon the vctp as well as another vpr
 | 
						|
  //    def.
 | 
						|
  // 4) A VPT block which is not predicated upon a vctp, but contains it and
 | 
						|
  //    all instructions within the block are predicated upon in.
 | 
						|
 | 
						|
  for (auto &Block : LoLoop.getVPTBlocks()) {
 | 
						|
    SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
 | 
						|
    if (Block.HasNonUniformPredicate()) {
 | 
						|
      PredicatedMI *Divergent = Block.getDivergent();
 | 
						|
      if (isVCTP(Divergent->MI)) {
 | 
						|
        // The vctp will be removed, so the size of the vpt block needs to be
 | 
						|
        // modified.
 | 
						|
        uint64_t Size = getARMVPTBlockMask(Block.size() - 1);
 | 
						|
        Block.getVPST()->getOperand(0).setImm(Size);
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n");
 | 
						|
      } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
 | 
						|
        // The VPT block has a non-uniform predicate but it's entry is guarded
 | 
						|
        // only by a vctp, which means we:
 | 
						|
        // - Need to remove the original vpst.
 | 
						|
        // - Then need to unpredicate any following instructions, until
 | 
						|
        //   we come across the divergent vpr def.
 | 
						|
        // - Insert a new vpst to predicate the instruction(s) that following
 | 
						|
        //   the divergent vpr def.
 | 
						|
        // TODO: We could be producing more VPT blocks than necessary and could
 | 
						|
        // fold the newly created one into a proceeding one.
 | 
						|
        for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()),
 | 
						|
             E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I)
 | 
						|
          RemovePredicate(&*I);
 | 
						|
 | 
						|
        unsigned Size = 0;
 | 
						|
        auto E = MachineBasicBlock::reverse_iterator(Divergent->MI);
 | 
						|
        auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI);
 | 
						|
        MachineInstr *InsertAt = nullptr;
 | 
						|
        while (I != E) {
 | 
						|
          InsertAt = &*I;
 | 
						|
          ++Size;
 | 
						|
          ++I;
 | 
						|
        }
 | 
						|
        MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt,
 | 
						|
                                          InsertAt->getDebugLoc(),
 | 
						|
                                          TII->get(ARM::MVE_VPST));
 | 
						|
        MIB.addImm(getARMVPTBlockMask(Size));
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
 | 
						|
        LoLoop.ToRemove.insert(Block.getVPST());
 | 
						|
      }
 | 
						|
    } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
 | 
						|
      // A vpt block which is only predicated upon vctp and has no internal vpr
 | 
						|
      // defs:
 | 
						|
      // - Remove vpst.
 | 
						|
      // - Unpredicate the remaining instructions.
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
 | 
						|
      LoLoop.ToRemove.insert(Block.getVPST());
 | 
						|
      for (auto &PredMI : Insts)
 | 
						|
        RemovePredicate(PredMI.MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP);
 | 
						|
  LoLoop.ToRemove.insert(LoLoop.VCTP);
 | 
						|
}
 | 
						|
 | 
						|
void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
 | 
						|
 | 
						|
  // Combine the LoopDec and LoopEnd instructions into LE(TP).
 | 
						|
  auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
 | 
						|
    MachineInstr *End = LoLoop.End;
 | 
						|
    MachineBasicBlock *MBB = End->getParent();
 | 
						|
    unsigned Opc = LoLoop.IsTailPredicationLegal() ?
 | 
						|
      ARM::MVE_LETP : ARM::t2LEUpdate;
 | 
						|
    MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
 | 
						|
                                      TII->get(Opc));
 | 
						|
    MIB.addDef(ARM::LR);
 | 
						|
    MIB.add(End->getOperand(0));
 | 
						|
    MIB.add(End->getOperand(1));
 | 
						|
    LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
 | 
						|
    End->eraseFromParent();
 | 
						|
    return &*MIB;
 | 
						|
  };
 | 
						|
 | 
						|
  // TODO: We should be able to automatically remove these branches before we
 | 
						|
  // get here - probably by teaching analyzeBranch about the pseudo
 | 
						|
  // instructions.
 | 
						|
  // If there is an unconditional branch, after I, that just branches to the
 | 
						|
  // next block, remove it.
 | 
						|
  auto RemoveDeadBranch = [](MachineInstr *I) {
 | 
						|
    MachineBasicBlock *BB = I->getParent();
 | 
						|
    MachineInstr *Terminator = &BB->instr_back();
 | 
						|
    if (Terminator->isUnconditionalBranch() && I != Terminator) {
 | 
						|
      MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
 | 
						|
      if (BB->isLayoutSuccessor(Succ)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
 | 
						|
        Terminator->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  if (LoLoop.Revert) {
 | 
						|
    if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
 | 
						|
      RevertWhile(LoLoop.Start);
 | 
						|
    else
 | 
						|
      LoLoop.Start->eraseFromParent();
 | 
						|
    bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
 | 
						|
    RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
 | 
						|
  } else {
 | 
						|
    LoLoop.Start = ExpandLoopStart(LoLoop);
 | 
						|
    RemoveDeadBranch(LoLoop.Start);
 | 
						|
    LoLoop.End = ExpandLoopEnd(LoLoop);
 | 
						|
    RemoveDeadBranch(LoLoop.End);
 | 
						|
    if (LoLoop.IsTailPredicationLegal())
 | 
						|
      ConvertVPTBlocks(LoLoop);
 | 
						|
    for (auto *I : LoLoop.ToRemove) {
 | 
						|
      LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
 | 
						|
      I->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  PostOrderLoopTraversal DFS(*LoLoop.ML, *MLI);
 | 
						|
  DFS.ProcessLoop();
 | 
						|
  const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
 | 
						|
  for (auto *MBB : PostOrder) {
 | 
						|
    recomputeLiveIns(*MBB);
 | 
						|
    // FIXME: For some reason, the live-in print order is non-deterministic for
 | 
						|
    // our tests and I can't out why... So just sort them.
 | 
						|
    MBB->sortUniqueLiveIns();
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *MBB : reverse(PostOrder))
 | 
						|
    recomputeLivenessFlags(*MBB);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMLowOverheadLoops::RevertNonLoops() {
 | 
						|
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (auto &MBB : *MF) {
 | 
						|
    SmallVector<MachineInstr*, 4> Starts;
 | 
						|
    SmallVector<MachineInstr*, 4> Decs;
 | 
						|
    SmallVector<MachineInstr*, 4> Ends;
 | 
						|
 | 
						|
    for (auto &I : MBB) {
 | 
						|
      if (isLoopStart(I))
 | 
						|
        Starts.push_back(&I);
 | 
						|
      else if (I.getOpcode() == ARM::t2LoopDec)
 | 
						|
        Decs.push_back(&I);
 | 
						|
      else if (I.getOpcode() == ARM::t2LoopEnd)
 | 
						|
        Ends.push_back(&I);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Starts.empty() && Decs.empty() && Ends.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    for (auto *Start : Starts) {
 | 
						|
      if (Start->getOpcode() == ARM::t2WhileLoopStart)
 | 
						|
        RevertWhile(Start);
 | 
						|
      else
 | 
						|
        Start->eraseFromParent();
 | 
						|
    }
 | 
						|
    for (auto *Dec : Decs)
 | 
						|
      RevertLoopDec(Dec);
 | 
						|
 | 
						|
    for (auto *End : Ends)
 | 
						|
      RevertLoopEnd(End);
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createARMLowOverheadLoopsPass() {
 | 
						|
  return new ARMLowOverheadLoops();
 | 
						|
}
 |