forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1191 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1191 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the SplitAnalysis class as well as mutator functions for
 | 
						|
// live range splitting.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "splitter"
 | 
						|
#include "SplitKit.h"
 | 
						|
#include "LiveRangeEdit.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/CodeGen/CalcSpillWeights.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
AllowSplit("spiller-splits-edges",
 | 
						|
           cl::desc("Allow critical edge splitting during spilling"));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                 Split Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
 | 
						|
                             const LiveIntervals &lis,
 | 
						|
                             const MachineLoopInfo &mli)
 | 
						|
  : mf_(mf),
 | 
						|
    lis_(lis),
 | 
						|
    loops_(mli),
 | 
						|
    tii_(*mf.getTarget().getInstrInfo()),
 | 
						|
    curli_(0) {}
 | 
						|
 | 
						|
void SplitAnalysis::clear() {
 | 
						|
  usingInstrs_.clear();
 | 
						|
  usingBlocks_.clear();
 | 
						|
  usingLoops_.clear();
 | 
						|
  curli_ = 0;
 | 
						|
}
 | 
						|
 | 
						|
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
 | 
						|
  MachineBasicBlock *T, *F;
 | 
						|
  SmallVector<MachineOperand, 4> Cond;
 | 
						|
  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
 | 
						|
void SplitAnalysis::analyzeUses() {
 | 
						|
  const MachineRegisterInfo &MRI = mf_.getRegInfo();
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
 | 
						|
       MachineInstr *MI = I.skipInstruction();) {
 | 
						|
    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
 | 
						|
      continue;
 | 
						|
    MachineBasicBlock *MBB = MI->getParent();
 | 
						|
    if (usingBlocks_[MBB]++)
 | 
						|
      continue;
 | 
						|
    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
 | 
						|
         Loop = Loop->getParentLoop())
 | 
						|
      usingLoops_[Loop]++;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "  counted "
 | 
						|
               << usingInstrs_.size() << " instrs, "
 | 
						|
               << usingBlocks_.size() << " blocks, "
 | 
						|
               << usingLoops_.size()  << " loops.\n");
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
 | 
						|
  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    unsigned count = usingBlocks_.lookup(*I);
 | 
						|
    OS << " BB#" << (*I)->getNumber();
 | 
						|
    if (count)
 | 
						|
      OS << '(' << count << ')';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
 | 
						|
// predecessor blocks, and exit blocks.
 | 
						|
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
 | 
						|
  Blocks.clear();
 | 
						|
 | 
						|
  // Blocks in the loop.
 | 
						|
  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
 | 
						|
 | 
						|
  // Predecessor blocks.
 | 
						|
  const MachineBasicBlock *Header = Loop->getHeader();
 | 
						|
  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
 | 
						|
       E = Header->pred_end(); I != E; ++I)
 | 
						|
    if (!Blocks.Loop.count(*I))
 | 
						|
      Blocks.Preds.insert(*I);
 | 
						|
 | 
						|
  // Exit blocks.
 | 
						|
  for (MachineLoop::block_iterator I = Loop->block_begin(),
 | 
						|
       E = Loop->block_end(); I != E; ++I) {
 | 
						|
    const MachineBasicBlock *MBB = *I;
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
 | 
						|
       SE = MBB->succ_end(); SI != SE; ++SI)
 | 
						|
      if (!Blocks.Loop.count(*SI))
 | 
						|
        Blocks.Exits.insert(*SI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
 | 
						|
  OS << "Loop:";
 | 
						|
  print(B.Loop, OS);
 | 
						|
  OS << ", preds:";
 | 
						|
  print(B.Preds, OS);
 | 
						|
  OS << ", exits:";
 | 
						|
  print(B.Exits, OS);
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
 | 
						|
/// and around the Loop.
 | 
						|
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
 | 
						|
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
 | 
						|
  LoopPeripheralUse use = ContainedInLoop;
 | 
						|
  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const MachineBasicBlock *MBB = I->first;
 | 
						|
    // Is this a peripheral block?
 | 
						|
    if (use < MultiPeripheral &&
 | 
						|
        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
 | 
						|
      if (I->second > 1) use = MultiPeripheral;
 | 
						|
      else               use = SinglePeripheral;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Is it a loop block?
 | 
						|
    if (Blocks.Loop.count(MBB))
 | 
						|
      continue;
 | 
						|
    // It must be an unrelated block.
 | 
						|
    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
 | 
						|
    return OutsideLoop;
 | 
						|
  }
 | 
						|
  return use;
 | 
						|
}
 | 
						|
 | 
						|
/// getCriticalExits - It may be necessary to partially break critical edges
 | 
						|
/// leaving the loop if an exit block has predecessors from outside the loop
 | 
						|
/// periphery.
 | 
						|
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
 | 
						|
                                     BlockPtrSet &CriticalExits) {
 | 
						|
  CriticalExits.clear();
 | 
						|
 | 
						|
  // A critical exit block has curli live-in, and has a predecessor that is not
 | 
						|
  // in the loop nor a loop predecessor. For such an exit block, the edges
 | 
						|
  // carrying the new variable must be moved to a new pre-exit block.
 | 
						|
  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const MachineBasicBlock *Exit = *I;
 | 
						|
    // A single-predecessor exit block is definitely not a critical edge.
 | 
						|
    if (Exit->pred_size() == 1)
 | 
						|
      continue;
 | 
						|
    // This exit may not have curli live in at all. No need to split.
 | 
						|
    if (!lis_.isLiveInToMBB(*curli_, Exit))
 | 
						|
      continue;
 | 
						|
    // Does this exit block have a predecessor that is not a loop block or loop
 | 
						|
    // predecessor?
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
 | 
						|
         PE = Exit->pred_end(); PI != PE; ++PI) {
 | 
						|
      const MachineBasicBlock *Pred = *PI;
 | 
						|
      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
 | 
						|
        continue;
 | 
						|
      // This is a critical exit block, and we need to split the exit edge.
 | 
						|
      CriticalExits.insert(Exit);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
 | 
						|
                                     BlockPtrSet &CriticalPreds) {
 | 
						|
  CriticalPreds.clear();
 | 
						|
 | 
						|
  // A critical predecessor block has curli live-out, and has a successor that
 | 
						|
  // has curli live-in and is not in the loop nor a loop exit block. For such a
 | 
						|
  // predecessor block, we must carry the value in both the 'inside' and
 | 
						|
  // 'outside' registers.
 | 
						|
  for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const MachineBasicBlock *Pred = *I;
 | 
						|
    // Definitely not a critical edge.
 | 
						|
    if (Pred->succ_size() == 1)
 | 
						|
      continue;
 | 
						|
    // This block may not have curli live out at all if there is a PHI.
 | 
						|
    if (!lis_.isLiveOutOfMBB(*curli_, Pred))
 | 
						|
      continue;
 | 
						|
    // Does this block have a successor outside the loop?
 | 
						|
    for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
 | 
						|
         SE = Pred->succ_end(); SI != SE; ++SI) {
 | 
						|
      const MachineBasicBlock *Succ = *SI;
 | 
						|
      if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
 | 
						|
        continue;
 | 
						|
      if (!lis_.isLiveInToMBB(*curli_, Succ))
 | 
						|
        continue;
 | 
						|
      // This is a critical predecessor block.
 | 
						|
      CriticalPreds.insert(Pred);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// canSplitCriticalExits - Return true if it is possible to insert new exit
 | 
						|
/// blocks before the blocks in CriticalExits.
 | 
						|
bool
 | 
						|
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
 | 
						|
                                     BlockPtrSet &CriticalExits) {
 | 
						|
  // If we don't allow critical edge splitting, require no critical exits.
 | 
						|
  if (!AllowSplit)
 | 
						|
    return CriticalExits.empty();
 | 
						|
 | 
						|
  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const MachineBasicBlock *Succ = *I;
 | 
						|
    // We want to insert a new pre-exit MBB before Succ, and change all the
 | 
						|
    // in-loop blocks to branch to the pre-exit instead of Succ.
 | 
						|
    // Check that all the in-loop predecessors can be changed.
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
 | 
						|
         PE = Succ->pred_end(); PI != PE; ++PI) {
 | 
						|
      const MachineBasicBlock *Pred = *PI;
 | 
						|
      // The external predecessors won't be altered.
 | 
						|
      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
 | 
						|
        continue;
 | 
						|
      if (!canAnalyzeBranch(Pred))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If Succ's layout predecessor falls through, that too must be analyzable.
 | 
						|
    // We need to insert the pre-exit block in the gap.
 | 
						|
    MachineFunction::const_iterator MFI = Succ;
 | 
						|
    if (MFI == mf_.begin())
 | 
						|
      continue;
 | 
						|
    if (!canAnalyzeBranch(--MFI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // No problems found.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::analyze(const LiveInterval *li) {
 | 
						|
  clear();
 | 
						|
  curli_ = li;
 | 
						|
  analyzeUses();
 | 
						|
}
 | 
						|
 | 
						|
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
 | 
						|
  assert(curli_ && "Call analyze() before getBestSplitLoop");
 | 
						|
  if (usingLoops_.empty())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  LoopPtrSet Loops;
 | 
						|
  LoopBlocks Blocks;
 | 
						|
  BlockPtrSet CriticalExits;
 | 
						|
 | 
						|
  // We split around loops where curli is used outside the periphery.
 | 
						|
  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
 | 
						|
       E = usingLoops_.end(); I != E; ++I) {
 | 
						|
    const MachineLoop *Loop = I->first;
 | 
						|
    getLoopBlocks(Loop, Blocks);
 | 
						|
    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
 | 
						|
 | 
						|
    switch(analyzeLoopPeripheralUse(Blocks)) {
 | 
						|
    case OutsideLoop:
 | 
						|
      break;
 | 
						|
    case MultiPeripheral:
 | 
						|
      // FIXME: We could split a live range with multiple uses in a peripheral
 | 
						|
      // block and still make progress. However, it is possible that splitting
 | 
						|
      // another live range will insert copies into a peripheral block, and
 | 
						|
      // there is a small chance we can enter an infinity loop, inserting copies
 | 
						|
      // forever.
 | 
						|
      // For safety, stick to splitting live ranges with uses outside the
 | 
						|
      // periphery.
 | 
						|
      DEBUG(dbgs() << ": multiple peripheral uses\n");
 | 
						|
      break;
 | 
						|
    case ContainedInLoop:
 | 
						|
      DEBUG(dbgs() << ": fully contained\n");
 | 
						|
      continue;
 | 
						|
    case SinglePeripheral:
 | 
						|
      DEBUG(dbgs() << ": single peripheral use\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Will it be possible to split around this loop?
 | 
						|
    getCriticalExits(Blocks, CriticalExits);
 | 
						|
    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
 | 
						|
    if (!canSplitCriticalExits(Blocks, CriticalExits))
 | 
						|
      continue;
 | 
						|
    // This is a possible split.
 | 
						|
    Loops.insert(Loop);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
 | 
						|
               << " candidate loops.\n");
 | 
						|
 | 
						|
  if (Loops.empty())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Pick the earliest loop.
 | 
						|
  // FIXME: Are there other heuristics to consider?
 | 
						|
  const MachineLoop *Best = 0;
 | 
						|
  SlotIndex BestIdx;
 | 
						|
  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
 | 
						|
    if (!Best || Idx < BestIdx)
 | 
						|
      Best = *I, BestIdx = Idx;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
 | 
						|
  return Best;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               LiveIntervalMap
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Work around the fact that the std::pair constructors are broken for pointer
 | 
						|
// pairs in some implementations. makeVV(x, 0) works.
 | 
						|
static inline std::pair<const VNInfo*, VNInfo*>
 | 
						|
makeVV(const VNInfo *a, VNInfo *b) {
 | 
						|
  return std::make_pair(a, b);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervalMap::reset(LiveInterval *li) {
 | 
						|
  li_ = li;
 | 
						|
  valueMap_.clear();
 | 
						|
  liveOutCache_.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
 | 
						|
  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
 | 
						|
  return i != valueMap_.end() && i->second == 0;
 | 
						|
}
 | 
						|
 | 
						|
// defValue - Introduce a li_ def for ParentVNI that could be later than
 | 
						|
// ParentVNI->def.
 | 
						|
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
 | 
						|
  assert(li_ && "call reset first");
 | 
						|
  assert(ParentVNI && "Mapping  NULL value");
 | 
						|
  assert(Idx.isValid() && "Invalid SlotIndex");
 | 
						|
  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
 | 
						|
 | 
						|
  // Create a new value.
 | 
						|
  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
 | 
						|
 | 
						|
  // Preserve the PHIDef bit.
 | 
						|
  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
 | 
						|
    VNI->setIsPHIDef(true);
 | 
						|
 | 
						|
  // Use insert for lookup, so we can add missing values with a second lookup.
 | 
						|
  std::pair<ValueMap::iterator,bool> InsP =
 | 
						|
    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
 | 
						|
 | 
						|
  // This is now a complex def. Mark with a NULL in valueMap.
 | 
						|
  if (!InsP.second)
 | 
						|
    InsP.first->second = 0;
 | 
						|
 | 
						|
  return VNI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// mapValue - Find the mapped value for ParentVNI at Idx.
 | 
						|
// Potentially create phi-def values.
 | 
						|
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
 | 
						|
                                  bool *simple) {
 | 
						|
  assert(li_ && "call reset first");
 | 
						|
  assert(ParentVNI && "Mapping  NULL value");
 | 
						|
  assert(Idx.isValid() && "Invalid SlotIndex");
 | 
						|
  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
 | 
						|
 | 
						|
  // Use insert for lookup, so we can add missing values with a second lookup.
 | 
						|
  std::pair<ValueMap::iterator,bool> InsP =
 | 
						|
    valueMap_.insert(makeVV(ParentVNI, 0));
 | 
						|
 | 
						|
  // This was an unknown value. Create a simple mapping.
 | 
						|
  if (InsP.second) {
 | 
						|
    if (simple) *simple = true;
 | 
						|
    return InsP.first->second = li_->createValueCopy(ParentVNI,
 | 
						|
                                                     lis_.getVNInfoAllocator());
 | 
						|
  }
 | 
						|
 | 
						|
  // This was a simple mapped value.
 | 
						|
  if (InsP.first->second) {
 | 
						|
    if (simple) *simple = true;
 | 
						|
    return InsP.first->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a complex mapped value. There may be multiple defs, and we may need
 | 
						|
  // to create phi-defs.
 | 
						|
  if (simple) *simple = false;
 | 
						|
  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
 | 
						|
  assert(IdxMBB && "No MBB at Idx");
 | 
						|
 | 
						|
  // Is there a def in the same MBB we can extend?
 | 
						|
  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
 | 
						|
    return VNI;
 | 
						|
 | 
						|
  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
 | 
						|
  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
 | 
						|
  // Perform a search for all predecessor blocks where we know the dominating
 | 
						|
  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
 | 
						|
  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
 | 
						|
               << " at " << Idx << " in " << *li_ << '\n');
 | 
						|
 | 
						|
  // Blocks where li_ should be live-in.
 | 
						|
  SmallVector<MachineDomTreeNode*, 16> LiveIn;
 | 
						|
  LiveIn.push_back(mdt_[IdxMBB]);
 | 
						|
 | 
						|
  // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
 | 
						|
  for (unsigned i = 0; i != LiveIn.size(); ++i) {
 | 
						|
    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
 | 
						|
    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
           PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
       MachineBasicBlock *Pred = *PI;
 | 
						|
       // Is this a known live-out block?
 | 
						|
       std::pair<LiveOutMap::iterator,bool> LOIP =
 | 
						|
         liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
 | 
						|
       // Yes, we have been here before.
 | 
						|
       if (!LOIP.second) {
 | 
						|
         if (VNInfo *VNI = LOIP.first->second.first) {
 | 
						|
           DEBUG(dbgs() << "    known valno #" << VNI->id
 | 
						|
                        << " at BB#" << Pred->getNumber() << '\n');
 | 
						|
         }
 | 
						|
         continue;
 | 
						|
       }
 | 
						|
 | 
						|
       // Does Pred provide a live-out value?
 | 
						|
       SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
 | 
						|
       if (VNInfo *VNI = extendTo(Pred, Last)) {
 | 
						|
         MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
 | 
						|
         DEBUG(dbgs() << "    found valno #" << VNI->id
 | 
						|
                      << " from BB#" << DefMBB->getNumber()
 | 
						|
                      << " at BB#" << Pred->getNumber() << '\n');
 | 
						|
         LiveOutPair &LOP = LOIP.first->second;
 | 
						|
         LOP.first = VNI;
 | 
						|
         LOP.second = mdt_[lis_.getMBBFromIndex(VNI->def)];
 | 
						|
         continue;
 | 
						|
       }
 | 
						|
       // No, we need a live-in value for Pred as well
 | 
						|
       if (Pred != IdxMBB)
 | 
						|
         LiveIn.push_back(mdt_[Pred]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We may need to add phi-def values to preserve the SSA form.
 | 
						|
  // This is essentially the same iterative algorithm that SSAUpdater uses,
 | 
						|
  // except we already have a dominator tree, so we don't have to recompute it.
 | 
						|
  VNInfo *IdxVNI = 0;
 | 
						|
  unsigned Changes;
 | 
						|
  do {
 | 
						|
    Changes = 0;
 | 
						|
    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
 | 
						|
    // Propagate live-out values down the dominator tree, inserting phi-defs when
 | 
						|
    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
 | 
						|
    // likely for us to visit immediate dominators before their children.
 | 
						|
    for (unsigned i = LiveIn.size(); i; --i) {
 | 
						|
      MachineDomTreeNode *Node = LiveIn[i-1];
 | 
						|
      MachineBasicBlock *MBB = Node->getBlock();
 | 
						|
      MachineDomTreeNode *IDom = Node->getIDom();
 | 
						|
      LiveOutPair IDomValue;
 | 
						|
      // We need a live-in value to a block with no immediate dominator?
 | 
						|
      // This is probably an unreachable block that has survived somehow.
 | 
						|
      bool needPHI = !IDom;
 | 
						|
 | 
						|
      // Get the IDom live-out value.
 | 
						|
      if (!needPHI) {
 | 
						|
        LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
 | 
						|
        if (I != liveOutCache_.end())
 | 
						|
          IDomValue = I->second;
 | 
						|
        else
 | 
						|
          // If IDom is outside our set of live-out blocks, there must be new
 | 
						|
          // defs, and we need a phi-def here.
 | 
						|
          needPHI = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // IDom dominates all of our predecessors, but it may not be the immediate
 | 
						|
      // dominator. Check if any of them have live-out values that are properly
 | 
						|
      // dominated by IDom. If so, we need a phi-def here.
 | 
						|
      if (!needPHI) {
 | 
						|
        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
               PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
          LiveOutPair Value = liveOutCache_[*PI];
 | 
						|
          if (!Value.first || Value.first == IDomValue.first)
 | 
						|
            continue;
 | 
						|
          // This predecessor is carrying something other than IDomValue.
 | 
						|
          // It could be because IDomValue hasn't propagated yet, or it could be
 | 
						|
          // because MBB is in the dominance frontier of that value.
 | 
						|
          if (mdt_.dominates(IDom, Value.second)) {
 | 
						|
            needPHI = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Create a phi-def if required.
 | 
						|
      if (needPHI) {
 | 
						|
        ++Changes;
 | 
						|
        SlotIndex Start = lis_.getMBBStartIdx(MBB);
 | 
						|
        VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
 | 
						|
        VNI->setIsPHIDef(true);
 | 
						|
        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
 | 
						|
                     << " phi-def #" << VNI->id << " at " << Start << '\n');
 | 
						|
        // We no longer need li_ to be live-in.
 | 
						|
        LiveIn.erase(LiveIn.begin()+(i-1));
 | 
						|
        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
 | 
						|
        if (MBB == IdxMBB)
 | 
						|
          IdxVNI = VNI;
 | 
						|
        // Check if we need to update live-out info.
 | 
						|
        LiveOutMap::iterator I = liveOutCache_.find(MBB);
 | 
						|
        if (I == liveOutCache_.end() || I->second.second == Node) {
 | 
						|
          // We already have a live-out defined in MBB, so this must be IdxMBB.
 | 
						|
          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
 | 
						|
          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
 | 
						|
        } else {
 | 
						|
          // This phi-def is also live-out, so color the whole block.
 | 
						|
          li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
 | 
						|
          I->second = LiveOutPair(VNI, Node);
 | 
						|
        }
 | 
						|
      } else if (IDomValue.first) {
 | 
						|
        // No phi-def here. Remember incoming value for IdxMBB.
 | 
						|
        if (MBB == IdxMBB)
 | 
						|
          IdxVNI = IDomValue.first;
 | 
						|
        // Propagate IDomValue if needed:
 | 
						|
        // MBB is live-out and doesn't define its own value.
 | 
						|
        LiveOutMap::iterator I = liveOutCache_.find(MBB);
 | 
						|
        if (I != liveOutCache_.end() && I->second.second != Node &&
 | 
						|
            I->second.first != IDomValue.first) {
 | 
						|
          ++Changes;
 | 
						|
          I->second = IDomValue;
 | 
						|
          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
 | 
						|
                       << " idom valno #" << IDomValue.first->id
 | 
						|
                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
 | 
						|
  } while (Changes);
 | 
						|
 | 
						|
  assert(IdxVNI && "Didn't find value for Idx");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Check the liveOutCache_ invariants.
 | 
						|
  for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
 | 
						|
         I != E; ++I) {
 | 
						|
    assert(I->first && "Null MBB entry in cache");
 | 
						|
    assert(I->second.first && "Null VNInfo in cache");
 | 
						|
    assert(I->second.second && "Null DomTreeNode in cache");
 | 
						|
    if (I->second.second->getBlock() == I->first)
 | 
						|
      continue;
 | 
						|
    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
 | 
						|
           PE = I->first->pred_end(); PI != PE; ++PI)
 | 
						|
      assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Since we went through the trouble of a full BFS visiting all reaching defs,
 | 
						|
  // the values in LiveIn are now accurate. No more phi-defs are needed
 | 
						|
  // for these blocks, so we can color the live ranges.
 | 
						|
  // This makes the next mapValue call much faster.
 | 
						|
  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
 | 
						|
    SlotIndex Start = lis_.getMBBStartIdx(MBB);
 | 
						|
    if (MBB == IdxMBB) {
 | 
						|
      li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Anything in LiveIn other than IdxMBB is live-through.
 | 
						|
    VNInfo *VNI = liveOutCache_.lookup(MBB).first;
 | 
						|
    assert(VNI && "Missing block value");
 | 
						|
    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
 | 
						|
  }
 | 
						|
 | 
						|
  return IdxVNI;
 | 
						|
}
 | 
						|
 | 
						|
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
 | 
						|
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
 | 
						|
// Return the found VNInfo, or NULL.
 | 
						|
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
 | 
						|
  assert(li_ && "call reset first");
 | 
						|
  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
 | 
						|
  if (I == li_->begin())
 | 
						|
    return 0;
 | 
						|
  --I;
 | 
						|
  if (I->end <= lis_.getMBBStartIdx(MBB))
 | 
						|
    return 0;
 | 
						|
  if (I->end <= Idx)
 | 
						|
    I->end = Idx.getNextSlot();
 | 
						|
  return I->valno;
 | 
						|
}
 | 
						|
 | 
						|
// addSimpleRange - Add a simple range from parentli_ to li_.
 | 
						|
// ParentVNI must be live in the [Start;End) interval.
 | 
						|
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
 | 
						|
                                     const VNInfo *ParentVNI) {
 | 
						|
  assert(li_ && "call reset first");
 | 
						|
  bool simple;
 | 
						|
  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
 | 
						|
  // A simple mapping is easy.
 | 
						|
  if (simple) {
 | 
						|
    li_->addRange(LiveRange(Start, End, VNI));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // ParentVNI is a complex value. We must map per MBB.
 | 
						|
  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
 | 
						|
  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
 | 
						|
 | 
						|
  if (MBB == MBBE) {
 | 
						|
    li_->addRange(LiveRange(Start, End, VNI));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // First block.
 | 
						|
  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
 | 
						|
 | 
						|
  // Run sequence of full blocks.
 | 
						|
  for (++MBB; MBB != MBBE; ++MBB) {
 | 
						|
    Start = lis_.getMBBStartIdx(MBB);
 | 
						|
    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
 | 
						|
                            mapValue(ParentVNI, Start)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Final block.
 | 
						|
  Start = lis_.getMBBStartIdx(MBB);
 | 
						|
  if (Start != End)
 | 
						|
    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
 | 
						|
}
 | 
						|
 | 
						|
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
 | 
						|
/// All needed values whose def is not inside [Start;End) must be defined
 | 
						|
/// beforehand so mapValue will work.
 | 
						|
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
 | 
						|
  assert(li_ && "call reset first");
 | 
						|
  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
 | 
						|
  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
 | 
						|
 | 
						|
  // Check if --I begins before Start and overlaps.
 | 
						|
  if (I != B) {
 | 
						|
    --I;
 | 
						|
    if (I->end > Start)
 | 
						|
      addSimpleRange(Start, std::min(End, I->end), I->valno);
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
 | 
						|
  // The remaining ranges begin after Start.
 | 
						|
  for (;I != E && I->start < End; ++I)
 | 
						|
    addSimpleRange(I->start, std::min(End, I->end), I->valno);
 | 
						|
}
 | 
						|
 | 
						|
VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
 | 
						|
                                       const VNInfo *ParentVNI,
 | 
						|
                                       MachineBasicBlock &MBB,
 | 
						|
                                       MachineBasicBlock::iterator I) {
 | 
						|
  const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
 | 
						|
    get(TargetOpcode::COPY);
 | 
						|
  MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
 | 
						|
  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
 | 
						|
  VNInfo *VNI = defValue(ParentVNI, DefIdx);
 | 
						|
  VNI->setCopy(MI);
 | 
						|
  li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
 | 
						|
  return VNI;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               Split Editor
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
 | 
						|
SplitEditor::SplitEditor(SplitAnalysis &sa,
 | 
						|
                         LiveIntervals &lis,
 | 
						|
                         VirtRegMap &vrm,
 | 
						|
                         MachineDominatorTree &mdt,
 | 
						|
                         LiveRangeEdit &edit)
 | 
						|
  : sa_(sa), lis_(lis), vrm_(vrm),
 | 
						|
    mri_(vrm.getMachineFunction().getRegInfo()),
 | 
						|
    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
 | 
						|
    edit_(edit),
 | 
						|
    dupli_(lis_, mdt, edit.getParent()),
 | 
						|
    openli_(lis_, mdt, edit.getParent())
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
 | 
						|
  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
 | 
						|
    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a new virtual register and live interval.
 | 
						|
void SplitEditor::openIntv() {
 | 
						|
  assert(!openli_.getLI() && "Previous LI not closed before openIntv");
 | 
						|
 | 
						|
  if (!dupli_.getLI())
 | 
						|
    dupli_.reset(&edit_.create(mri_, lis_, vrm_));
 | 
						|
 | 
						|
  openli_.reset(&edit_.create(mri_, lis_, vrm_));
 | 
						|
}
 | 
						|
 | 
						|
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
 | 
						|
/// not live before Idx, a COPY is not inserted.
 | 
						|
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
 | 
						|
  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
 | 
						|
  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
 | 
						|
  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getUseIndex());
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | 
						|
  truncatedValues.insert(ParentVNI);
 | 
						|
  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
 | 
						|
  assert(MI && "enterIntvBefore called with invalid index");
 | 
						|
  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
 | 
						|
                                      *MI->getParent(), MI);
 | 
						|
  openli_.getLI()->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
 | 
						|
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// enterIntvAtEnd - Enter openli at the end of MBB.
 | 
						|
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
 | 
						|
  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
 | 
						|
  SlotIndex End = lis_.getMBBEndIdx(&MBB);
 | 
						|
  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
 | 
						|
  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End.getPrevSlot());
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | 
						|
  truncatedValues.insert(ParentVNI);
 | 
						|
  VNInfo *VNI = openli_.defByCopyFrom(edit_.getReg(), ParentVNI,
 | 
						|
                                      MBB, MBB.getFirstTerminator());
 | 
						|
  // Make sure openli is live out of MBB.
 | 
						|
  openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
 | 
						|
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// useIntv - indicate that all instructions in MBB should use openli.
 | 
						|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
 | 
						|
  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
 | 
						|
  assert(openli_.getLI() && "openIntv not called before useIntv");
 | 
						|
  openli_.addRange(Start, End);
 | 
						|
  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
 | 
						|
               << *openli_.getLI() << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// leaveIntvAfter - Leave openli after the instruction at Idx.
 | 
						|
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
 | 
						|
  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
 | 
						|
  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
 | 
						|
 | 
						|
  // The interval must be live beyond the instruction at Idx.
 | 
						|
  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx.getBoundaryIndex());
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
 | 
						|
  MachineBasicBlock *MBB = MII->getParent();
 | 
						|
  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI, *MBB,
 | 
						|
                                     llvm::next(MII));
 | 
						|
 | 
						|
  // Finally we must make sure that openli is properly extended from Idx to the
 | 
						|
  // new copy.
 | 
						|
  openli_.addSimpleRange(Idx.getBoundaryIndex(), VNI->def, ParentVNI);
 | 
						|
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// leaveIntvAtTop - Leave the interval at the top of MBB.
 | 
						|
/// Currently, only one value can leave the interval.
 | 
						|
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
 | 
						|
  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
 | 
						|
  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
 | 
						|
  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
 | 
						|
 | 
						|
  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We are going to insert a back copy, so we must have a dupli_.
 | 
						|
  VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
 | 
						|
                                     MBB, MBB.begin());
 | 
						|
 | 
						|
  // Finally we must make sure that openli is properly extended from Start to
 | 
						|
  // the new copy.
 | 
						|
  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
 | 
						|
  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// closeIntv - Indicate that we are done editing the currently open
 | 
						|
/// LiveInterval, and ranges can be trimmed.
 | 
						|
void SplitEditor::closeIntv() {
 | 
						|
  assert(openli_.getLI() && "openIntv not called before closeIntv");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "    closeIntv cleaning up\n");
 | 
						|
  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
 | 
						|
  openli_.reset(0);
 | 
						|
}
 | 
						|
 | 
						|
/// rewrite - Rewrite all uses of reg to use the new registers.
 | 
						|
void SplitEditor::rewrite(unsigned reg) {
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
 | 
						|
       RE = mri_.reg_end(); RI != RE;) {
 | 
						|
    MachineOperand &MO = RI.getOperand();
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    ++RI;
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      DEBUG(dbgs() << "Zapping " << *MI);
 | 
						|
      // FIXME: We can do much better with debug values.
 | 
						|
      MO.setReg(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SlotIndex Idx = lis_.getInstructionIndex(MI);
 | 
						|
    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
 | 
						|
    LiveInterval *LI = 0;
 | 
						|
    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
 | 
						|
         ++I) {
 | 
						|
      LiveInterval *testli = *I;
 | 
						|
      if (testli->liveAt(Idx)) {
 | 
						|
        LI = testli;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
 | 
						|
    assert(LI && "No register was live at use");
 | 
						|
    MO.setReg(LI->reg);
 | 
						|
    DEBUG(dbgs() << '\t' << *MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
 | 
						|
  // Build vector of iterator pairs from the intervals.
 | 
						|
  typedef std::pair<LiveInterval::const_iterator,
 | 
						|
                    LiveInterval::const_iterator> IIPair;
 | 
						|
  SmallVector<IIPair, 8> Iters;
 | 
						|
  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
 | 
						|
       ++LI) {
 | 
						|
    if (*LI == dupli_.getLI())
 | 
						|
      continue;
 | 
						|
    LiveInterval::const_iterator I = (*LI)->find(Start);
 | 
						|
    LiveInterval::const_iterator E = (*LI)->end();
 | 
						|
    if (I != E)
 | 
						|
      Iters.push_back(std::make_pair(I, E));
 | 
						|
  }
 | 
						|
 | 
						|
  SlotIndex sidx = Start;
 | 
						|
  // Break [Start;End) into segments that don't overlap any intervals.
 | 
						|
  for (;;) {
 | 
						|
    SlotIndex next = sidx, eidx = End;
 | 
						|
    // Find overlapping intervals.
 | 
						|
    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
 | 
						|
      LiveInterval::const_iterator I = Iters[i].first;
 | 
						|
      // Interval I is overlapping [sidx;eidx). Trim sidx.
 | 
						|
      if (I->start <= sidx) {
 | 
						|
        sidx = I->end;
 | 
						|
        // Move to the next run, remove iters when all are consumed.
 | 
						|
        I = ++Iters[i].first;
 | 
						|
        if (I == Iters[i].second) {
 | 
						|
          Iters.erase(Iters.begin() + i);
 | 
						|
          --i;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Trim eidx too if needed.
 | 
						|
      if (I->start >= eidx)
 | 
						|
        continue;
 | 
						|
      eidx = I->start;
 | 
						|
      next = I->end;
 | 
						|
    }
 | 
						|
    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
 | 
						|
    if (sidx < eidx)
 | 
						|
      dupli_.addSimpleRange(sidx, eidx, VNI);
 | 
						|
    // If the interval end was truncated, we can try again from next.
 | 
						|
    if (next <= sidx)
 | 
						|
      break;
 | 
						|
    sidx = next;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::computeRemainder() {
 | 
						|
  // First we need to fill in the live ranges in dupli.
 | 
						|
  // If values were redefined, we need a full recoloring with SSA update.
 | 
						|
  // If values were truncated, we only need to truncate the ranges.
 | 
						|
  // If values were partially rematted, we should shrink to uses.
 | 
						|
  // If values were fully rematted, they should be omitted.
 | 
						|
  // FIXME: If a single value is redefined, just move the def and truncate.
 | 
						|
  LiveInterval &parent = edit_.getParent();
 | 
						|
 | 
						|
  // Values that are fully contained in the split intervals.
 | 
						|
  SmallPtrSet<const VNInfo*, 8> deadValues;
 | 
						|
  // Map all curli values that should have live defs in dupli.
 | 
						|
  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
 | 
						|
       E = parent.vni_end(); I != E; ++I) {
 | 
						|
    const VNInfo *VNI = *I;
 | 
						|
    // Original def is contained in the split intervals.
 | 
						|
    if (intervalsLiveAt(VNI->def)) {
 | 
						|
      // Did this value escape?
 | 
						|
      if (dupli_.isMapped(VNI))
 | 
						|
        truncatedValues.insert(VNI);
 | 
						|
      else
 | 
						|
        deadValues.insert(VNI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Add minimal live range at the definition.
 | 
						|
    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
 | 
						|
    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add all ranges to dupli.
 | 
						|
  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const LiveRange &LR = *I;
 | 
						|
    if (truncatedValues.count(LR.valno)) {
 | 
						|
      // recolor after removing intervals_.
 | 
						|
      addTruncSimpleRange(LR.start, LR.end, LR.valno);
 | 
						|
    } else if (!deadValues.count(LR.valno)) {
 | 
						|
      // recolor without truncation.
 | 
						|
      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Extend dupli_ to be live out of any critical loop predecessors.
 | 
						|
  // This means we have multiple registers live out of those blocks.
 | 
						|
  // The alternative would be to split the critical edges.
 | 
						|
  if (criticalPreds_.empty())
 | 
						|
    return;
 | 
						|
  for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
 | 
						|
       E = criticalPreds_.end(); I != E; ++I)
 | 
						|
     dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
 | 
						|
   criticalPreds_.clear();
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::finish() {
 | 
						|
  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
 | 
						|
  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
 | 
						|
 | 
						|
  // Complete dupli liveness.
 | 
						|
  computeRemainder();
 | 
						|
 | 
						|
  // Get rid of unused values and set phi-kill flags.
 | 
						|
  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
 | 
						|
    (*I)->RenumberValues(lis_);
 | 
						|
 | 
						|
  // Rewrite instructions.
 | 
						|
  rewrite(edit_.getReg());
 | 
						|
 | 
						|
  // Now check if any registers were separated into multiple components.
 | 
						|
  ConnectedVNInfoEqClasses ConEQ(lis_);
 | 
						|
  for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
 | 
						|
    // Don't use iterators, they are invalidated by create() below.
 | 
						|
    LiveInterval *li = edit_.get(i);
 | 
						|
    unsigned NumComp = ConEQ.Classify(li);
 | 
						|
    if (NumComp <= 1)
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
 | 
						|
    SmallVector<LiveInterval*, 8> dups;
 | 
						|
    dups.push_back(li);
 | 
						|
    for (unsigned i = 1; i != NumComp; ++i)
 | 
						|
      dups.push_back(&edit_.create(mri_, lis_, vrm_));
 | 
						|
    ConEQ.Distribute(&dups[0]);
 | 
						|
    // Rewrite uses to the new regs.
 | 
						|
    rewrite(li->reg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate spill weight and allocation hints for new intervals.
 | 
						|
  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
 | 
						|
  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
 | 
						|
    LiveInterval &li = **I;
 | 
						|
    vrai.CalculateRegClass(li.reg);
 | 
						|
    vrai.CalculateWeightAndHint(li);
 | 
						|
    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
 | 
						|
                 << ":" << li << '\n');
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               Loop Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
 | 
						|
  SplitAnalysis::LoopBlocks Blocks;
 | 
						|
  sa_.getLoopBlocks(Loop, Blocks);
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
 | 
						|
  });
 | 
						|
 | 
						|
  // Break critical edges as needed.
 | 
						|
  SplitAnalysis::BlockPtrSet CriticalExits;
 | 
						|
  sa_.getCriticalExits(Blocks, CriticalExits);
 | 
						|
  assert(CriticalExits.empty() && "Cannot break critical exits yet");
 | 
						|
 | 
						|
  // Get critical predecessors so computeRemainder can deal with them.
 | 
						|
  sa_.getCriticalPreds(Blocks, criticalPreds_);
 | 
						|
 | 
						|
  // Create new live interval for the loop.
 | 
						|
  openIntv();
 | 
						|
 | 
						|
  // Insert copies in the predecessors.
 | 
						|
  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
 | 
						|
       E = Blocks.Preds.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
 | 
						|
    enterIntvAtEnd(MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Switch all loop blocks.
 | 
						|
  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
 | 
						|
       E = Blocks.Loop.end(); I != E; ++I)
 | 
						|
     useIntv(**I);
 | 
						|
 | 
						|
  // Insert back copies in the exit blocks.
 | 
						|
  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
 | 
						|
       E = Blocks.Exits.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
 | 
						|
    leaveIntvAtTop(MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Done.
 | 
						|
  closeIntv();
 | 
						|
  finish();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Single Block Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getMultiUseBlocks - if curli has more than one use in a basic block, it
 | 
						|
/// may be an advantage to split curli for the duration of the block.
 | 
						|
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
 | 
						|
  // If curli is local to one block, there is no point to splitting it.
 | 
						|
  if (usingBlocks_.size() <= 1)
 | 
						|
    return false;
 | 
						|
  // Add blocks with multiple uses.
 | 
						|
  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
 | 
						|
       I != E; ++I)
 | 
						|
    switch (I->second) {
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      continue;
 | 
						|
    case 2: {
 | 
						|
      // When there are only two uses and curli is both live in and live out,
 | 
						|
      // we don't really win anything by isolating the block since we would be
 | 
						|
      // inserting two copies.
 | 
						|
      // The remaing register would still have two uses in the block. (Unless it
 | 
						|
      // separates into disconnected components).
 | 
						|
      if (lis_.isLiveInToMBB(*curli_, I->first) &&
 | 
						|
          lis_.isLiveOutOfMBB(*curli_, I->first))
 | 
						|
        continue;
 | 
						|
    } // Fall through.
 | 
						|
    default:
 | 
						|
      Blocks.insert(I->first);
 | 
						|
    }
 | 
						|
  return !Blocks.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// splitSingleBlocks - Split curli into a separate live interval inside each
 | 
						|
/// basic block in Blocks.
 | 
						|
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
 | 
						|
  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
 | 
						|
  // Determine the first and last instruction using curli in each block.
 | 
						|
  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
 | 
						|
  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
 | 
						|
  IndexPairMap MBBRange;
 | 
						|
  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
 | 
						|
       E = sa_.usingInstrs_.end(); I != E; ++I) {
 | 
						|
    const MachineBasicBlock *MBB = (*I)->getParent();
 | 
						|
    if (!Blocks.count(MBB))
 | 
						|
      continue;
 | 
						|
    SlotIndex Idx = lis_.getInstructionIndex(*I);
 | 
						|
    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
 | 
						|
    IndexPair &IP = MBBRange[MBB];
 | 
						|
    if (!IP.first.isValid() || Idx < IP.first)
 | 
						|
      IP.first = Idx;
 | 
						|
    if (!IP.second.isValid() || Idx > IP.second)
 | 
						|
      IP.second = Idx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a new interval for each block.
 | 
						|
  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
 | 
						|
       E = Blocks.end(); I != E; ++I) {
 | 
						|
    IndexPair &IP = MBBRange[*I];
 | 
						|
    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
 | 
						|
                 << IP.first << ';' << IP.second << ")\n");
 | 
						|
    assert(IP.first.isValid() && IP.second.isValid());
 | 
						|
 | 
						|
    openIntv();
 | 
						|
    enterIntvBefore(IP.first);
 | 
						|
    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
 | 
						|
    leaveIntvAfter(IP.second);
 | 
						|
    closeIntv();
 | 
						|
  }
 | 
						|
  finish();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Sub Block Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getBlockForInsideSplit - If curli is contained inside a single basic block,
 | 
						|
/// and it wou pay to subdivide the interval inside that block, return it.
 | 
						|
/// Otherwise return NULL. The returned block can be passed to
 | 
						|
/// SplitEditor::splitInsideBlock.
 | 
						|
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
 | 
						|
  // The interval must be exclusive to one block.
 | 
						|
  if (usingBlocks_.size() != 1)
 | 
						|
    return 0;
 | 
						|
  // Don't to this for less than 4 instructions. We want to be sure that
 | 
						|
  // splitting actually reduces the instruction count per interval.
 | 
						|
  if (usingInstrs_.size() < 4)
 | 
						|
    return 0;
 | 
						|
  return usingBlocks_.begin()->first;
 | 
						|
}
 | 
						|
 | 
						|
/// splitInsideBlock - Split curli into multiple intervals inside MBB.
 | 
						|
void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
 | 
						|
  SmallVector<SlotIndex, 32> Uses;
 | 
						|
  Uses.reserve(sa_.usingInstrs_.size());
 | 
						|
  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
 | 
						|
       E = sa_.usingInstrs_.end(); I != E; ++I)
 | 
						|
    if ((*I)->getParent() == MBB)
 | 
						|
      Uses.push_back(lis_.getInstructionIndex(*I));
 | 
						|
  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
 | 
						|
               << Uses.size() << " instructions.\n");
 | 
						|
  assert(Uses.size() >= 3 && "Need at least 3 instructions");
 | 
						|
  array_pod_sort(Uses.begin(), Uses.end());
 | 
						|
 | 
						|
  // Simple algorithm: Find the largest gap between uses as determined by slot
 | 
						|
  // indices. Create new intervals for instructions before the gap and after the
 | 
						|
  // gap.
 | 
						|
  unsigned bestPos = 0;
 | 
						|
  int bestGap = 0;
 | 
						|
  DEBUG(dbgs() << "    dist (" << Uses[0]);
 | 
						|
  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
 | 
						|
    int g = Uses[i-1].distance(Uses[i]);
 | 
						|
    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
 | 
						|
    if (g > bestGap)
 | 
						|
      bestPos = i, bestGap = g;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
 | 
						|
 | 
						|
  // bestPos points to the first use after the best gap.
 | 
						|
  assert(bestPos > 0 && "Invalid gap");
 | 
						|
 | 
						|
  // FIXME: Don't create intervals for low densities.
 | 
						|
 | 
						|
  // First interval before the gap. Don't create single-instr intervals.
 | 
						|
  if (bestPos > 1) {
 | 
						|
    openIntv();
 | 
						|
    enterIntvBefore(Uses.front());
 | 
						|
    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
 | 
						|
    leaveIntvAfter(Uses[bestPos-1]);
 | 
						|
    closeIntv();
 | 
						|
  }
 | 
						|
 | 
						|
  // Second interval after the gap.
 | 
						|
  if (bestPos < Uses.size()-1) {
 | 
						|
    openIntv();
 | 
						|
    enterIntvBefore(Uses[bestPos]);
 | 
						|
    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
 | 
						|
    leaveIntvAfter(Uses.back());
 | 
						|
    closeIntv();
 | 
						|
  }
 | 
						|
 | 
						|
  finish();
 | 
						|
}
 |