forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			6131 lines
		
	
	
		
			225 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6131 lines
		
	
	
		
			225 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements the ASTContext interface.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExternalASTSource.h"
 | 
						|
#include "clang/AST/ASTMutationListener.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/AST/Mangle.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "CXXABI.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
unsigned ASTContext::NumImplicitDefaultConstructors;
 | 
						|
unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
 | 
						|
unsigned ASTContext::NumImplicitCopyConstructors;
 | 
						|
unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
 | 
						|
unsigned ASTContext::NumImplicitCopyAssignmentOperators;
 | 
						|
unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
 | 
						|
unsigned ASTContext::NumImplicitDestructors;
 | 
						|
unsigned ASTContext::NumImplicitDestructorsDeclared;
 | 
						|
 | 
						|
enum FloatingRank {
 | 
						|
  FloatRank, DoubleRank, LongDoubleRank
 | 
						|
};
 | 
						|
 | 
						|
void 
 | 
						|
ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, 
 | 
						|
                                               TemplateTemplateParmDecl *Parm) {
 | 
						|
  ID.AddInteger(Parm->getDepth());
 | 
						|
  ID.AddInteger(Parm->getPosition());
 | 
						|
  ID.AddBoolean(Parm->isParameterPack());
 | 
						|
 | 
						|
  TemplateParameterList *Params = Parm->getTemplateParameters();
 | 
						|
  ID.AddInteger(Params->size());
 | 
						|
  for (TemplateParameterList::const_iterator P = Params->begin(), 
 | 
						|
                                          PEnd = Params->end();
 | 
						|
       P != PEnd; ++P) {
 | 
						|
    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
 | 
						|
      ID.AddInteger(0);
 | 
						|
      ID.AddBoolean(TTP->isParameterPack());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
 | 
						|
      ID.AddInteger(1);
 | 
						|
      ID.AddBoolean(NTTP->isParameterPack());
 | 
						|
      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
 | 
						|
      if (NTTP->isExpandedParameterPack()) {
 | 
						|
        ID.AddBoolean(true);
 | 
						|
        ID.AddInteger(NTTP->getNumExpansionTypes());
 | 
						|
        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
 | 
						|
          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
 | 
						|
      } else 
 | 
						|
        ID.AddBoolean(false);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
 | 
						|
    ID.AddInteger(2);
 | 
						|
    Profile(ID, TTP);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TemplateTemplateParmDecl *
 | 
						|
ASTContext::getCanonicalTemplateTemplateParmDecl(
 | 
						|
                                          TemplateTemplateParmDecl *TTP) const {
 | 
						|
  // Check if we already have a canonical template template parameter.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  CanonicalTemplateTemplateParm::Profile(ID, TTP);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  CanonicalTemplateTemplateParm *Canonical
 | 
						|
    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  if (Canonical)
 | 
						|
    return Canonical->getParam();
 | 
						|
  
 | 
						|
  // Build a canonical template parameter list.
 | 
						|
  TemplateParameterList *Params = TTP->getTemplateParameters();
 | 
						|
  llvm::SmallVector<NamedDecl *, 4> CanonParams;
 | 
						|
  CanonParams.reserve(Params->size());
 | 
						|
  for (TemplateParameterList::const_iterator P = Params->begin(), 
 | 
						|
                                          PEnd = Params->end();
 | 
						|
       P != PEnd; ++P) {
 | 
						|
    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
 | 
						|
      CanonParams.push_back(
 | 
						|
                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), 
 | 
						|
                                               SourceLocation(),
 | 
						|
                                               SourceLocation(),
 | 
						|
                                               TTP->getDepth(),
 | 
						|
                                               TTP->getIndex(), 0, false,
 | 
						|
                                               TTP->isParameterPack()));
 | 
						|
    else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
 | 
						|
      QualType T = getCanonicalType(NTTP->getType());
 | 
						|
      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
 | 
						|
      NonTypeTemplateParmDecl *Param;
 | 
						|
      if (NTTP->isExpandedParameterPack()) {
 | 
						|
        llvm::SmallVector<QualType, 2> ExpandedTypes;
 | 
						|
        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
 | 
						|
        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
 | 
						|
          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
 | 
						|
          ExpandedTInfos.push_back(
 | 
						|
                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
 | 
						|
        }
 | 
						|
        
 | 
						|
        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                NTTP->getDepth(),
 | 
						|
                                                NTTP->getPosition(), 0, 
 | 
						|
                                                T,
 | 
						|
                                                TInfo,
 | 
						|
                                                ExpandedTypes.data(),
 | 
						|
                                                ExpandedTypes.size(),
 | 
						|
                                                ExpandedTInfos.data());
 | 
						|
      } else {
 | 
						|
        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                SourceLocation(),
 | 
						|
                                                NTTP->getDepth(),
 | 
						|
                                                NTTP->getPosition(), 0, 
 | 
						|
                                                T,
 | 
						|
                                                NTTP->isParameterPack(),
 | 
						|
                                                TInfo);
 | 
						|
      }
 | 
						|
      CanonParams.push_back(Param);
 | 
						|
 | 
						|
    } else
 | 
						|
      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
 | 
						|
                                           cast<TemplateTemplateParmDecl>(*P)));
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateTemplateParmDecl *CanonTTP
 | 
						|
    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 
 | 
						|
                                       SourceLocation(), TTP->getDepth(),
 | 
						|
                                       TTP->getPosition(), 
 | 
						|
                                       TTP->isParameterPack(),
 | 
						|
                                       0,
 | 
						|
                         TemplateParameterList::Create(*this, SourceLocation(),
 | 
						|
                                                       SourceLocation(),
 | 
						|
                                                       CanonParams.data(),
 | 
						|
                                                       CanonParams.size(),
 | 
						|
                                                       SourceLocation()));
 | 
						|
 | 
						|
  // Get the new insert position for the node we care about.
 | 
						|
  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  assert(Canonical == 0 && "Shouldn't be in the map!");
 | 
						|
  (void)Canonical;
 | 
						|
 | 
						|
  // Create the canonical template template parameter entry.
 | 
						|
  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
 | 
						|
  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
 | 
						|
  return CanonTTP;
 | 
						|
}
 | 
						|
 | 
						|
CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
 | 
						|
  if (!LangOpts.CPlusPlus) return 0;
 | 
						|
 | 
						|
  switch (T.getCXXABI()) {
 | 
						|
  case CXXABI_ARM:
 | 
						|
    return CreateARMCXXABI(*this);
 | 
						|
  case CXXABI_Itanium:
 | 
						|
    return CreateItaniumCXXABI(*this);
 | 
						|
  case CXXABI_Microsoft:
 | 
						|
    return CreateMicrosoftCXXABI(*this);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
 | 
						|
                                             const LangOptions &LOpts) {
 | 
						|
  if (LOpts.FakeAddressSpaceMap) {
 | 
						|
    // The fake address space map must have a distinct entry for each
 | 
						|
    // language-specific address space.
 | 
						|
    static const unsigned FakeAddrSpaceMap[] = {
 | 
						|
      1, // opencl_global
 | 
						|
      2, // opencl_local
 | 
						|
      3  // opencl_constant
 | 
						|
    };
 | 
						|
    return FakeAddrSpaceMap;
 | 
						|
  } else {
 | 
						|
    return T.getAddressSpaceMap();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
 | 
						|
                       const TargetInfo &t,
 | 
						|
                       IdentifierTable &idents, SelectorTable &sels,
 | 
						|
                       Builtin::Context &builtins,
 | 
						|
                       unsigned size_reserve) :
 | 
						|
  FunctionProtoTypes(this_()),
 | 
						|
  TemplateSpecializationTypes(this_()),
 | 
						|
  DependentTemplateSpecializationTypes(this_()),
 | 
						|
  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
 | 
						|
  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
 | 
						|
  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
 | 
						|
  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
 | 
						|
  cudaConfigureCallDecl(0),
 | 
						|
  NullTypeSourceInfo(QualType()),
 | 
						|
  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
 | 
						|
  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
 | 
						|
  Idents(idents), Selectors(sels),
 | 
						|
  BuiltinInfo(builtins),
 | 
						|
  DeclarationNames(*this),
 | 
						|
  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
 | 
						|
  LastSDM(0, 0),
 | 
						|
  UniqueBlockByRefTypeID(0) {
 | 
						|
  ObjCIdRedefinitionType = QualType();
 | 
						|
  ObjCClassRedefinitionType = QualType();
 | 
						|
  ObjCSelRedefinitionType = QualType();    
 | 
						|
  if (size_reserve > 0) Types.reserve(size_reserve);
 | 
						|
  TUDecl = TranslationUnitDecl::Create(*this);
 | 
						|
  InitBuiltinTypes();
 | 
						|
}
 | 
						|
 | 
						|
ASTContext::~ASTContext() {
 | 
						|
  // Release the DenseMaps associated with DeclContext objects.
 | 
						|
  // FIXME: Is this the ideal solution?
 | 
						|
  ReleaseDeclContextMaps();
 | 
						|
 | 
						|
  // Call all of the deallocation functions.
 | 
						|
  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
 | 
						|
    Deallocations[I].first(Deallocations[I].second);
 | 
						|
  
 | 
						|
  // Release all of the memory associated with overridden C++ methods.
 | 
						|
  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator 
 | 
						|
         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
 | 
						|
       OM != OMEnd; ++OM)
 | 
						|
    OM->second.Destroy();
 | 
						|
  
 | 
						|
  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
 | 
						|
  // because they can contain DenseMaps.
 | 
						|
  for (llvm::DenseMap<const ObjCContainerDecl*,
 | 
						|
       const ASTRecordLayout*>::iterator
 | 
						|
       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
 | 
						|
    // Increment in loop to prevent using deallocated memory.
 | 
						|
    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
 | 
						|
      R->Destroy(*this);
 | 
						|
 | 
						|
  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
 | 
						|
       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
 | 
						|
    // Increment in loop to prevent using deallocated memory.
 | 
						|
    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
 | 
						|
      R->Destroy(*this);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
 | 
						|
                                                    AEnd = DeclAttrs.end();
 | 
						|
       A != AEnd; ++A)
 | 
						|
    A->second->~AttrVec();
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
 | 
						|
  Deallocations.push_back(std::make_pair(Callback, Data));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
 | 
						|
  ExternalSource.reset(Source.take());
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::PrintStats() const {
 | 
						|
  fprintf(stderr, "*** AST Context Stats:\n");
 | 
						|
  fprintf(stderr, "  %d types total.\n", (int)Types.size());
 | 
						|
 | 
						|
  unsigned counts[] = {
 | 
						|
#define TYPE(Name, Parent) 0,
 | 
						|
#define ABSTRACT_TYPE(Name, Parent)
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    0 // Extra
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
 | 
						|
    Type *T = Types[i];
 | 
						|
    counts[(unsigned)T->getTypeClass()]++;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Idx = 0;
 | 
						|
  unsigned TotalBytes = 0;
 | 
						|
#define TYPE(Name, Parent)                                              \
 | 
						|
  if (counts[Idx])                                                      \
 | 
						|
    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
 | 
						|
  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
 | 
						|
  ++Idx;
 | 
						|
#define ABSTRACT_TYPE(Name, Parent)
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
 | 
						|
  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
 | 
						|
  
 | 
						|
  // Implicit special member functions.
 | 
						|
  fprintf(stderr, "  %u/%u implicit default constructors created\n",
 | 
						|
          NumImplicitDefaultConstructorsDeclared, 
 | 
						|
          NumImplicitDefaultConstructors);
 | 
						|
  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
 | 
						|
          NumImplicitCopyConstructorsDeclared, 
 | 
						|
          NumImplicitCopyConstructors);
 | 
						|
  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
 | 
						|
          NumImplicitCopyAssignmentOperatorsDeclared, 
 | 
						|
          NumImplicitCopyAssignmentOperators);
 | 
						|
  fprintf(stderr, "  %u/%u implicit destructors created\n",
 | 
						|
          NumImplicitDestructorsDeclared, NumImplicitDestructors);
 | 
						|
  
 | 
						|
  if (ExternalSource.get()) {
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    ExternalSource->PrintStats();
 | 
						|
  }
 | 
						|
  
 | 
						|
  BumpAlloc.PrintStats();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
 | 
						|
  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
 | 
						|
  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
 | 
						|
  Types.push_back(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::InitBuiltinTypes() {
 | 
						|
  assert(VoidTy.isNull() && "Context reinitialized?");
 | 
						|
 | 
						|
  // C99 6.2.5p19.
 | 
						|
  InitBuiltinType(VoidTy,              BuiltinType::Void);
 | 
						|
 | 
						|
  // C99 6.2.5p2.
 | 
						|
  InitBuiltinType(BoolTy,              BuiltinType::Bool);
 | 
						|
  // C99 6.2.5p3.
 | 
						|
  if (LangOpts.CharIsSigned)
 | 
						|
    InitBuiltinType(CharTy,            BuiltinType::Char_S);
 | 
						|
  else
 | 
						|
    InitBuiltinType(CharTy,            BuiltinType::Char_U);
 | 
						|
  // C99 6.2.5p4.
 | 
						|
  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
 | 
						|
  InitBuiltinType(ShortTy,             BuiltinType::Short);
 | 
						|
  InitBuiltinType(IntTy,               BuiltinType::Int);
 | 
						|
  InitBuiltinType(LongTy,              BuiltinType::Long);
 | 
						|
  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
 | 
						|
 | 
						|
  // C99 6.2.5p6.
 | 
						|
  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
 | 
						|
  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
 | 
						|
  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
 | 
						|
  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
 | 
						|
  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
 | 
						|
 | 
						|
  // C99 6.2.5p10.
 | 
						|
  InitBuiltinType(FloatTy,             BuiltinType::Float);
 | 
						|
  InitBuiltinType(DoubleTy,            BuiltinType::Double);
 | 
						|
  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
 | 
						|
 | 
						|
  // GNU extension, 128-bit integers.
 | 
						|
  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
 | 
						|
  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
 | 
						|
 | 
						|
  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
 | 
						|
    if (!LangOpts.ShortWChar)
 | 
						|
      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
 | 
						|
    else  // -fshort-wchar makes wchar_t be unsigned.
 | 
						|
      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
 | 
						|
  } else // C99
 | 
						|
    WCharTy = getFromTargetType(Target.getWCharType());
 | 
						|
 | 
						|
  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
 | 
						|
    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
 | 
						|
  else // C99
 | 
						|
    Char16Ty = getFromTargetType(Target.getChar16Type());
 | 
						|
 | 
						|
  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
 | 
						|
    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
 | 
						|
  else // C99
 | 
						|
    Char32Ty = getFromTargetType(Target.getChar32Type());
 | 
						|
 | 
						|
  // Placeholder type for type-dependent expressions whose type is
 | 
						|
  // completely unknown. No code should ever check a type against
 | 
						|
  // DependentTy and users should never see it; however, it is here to
 | 
						|
  // help diagnose failures to properly check for type-dependent
 | 
						|
  // expressions.
 | 
						|
  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
 | 
						|
 | 
						|
  // Placeholder type for functions.
 | 
						|
  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
 | 
						|
 | 
						|
  // "any" type; useful for debugger-like clients.
 | 
						|
  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
 | 
						|
 | 
						|
  // C99 6.2.5p11.
 | 
						|
  FloatComplexTy      = getComplexType(FloatTy);
 | 
						|
  DoubleComplexTy     = getComplexType(DoubleTy);
 | 
						|
  LongDoubleComplexTy = getComplexType(LongDoubleTy);
 | 
						|
 | 
						|
  BuiltinVaListType = QualType();
 | 
						|
 | 
						|
  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
 | 
						|
  ObjCIdTypedefType = QualType();
 | 
						|
  ObjCClassTypedefType = QualType();
 | 
						|
  ObjCSelTypedefType = QualType();
 | 
						|
 | 
						|
  // Builtin types for 'id', 'Class', and 'SEL'.
 | 
						|
  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
 | 
						|
  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
 | 
						|
  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
 | 
						|
 | 
						|
  ObjCConstantStringType = QualType();
 | 
						|
 | 
						|
  // void * type
 | 
						|
  VoidPtrTy = getPointerType(VoidTy);
 | 
						|
 | 
						|
  // nullptr type (C++0x 2.14.7)
 | 
						|
  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
 | 
						|
}
 | 
						|
 | 
						|
Diagnostic &ASTContext::getDiagnostics() const {
 | 
						|
  return SourceMgr.getDiagnostics();
 | 
						|
}
 | 
						|
 | 
						|
AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
 | 
						|
  AttrVec *&Result = DeclAttrs[D];
 | 
						|
  if (!Result) {
 | 
						|
    void *Mem = Allocate(sizeof(AttrVec));
 | 
						|
    Result = new (Mem) AttrVec;
 | 
						|
  }
 | 
						|
    
 | 
						|
  return *Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Erase the attributes corresponding to the given declaration.
 | 
						|
void ASTContext::eraseDeclAttrs(const Decl *D) { 
 | 
						|
  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
 | 
						|
  if (Pos != DeclAttrs.end()) {
 | 
						|
    Pos->second->~AttrVec();
 | 
						|
    DeclAttrs.erase(Pos);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MemberSpecializationInfo *
 | 
						|
ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
 | 
						|
  assert(Var->isStaticDataMember() && "Not a static data member");
 | 
						|
  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
 | 
						|
    = InstantiatedFromStaticDataMember.find(Var);
 | 
						|
  if (Pos == InstantiatedFromStaticDataMember.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Pos->second;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
 | 
						|
                                                TemplateSpecializationKind TSK,
 | 
						|
                                          SourceLocation PointOfInstantiation) {
 | 
						|
  assert(Inst->isStaticDataMember() && "Not a static data member");
 | 
						|
  assert(Tmpl->isStaticDataMember() && "Not a static data member");
 | 
						|
  assert(!InstantiatedFromStaticDataMember[Inst] &&
 | 
						|
         "Already noted what static data member was instantiated from");
 | 
						|
  InstantiatedFromStaticDataMember[Inst] 
 | 
						|
    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl *
 | 
						|
ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
 | 
						|
  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
 | 
						|
    = InstantiatedFromUsingDecl.find(UUD);
 | 
						|
  if (Pos == InstantiatedFromUsingDecl.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Pos->second;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
 | 
						|
  assert((isa<UsingDecl>(Pattern) ||
 | 
						|
          isa<UnresolvedUsingValueDecl>(Pattern) ||
 | 
						|
          isa<UnresolvedUsingTypenameDecl>(Pattern)) && 
 | 
						|
         "pattern decl is not a using decl");
 | 
						|
  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
 | 
						|
  InstantiatedFromUsingDecl[Inst] = Pattern;
 | 
						|
}
 | 
						|
 | 
						|
UsingShadowDecl *
 | 
						|
ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
 | 
						|
  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
 | 
						|
    = InstantiatedFromUsingShadowDecl.find(Inst);
 | 
						|
  if (Pos == InstantiatedFromUsingShadowDecl.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Pos->second;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
 | 
						|
                                               UsingShadowDecl *Pattern) {
 | 
						|
  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
 | 
						|
  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
 | 
						|
}
 | 
						|
 | 
						|
FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
 | 
						|
  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
 | 
						|
    = InstantiatedFromUnnamedFieldDecl.find(Field);
 | 
						|
  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Pos->second;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
 | 
						|
                                                     FieldDecl *Tmpl) {
 | 
						|
  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
 | 
						|
  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
 | 
						|
  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
 | 
						|
         "Already noted what unnamed field was instantiated from");
 | 
						|
 | 
						|
  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
 | 
						|
}
 | 
						|
 | 
						|
ASTContext::overridden_cxx_method_iterator
 | 
						|
ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
 | 
						|
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
 | 
						|
    = OverriddenMethods.find(Method);
 | 
						|
  if (Pos == OverriddenMethods.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Pos->second.begin();
 | 
						|
}
 | 
						|
 | 
						|
ASTContext::overridden_cxx_method_iterator
 | 
						|
ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
 | 
						|
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
 | 
						|
    = OverriddenMethods.find(Method);
 | 
						|
  if (Pos == OverriddenMethods.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Pos->second.end();
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
 | 
						|
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
 | 
						|
    = OverriddenMethods.find(Method);
 | 
						|
  if (Pos == OverriddenMethods.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Pos->second.size();
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, 
 | 
						|
                                     const CXXMethodDecl *Overridden) {
 | 
						|
  OverriddenMethods[Method].push_back(Overridden);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Type Sizing and Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
 | 
						|
/// scalar floating point type.
 | 
						|
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
 | 
						|
  const BuiltinType *BT = T->getAs<BuiltinType>();
 | 
						|
  assert(BT && "Not a floating point type!");
 | 
						|
  switch (BT->getKind()) {
 | 
						|
  default: assert(0 && "Not a floating point type!");
 | 
						|
  case BuiltinType::Float:      return Target.getFloatFormat();
 | 
						|
  case BuiltinType::Double:     return Target.getDoubleFormat();
 | 
						|
  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getDeclAlign - Return a conservative estimate of the alignment of the
 | 
						|
/// specified decl.  Note that bitfields do not have a valid alignment, so
 | 
						|
/// this method will assert on them.
 | 
						|
/// If @p RefAsPointee, references are treated like their underlying type
 | 
						|
/// (for alignof), else they're treated like pointers (for CodeGen).
 | 
						|
CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
 | 
						|
  unsigned Align = Target.getCharWidth();
 | 
						|
 | 
						|
  bool UseAlignAttrOnly = false;
 | 
						|
  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
 | 
						|
    Align = AlignFromAttr;
 | 
						|
 | 
						|
    // __attribute__((aligned)) can increase or decrease alignment
 | 
						|
    // *except* on a struct or struct member, where it only increases
 | 
						|
    // alignment unless 'packed' is also specified.
 | 
						|
    //
 | 
						|
    // It is an error for [[align]] to decrease alignment, so we can
 | 
						|
    // ignore that possibility;  Sema should diagnose it.
 | 
						|
    if (isa<FieldDecl>(D)) {
 | 
						|
      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
 | 
						|
        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
 | 
						|
    } else {
 | 
						|
      UseAlignAttrOnly = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're using the align attribute only, just ignore everything
 | 
						|
  // else about the declaration and its type.
 | 
						|
  if (UseAlignAttrOnly) {
 | 
						|
    // do nothing
 | 
						|
 | 
						|
  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
 | 
						|
    QualType T = VD->getType();
 | 
						|
    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
 | 
						|
      if (RefAsPointee)
 | 
						|
        T = RT->getPointeeType();
 | 
						|
      else
 | 
						|
        T = getPointerType(RT->getPointeeType());
 | 
						|
    }
 | 
						|
    if (!T->isIncompleteType() && !T->isFunctionType()) {
 | 
						|
      // Adjust alignments of declarations with array type by the
 | 
						|
      // large-array alignment on the target.
 | 
						|
      unsigned MinWidth = Target.getLargeArrayMinWidth();
 | 
						|
      const ArrayType *arrayType;
 | 
						|
      if (MinWidth && (arrayType = getAsArrayType(T))) {
 | 
						|
        if (isa<VariableArrayType>(arrayType))
 | 
						|
          Align = std::max(Align, Target.getLargeArrayAlign());
 | 
						|
        else if (isa<ConstantArrayType>(arrayType) &&
 | 
						|
                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
 | 
						|
          Align = std::max(Align, Target.getLargeArrayAlign());
 | 
						|
 | 
						|
        // Walk through any array types while we're at it.
 | 
						|
        T = getBaseElementType(arrayType);
 | 
						|
      }
 | 
						|
      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Fields can be subject to extra alignment constraints, like if
 | 
						|
    // the field is packed, the struct is packed, or the struct has a
 | 
						|
    // a max-field-alignment constraint (#pragma pack).  So calculate
 | 
						|
    // the actual alignment of the field within the struct, and then
 | 
						|
    // (as we're expected to) constrain that by the alignment of the type.
 | 
						|
    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
 | 
						|
      // So calculate the alignment of the field.
 | 
						|
      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
 | 
						|
 | 
						|
      // Start with the record's overall alignment.
 | 
						|
      unsigned fieldAlign = toBits(layout.getAlignment());
 | 
						|
 | 
						|
      // Use the GCD of that and the offset within the record.
 | 
						|
      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
 | 
						|
      if (offset > 0) {
 | 
						|
        // Alignment is always a power of 2, so the GCD will be a power of 2,
 | 
						|
        // which means we get to do this crazy thing instead of Euclid's.
 | 
						|
        uint64_t lowBitOfOffset = offset & (~offset + 1);
 | 
						|
        if (lowBitOfOffset < fieldAlign)
 | 
						|
          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
 | 
						|
      }
 | 
						|
 | 
						|
      Align = std::min(Align, fieldAlign);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return toCharUnitsFromBits(Align);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<CharUnits, CharUnits>
 | 
						|
ASTContext::getTypeInfoInChars(const Type *T) const {
 | 
						|
  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
 | 
						|
  return std::make_pair(toCharUnitsFromBits(Info.first),
 | 
						|
                        toCharUnitsFromBits(Info.second));
 | 
						|
}
 | 
						|
 | 
						|
std::pair<CharUnits, CharUnits>
 | 
						|
ASTContext::getTypeInfoInChars(QualType T) const {
 | 
						|
  return getTypeInfoInChars(T.getTypePtr());
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeSize - Return the size of the specified type, in bits.  This method
 | 
						|
/// does not work on incomplete types.
 | 
						|
///
 | 
						|
/// FIXME: Pointers into different addr spaces could have different sizes and
 | 
						|
/// alignment requirements: getPointerInfo should take an AddrSpace, this
 | 
						|
/// should take a QualType, &c.
 | 
						|
std::pair<uint64_t, unsigned>
 | 
						|
ASTContext::getTypeInfo(const Type *T) const {
 | 
						|
  uint64_t Width=0;
 | 
						|
  unsigned Align=8;
 | 
						|
  switch (T->getTypeClass()) {
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base)
 | 
						|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    assert(false && "Should not see dependent types");
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
  case Type::FunctionProto:
 | 
						|
    // GCC extension: alignof(function) = 32 bits
 | 
						|
    Width = 0;
 | 
						|
    Align = 32;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::IncompleteArray:
 | 
						|
  case Type::VariableArray:
 | 
						|
    Width = 0;
 | 
						|
    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::ConstantArray: {
 | 
						|
    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
 | 
						|
 | 
						|
    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
 | 
						|
    Width = EltInfo.first*CAT->getSize().getZExtValue();
 | 
						|
    Align = EltInfo.second;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::ExtVector:
 | 
						|
  case Type::Vector: {
 | 
						|
    const VectorType *VT = cast<VectorType>(T);
 | 
						|
    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
 | 
						|
    Width = EltInfo.first*VT->getNumElements();
 | 
						|
    Align = Width;
 | 
						|
    // If the alignment is not a power of 2, round up to the next power of 2.
 | 
						|
    // This happens for non-power-of-2 length vectors.
 | 
						|
    if (Align & (Align-1)) {
 | 
						|
      Align = llvm::NextPowerOf2(Align);
 | 
						|
      Width = llvm::RoundUpToAlignment(Width, Align);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::Builtin:
 | 
						|
    switch (cast<BuiltinType>(T)->getKind()) {
 | 
						|
    default: assert(0 && "Unknown builtin type!");
 | 
						|
    case BuiltinType::Void:
 | 
						|
      // GCC extension: alignof(void) = 8 bits.
 | 
						|
      Width = 0;
 | 
						|
      Align = 8;
 | 
						|
      break;
 | 
						|
 | 
						|
    case BuiltinType::Bool:
 | 
						|
      Width = Target.getBoolWidth();
 | 
						|
      Align = Target.getBoolAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Char_S:
 | 
						|
    case BuiltinType::Char_U:
 | 
						|
    case BuiltinType::UChar:
 | 
						|
    case BuiltinType::SChar:
 | 
						|
      Width = Target.getCharWidth();
 | 
						|
      Align = Target.getCharAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::WChar_S:
 | 
						|
    case BuiltinType::WChar_U:
 | 
						|
      Width = Target.getWCharWidth();
 | 
						|
      Align = Target.getWCharAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Char16:
 | 
						|
      Width = Target.getChar16Width();
 | 
						|
      Align = Target.getChar16Align();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Char32:
 | 
						|
      Width = Target.getChar32Width();
 | 
						|
      Align = Target.getChar32Align();
 | 
						|
      break;
 | 
						|
    case BuiltinType::UShort:
 | 
						|
    case BuiltinType::Short:
 | 
						|
      Width = Target.getShortWidth();
 | 
						|
      Align = Target.getShortAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::UInt:
 | 
						|
    case BuiltinType::Int:
 | 
						|
      Width = Target.getIntWidth();
 | 
						|
      Align = Target.getIntAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::ULong:
 | 
						|
    case BuiltinType::Long:
 | 
						|
      Width = Target.getLongWidth();
 | 
						|
      Align = Target.getLongAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::ULongLong:
 | 
						|
    case BuiltinType::LongLong:
 | 
						|
      Width = Target.getLongLongWidth();
 | 
						|
      Align = Target.getLongLongAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Int128:
 | 
						|
    case BuiltinType::UInt128:
 | 
						|
      Width = 128;
 | 
						|
      Align = 128; // int128_t is 128-bit aligned on all targets.
 | 
						|
      break;
 | 
						|
    case BuiltinType::Float:
 | 
						|
      Width = Target.getFloatWidth();
 | 
						|
      Align = Target.getFloatAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::Double:
 | 
						|
      Width = Target.getDoubleWidth();
 | 
						|
      Align = Target.getDoubleAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::LongDouble:
 | 
						|
      Width = Target.getLongDoubleWidth();
 | 
						|
      Align = Target.getLongDoubleAlign();
 | 
						|
      break;
 | 
						|
    case BuiltinType::NullPtr:
 | 
						|
      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
 | 
						|
      Align = Target.getPointerAlign(0); //   == sizeof(void*)
 | 
						|
      break;
 | 
						|
    case BuiltinType::ObjCId:
 | 
						|
    case BuiltinType::ObjCClass:
 | 
						|
    case BuiltinType::ObjCSel:
 | 
						|
      Width = Target.getPointerWidth(0); 
 | 
						|
      Align = Target.getPointerAlign(0);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Type::ObjCObjectPointer:
 | 
						|
    Width = Target.getPointerWidth(0);
 | 
						|
    Align = Target.getPointerAlign(0);
 | 
						|
    break;
 | 
						|
  case Type::BlockPointer: {
 | 
						|
    unsigned AS = getTargetAddressSpace(
 | 
						|
        cast<BlockPointerType>(T)->getPointeeType());
 | 
						|
    Width = Target.getPointerWidth(AS);
 | 
						|
    Align = Target.getPointerAlign(AS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::LValueReference:
 | 
						|
  case Type::RValueReference: {
 | 
						|
    // alignof and sizeof should never enter this code path here, so we go
 | 
						|
    // the pointer route.
 | 
						|
    unsigned AS = getTargetAddressSpace(
 | 
						|
        cast<ReferenceType>(T)->getPointeeType());
 | 
						|
    Width = Target.getPointerWidth(AS);
 | 
						|
    Align = Target.getPointerAlign(AS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::Pointer: {
 | 
						|
    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
 | 
						|
    Width = Target.getPointerWidth(AS);
 | 
						|
    Align = Target.getPointerAlign(AS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::MemberPointer: {
 | 
						|
    const MemberPointerType *MPT = cast<MemberPointerType>(T);
 | 
						|
    std::pair<uint64_t, unsigned> PtrDiffInfo =
 | 
						|
      getTypeInfo(getPointerDiffType());
 | 
						|
    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
 | 
						|
    Align = PtrDiffInfo.second;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::Complex: {
 | 
						|
    // Complex types have the same alignment as their elements, but twice the
 | 
						|
    // size.
 | 
						|
    std::pair<uint64_t, unsigned> EltInfo =
 | 
						|
      getTypeInfo(cast<ComplexType>(T)->getElementType());
 | 
						|
    Width = EltInfo.first*2;
 | 
						|
    Align = EltInfo.second;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::ObjCObject:
 | 
						|
    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
 | 
						|
  case Type::ObjCInterface: {
 | 
						|
    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
 | 
						|
    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
 | 
						|
    Width = toBits(Layout.getSize());
 | 
						|
    Align = toBits(Layout.getAlignment());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::Record:
 | 
						|
  case Type::Enum: {
 | 
						|
    const TagType *TT = cast<TagType>(T);
 | 
						|
 | 
						|
    if (TT->getDecl()->isInvalidDecl()) {
 | 
						|
      Width = 8;
 | 
						|
      Align = 8;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const EnumType *ET = dyn_cast<EnumType>(TT))
 | 
						|
      return getTypeInfo(ET->getDecl()->getIntegerType());
 | 
						|
 | 
						|
    const RecordType *RT = cast<RecordType>(TT);
 | 
						|
    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
 | 
						|
    Width = toBits(Layout.getSize());
 | 
						|
    Align = toBits(Layout.getAlignment());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::SubstTemplateTypeParm:
 | 
						|
    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
 | 
						|
                       getReplacementType().getTypePtr());
 | 
						|
 | 
						|
  case Type::Auto: {
 | 
						|
    const AutoType *A = cast<AutoType>(T);
 | 
						|
    assert(A->isDeduced() && "Cannot request the size of a dependent type");
 | 
						|
    return getTypeInfo(A->getDeducedType().getTypePtr());
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::Paren:
 | 
						|
    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
 | 
						|
 | 
						|
  case Type::Typedef: {
 | 
						|
    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
 | 
						|
    std::pair<uint64_t, unsigned> Info
 | 
						|
      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
 | 
						|
    // If the typedef has an aligned attribute on it, it overrides any computed
 | 
						|
    // alignment we have.  This violates the GCC documentation (which says that
 | 
						|
    // attribute(aligned) can only round up) but matches its implementation.
 | 
						|
    if (unsigned AttrAlign = Typedef->getMaxAlignment())
 | 
						|
      Align = AttrAlign;
 | 
						|
    else
 | 
						|
      Align = Info.second;
 | 
						|
    Width = Info.first;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::TypeOfExpr:
 | 
						|
    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
 | 
						|
                         .getTypePtr());
 | 
						|
 | 
						|
  case Type::TypeOf:
 | 
						|
    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
 | 
						|
 | 
						|
  case Type::Decltype:
 | 
						|
    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
 | 
						|
                        .getTypePtr());
 | 
						|
 | 
						|
  case Type::Elaborated:
 | 
						|
    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
 | 
						|
 | 
						|
  case Type::Attributed:
 | 
						|
    return getTypeInfo(
 | 
						|
                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
 | 
						|
 | 
						|
  case Type::TemplateSpecialization:
 | 
						|
    assert(getCanonicalType(T) != T &&
 | 
						|
           "Cannot request the size of a dependent type");
 | 
						|
    // FIXME: this is likely to be wrong once we support template
 | 
						|
    // aliases, since a template alias could refer to a typedef that
 | 
						|
    // has an __aligned__ attribute on it.
 | 
						|
    return getTypeInfo(getCanonicalType(T));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
 | 
						|
  return std::make_pair(Width, Align);
 | 
						|
}
 | 
						|
 | 
						|
/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
 | 
						|
CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
 | 
						|
  return CharUnits::fromQuantity(BitSize / getCharWidth());
 | 
						|
}
 | 
						|
 | 
						|
/// toBits - Convert a size in characters to a size in characters.
 | 
						|
int64_t ASTContext::toBits(CharUnits CharSize) const {
 | 
						|
  return CharSize.getQuantity() * getCharWidth();
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeSizeInChars - Return the size of the specified type, in characters.
 | 
						|
/// This method does not work on incomplete types.
 | 
						|
CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
 | 
						|
  return toCharUnitsFromBits(getTypeSize(T));
 | 
						|
}
 | 
						|
CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
 | 
						|
  return toCharUnitsFromBits(getTypeSize(T));
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 
 | 
						|
/// characters. This method does not work on incomplete types.
 | 
						|
CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
 | 
						|
  return toCharUnitsFromBits(getTypeAlign(T));
 | 
						|
}
 | 
						|
CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
 | 
						|
  return toCharUnitsFromBits(getTypeAlign(T));
 | 
						|
}
 | 
						|
 | 
						|
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
 | 
						|
/// type for the current target in bits.  This can be different than the ABI
 | 
						|
/// alignment in cases where it is beneficial for performance to overalign
 | 
						|
/// a data type.
 | 
						|
unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
 | 
						|
  unsigned ABIAlign = getTypeAlign(T);
 | 
						|
 | 
						|
  // Double and long long should be naturally aligned if possible.
 | 
						|
  if (const ComplexType* CT = T->getAs<ComplexType>())
 | 
						|
    T = CT->getElementType().getTypePtr();
 | 
						|
  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
 | 
						|
      T->isSpecificBuiltinType(BuiltinType::LongLong))
 | 
						|
    return std::max(ABIAlign, (unsigned)getTypeSize(T));
 | 
						|
 | 
						|
  return ABIAlign;
 | 
						|
}
 | 
						|
 | 
						|
/// ShallowCollectObjCIvars -
 | 
						|
/// Collect all ivars, including those synthesized, in the current class.
 | 
						|
///
 | 
						|
void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
 | 
						|
                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
 | 
						|
  // FIXME. This need be removed but there are two many places which
 | 
						|
  // assume const-ness of ObjCInterfaceDecl
 | 
						|
  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
 | 
						|
  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; 
 | 
						|
        Iv= Iv->getNextIvar())
 | 
						|
    Ivars.push_back(Iv);
 | 
						|
}
 | 
						|
 | 
						|
/// DeepCollectObjCIvars -
 | 
						|
/// This routine first collects all declared, but not synthesized, ivars in
 | 
						|
/// super class and then collects all ivars, including those synthesized for
 | 
						|
/// current class. This routine is used for implementation of current class
 | 
						|
/// when all ivars, declared and synthesized are known.
 | 
						|
///
 | 
						|
void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
 | 
						|
                                      bool leafClass,
 | 
						|
                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
 | 
						|
  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
 | 
						|
    DeepCollectObjCIvars(SuperClass, false, Ivars);
 | 
						|
  if (!leafClass) {
 | 
						|
    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
 | 
						|
         E = OI->ivar_end(); I != E; ++I)
 | 
						|
      Ivars.push_back(*I);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    ShallowCollectObjCIvars(OI, Ivars);
 | 
						|
}
 | 
						|
 | 
						|
/// CollectInheritedProtocols - Collect all protocols in current class and
 | 
						|
/// those inherited by it.
 | 
						|
void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
 | 
						|
                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
 | 
						|
  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
 | 
						|
    // We can use protocol_iterator here instead of
 | 
						|
    // all_referenced_protocol_iterator since we are walking all categories.    
 | 
						|
    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
 | 
						|
         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
 | 
						|
      ObjCProtocolDecl *Proto = (*P);
 | 
						|
      Protocols.insert(Proto);
 | 
						|
      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
 | 
						|
           PE = Proto->protocol_end(); P != PE; ++P) {
 | 
						|
        Protocols.insert(*P);
 | 
						|
        CollectInheritedProtocols(*P, Protocols);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Categories of this Interface.
 | 
						|
    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList(); 
 | 
						|
         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
 | 
						|
      CollectInheritedProtocols(CDeclChain, Protocols);
 | 
						|
    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
 | 
						|
      while (SD) {
 | 
						|
        CollectInheritedProtocols(SD, Protocols);
 | 
						|
        SD = SD->getSuperClass();
 | 
						|
      }
 | 
						|
  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
 | 
						|
    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
 | 
						|
         PE = OC->protocol_end(); P != PE; ++P) {
 | 
						|
      ObjCProtocolDecl *Proto = (*P);
 | 
						|
      Protocols.insert(Proto);
 | 
						|
      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
 | 
						|
           PE = Proto->protocol_end(); P != PE; ++P)
 | 
						|
        CollectInheritedProtocols(*P, Protocols);
 | 
						|
    }
 | 
						|
  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
 | 
						|
    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
 | 
						|
         PE = OP->protocol_end(); P != PE; ++P) {
 | 
						|
      ObjCProtocolDecl *Proto = (*P);
 | 
						|
      Protocols.insert(Proto);
 | 
						|
      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
 | 
						|
           PE = Proto->protocol_end(); P != PE; ++P)
 | 
						|
        CollectInheritedProtocols(*P, Protocols);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
 | 
						|
  unsigned count = 0;  
 | 
						|
  // Count ivars declared in class extension.
 | 
						|
  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
 | 
						|
       CDecl = CDecl->getNextClassExtension())
 | 
						|
    count += CDecl->ivar_size();
 | 
						|
 | 
						|
  // Count ivar defined in this class's implementation.  This
 | 
						|
  // includes synthesized ivars.
 | 
						|
  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
 | 
						|
    count += ImplDecl->ivar_size();
 | 
						|
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
 | 
						|
ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
 | 
						|
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
 | 
						|
    I = ObjCImpls.find(D);
 | 
						|
  if (I != ObjCImpls.end())
 | 
						|
    return cast<ObjCImplementationDecl>(I->second);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
 | 
						|
ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
 | 
						|
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
 | 
						|
    I = ObjCImpls.find(D);
 | 
						|
  if (I != ObjCImpls.end())
 | 
						|
    return cast<ObjCCategoryImplDecl>(I->second);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Set the implementation of ObjCInterfaceDecl.
 | 
						|
void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
 | 
						|
                           ObjCImplementationDecl *ImplD) {
 | 
						|
  assert(IFaceD && ImplD && "Passed null params");
 | 
						|
  ObjCImpls[IFaceD] = ImplD;
 | 
						|
}
 | 
						|
/// \brief Set the implementation of ObjCCategoryDecl.
 | 
						|
void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
 | 
						|
                           ObjCCategoryImplDecl *ImplD) {
 | 
						|
  assert(CatD && ImplD && "Passed null params");
 | 
						|
  ObjCImpls[CatD] = ImplD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the copy initialization expression of VarDecl,or NULL if 
 | 
						|
/// none exists.
 | 
						|
Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
 | 
						|
  assert(VD && "Passed null params");
 | 
						|
  assert(VD->hasAttr<BlocksAttr>() && 
 | 
						|
         "getBlockVarCopyInits - not __block var");
 | 
						|
  llvm::DenseMap<const VarDecl*, Expr*>::iterator
 | 
						|
    I = BlockVarCopyInits.find(VD);
 | 
						|
  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Set the copy inialization expression of a block var decl.
 | 
						|
void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
 | 
						|
  assert(VD && Init && "Passed null params");
 | 
						|
  assert(VD->hasAttr<BlocksAttr>() && 
 | 
						|
         "setBlockVarCopyInits - not __block var");
 | 
						|
  BlockVarCopyInits[VD] = Init;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Allocate an uninitialized TypeSourceInfo.
 | 
						|
///
 | 
						|
/// The caller should initialize the memory held by TypeSourceInfo using
 | 
						|
/// the TypeLoc wrappers.
 | 
						|
///
 | 
						|
/// \param T the type that will be the basis for type source info. This type
 | 
						|
/// should refer to how the declarator was written in source code, not to
 | 
						|
/// what type semantic analysis resolved the declarator to.
 | 
						|
TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
 | 
						|
                                                 unsigned DataSize) const {
 | 
						|
  if (!DataSize)
 | 
						|
    DataSize = TypeLoc::getFullDataSizeForType(T);
 | 
						|
  else
 | 
						|
    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
 | 
						|
           "incorrect data size provided to CreateTypeSourceInfo!");
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo =
 | 
						|
    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
 | 
						|
  new (TInfo) TypeSourceInfo(T);
 | 
						|
  return TInfo;
 | 
						|
}
 | 
						|
 | 
						|
TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
 | 
						|
                                                     SourceLocation L) const {
 | 
						|
  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
 | 
						|
  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
 | 
						|
  return DI;
 | 
						|
}
 | 
						|
 | 
						|
const ASTRecordLayout &
 | 
						|
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
 | 
						|
  return getObjCLayout(D, 0);
 | 
						|
}
 | 
						|
 | 
						|
const ASTRecordLayout &
 | 
						|
ASTContext::getASTObjCImplementationLayout(
 | 
						|
                                        const ObjCImplementationDecl *D) const {
 | 
						|
  return getObjCLayout(D->getClassInterface(), D);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   Type creation/memoization methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
 | 
						|
  unsigned fastQuals = quals.getFastQualifiers();
 | 
						|
  quals.removeFastQualifiers();
 | 
						|
 | 
						|
  // Check if we've already instantiated this type.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ExtQuals::Profile(ID, baseType, quals);
 | 
						|
  void *insertPos = 0;
 | 
						|
  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
 | 
						|
    assert(eq->getQualifiers() == quals);
 | 
						|
    return QualType(eq, fastQuals);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the base type is not canonical, make the appropriate canonical type.
 | 
						|
  QualType canon;
 | 
						|
  if (!baseType->isCanonicalUnqualified()) {
 | 
						|
    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
 | 
						|
    canonSplit.second.addConsistentQualifiers(quals);
 | 
						|
    canon = getExtQualType(canonSplit.first, canonSplit.second);
 | 
						|
 | 
						|
    // Re-find the insert position.
 | 
						|
    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
 | 
						|
  ExtQualNodes.InsertNode(eq, insertPos);
 | 
						|
  return QualType(eq, fastQuals);
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
 | 
						|
  QualType CanT = getCanonicalType(T);
 | 
						|
  if (CanT.getAddressSpace() == AddressSpace)
 | 
						|
    return T;
 | 
						|
 | 
						|
  // If we are composing extended qualifiers together, merge together
 | 
						|
  // into one ExtQuals node.
 | 
						|
  QualifierCollector Quals;
 | 
						|
  const Type *TypeNode = Quals.strip(T);
 | 
						|
 | 
						|
  // If this type already has an address space specified, it cannot get
 | 
						|
  // another one.
 | 
						|
  assert(!Quals.hasAddressSpace() &&
 | 
						|
         "Type cannot be in multiple addr spaces!");
 | 
						|
  Quals.addAddressSpace(AddressSpace);
 | 
						|
 | 
						|
  return getExtQualType(TypeNode, Quals);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getObjCGCQualType(QualType T,
 | 
						|
                                       Qualifiers::GC GCAttr) const {
 | 
						|
  QualType CanT = getCanonicalType(T);
 | 
						|
  if (CanT.getObjCGCAttr() == GCAttr)
 | 
						|
    return T;
 | 
						|
 | 
						|
  if (const PointerType *ptr = T->getAs<PointerType>()) {
 | 
						|
    QualType Pointee = ptr->getPointeeType();
 | 
						|
    if (Pointee->isAnyPointerType()) {
 | 
						|
      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
 | 
						|
      return getPointerType(ResultType);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are composing extended qualifiers together, merge together
 | 
						|
  // into one ExtQuals node.
 | 
						|
  QualifierCollector Quals;
 | 
						|
  const Type *TypeNode = Quals.strip(T);
 | 
						|
 | 
						|
  // If this type already has an ObjCGC specified, it cannot get
 | 
						|
  // another one.
 | 
						|
  assert(!Quals.hasObjCGCAttr() &&
 | 
						|
         "Type cannot have multiple ObjCGCs!");
 | 
						|
  Quals.addObjCGCAttr(GCAttr);
 | 
						|
 | 
						|
  return getExtQualType(TypeNode, Quals);
 | 
						|
}
 | 
						|
 | 
						|
const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
 | 
						|
                                                   FunctionType::ExtInfo Info) {
 | 
						|
  if (T->getExtInfo() == Info)
 | 
						|
    return T;
 | 
						|
 | 
						|
  QualType Result;
 | 
						|
  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
 | 
						|
    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
 | 
						|
  } else {
 | 
						|
    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | 
						|
    EPI.ExtInfo = Info;
 | 
						|
    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
 | 
						|
                             FPT->getNumArgs(), EPI);
 | 
						|
  }
 | 
						|
 | 
						|
  return cast<FunctionType>(Result.getTypePtr());
 | 
						|
}
 | 
						|
 | 
						|
/// getComplexType - Return the uniqued reference to the type for a complex
 | 
						|
/// number with the specified element type.
 | 
						|
QualType ASTContext::getComplexType(QualType T) const {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ComplexType::Profile(ID, T);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(CT, 0);
 | 
						|
 | 
						|
  // If the pointee type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T.isCanonical()) {
 | 
						|
    Canonical = getComplexType(getCanonicalType(T));
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  ComplexTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getPointerType - Return the uniqued reference to the type for a pointer to
 | 
						|
/// the specified type.
 | 
						|
QualType ASTContext::getPointerType(QualType T) const {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  PointerType::Profile(ID, T);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(PT, 0);
 | 
						|
 | 
						|
  // If the pointee type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T.isCanonical()) {
 | 
						|
    Canonical = getPointerType(getCanonicalType(T));
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  PointerTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getBlockPointerType - Return the uniqued reference to the type for
 | 
						|
/// a pointer to the specified block.
 | 
						|
QualType ASTContext::getBlockPointerType(QualType T) const {
 | 
						|
  assert(T->isFunctionType() && "block of function types only");
 | 
						|
  // Unique pointers, to guarantee there is only one block of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  BlockPointerType::Profile(ID, T);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (BlockPointerType *PT =
 | 
						|
        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(PT, 0);
 | 
						|
 | 
						|
  // If the block pointee type isn't canonical, this won't be a canonical
 | 
						|
  // type either so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T.isCanonical()) {
 | 
						|
    Canonical = getBlockPointerType(getCanonicalType(T));
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    BlockPointerType *NewIP =
 | 
						|
      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
  BlockPointerType *New
 | 
						|
    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  BlockPointerTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getLValueReferenceType - Return the uniqued reference to the type for an
 | 
						|
/// lvalue reference to the specified type.
 | 
						|
QualType
 | 
						|
ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ReferenceType::Profile(ID, T, SpelledAsLValue);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (LValueReferenceType *RT =
 | 
						|
        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(RT, 0);
 | 
						|
 | 
						|
  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
 | 
						|
 | 
						|
  // If the referencee type isn't canonical, this won't be a canonical type
 | 
						|
  // either, so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
 | 
						|
    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
 | 
						|
    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    LValueReferenceType *NewIP =
 | 
						|
      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
 | 
						|
  LValueReferenceType *New
 | 
						|
    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
 | 
						|
                                                     SpelledAsLValue);
 | 
						|
  Types.push_back(New);
 | 
						|
  LValueReferenceTypes.InsertNode(New, InsertPos);
 | 
						|
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getRValueReferenceType - Return the uniqued reference to the type for an
 | 
						|
/// rvalue reference to the specified type.
 | 
						|
QualType ASTContext::getRValueReferenceType(QualType T) const {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ReferenceType::Profile(ID, T, false);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (RValueReferenceType *RT =
 | 
						|
        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(RT, 0);
 | 
						|
 | 
						|
  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
 | 
						|
 | 
						|
  // If the referencee type isn't canonical, this won't be a canonical type
 | 
						|
  // either, so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (InnerRef || !T.isCanonical()) {
 | 
						|
    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
 | 
						|
    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    RValueReferenceType *NewIP =
 | 
						|
      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
 | 
						|
  RValueReferenceType *New
 | 
						|
    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  RValueReferenceTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getMemberPointerType - Return the uniqued reference to the type for a
 | 
						|
/// member pointer to the specified type, in the specified class.
 | 
						|
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
 | 
						|
  // Unique pointers, to guarantee there is only one pointer of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  MemberPointerType::Profile(ID, T, Cls);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (MemberPointerType *PT =
 | 
						|
      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(PT, 0);
 | 
						|
 | 
						|
  // If the pointee or class type isn't canonical, this won't be a canonical
 | 
						|
  // type either, so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
 | 
						|
    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    MemberPointerType *NewIP =
 | 
						|
      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
  MemberPointerType *New
 | 
						|
    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
 | 
						|
  Types.push_back(New);
 | 
						|
  MemberPointerTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantArrayType - Return the unique reference to the type for an
 | 
						|
/// array of the specified element type.
 | 
						|
QualType ASTContext::getConstantArrayType(QualType EltTy,
 | 
						|
                                          const llvm::APInt &ArySizeIn,
 | 
						|
                                          ArrayType::ArraySizeModifier ASM,
 | 
						|
                                          unsigned IndexTypeQuals) const {
 | 
						|
  assert((EltTy->isDependentType() ||
 | 
						|
          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
 | 
						|
         "Constant array of VLAs is illegal!");
 | 
						|
 | 
						|
  // Convert the array size into a canonical width matching the pointer size for
 | 
						|
  // the target.
 | 
						|
  llvm::APInt ArySize(ArySizeIn);
 | 
						|
  ArySize =
 | 
						|
    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
 | 
						|
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ConstantArrayType *ATP =
 | 
						|
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(ATP, 0);
 | 
						|
 | 
						|
  // If the element type isn't canonical or has qualifiers, this won't
 | 
						|
  // be a canonical type either, so fill in the canonical type field.
 | 
						|
  QualType Canon;
 | 
						|
  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
 | 
						|
    SplitQualType canonSplit = getCanonicalType(EltTy).split();
 | 
						|
    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
 | 
						|
                                 ASM, IndexTypeQuals);
 | 
						|
    Canon = getQualifiedType(Canon, canonSplit.second);
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    ConstantArrayType *NewIP =
 | 
						|
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantArrayType *New = new(*this,TypeAlignment)
 | 
						|
    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
 | 
						|
  ConstantArrayTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getVariableArrayDecayedType - Turns the given type, which may be
 | 
						|
/// variably-modified, into the corresponding type with all the known
 | 
						|
/// sizes replaced with [*].
 | 
						|
QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
 | 
						|
  // Vastly most common case.
 | 
						|
  if (!type->isVariablyModifiedType()) return type;
 | 
						|
 | 
						|
  QualType result;
 | 
						|
 | 
						|
  SplitQualType split = type.getSplitDesugaredType();
 | 
						|
  const Type *ty = split.first;
 | 
						|
  switch (ty->getTypeClass()) {
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    llvm_unreachable("didn't desugar past all non-canonical types?");
 | 
						|
 | 
						|
  // These types should never be variably-modified.
 | 
						|
  case Type::Builtin:
 | 
						|
  case Type::Complex:
 | 
						|
  case Type::Vector:
 | 
						|
  case Type::ExtVector:
 | 
						|
  case Type::DependentSizedExtVector:
 | 
						|
  case Type::ObjCObject:
 | 
						|
  case Type::ObjCInterface:
 | 
						|
  case Type::ObjCObjectPointer:
 | 
						|
  case Type::Record:
 | 
						|
  case Type::Enum:
 | 
						|
  case Type::UnresolvedUsing:
 | 
						|
  case Type::TypeOfExpr:
 | 
						|
  case Type::TypeOf:
 | 
						|
  case Type::Decltype:
 | 
						|
  case Type::DependentName:
 | 
						|
  case Type::InjectedClassName:
 | 
						|
  case Type::TemplateSpecialization:
 | 
						|
  case Type::DependentTemplateSpecialization:
 | 
						|
  case Type::TemplateTypeParm:
 | 
						|
  case Type::SubstTemplateTypeParmPack:
 | 
						|
  case Type::Auto:
 | 
						|
  case Type::PackExpansion:
 | 
						|
    llvm_unreachable("type should never be variably-modified");
 | 
						|
 | 
						|
  // These types can be variably-modified but should never need to
 | 
						|
  // further decay.
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
  case Type::FunctionProto:
 | 
						|
  case Type::BlockPointer:
 | 
						|
  case Type::MemberPointer:
 | 
						|
    return type;
 | 
						|
 | 
						|
  // These types can be variably-modified.  All these modifications
 | 
						|
  // preserve structure except as noted by comments.
 | 
						|
  // TODO: if we ever care about optimizing VLAs, there are no-op
 | 
						|
  // optimizations available here.
 | 
						|
  case Type::Pointer:
 | 
						|
    result = getPointerType(getVariableArrayDecayedType(
 | 
						|
                              cast<PointerType>(ty)->getPointeeType()));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::LValueReference: {
 | 
						|
    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
 | 
						|
    result = getLValueReferenceType(
 | 
						|
                 getVariableArrayDecayedType(lv->getPointeeType()),
 | 
						|
                                    lv->isSpelledAsLValue());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::RValueReference: {
 | 
						|
    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
 | 
						|
    result = getRValueReferenceType(
 | 
						|
                 getVariableArrayDecayedType(lv->getPointeeType()));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ConstantArray: {
 | 
						|
    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
 | 
						|
    result = getConstantArrayType(
 | 
						|
                 getVariableArrayDecayedType(cat->getElementType()),
 | 
						|
                                  cat->getSize(),
 | 
						|
                                  cat->getSizeModifier(),
 | 
						|
                                  cat->getIndexTypeCVRQualifiers());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::DependentSizedArray: {
 | 
						|
    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
 | 
						|
    result = getDependentSizedArrayType(
 | 
						|
                 getVariableArrayDecayedType(dat->getElementType()),
 | 
						|
                                        dat->getSizeExpr(),
 | 
						|
                                        dat->getSizeModifier(),
 | 
						|
                                        dat->getIndexTypeCVRQualifiers(),
 | 
						|
                                        dat->getBracketsRange());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn incomplete types into [*] types.
 | 
						|
  case Type::IncompleteArray: {
 | 
						|
    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
 | 
						|
    result = getVariableArrayType(
 | 
						|
                 getVariableArrayDecayedType(iat->getElementType()),
 | 
						|
                                  /*size*/ 0,
 | 
						|
                                  ArrayType::Normal,
 | 
						|
                                  iat->getIndexTypeCVRQualifiers(),
 | 
						|
                                  SourceRange());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn VLA types into [*] types.
 | 
						|
  case Type::VariableArray: {
 | 
						|
    const VariableArrayType *vat = cast<VariableArrayType>(ty);
 | 
						|
    result = getVariableArrayType(
 | 
						|
                 getVariableArrayDecayedType(vat->getElementType()),
 | 
						|
                                  /*size*/ 0,
 | 
						|
                                  ArrayType::Star,
 | 
						|
                                  vat->getIndexTypeCVRQualifiers(),
 | 
						|
                                  vat->getBracketsRange());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply the top-level qualifiers from the original.
 | 
						|
  return getQualifiedType(result, split.second);
 | 
						|
}
 | 
						|
 | 
						|
/// getVariableArrayType - Returns a non-unique reference to the type for a
 | 
						|
/// variable array of the specified element type.
 | 
						|
QualType ASTContext::getVariableArrayType(QualType EltTy,
 | 
						|
                                          Expr *NumElts,
 | 
						|
                                          ArrayType::ArraySizeModifier ASM,
 | 
						|
                                          unsigned IndexTypeQuals,
 | 
						|
                                          SourceRange Brackets) const {
 | 
						|
  // Since we don't unique expressions, it isn't possible to unique VLA's
 | 
						|
  // that have an expression provided for their size.
 | 
						|
  QualType Canon;
 | 
						|
  
 | 
						|
  // Be sure to pull qualifiers off the element type.
 | 
						|
  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
 | 
						|
    SplitQualType canonSplit = getCanonicalType(EltTy).split();
 | 
						|
    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
 | 
						|
                                 IndexTypeQuals, Brackets);
 | 
						|
    Canon = getQualifiedType(Canon, canonSplit.second);
 | 
						|
  }
 | 
						|
  
 | 
						|
  VariableArrayType *New = new(*this, TypeAlignment)
 | 
						|
    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
 | 
						|
 | 
						|
  VariableArrayTypes.push_back(New);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getDependentSizedArrayType - Returns a non-unique reference to
 | 
						|
/// the type for a dependently-sized array of the specified element
 | 
						|
/// type.
 | 
						|
QualType ASTContext::getDependentSizedArrayType(QualType elementType,
 | 
						|
                                                Expr *numElements,
 | 
						|
                                                ArrayType::ArraySizeModifier ASM,
 | 
						|
                                                unsigned elementTypeQuals,
 | 
						|
                                                SourceRange brackets) const {
 | 
						|
  assert((!numElements || numElements->isTypeDependent() || 
 | 
						|
          numElements->isValueDependent()) &&
 | 
						|
         "Size must be type- or value-dependent!");
 | 
						|
 | 
						|
  // Dependently-sized array types that do not have a specified number
 | 
						|
  // of elements will have their sizes deduced from a dependent
 | 
						|
  // initializer.  We do no canonicalization here at all, which is okay
 | 
						|
  // because they can't be used in most locations.
 | 
						|
  if (!numElements) {
 | 
						|
    DependentSizedArrayType *newType
 | 
						|
      = new (*this, TypeAlignment)
 | 
						|
          DependentSizedArrayType(*this, elementType, QualType(),
 | 
						|
                                  numElements, ASM, elementTypeQuals,
 | 
						|
                                  brackets);
 | 
						|
    Types.push_back(newType);
 | 
						|
    return QualType(newType, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we actually build a new type every time, but we
 | 
						|
  // also build a canonical type.
 | 
						|
 | 
						|
  SplitQualType canonElementType = getCanonicalType(elementType).split();
 | 
						|
 | 
						|
  void *insertPos = 0;
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  DependentSizedArrayType::Profile(ID, *this,
 | 
						|
                                   QualType(canonElementType.first, 0),
 | 
						|
                                   ASM, elementTypeQuals, numElements);
 | 
						|
 | 
						|
  // Look for an existing type with these properties.
 | 
						|
  DependentSizedArrayType *canonTy =
 | 
						|
    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
 | 
						|
 | 
						|
  // If we don't have one, build one.
 | 
						|
  if (!canonTy) {
 | 
						|
    canonTy = new (*this, TypeAlignment)
 | 
						|
      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
 | 
						|
                              QualType(), numElements, ASM, elementTypeQuals,
 | 
						|
                              brackets);
 | 
						|
    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
 | 
						|
    Types.push_back(canonTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply qualifiers from the element type to the array.
 | 
						|
  QualType canon = getQualifiedType(QualType(canonTy,0),
 | 
						|
                                    canonElementType.second);
 | 
						|
 | 
						|
  // If we didn't need extra canonicalization for the element type,
 | 
						|
  // then just use that as our result.
 | 
						|
  if (QualType(canonElementType.first, 0) == elementType)
 | 
						|
    return canon;
 | 
						|
 | 
						|
  // Otherwise, we need to build a type which follows the spelling
 | 
						|
  // of the element type.
 | 
						|
  DependentSizedArrayType *sugaredType
 | 
						|
    = new (*this, TypeAlignment)
 | 
						|
        DependentSizedArrayType(*this, elementType, canon, numElements,
 | 
						|
                                ASM, elementTypeQuals, brackets);
 | 
						|
  Types.push_back(sugaredType);
 | 
						|
  return QualType(sugaredType, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getIncompleteArrayType(QualType elementType,
 | 
						|
                                            ArrayType::ArraySizeModifier ASM,
 | 
						|
                                            unsigned elementTypeQuals) const {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
 | 
						|
 | 
						|
  void *insertPos = 0;
 | 
						|
  if (IncompleteArrayType *iat =
 | 
						|
       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
 | 
						|
    return QualType(iat, 0);
 | 
						|
 | 
						|
  // If the element type isn't canonical, this won't be a canonical type
 | 
						|
  // either, so fill in the canonical type field.  We also have to pull
 | 
						|
  // qualifiers off the element type.
 | 
						|
  QualType canon;
 | 
						|
 | 
						|
  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
 | 
						|
    SplitQualType canonSplit = getCanonicalType(elementType).split();
 | 
						|
    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
 | 
						|
                                   ASM, elementTypeQuals);
 | 
						|
    canon = getQualifiedType(canon, canonSplit.second);
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    IncompleteArrayType *existing =
 | 
						|
      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
 | 
						|
    assert(!existing && "Shouldn't be in the map!"); (void) existing;
 | 
						|
  }
 | 
						|
 | 
						|
  IncompleteArrayType *newType = new (*this, TypeAlignment)
 | 
						|
    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
 | 
						|
 | 
						|
  IncompleteArrayTypes.InsertNode(newType, insertPos);
 | 
						|
  Types.push_back(newType);
 | 
						|
  return QualType(newType, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getVectorType - Return the unique reference to a vector type of
 | 
						|
/// the specified element type and size. VectorType must be a built-in type.
 | 
						|
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
 | 
						|
                                   VectorType::VectorKind VecKind) const {
 | 
						|
  assert(vecType->isBuiltinType());
 | 
						|
 | 
						|
  // Check if we've already instantiated a vector of this type.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(VTP, 0);
 | 
						|
 | 
						|
  // If the element type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!vecType.isCanonical()) {
 | 
						|
    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
  VectorType *New = new (*this, TypeAlignment)
 | 
						|
    VectorType(vecType, NumElts, Canonical, VecKind);
 | 
						|
  VectorTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getExtVectorType - Return the unique reference to an extended vector type of
 | 
						|
/// the specified element type and size. VectorType must be a built-in type.
 | 
						|
QualType
 | 
						|
ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
 | 
						|
  assert(vecType->isBuiltinType());
 | 
						|
 | 
						|
  // Check if we've already instantiated a vector of this type.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
 | 
						|
                      VectorType::GenericVector);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(VTP, 0);
 | 
						|
 | 
						|
  // If the element type isn't canonical, this won't be a canonical type either,
 | 
						|
  // so fill in the canonical type field.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!vecType.isCanonical()) {
 | 
						|
    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
  ExtVectorType *New = new (*this, TypeAlignment)
 | 
						|
    ExtVectorType(vecType, NumElts, Canonical);
 | 
						|
  VectorTypes.InsertNode(New, InsertPos);
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getDependentSizedExtVectorType(QualType vecType,
 | 
						|
                                           Expr *SizeExpr,
 | 
						|
                                           SourceLocation AttrLoc) const {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
 | 
						|
                                       SizeExpr);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  DependentSizedExtVectorType *Canon
 | 
						|
    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  DependentSizedExtVectorType *New;
 | 
						|
  if (Canon) {
 | 
						|
    // We already have a canonical version of this array type; use it as
 | 
						|
    // the canonical type for a newly-built type.
 | 
						|
    New = new (*this, TypeAlignment)
 | 
						|
      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
 | 
						|
                                  SizeExpr, AttrLoc);
 | 
						|
  } else {
 | 
						|
    QualType CanonVecTy = getCanonicalType(vecType);
 | 
						|
    if (CanonVecTy == vecType) {
 | 
						|
      New = new (*this, TypeAlignment)
 | 
						|
        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
 | 
						|
                                    AttrLoc);
 | 
						|
 | 
						|
      DependentSizedExtVectorType *CanonCheck
 | 
						|
        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
 | 
						|
      (void)CanonCheck;
 | 
						|
      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
 | 
						|
    } else {
 | 
						|
      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
 | 
						|
                                                      SourceLocation());
 | 
						|
      New = new (*this, TypeAlignment) 
 | 
						|
        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Types.push_back(New);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
 | 
						|
///
 | 
						|
QualType
 | 
						|
ASTContext::getFunctionNoProtoType(QualType ResultTy,
 | 
						|
                                   const FunctionType::ExtInfo &Info) const {
 | 
						|
  const CallingConv DefaultCC = Info.getCC();
 | 
						|
  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
 | 
						|
                               CC_X86StdCall : DefaultCC;
 | 
						|
  // Unique functions, to guarantee there is only one function of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  FunctionNoProtoType::Profile(ID, ResultTy, Info);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (FunctionNoProtoType *FT =
 | 
						|
        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(FT, 0);
 | 
						|
 | 
						|
  QualType Canonical;
 | 
						|
  if (!ResultTy.isCanonical() ||
 | 
						|
      getCanonicalCallConv(CallConv) != CallConv) {
 | 
						|
    Canonical =
 | 
						|
      getFunctionNoProtoType(getCanonicalType(ResultTy),
 | 
						|
                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    FunctionNoProtoType *NewIP =
 | 
						|
      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
 | 
						|
  FunctionNoProtoType *New = new (*this, TypeAlignment)
 | 
						|
    FunctionNoProtoType(ResultTy, Canonical, newInfo);
 | 
						|
  Types.push_back(New);
 | 
						|
  FunctionNoProtoTypes.InsertNode(New, InsertPos);
 | 
						|
  return QualType(New, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionType - Return a normal function type with a typed argument
 | 
						|
/// list.  isVariadic indicates whether the argument list includes '...'.
 | 
						|
QualType
 | 
						|
ASTContext::getFunctionType(QualType ResultTy,
 | 
						|
                            const QualType *ArgArray, unsigned NumArgs,
 | 
						|
                            const FunctionProtoType::ExtProtoInfo &EPI) const {
 | 
						|
  // Unique functions, to guarantee there is only one function of a particular
 | 
						|
  // structure.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (FunctionProtoType *FTP =
 | 
						|
        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(FTP, 0);
 | 
						|
 | 
						|
  // Determine whether the type being created is already canonical or not.
 | 
						|
  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
 | 
						|
  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
 | 
						|
    if (!ArgArray[i].isCanonicalAsParam())
 | 
						|
      isCanonical = false;
 | 
						|
 | 
						|
  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
 | 
						|
  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
 | 
						|
                               CC_X86StdCall : DefaultCC;
 | 
						|
 | 
						|
  // If this type isn't canonical, get the canonical version of it.
 | 
						|
  // The exception spec is not part of the canonical type.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
 | 
						|
    llvm::SmallVector<QualType, 16> CanonicalArgs;
 | 
						|
    CanonicalArgs.reserve(NumArgs);
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i)
 | 
						|
      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
 | 
						|
 | 
						|
    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
 | 
						|
    CanonicalEPI.ExceptionSpecType = EST_None;
 | 
						|
    CanonicalEPI.NumExceptions = 0;
 | 
						|
    CanonicalEPI.ExtInfo
 | 
						|
      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
 | 
						|
 | 
						|
    Canonical = getFunctionType(getCanonicalType(ResultTy),
 | 
						|
                                CanonicalArgs.data(), NumArgs,
 | 
						|
                                CanonicalEPI);
 | 
						|
 | 
						|
    // Get the new insert position for the node we care about.
 | 
						|
    FunctionProtoType *NewIP =
 | 
						|
      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
 | 
						|
  }
 | 
						|
 | 
						|
  // FunctionProtoType objects are allocated with extra bytes after them
 | 
						|
  // for two variable size arrays (for parameter and exception types) at the
 | 
						|
  // end of them. Instead of the exception types, there could be a noexcept
 | 
						|
  // expression and a context pointer.
 | 
						|
  size_t Size = sizeof(FunctionProtoType) +
 | 
						|
                NumArgs * sizeof(QualType);
 | 
						|
  if (EPI.ExceptionSpecType == EST_Dynamic)
 | 
						|
    Size += EPI.NumExceptions * sizeof(QualType);
 | 
						|
  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
 | 
						|
    Size += sizeof(Expr*);
 | 
						|
  }
 | 
						|
  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
 | 
						|
  FunctionProtoType::ExtProtoInfo newEPI = EPI;
 | 
						|
  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
 | 
						|
  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
 | 
						|
  Types.push_back(FTP);
 | 
						|
  FunctionProtoTypes.InsertNode(FTP, InsertPos);
 | 
						|
  return QualType(FTP, 0);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool NeedsInjectedClassNameType(const RecordDecl *D) {
 | 
						|
  if (!isa<CXXRecordDecl>(D)) return false;
 | 
						|
  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
 | 
						|
  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
 | 
						|
    return true;
 | 
						|
  if (RD->getDescribedClassTemplate() &&
 | 
						|
      !isa<ClassTemplateSpecializationDecl>(RD))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// getInjectedClassNameType - Return the unique reference to the
 | 
						|
/// injected class name type for the specified templated declaration.
 | 
						|
QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
 | 
						|
                                              QualType TST) const {
 | 
						|
  assert(NeedsInjectedClassNameType(Decl));
 | 
						|
  if (Decl->TypeForDecl) {
 | 
						|
    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
 | 
						|
  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
 | 
						|
    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
 | 
						|
    Decl->TypeForDecl = PrevDecl->TypeForDecl;
 | 
						|
    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
 | 
						|
  } else {
 | 
						|
    Type *newType =
 | 
						|
      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
 | 
						|
    Decl->TypeForDecl = newType;
 | 
						|
    Types.push_back(newType);
 | 
						|
  }
 | 
						|
  return QualType(Decl->TypeForDecl, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeDeclType - Return the unique reference to the type for the
 | 
						|
/// specified type declaration.
 | 
						|
QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
 | 
						|
  assert(Decl && "Passed null for Decl param");
 | 
						|
  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
 | 
						|
 | 
						|
  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
 | 
						|
    return getTypedefType(Typedef);
 | 
						|
 | 
						|
  assert(!isa<TemplateTypeParmDecl>(Decl) &&
 | 
						|
         "Template type parameter types are always available.");
 | 
						|
 | 
						|
  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
 | 
						|
    assert(!Record->getPreviousDeclaration() &&
 | 
						|
           "struct/union has previous declaration");
 | 
						|
    assert(!NeedsInjectedClassNameType(Record));
 | 
						|
    return getRecordType(Record);
 | 
						|
  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
 | 
						|
    assert(!Enum->getPreviousDeclaration() &&
 | 
						|
           "enum has previous declaration");
 | 
						|
    return getEnumType(Enum);
 | 
						|
  } else if (const UnresolvedUsingTypenameDecl *Using =
 | 
						|
               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
 | 
						|
    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
 | 
						|
    Decl->TypeForDecl = newType;
 | 
						|
    Types.push_back(newType);
 | 
						|
  } else
 | 
						|
    llvm_unreachable("TypeDecl without a type?");
 | 
						|
 | 
						|
  return QualType(Decl->TypeForDecl, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypedefType - Return the unique reference to the type for the
 | 
						|
/// specified typedef name decl.
 | 
						|
QualType
 | 
						|
ASTContext::getTypedefType(const TypedefNameDecl *Decl,
 | 
						|
                           QualType Canonical) const {
 | 
						|
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | 
						|
 | 
						|
  if (Canonical.isNull())
 | 
						|
    Canonical = getCanonicalType(Decl->getUnderlyingType());
 | 
						|
  TypedefType *newType = new(*this, TypeAlignment)
 | 
						|
    TypedefType(Type::Typedef, Decl, Canonical);
 | 
						|
  Decl->TypeForDecl = newType;
 | 
						|
  Types.push_back(newType);
 | 
						|
  return QualType(newType, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
 | 
						|
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | 
						|
 | 
						|
  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
 | 
						|
    if (PrevDecl->TypeForDecl)
 | 
						|
      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 
 | 
						|
 | 
						|
  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
 | 
						|
  Decl->TypeForDecl = newType;
 | 
						|
  Types.push_back(newType);
 | 
						|
  return QualType(newType, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
 | 
						|
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | 
						|
 | 
						|
  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
 | 
						|
    if (PrevDecl->TypeForDecl)
 | 
						|
      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 
 | 
						|
 | 
						|
  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
 | 
						|
  Decl->TypeForDecl = newType;
 | 
						|
  Types.push_back(newType);
 | 
						|
  return QualType(newType, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
 | 
						|
                                       QualType modifiedType,
 | 
						|
                                       QualType equivalentType) {
 | 
						|
  llvm::FoldingSetNodeID id;
 | 
						|
  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
 | 
						|
 | 
						|
  void *insertPos = 0;
 | 
						|
  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
 | 
						|
  if (type) return QualType(type, 0);
 | 
						|
 | 
						|
  QualType canon = getCanonicalType(equivalentType);
 | 
						|
  type = new (*this, TypeAlignment)
 | 
						|
           AttributedType(canon, attrKind, modifiedType, equivalentType);
 | 
						|
 | 
						|
  Types.push_back(type);
 | 
						|
  AttributedTypes.InsertNode(type, insertPos);
 | 
						|
 | 
						|
  return QualType(type, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Retrieve a substitution-result type.
 | 
						|
QualType
 | 
						|
ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
 | 
						|
                                         QualType Replacement) const {
 | 
						|
  assert(Replacement.isCanonical()
 | 
						|
         && "replacement types must always be canonical");
 | 
						|
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  SubstTemplateTypeParmType *SubstParm
 | 
						|
    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  if (!SubstParm) {
 | 
						|
    SubstParm = new (*this, TypeAlignment)
 | 
						|
      SubstTemplateTypeParmType(Parm, Replacement);
 | 
						|
    Types.push_back(SubstParm);
 | 
						|
    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  return QualType(SubstParm, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve a 
 | 
						|
QualType ASTContext::getSubstTemplateTypeParmPackType(
 | 
						|
                                          const TemplateTypeParmType *Parm,
 | 
						|
                                              const TemplateArgument &ArgPack) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(), 
 | 
						|
                                    PEnd = ArgPack.pack_end();
 | 
						|
       P != PEnd; ++P) {
 | 
						|
    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
 | 
						|
    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (SubstTemplateTypeParmPackType *SubstParm
 | 
						|
        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(SubstParm, 0);
 | 
						|
  
 | 
						|
  QualType Canon;
 | 
						|
  if (!Parm->isCanonicalUnqualified()) {
 | 
						|
    Canon = getCanonicalType(QualType(Parm, 0));
 | 
						|
    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
 | 
						|
                                             ArgPack);
 | 
						|
    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  SubstTemplateTypeParmPackType *SubstParm
 | 
						|
    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
 | 
						|
                                                               ArgPack);
 | 
						|
  Types.push_back(SubstParm);
 | 
						|
  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
 | 
						|
  return QualType(SubstParm, 0);  
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the template type parameter type for a template
 | 
						|
/// parameter or parameter pack with the given depth, index, and (optionally)
 | 
						|
/// name.
 | 
						|
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
 | 
						|
                                             bool ParameterPack,
 | 
						|
                                             IdentifierInfo *Name) const {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  TemplateTypeParmType *TypeParm
 | 
						|
    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  if (TypeParm)
 | 
						|
    return QualType(TypeParm, 0);
 | 
						|
 | 
						|
  if (Name) {
 | 
						|
    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
 | 
						|
    TypeParm = new (*this, TypeAlignment)
 | 
						|
      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
 | 
						|
 | 
						|
    TemplateTypeParmType *TypeCheck 
 | 
						|
      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(!TypeCheck && "Template type parameter canonical type broken");
 | 
						|
    (void)TypeCheck;
 | 
						|
  } else
 | 
						|
    TypeParm = new (*this, TypeAlignment)
 | 
						|
      TemplateTypeParmType(Depth, Index, ParameterPack);
 | 
						|
 | 
						|
  Types.push_back(TypeParm);
 | 
						|
  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
 | 
						|
 | 
						|
  return QualType(TypeParm, 0);
 | 
						|
}
 | 
						|
 | 
						|
TypeSourceInfo *
 | 
						|
ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
 | 
						|
                                              SourceLocation NameLoc,
 | 
						|
                                        const TemplateArgumentListInfo &Args,
 | 
						|
                                              QualType CanonType) const {
 | 
						|
  assert(!Name.getAsDependentTemplateName() && 
 | 
						|
         "No dependent template names here!");
 | 
						|
  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
 | 
						|
 | 
						|
  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
 | 
						|
  TemplateSpecializationTypeLoc TL
 | 
						|
    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
 | 
						|
  TL.setTemplateNameLoc(NameLoc);
 | 
						|
  TL.setLAngleLoc(Args.getLAngleLoc());
 | 
						|
  TL.setRAngleLoc(Args.getRAngleLoc());
 | 
						|
  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
 | 
						|
    TL.setArgLocInfo(i, Args[i].getLocInfo());
 | 
						|
  return DI;
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getTemplateSpecializationType(TemplateName Template,
 | 
						|
                                          const TemplateArgumentListInfo &Args,
 | 
						|
                                          QualType Canon) const {
 | 
						|
  assert(!Template.getAsDependentTemplateName() && 
 | 
						|
         "No dependent template names here!");
 | 
						|
  
 | 
						|
  unsigned NumArgs = Args.size();
 | 
						|
 | 
						|
  llvm::SmallVector<TemplateArgument, 4> ArgVec;
 | 
						|
  ArgVec.reserve(NumArgs);
 | 
						|
  for (unsigned i = 0; i != NumArgs; ++i)
 | 
						|
    ArgVec.push_back(Args[i].getArgument());
 | 
						|
 | 
						|
  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
 | 
						|
                                       Canon);
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getTemplateSpecializationType(TemplateName Template,
 | 
						|
                                          const TemplateArgument *Args,
 | 
						|
                                          unsigned NumArgs,
 | 
						|
                                          QualType Canon) const {
 | 
						|
  assert(!Template.getAsDependentTemplateName() && 
 | 
						|
         "No dependent template names here!");
 | 
						|
  // Look through qualified template names.
 | 
						|
  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
 | 
						|
    Template = TemplateName(QTN->getTemplateDecl());
 | 
						|
  
 | 
						|
  if (!Canon.isNull())
 | 
						|
    Canon = getCanonicalType(Canon);
 | 
						|
  else
 | 
						|
    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
 | 
						|
 | 
						|
  // Allocate the (non-canonical) template specialization type, but don't
 | 
						|
  // try to unique it: these types typically have location information that
 | 
						|
  // we don't unique and don't want to lose.
 | 
						|
  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
 | 
						|
                        sizeof(TemplateArgument) * NumArgs),
 | 
						|
                       TypeAlignment);
 | 
						|
  TemplateSpecializationType *Spec
 | 
						|
    = new (Mem) TemplateSpecializationType(Template,
 | 
						|
                                           Args, NumArgs,
 | 
						|
                                           Canon);
 | 
						|
 | 
						|
  Types.push_back(Spec);
 | 
						|
  return QualType(Spec, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
 | 
						|
                                                   const TemplateArgument *Args,
 | 
						|
                                                   unsigned NumArgs) const {
 | 
						|
  assert(!Template.getAsDependentTemplateName() && 
 | 
						|
         "No dependent template names here!");
 | 
						|
  // Look through qualified template names.
 | 
						|
  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
 | 
						|
    Template = TemplateName(QTN->getTemplateDecl());
 | 
						|
  
 | 
						|
  // Build the canonical template specialization type.
 | 
						|
  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
 | 
						|
  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
 | 
						|
  CanonArgs.reserve(NumArgs);
 | 
						|
  for (unsigned I = 0; I != NumArgs; ++I)
 | 
						|
    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
 | 
						|
 | 
						|
  // Determine whether this canonical template specialization type already
 | 
						|
  // exists.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  TemplateSpecializationType::Profile(ID, CanonTemplate,
 | 
						|
                                      CanonArgs.data(), NumArgs, *this);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  TemplateSpecializationType *Spec
 | 
						|
    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  if (!Spec) {
 | 
						|
    // Allocate a new canonical template specialization type.
 | 
						|
    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
 | 
						|
                          sizeof(TemplateArgument) * NumArgs),
 | 
						|
                         TypeAlignment);
 | 
						|
    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
 | 
						|
                                                CanonArgs.data(), NumArgs,
 | 
						|
                                                QualType());
 | 
						|
    Types.push_back(Spec);
 | 
						|
    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Spec->isDependentType() &&
 | 
						|
         "Non-dependent template-id type must have a canonical type");
 | 
						|
  return QualType(Spec, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
 | 
						|
                              NestedNameSpecifier *NNS,
 | 
						|
                              QualType NamedType) const {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  if (T)
 | 
						|
    return QualType(T, 0);
 | 
						|
 | 
						|
  QualType Canon = NamedType;
 | 
						|
  if (!Canon.isCanonical()) {
 | 
						|
    Canon = getCanonicalType(NamedType);
 | 
						|
    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(!CheckT && "Elaborated canonical type broken");
 | 
						|
    (void)CheckT;
 | 
						|
  }
 | 
						|
 | 
						|
  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
 | 
						|
  Types.push_back(T);
 | 
						|
  ElaboratedTypes.InsertNode(T, InsertPos);
 | 
						|
  return QualType(T, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getParenType(QualType InnerType) const {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ParenType::Profile(ID, InnerType);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  if (T)
 | 
						|
    return QualType(T, 0);
 | 
						|
 | 
						|
  QualType Canon = InnerType;
 | 
						|
  if (!Canon.isCanonical()) {
 | 
						|
    Canon = getCanonicalType(InnerType);
 | 
						|
    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(!CheckT && "Paren canonical type broken");
 | 
						|
    (void)CheckT;
 | 
						|
  }
 | 
						|
 | 
						|
  T = new (*this) ParenType(InnerType, Canon);
 | 
						|
  Types.push_back(T);
 | 
						|
  ParenTypes.InsertNode(T, InsertPos);
 | 
						|
  return QualType(T, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
 | 
						|
                                          NestedNameSpecifier *NNS,
 | 
						|
                                          const IdentifierInfo *Name,
 | 
						|
                                          QualType Canon) const {
 | 
						|
  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
 | 
						|
 | 
						|
  if (Canon.isNull()) {
 | 
						|
    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | 
						|
    ElaboratedTypeKeyword CanonKeyword = Keyword;
 | 
						|
    if (Keyword == ETK_None)
 | 
						|
      CanonKeyword = ETK_Typename;
 | 
						|
    
 | 
						|
    if (CanonNNS != NNS || CanonKeyword != Keyword)
 | 
						|
      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  DependentNameType::Profile(ID, Keyword, NNS, Name);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  DependentNameType *T
 | 
						|
    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  if (T)
 | 
						|
    return QualType(T, 0);
 | 
						|
 | 
						|
  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
 | 
						|
  Types.push_back(T);
 | 
						|
  DependentNameTypes.InsertNode(T, InsertPos);
 | 
						|
  return QualType(T, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getDependentTemplateSpecializationType(
 | 
						|
                                 ElaboratedTypeKeyword Keyword,
 | 
						|
                                 NestedNameSpecifier *NNS,
 | 
						|
                                 const IdentifierInfo *Name,
 | 
						|
                                 const TemplateArgumentListInfo &Args) const {
 | 
						|
  // TODO: avoid this copy
 | 
						|
  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
 | 
						|
  for (unsigned I = 0, E = Args.size(); I != E; ++I)
 | 
						|
    ArgCopy.push_back(Args[I].getArgument());
 | 
						|
  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
 | 
						|
                                                ArgCopy.size(),
 | 
						|
                                                ArgCopy.data());
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::getDependentTemplateSpecializationType(
 | 
						|
                                 ElaboratedTypeKeyword Keyword,
 | 
						|
                                 NestedNameSpecifier *NNS,
 | 
						|
                                 const IdentifierInfo *Name,
 | 
						|
                                 unsigned NumArgs,
 | 
						|
                                 const TemplateArgument *Args) const {
 | 
						|
  assert((!NNS || NNS->isDependent()) && 
 | 
						|
         "nested-name-specifier must be dependent");
 | 
						|
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
 | 
						|
                                               Name, NumArgs, Args);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  DependentTemplateSpecializationType *T
 | 
						|
    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  if (T)
 | 
						|
    return QualType(T, 0);
 | 
						|
 | 
						|
  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | 
						|
 | 
						|
  ElaboratedTypeKeyword CanonKeyword = Keyword;
 | 
						|
  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
 | 
						|
 | 
						|
  bool AnyNonCanonArgs = false;
 | 
						|
  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
 | 
						|
  for (unsigned I = 0; I != NumArgs; ++I) {
 | 
						|
    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
 | 
						|
    if (!CanonArgs[I].structurallyEquals(Args[I]))
 | 
						|
      AnyNonCanonArgs = true;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Canon;
 | 
						|
  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
 | 
						|
    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
 | 
						|
                                                   Name, NumArgs,
 | 
						|
                                                   CanonArgs.data());
 | 
						|
 | 
						|
    // Find the insert position again.
 | 
						|
    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
 | 
						|
                        sizeof(TemplateArgument) * NumArgs),
 | 
						|
                       TypeAlignment);
 | 
						|
  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
 | 
						|
                                                    Name, NumArgs, Args, Canon);
 | 
						|
  Types.push_back(T);
 | 
						|
  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
 | 
						|
  return QualType(T, 0);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getPackExpansionType(QualType Pattern,
 | 
						|
                                      llvm::Optional<unsigned> NumExpansions) {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  PackExpansionType::Profile(ID, Pattern, NumExpansions);
 | 
						|
 | 
						|
  assert(Pattern->containsUnexpandedParameterPack() &&
 | 
						|
         "Pack expansions must expand one or more parameter packs");
 | 
						|
  void *InsertPos = 0;
 | 
						|
  PackExpansionType *T
 | 
						|
    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  if (T)
 | 
						|
    return QualType(T, 0);
 | 
						|
 | 
						|
  QualType Canon;
 | 
						|
  if (!Pattern.isCanonical()) {
 | 
						|
    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
 | 
						|
 | 
						|
    // Find the insert position again.
 | 
						|
    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
 | 
						|
  Types.push_back(T);
 | 
						|
  PackExpansionTypes.InsertNode(T, InsertPos);
 | 
						|
  return QualType(T, 0);  
 | 
						|
}
 | 
						|
 | 
						|
/// CmpProtocolNames - Comparison predicate for sorting protocols
 | 
						|
/// alphabetically.
 | 
						|
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
 | 
						|
                            const ObjCProtocolDecl *RHS) {
 | 
						|
  return LHS->getDeclName() < RHS->getDeclName();
 | 
						|
}
 | 
						|
 | 
						|
static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
 | 
						|
                                unsigned NumProtocols) {
 | 
						|
  if (NumProtocols == 0) return true;
 | 
						|
 | 
						|
  for (unsigned i = 1; i != NumProtocols; ++i)
 | 
						|
    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
 | 
						|
                                   unsigned &NumProtocols) {
 | 
						|
  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
 | 
						|
 | 
						|
  // Sort protocols, keyed by name.
 | 
						|
  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
 | 
						|
 | 
						|
  // Remove duplicates.
 | 
						|
  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
 | 
						|
  NumProtocols = ProtocolsEnd-Protocols;
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getObjCObjectType(QualType BaseType,
 | 
						|
                                       ObjCProtocolDecl * const *Protocols,
 | 
						|
                                       unsigned NumProtocols) const {
 | 
						|
  // If the base type is an interface and there aren't any protocols
 | 
						|
  // to add, then the interface type will do just fine.
 | 
						|
  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
 | 
						|
    return BaseType;
 | 
						|
 | 
						|
  // Look in the folding set for an existing type.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(QT, 0);
 | 
						|
 | 
						|
  // Build the canonical type, which has the canonical base type and
 | 
						|
  // a sorted-and-uniqued list of protocols.
 | 
						|
  QualType Canonical;
 | 
						|
  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
 | 
						|
  if (!ProtocolsSorted || !BaseType.isCanonical()) {
 | 
						|
    if (!ProtocolsSorted) {
 | 
						|
      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
 | 
						|
                                                     Protocols + NumProtocols);
 | 
						|
      unsigned UniqueCount = NumProtocols;
 | 
						|
 | 
						|
      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
 | 
						|
      Canonical = getObjCObjectType(getCanonicalType(BaseType),
 | 
						|
                                    &Sorted[0], UniqueCount);
 | 
						|
    } else {
 | 
						|
      Canonical = getObjCObjectType(getCanonicalType(BaseType),
 | 
						|
                                    Protocols, NumProtocols);
 | 
						|
    }
 | 
						|
 | 
						|
    // Regenerate InsertPos.
 | 
						|
    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Size = sizeof(ObjCObjectTypeImpl);
 | 
						|
  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
 | 
						|
  void *Mem = Allocate(Size, TypeAlignment);
 | 
						|
  ObjCObjectTypeImpl *T =
 | 
						|
    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
 | 
						|
 | 
						|
  Types.push_back(T);
 | 
						|
  ObjCObjectTypes.InsertNode(T, InsertPos);
 | 
						|
  return QualType(T, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
 | 
						|
/// the given object type.
 | 
						|
QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ObjCObjectPointerType::Profile(ID, ObjectT);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (ObjCObjectPointerType *QT =
 | 
						|
              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
    return QualType(QT, 0);
 | 
						|
 | 
						|
  // Find the canonical object type.
 | 
						|
  QualType Canonical;
 | 
						|
  if (!ObjectT.isCanonical()) {
 | 
						|
    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
 | 
						|
 | 
						|
    // Regenerate InsertPos.
 | 
						|
    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  // No match.
 | 
						|
  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
 | 
						|
  ObjCObjectPointerType *QType =
 | 
						|
    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
 | 
						|
 | 
						|
  Types.push_back(QType);
 | 
						|
  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
 | 
						|
  return QualType(QType, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCInterfaceType - Return the unique reference to the type for the
 | 
						|
/// specified ObjC interface decl. The list of protocols is optional.
 | 
						|
QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
 | 
						|
  if (Decl->TypeForDecl)
 | 
						|
    return QualType(Decl->TypeForDecl, 0);
 | 
						|
 | 
						|
  // FIXME: redeclarations?
 | 
						|
  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
 | 
						|
  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
 | 
						|
  Decl->TypeForDecl = T;
 | 
						|
  Types.push_back(T);
 | 
						|
  return QualType(T, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
 | 
						|
/// TypeOfExprType AST's (since expression's are never shared). For example,
 | 
						|
/// multiple declarations that refer to "typeof(x)" all contain different
 | 
						|
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
 | 
						|
/// on canonical type's (which are always unique).
 | 
						|
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
 | 
						|
  TypeOfExprType *toe;
 | 
						|
  if (tofExpr->isTypeDependent()) {
 | 
						|
    llvm::FoldingSetNodeID ID;
 | 
						|
    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
 | 
						|
 | 
						|
    void *InsertPos = 0;
 | 
						|
    DependentTypeOfExprType *Canon
 | 
						|
      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    if (Canon) {
 | 
						|
      // We already have a "canonical" version of an identical, dependent
 | 
						|
      // typeof(expr) type. Use that as our canonical type.
 | 
						|
      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
 | 
						|
                                          QualType((TypeOfExprType*)Canon, 0));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // Build a new, canonical typeof(expr) type.
 | 
						|
      Canon
 | 
						|
        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
 | 
						|
      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
 | 
						|
      toe = Canon;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    QualType Canonical = getCanonicalType(tofExpr->getType());
 | 
						|
    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
 | 
						|
  }
 | 
						|
  Types.push_back(toe);
 | 
						|
  return QualType(toe, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
 | 
						|
/// TypeOfType AST's. The only motivation to unique these nodes would be
 | 
						|
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
 | 
						|
/// an issue. This doesn't effect the type checker, since it operates
 | 
						|
/// on canonical type's (which are always unique).
 | 
						|
QualType ASTContext::getTypeOfType(QualType tofType) const {
 | 
						|
  QualType Canonical = getCanonicalType(tofType);
 | 
						|
  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
 | 
						|
  Types.push_back(tot);
 | 
						|
  return QualType(tot, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getDecltypeForExpr - Given an expr, will return the decltype for that
 | 
						|
/// expression, according to the rules in C++0x [dcl.type.simple]p4
 | 
						|
static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
 | 
						|
  if (e->isTypeDependent())
 | 
						|
    return Context.DependentTy;
 | 
						|
 | 
						|
  // If e is an id expression or a class member access, decltype(e) is defined
 | 
						|
  // as the type of the entity named by e.
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
 | 
						|
    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
 | 
						|
      return VD->getType();
 | 
						|
  }
 | 
						|
  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
 | 
						|
    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
 | 
						|
      return FD->getType();
 | 
						|
  }
 | 
						|
  // If e is a function call or an invocation of an overloaded operator,
 | 
						|
  // (parentheses around e are ignored), decltype(e) is defined as the
 | 
						|
  // return type of that function.
 | 
						|
  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
 | 
						|
    return CE->getCallReturnType();
 | 
						|
 | 
						|
  QualType T = e->getType();
 | 
						|
 | 
						|
  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
 | 
						|
  // defined as T&, otherwise decltype(e) is defined as T.
 | 
						|
  if (e->isLValue())
 | 
						|
    T = Context.getLValueReferenceType(T);
 | 
						|
 | 
						|
  return T;
 | 
						|
}
 | 
						|
 | 
						|
/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
 | 
						|
/// DecltypeType AST's. The only motivation to unique these nodes would be
 | 
						|
/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
 | 
						|
/// an issue. This doesn't effect the type checker, since it operates
 | 
						|
/// on canonical type's (which are always unique).
 | 
						|
QualType ASTContext::getDecltypeType(Expr *e) const {
 | 
						|
  DecltypeType *dt;
 | 
						|
  if (e->isTypeDependent()) {
 | 
						|
    llvm::FoldingSetNodeID ID;
 | 
						|
    DependentDecltypeType::Profile(ID, *this, e);
 | 
						|
 | 
						|
    void *InsertPos = 0;
 | 
						|
    DependentDecltypeType *Canon
 | 
						|
      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    if (Canon) {
 | 
						|
      // We already have a "canonical" version of an equivalent, dependent
 | 
						|
      // decltype type. Use that as our canonical type.
 | 
						|
      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
 | 
						|
                                       QualType((DecltypeType*)Canon, 0));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // Build a new, canonical typeof(expr) type.
 | 
						|
      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
 | 
						|
      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
 | 
						|
      dt = Canon;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    QualType T = getDecltypeForExpr(e, *this);
 | 
						|
    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
 | 
						|
  }
 | 
						|
  Types.push_back(dt);
 | 
						|
  return QualType(dt, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getAutoType - We only unique auto types after they've been deduced.
 | 
						|
QualType ASTContext::getAutoType(QualType DeducedType) const {
 | 
						|
  void *InsertPos = 0;
 | 
						|
  if (!DeducedType.isNull()) {
 | 
						|
    // Look in the folding set for an existing type.
 | 
						|
    llvm::FoldingSetNodeID ID;
 | 
						|
    AutoType::Profile(ID, DeducedType);
 | 
						|
    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
 | 
						|
      return QualType(AT, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
 | 
						|
  Types.push_back(AT);
 | 
						|
  if (InsertPos)
 | 
						|
    AutoTypes.InsertNode(AT, InsertPos);
 | 
						|
  return QualType(AT, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getAutoDeductType - Get type pattern for deducing against 'auto'.
 | 
						|
QualType ASTContext::getAutoDeductType() const {
 | 
						|
  if (AutoDeductTy.isNull())
 | 
						|
    AutoDeductTy = getAutoType(QualType());
 | 
						|
  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
 | 
						|
  return AutoDeductTy;
 | 
						|
}
 | 
						|
 | 
						|
/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
 | 
						|
QualType ASTContext::getAutoRRefDeductType() const {
 | 
						|
  if (AutoRRefDeductTy.isNull())
 | 
						|
    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
 | 
						|
  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
 | 
						|
  return AutoRRefDeductTy;
 | 
						|
}
 | 
						|
 | 
						|
/// getTagDeclType - Return the unique reference to the type for the
 | 
						|
/// specified TagDecl (struct/union/class/enum) decl.
 | 
						|
QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
 | 
						|
  assert (Decl);
 | 
						|
  // FIXME: What is the design on getTagDeclType when it requires casting
 | 
						|
  // away const?  mutable?
 | 
						|
  return getTypeDeclType(const_cast<TagDecl*>(Decl));
 | 
						|
}
 | 
						|
 | 
						|
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
 | 
						|
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
 | 
						|
/// needs to agree with the definition in <stddef.h>.
 | 
						|
CanQualType ASTContext::getSizeType() const {
 | 
						|
  return getFromTargetType(Target.getSizeType());
 | 
						|
}
 | 
						|
 | 
						|
/// getSignedWCharType - Return the type of "signed wchar_t".
 | 
						|
/// Used when in C++, as a GCC extension.
 | 
						|
QualType ASTContext::getSignedWCharType() const {
 | 
						|
  // FIXME: derive from "Target" ?
 | 
						|
  return WCharTy;
 | 
						|
}
 | 
						|
 | 
						|
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
 | 
						|
/// Used when in C++, as a GCC extension.
 | 
						|
QualType ASTContext::getUnsignedWCharType() const {
 | 
						|
  // FIXME: derive from "Target" ?
 | 
						|
  return UnsignedIntTy;
 | 
						|
}
 | 
						|
 | 
						|
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
 | 
						|
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
 | 
						|
QualType ASTContext::getPointerDiffType() const {
 | 
						|
  return getFromTargetType(Target.getPtrDiffType(0));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              Type Operators
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
CanQualType ASTContext::getCanonicalParamType(QualType T) const {
 | 
						|
  // Push qualifiers into arrays, and then discard any remaining
 | 
						|
  // qualifiers.
 | 
						|
  T = getCanonicalType(T);
 | 
						|
  T = getVariableArrayDecayedType(T);
 | 
						|
  const Type *Ty = T.getTypePtr();
 | 
						|
  QualType Result;
 | 
						|
  if (isa<ArrayType>(Ty)) {
 | 
						|
    Result = getArrayDecayedType(QualType(Ty,0));
 | 
						|
  } else if (isa<FunctionType>(Ty)) {
 | 
						|
    Result = getPointerType(QualType(Ty, 0));
 | 
						|
  } else {
 | 
						|
    Result = QualType(Ty, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return CanQualType::CreateUnsafe(Result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
QualType ASTContext::getUnqualifiedArrayType(QualType type,
 | 
						|
                                             Qualifiers &quals) {
 | 
						|
  SplitQualType splitType = type.getSplitUnqualifiedType();
 | 
						|
 | 
						|
  // FIXME: getSplitUnqualifiedType() actually walks all the way to
 | 
						|
  // the unqualified desugared type and then drops it on the floor.
 | 
						|
  // We then have to strip that sugar back off with
 | 
						|
  // getUnqualifiedDesugaredType(), which is silly.
 | 
						|
  const ArrayType *AT =
 | 
						|
    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
 | 
						|
 | 
						|
  // If we don't have an array, just use the results in splitType.
 | 
						|
  if (!AT) {
 | 
						|
    quals = splitType.second;
 | 
						|
    return QualType(splitType.first, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, recurse on the array's element type.
 | 
						|
  QualType elementType = AT->getElementType();
 | 
						|
  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
 | 
						|
 | 
						|
  // If that didn't change the element type, AT has no qualifiers, so we
 | 
						|
  // can just use the results in splitType.
 | 
						|
  if (elementType == unqualElementType) {
 | 
						|
    assert(quals.empty()); // from the recursive call
 | 
						|
    quals = splitType.second;
 | 
						|
    return QualType(splitType.first, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, add in the qualifiers from the outermost type, then
 | 
						|
  // build the type back up.
 | 
						|
  quals.addConsistentQualifiers(splitType.second);
 | 
						|
 | 
						|
  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
 | 
						|
    return getConstantArrayType(unqualElementType, CAT->getSize(),
 | 
						|
                                CAT->getSizeModifier(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
 | 
						|
    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
 | 
						|
    return getVariableArrayType(unqualElementType,
 | 
						|
                                VAT->getSizeExpr(),
 | 
						|
                                VAT->getSizeModifier(),
 | 
						|
                                VAT->getIndexTypeCVRQualifiers(),
 | 
						|
                                VAT->getBracketsRange());
 | 
						|
  }
 | 
						|
 | 
						|
  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
 | 
						|
  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
 | 
						|
                                    DSAT->getSizeModifier(), 0,
 | 
						|
                                    SourceRange());
 | 
						|
}
 | 
						|
 | 
						|
/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
 | 
						|
/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
 | 
						|
/// they point to and return true. If T1 and T2 aren't pointer types
 | 
						|
/// or pointer-to-member types, or if they are not similar at this
 | 
						|
/// level, returns false and leaves T1 and T2 unchanged. Top-level
 | 
						|
/// qualifiers on T1 and T2 are ignored. This function will typically
 | 
						|
/// be called in a loop that successively "unwraps" pointer and
 | 
						|
/// pointer-to-member types to compare them at each level.
 | 
						|
bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
 | 
						|
  const PointerType *T1PtrType = T1->getAs<PointerType>(),
 | 
						|
                    *T2PtrType = T2->getAs<PointerType>();
 | 
						|
  if (T1PtrType && T2PtrType) {
 | 
						|
    T1 = T1PtrType->getPointeeType();
 | 
						|
    T2 = T2PtrType->getPointeeType();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
 | 
						|
                          *T2MPType = T2->getAs<MemberPointerType>();
 | 
						|
  if (T1MPType && T2MPType && 
 | 
						|
      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), 
 | 
						|
                             QualType(T2MPType->getClass(), 0))) {
 | 
						|
    T1 = T1MPType->getPointeeType();
 | 
						|
    T2 = T2MPType->getPointeeType();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (getLangOptions().ObjC1) {
 | 
						|
    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
 | 
						|
                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
 | 
						|
    if (T1OPType && T2OPType) {
 | 
						|
      T1 = T1OPType->getPointeeType();
 | 
						|
      T2 = T2OPType->getPointeeType();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: Block pointers, too?
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
DeclarationNameInfo
 | 
						|
ASTContext::getNameForTemplate(TemplateName Name,
 | 
						|
                               SourceLocation NameLoc) const {
 | 
						|
  if (TemplateDecl *TD = Name.getAsTemplateDecl())
 | 
						|
    // DNInfo work in progress: CHECKME: what about DNLoc?
 | 
						|
    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
 | 
						|
 | 
						|
  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
 | 
						|
    DeclarationName DName;
 | 
						|
    if (DTN->isIdentifier()) {
 | 
						|
      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
 | 
						|
      return DeclarationNameInfo(DName, NameLoc);
 | 
						|
    } else {
 | 
						|
      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
 | 
						|
      // DNInfo work in progress: FIXME: source locations?
 | 
						|
      DeclarationNameLoc DNLoc;
 | 
						|
      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
 | 
						|
      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
 | 
						|
      return DeclarationNameInfo(DName, NameLoc, DNLoc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
 | 
						|
  assert(Storage);
 | 
						|
  // DNInfo work in progress: CHECKME: what about DNLoc?
 | 
						|
  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
 | 
						|
}
 | 
						|
 | 
						|
TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
 | 
						|
  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
 | 
						|
    if (TemplateTemplateParmDecl *TTP 
 | 
						|
                              = dyn_cast<TemplateTemplateParmDecl>(Template))
 | 
						|
      Template = getCanonicalTemplateTemplateParmDecl(TTP);
 | 
						|
  
 | 
						|
    // The canonical template name is the canonical template declaration.
 | 
						|
    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (SubstTemplateTemplateParmPackStorage *SubstPack
 | 
						|
                                  = Name.getAsSubstTemplateTemplateParmPack()) {
 | 
						|
    TemplateTemplateParmDecl *CanonParam
 | 
						|
      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
 | 
						|
    TemplateArgument CanonArgPack
 | 
						|
      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
 | 
						|
    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
 | 
						|
  }
 | 
						|
      
 | 
						|
  assert(!Name.getAsOverloadedTemplate());
 | 
						|
 | 
						|
  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
 | 
						|
  assert(DTN && "Non-dependent template names must refer to template decls.");
 | 
						|
  return DTN->CanonicalTemplateName;
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
 | 
						|
  X = getCanonicalTemplateName(X);
 | 
						|
  Y = getCanonicalTemplateName(Y);
 | 
						|
  return X.getAsVoidPointer() == Y.getAsVoidPointer();
 | 
						|
}
 | 
						|
 | 
						|
TemplateArgument
 | 
						|
ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
 | 
						|
  switch (Arg.getKind()) {
 | 
						|
    case TemplateArgument::Null:
 | 
						|
      return Arg;
 | 
						|
 | 
						|
    case TemplateArgument::Expression:
 | 
						|
      return Arg;
 | 
						|
 | 
						|
    case TemplateArgument::Declaration:
 | 
						|
      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
 | 
						|
 | 
						|
    case TemplateArgument::Template:
 | 
						|
      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
 | 
						|
 | 
						|
    case TemplateArgument::TemplateExpansion:
 | 
						|
      return TemplateArgument(getCanonicalTemplateName(
 | 
						|
                                         Arg.getAsTemplateOrTemplatePattern()),
 | 
						|
                              Arg.getNumTemplateExpansions());
 | 
						|
 | 
						|
    case TemplateArgument::Integral:
 | 
						|
      return TemplateArgument(*Arg.getAsIntegral(),
 | 
						|
                              getCanonicalType(Arg.getIntegralType()));
 | 
						|
 | 
						|
    case TemplateArgument::Type:
 | 
						|
      return TemplateArgument(getCanonicalType(Arg.getAsType()));
 | 
						|
 | 
						|
    case TemplateArgument::Pack: {
 | 
						|
      if (Arg.pack_size() == 0)
 | 
						|
        return Arg;
 | 
						|
      
 | 
						|
      TemplateArgument *CanonArgs
 | 
						|
        = new (*this) TemplateArgument[Arg.pack_size()];
 | 
						|
      unsigned Idx = 0;
 | 
						|
      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
 | 
						|
                                        AEnd = Arg.pack_end();
 | 
						|
           A != AEnd; (void)++A, ++Idx)
 | 
						|
        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
 | 
						|
 | 
						|
      return TemplateArgument(CanonArgs, Arg.pack_size());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Silence GCC warning
 | 
						|
  assert(false && "Unhandled template argument kind");
 | 
						|
  return TemplateArgument();
 | 
						|
}
 | 
						|
 | 
						|
NestedNameSpecifier *
 | 
						|
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
 | 
						|
  if (!NNS)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  switch (NNS->getKind()) {
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
    // Canonicalize the prefix but keep the identifier the same.
 | 
						|
    return NestedNameSpecifier::Create(*this,
 | 
						|
                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
 | 
						|
                                       NNS->getAsIdentifier());
 | 
						|
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
    // A namespace is canonical; build a nested-name-specifier with
 | 
						|
    // this namespace and no prefix.
 | 
						|
    return NestedNameSpecifier::Create(*this, 0, 
 | 
						|
                                 NNS->getAsNamespace()->getOriginalNamespace());
 | 
						|
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
    // A namespace is canonical; build a nested-name-specifier with
 | 
						|
    // this namespace and no prefix.
 | 
						|
    return NestedNameSpecifier::Create(*this, 0, 
 | 
						|
                                    NNS->getAsNamespaceAlias()->getNamespace()
 | 
						|
                                                      ->getOriginalNamespace());
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate: {
 | 
						|
    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
 | 
						|
    
 | 
						|
    // If we have some kind of dependent-named type (e.g., "typename T::type"),
 | 
						|
    // break it apart into its prefix and identifier, then reconsititute those
 | 
						|
    // as the canonical nested-name-specifier. This is required to canonicalize
 | 
						|
    // a dependent nested-name-specifier involving typedefs of dependent-name
 | 
						|
    // types, e.g.,
 | 
						|
    //   typedef typename T::type T1;
 | 
						|
    //   typedef typename T1::type T2;
 | 
						|
    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
 | 
						|
      NestedNameSpecifier *Prefix
 | 
						|
        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
 | 
						|
      return NestedNameSpecifier::Create(*this, Prefix, 
 | 
						|
                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
 | 
						|
    }    
 | 
						|
 | 
						|
    // Do the same thing as above, but with dependent-named specializations.
 | 
						|
    if (const DependentTemplateSpecializationType *DTST
 | 
						|
          = T->getAs<DependentTemplateSpecializationType>()) {
 | 
						|
      NestedNameSpecifier *Prefix
 | 
						|
        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
 | 
						|
      
 | 
						|
      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
 | 
						|
                                                 Prefix, DTST->getIdentifier(),
 | 
						|
                                                 DTST->getNumArgs(),
 | 
						|
                                                 DTST->getArgs());
 | 
						|
      T = getCanonicalType(T);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return NestedNameSpecifier::Create(*this, 0, false,
 | 
						|
                                       const_cast<Type*>(T.getTypePtr()));
 | 
						|
  }
 | 
						|
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
    // The global specifier is canonical and unique.
 | 
						|
    return NNS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Required to silence a GCC warning
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
const ArrayType *ASTContext::getAsArrayType(QualType T) const {
 | 
						|
  // Handle the non-qualified case efficiently.
 | 
						|
  if (!T.hasLocalQualifiers()) {
 | 
						|
    // Handle the common positive case fast.
 | 
						|
    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
 | 
						|
      return AT;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the common negative case fast.
 | 
						|
  if (!isa<ArrayType>(T.getCanonicalType()))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Apply any qualifiers from the array type to the element type.  This
 | 
						|
  // implements C99 6.7.3p8: "If the specification of an array type includes
 | 
						|
  // any type qualifiers, the element type is so qualified, not the array type."
 | 
						|
 | 
						|
  // If we get here, we either have type qualifiers on the type, or we have
 | 
						|
  // sugar such as a typedef in the way.  If we have type qualifiers on the type
 | 
						|
  // we must propagate them down into the element type.
 | 
						|
 | 
						|
  SplitQualType split = T.getSplitDesugaredType();
 | 
						|
  Qualifiers qs = split.second;
 | 
						|
 | 
						|
  // If we have a simple case, just return now.
 | 
						|
  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
 | 
						|
  if (ATy == 0 || qs.empty())
 | 
						|
    return ATy;
 | 
						|
 | 
						|
  // Otherwise, we have an array and we have qualifiers on it.  Push the
 | 
						|
  // qualifiers into the array element type and return a new array type.
 | 
						|
  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
 | 
						|
 | 
						|
  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
 | 
						|
    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
 | 
						|
                                                CAT->getSizeModifier(),
 | 
						|
                                           CAT->getIndexTypeCVRQualifiers()));
 | 
						|
  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
 | 
						|
    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
 | 
						|
                                                  IAT->getSizeModifier(),
 | 
						|
                                           IAT->getIndexTypeCVRQualifiers()));
 | 
						|
 | 
						|
  if (const DependentSizedArrayType *DSAT
 | 
						|
        = dyn_cast<DependentSizedArrayType>(ATy))
 | 
						|
    return cast<ArrayType>(
 | 
						|
                     getDependentSizedArrayType(NewEltTy,
 | 
						|
                                                DSAT->getSizeExpr(),
 | 
						|
                                                DSAT->getSizeModifier(),
 | 
						|
                                              DSAT->getIndexTypeCVRQualifiers(),
 | 
						|
                                                DSAT->getBracketsRange()));
 | 
						|
 | 
						|
  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
 | 
						|
  return cast<ArrayType>(getVariableArrayType(NewEltTy,
 | 
						|
                                              VAT->getSizeExpr(),
 | 
						|
                                              VAT->getSizeModifier(),
 | 
						|
                                              VAT->getIndexTypeCVRQualifiers(),
 | 
						|
                                              VAT->getBracketsRange()));
 | 
						|
}
 | 
						|
 | 
						|
/// getArrayDecayedType - Return the properly qualified result of decaying the
 | 
						|
/// specified array type to a pointer.  This operation is non-trivial when
 | 
						|
/// handling typedefs etc.  The canonical type of "T" must be an array type,
 | 
						|
/// this returns a pointer to a properly qualified element of the array.
 | 
						|
///
 | 
						|
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
 | 
						|
QualType ASTContext::getArrayDecayedType(QualType Ty) const {
 | 
						|
  // Get the element type with 'getAsArrayType' so that we don't lose any
 | 
						|
  // typedefs in the element type of the array.  This also handles propagation
 | 
						|
  // of type qualifiers from the array type into the element type if present
 | 
						|
  // (C99 6.7.3p8).
 | 
						|
  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
 | 
						|
  assert(PrettyArrayType && "Not an array type!");
 | 
						|
 | 
						|
  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
 | 
						|
 | 
						|
  // int x[restrict 4] ->  int *restrict
 | 
						|
  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getBaseElementType(const ArrayType *array) const {
 | 
						|
  return getBaseElementType(array->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getBaseElementType(QualType type) const {
 | 
						|
  Qualifiers qs;
 | 
						|
  while (true) {
 | 
						|
    SplitQualType split = type.getSplitDesugaredType();
 | 
						|
    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
 | 
						|
    if (!array) break;
 | 
						|
 | 
						|
    type = array->getElementType();
 | 
						|
    qs.addConsistentQualifiers(split.second);
 | 
						|
  }
 | 
						|
 | 
						|
  return getQualifiedType(type, qs);
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantArrayElementCount - Returns number of constant array elements.
 | 
						|
uint64_t
 | 
						|
ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
 | 
						|
  uint64_t ElementCount = 1;
 | 
						|
  do {
 | 
						|
    ElementCount *= CA->getSize().getZExtValue();
 | 
						|
    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
 | 
						|
  } while (CA);
 | 
						|
  return ElementCount;
 | 
						|
}
 | 
						|
 | 
						|
/// getFloatingRank - Return a relative rank for floating point types.
 | 
						|
/// This routine will assert if passed a built-in type that isn't a float.
 | 
						|
static FloatingRank getFloatingRank(QualType T) {
 | 
						|
  if (const ComplexType *CT = T->getAs<ComplexType>())
 | 
						|
    return getFloatingRank(CT->getElementType());
 | 
						|
 | 
						|
  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
 | 
						|
  switch (T->getAs<BuiltinType>()->getKind()) {
 | 
						|
  default: assert(0 && "getFloatingRank(): not a floating type");
 | 
						|
  case BuiltinType::Float:      return FloatRank;
 | 
						|
  case BuiltinType::Double:     return DoubleRank;
 | 
						|
  case BuiltinType::LongDouble: return LongDoubleRank;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
 | 
						|
/// point or a complex type (based on typeDomain/typeSize).
 | 
						|
/// 'typeDomain' is a real floating point or complex type.
 | 
						|
/// 'typeSize' is a real floating point or complex type.
 | 
						|
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
 | 
						|
                                                       QualType Domain) const {
 | 
						|
  FloatingRank EltRank = getFloatingRank(Size);
 | 
						|
  if (Domain->isComplexType()) {
 | 
						|
    switch (EltRank) {
 | 
						|
    default: assert(0 && "getFloatingRank(): illegal value for rank");
 | 
						|
    case FloatRank:      return FloatComplexTy;
 | 
						|
    case DoubleRank:     return DoubleComplexTy;
 | 
						|
    case LongDoubleRank: return LongDoubleComplexTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Domain->isRealFloatingType() && "Unknown domain!");
 | 
						|
  switch (EltRank) {
 | 
						|
  default: assert(0 && "getFloatingRank(): illegal value for rank");
 | 
						|
  case FloatRank:      return FloatTy;
 | 
						|
  case DoubleRank:     return DoubleTy;
 | 
						|
  case LongDoubleRank: return LongDoubleTy;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getFloatingTypeOrder - Compare the rank of the two specified floating
 | 
						|
/// point types, ignoring the domain of the type (i.e. 'double' ==
 | 
						|
/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
 | 
						|
/// LHS < RHS, return -1.
 | 
						|
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
 | 
						|
  FloatingRank LHSR = getFloatingRank(LHS);
 | 
						|
  FloatingRank RHSR = getFloatingRank(RHS);
 | 
						|
 | 
						|
  if (LHSR == RHSR)
 | 
						|
    return 0;
 | 
						|
  if (LHSR > RHSR)
 | 
						|
    return 1;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
 | 
						|
/// routine will assert if passed a built-in type that isn't an integer or enum,
 | 
						|
/// or if it is not canonicalized.
 | 
						|
unsigned ASTContext::getIntegerRank(const Type *T) const {
 | 
						|
  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
 | 
						|
  if (const EnumType* ET = dyn_cast<EnumType>(T))
 | 
						|
    T = ET->getDecl()->getPromotionType().getTypePtr();
 | 
						|
 | 
						|
  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
 | 
						|
      T->isSpecificBuiltinType(BuiltinType::WChar_U))
 | 
						|
    T = getFromTargetType(Target.getWCharType()).getTypePtr();
 | 
						|
 | 
						|
  if (T->isSpecificBuiltinType(BuiltinType::Char16))
 | 
						|
    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
 | 
						|
 | 
						|
  if (T->isSpecificBuiltinType(BuiltinType::Char32))
 | 
						|
    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
 | 
						|
 | 
						|
  switch (cast<BuiltinType>(T)->getKind()) {
 | 
						|
  default: assert(0 && "getIntegerRank(): not a built-in integer");
 | 
						|
  case BuiltinType::Bool:
 | 
						|
    return 1 + (getIntWidth(BoolTy) << 3);
 | 
						|
  case BuiltinType::Char_S:
 | 
						|
  case BuiltinType::Char_U:
 | 
						|
  case BuiltinType::SChar:
 | 
						|
  case BuiltinType::UChar:
 | 
						|
    return 2 + (getIntWidth(CharTy) << 3);
 | 
						|
  case BuiltinType::Short:
 | 
						|
  case BuiltinType::UShort:
 | 
						|
    return 3 + (getIntWidth(ShortTy) << 3);
 | 
						|
  case BuiltinType::Int:
 | 
						|
  case BuiltinType::UInt:
 | 
						|
    return 4 + (getIntWidth(IntTy) << 3);
 | 
						|
  case BuiltinType::Long:
 | 
						|
  case BuiltinType::ULong:
 | 
						|
    return 5 + (getIntWidth(LongTy) << 3);
 | 
						|
  case BuiltinType::LongLong:
 | 
						|
  case BuiltinType::ULongLong:
 | 
						|
    return 6 + (getIntWidth(LongLongTy) << 3);
 | 
						|
  case BuiltinType::Int128:
 | 
						|
  case BuiltinType::UInt128:
 | 
						|
    return 7 + (getIntWidth(Int128Ty) << 3);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Whether this is a promotable bitfield reference according
 | 
						|
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
 | 
						|
///
 | 
						|
/// \returns the type this bit-field will promote to, or NULL if no
 | 
						|
/// promotion occurs.
 | 
						|
QualType ASTContext::isPromotableBitField(Expr *E) const {
 | 
						|
  if (E->isTypeDependent() || E->isValueDependent())
 | 
						|
    return QualType();
 | 
						|
  
 | 
						|
  FieldDecl *Field = E->getBitField();
 | 
						|
  if (!Field)
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  QualType FT = Field->getType();
 | 
						|
 | 
						|
  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
 | 
						|
  uint64_t BitWidth = BitWidthAP.getZExtValue();
 | 
						|
  uint64_t IntSize = getTypeSize(IntTy);
 | 
						|
  // GCC extension compatibility: if the bit-field size is less than or equal
 | 
						|
  // to the size of int, it gets promoted no matter what its type is.
 | 
						|
  // For instance, unsigned long bf : 4 gets promoted to signed int.
 | 
						|
  if (BitWidth < IntSize)
 | 
						|
    return IntTy;
 | 
						|
 | 
						|
  if (BitWidth == IntSize)
 | 
						|
    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
 | 
						|
 | 
						|
  // Types bigger than int are not subject to promotions, and therefore act
 | 
						|
  // like the base type.
 | 
						|
  // FIXME: This doesn't quite match what gcc does, but what gcc does here
 | 
						|
  // is ridiculous.
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// getPromotedIntegerType - Returns the type that Promotable will
 | 
						|
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
 | 
						|
/// integer type.
 | 
						|
QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
 | 
						|
  assert(!Promotable.isNull());
 | 
						|
  assert(Promotable->isPromotableIntegerType());
 | 
						|
  if (const EnumType *ET = Promotable->getAs<EnumType>())
 | 
						|
    return ET->getDecl()->getPromotionType();
 | 
						|
  if (Promotable->isSignedIntegerType())
 | 
						|
    return IntTy;
 | 
						|
  uint64_t PromotableSize = getTypeSize(Promotable);
 | 
						|
  uint64_t IntSize = getTypeSize(IntTy);
 | 
						|
  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
 | 
						|
  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
 | 
						|
}
 | 
						|
 | 
						|
/// getIntegerTypeOrder - Returns the highest ranked integer type:
 | 
						|
/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
 | 
						|
/// LHS < RHS, return -1.
 | 
						|
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
 | 
						|
  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
 | 
						|
  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
 | 
						|
  if (LHSC == RHSC) return 0;
 | 
						|
 | 
						|
  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
 | 
						|
  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
 | 
						|
 | 
						|
  unsigned LHSRank = getIntegerRank(LHSC);
 | 
						|
  unsigned RHSRank = getIntegerRank(RHSC);
 | 
						|
 | 
						|
  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
 | 
						|
    if (LHSRank == RHSRank) return 0;
 | 
						|
    return LHSRank > RHSRank ? 1 : -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
 | 
						|
  if (LHSUnsigned) {
 | 
						|
    // If the unsigned [LHS] type is larger, return it.
 | 
						|
    if (LHSRank >= RHSRank)
 | 
						|
      return 1;
 | 
						|
 | 
						|
    // If the signed type can represent all values of the unsigned type, it
 | 
						|
    // wins.  Because we are dealing with 2's complement and types that are
 | 
						|
    // powers of two larger than each other, this is always safe.
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the unsigned [RHS] type is larger, return it.
 | 
						|
  if (RHSRank >= LHSRank)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  // If the signed type can represent all values of the unsigned type, it
 | 
						|
  // wins.  Because we are dealing with 2's complement and types that are
 | 
						|
  // powers of two larger than each other, this is always safe.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
static RecordDecl *
 | 
						|
CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
 | 
						|
                 DeclContext *DC, IdentifierInfo *Id) {
 | 
						|
  SourceLocation Loc;
 | 
						|
  if (Ctx.getLangOptions().CPlusPlus)
 | 
						|
    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
 | 
						|
  else
 | 
						|
    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
 | 
						|
}
 | 
						|
 | 
						|
// getCFConstantStringType - Return the type used for constant CFStrings.
 | 
						|
QualType ASTContext::getCFConstantStringType() const {
 | 
						|
  if (!CFConstantStringTypeDecl) {
 | 
						|
    CFConstantStringTypeDecl =
 | 
						|
      CreateRecordDecl(*this, TTK_Struct, TUDecl,
 | 
						|
                       &Idents.get("NSConstantString"));
 | 
						|
    CFConstantStringTypeDecl->startDefinition();
 | 
						|
 | 
						|
    QualType FieldTypes[4];
 | 
						|
 | 
						|
    // const int *isa;
 | 
						|
    FieldTypes[0] = getPointerType(IntTy.withConst());
 | 
						|
    // int flags;
 | 
						|
    FieldTypes[1] = IntTy;
 | 
						|
    // const char *str;
 | 
						|
    FieldTypes[2] = getPointerType(CharTy.withConst());
 | 
						|
    // long length;
 | 
						|
    FieldTypes[3] = LongTy;
 | 
						|
 | 
						|
    // Create fields
 | 
						|
    for (unsigned i = 0; i < 4; ++i) {
 | 
						|
      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
 | 
						|
                                           SourceLocation(),
 | 
						|
                                           SourceLocation(), 0,
 | 
						|
                                           FieldTypes[i], /*TInfo=*/0,
 | 
						|
                                           /*BitWidth=*/0,
 | 
						|
                                           /*Mutable=*/false);
 | 
						|
      Field->setAccess(AS_public);
 | 
						|
      CFConstantStringTypeDecl->addDecl(Field);
 | 
						|
    }
 | 
						|
 | 
						|
    CFConstantStringTypeDecl->completeDefinition();
 | 
						|
  }
 | 
						|
 | 
						|
  return getTagDeclType(CFConstantStringTypeDecl);
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setCFConstantStringType(QualType T) {
 | 
						|
  const RecordType *Rec = T->getAs<RecordType>();
 | 
						|
  assert(Rec && "Invalid CFConstantStringType");
 | 
						|
  CFConstantStringTypeDecl = Rec->getDecl();
 | 
						|
}
 | 
						|
 | 
						|
// getNSConstantStringType - Return the type used for constant NSStrings.
 | 
						|
QualType ASTContext::getNSConstantStringType() const {
 | 
						|
  if (!NSConstantStringTypeDecl) {
 | 
						|
    NSConstantStringTypeDecl =
 | 
						|
    CreateRecordDecl(*this, TTK_Struct, TUDecl,
 | 
						|
                     &Idents.get("__builtin_NSString"));
 | 
						|
    NSConstantStringTypeDecl->startDefinition();
 | 
						|
    
 | 
						|
    QualType FieldTypes[3];
 | 
						|
    
 | 
						|
    // const int *isa;
 | 
						|
    FieldTypes[0] = getPointerType(IntTy.withConst());
 | 
						|
    // const char *str;
 | 
						|
    FieldTypes[1] = getPointerType(CharTy.withConst());
 | 
						|
    // unsigned int length;
 | 
						|
    FieldTypes[2] = UnsignedIntTy;
 | 
						|
    
 | 
						|
    // Create fields
 | 
						|
    for (unsigned i = 0; i < 3; ++i) {
 | 
						|
      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
 | 
						|
                                           SourceLocation(),
 | 
						|
                                           SourceLocation(), 0,
 | 
						|
                                           FieldTypes[i], /*TInfo=*/0,
 | 
						|
                                           /*BitWidth=*/0,
 | 
						|
                                           /*Mutable=*/false);
 | 
						|
      Field->setAccess(AS_public);
 | 
						|
      NSConstantStringTypeDecl->addDecl(Field);
 | 
						|
    }
 | 
						|
    
 | 
						|
    NSConstantStringTypeDecl->completeDefinition();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return getTagDeclType(NSConstantStringTypeDecl);
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setNSConstantStringType(QualType T) {
 | 
						|
  const RecordType *Rec = T->getAs<RecordType>();
 | 
						|
  assert(Rec && "Invalid NSConstantStringType");
 | 
						|
  NSConstantStringTypeDecl = Rec->getDecl();
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getObjCFastEnumerationStateType() const {
 | 
						|
  if (!ObjCFastEnumerationStateTypeDecl) {
 | 
						|
    ObjCFastEnumerationStateTypeDecl =
 | 
						|
      CreateRecordDecl(*this, TTK_Struct, TUDecl,
 | 
						|
                       &Idents.get("__objcFastEnumerationState"));
 | 
						|
    ObjCFastEnumerationStateTypeDecl->startDefinition();
 | 
						|
 | 
						|
    QualType FieldTypes[] = {
 | 
						|
      UnsignedLongTy,
 | 
						|
      getPointerType(ObjCIdTypedefType),
 | 
						|
      getPointerType(UnsignedLongTy),
 | 
						|
      getConstantArrayType(UnsignedLongTy,
 | 
						|
                           llvm::APInt(32, 5), ArrayType::Normal, 0)
 | 
						|
    };
 | 
						|
 | 
						|
    for (size_t i = 0; i < 4; ++i) {
 | 
						|
      FieldDecl *Field = FieldDecl::Create(*this,
 | 
						|
                                           ObjCFastEnumerationStateTypeDecl,
 | 
						|
                                           SourceLocation(),
 | 
						|
                                           SourceLocation(), 0,
 | 
						|
                                           FieldTypes[i], /*TInfo=*/0,
 | 
						|
                                           /*BitWidth=*/0,
 | 
						|
                                           /*Mutable=*/false);
 | 
						|
      Field->setAccess(AS_public);
 | 
						|
      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
 | 
						|
    }
 | 
						|
 | 
						|
    ObjCFastEnumerationStateTypeDecl->completeDefinition();
 | 
						|
  }
 | 
						|
 | 
						|
  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getBlockDescriptorType() const {
 | 
						|
  if (BlockDescriptorType)
 | 
						|
    return getTagDeclType(BlockDescriptorType);
 | 
						|
 | 
						|
  RecordDecl *T;
 | 
						|
  // FIXME: Needs the FlagAppleBlock bit.
 | 
						|
  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
 | 
						|
                       &Idents.get("__block_descriptor"));
 | 
						|
  T->startDefinition();
 | 
						|
  
 | 
						|
  QualType FieldTypes[] = {
 | 
						|
    UnsignedLongTy,
 | 
						|
    UnsignedLongTy,
 | 
						|
  };
 | 
						|
 | 
						|
  const char *FieldNames[] = {
 | 
						|
    "reserved",
 | 
						|
    "Size"
 | 
						|
  };
 | 
						|
 | 
						|
  for (size_t i = 0; i < 2; ++i) {
 | 
						|
    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
 | 
						|
                                         SourceLocation(),
 | 
						|
                                         &Idents.get(FieldNames[i]),
 | 
						|
                                         FieldTypes[i], /*TInfo=*/0,
 | 
						|
                                         /*BitWidth=*/0,
 | 
						|
                                         /*Mutable=*/false);
 | 
						|
    Field->setAccess(AS_public);
 | 
						|
    T->addDecl(Field);
 | 
						|
  }
 | 
						|
 | 
						|
  T->completeDefinition();
 | 
						|
 | 
						|
  BlockDescriptorType = T;
 | 
						|
 | 
						|
  return getTagDeclType(BlockDescriptorType);
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setBlockDescriptorType(QualType T) {
 | 
						|
  const RecordType *Rec = T->getAs<RecordType>();
 | 
						|
  assert(Rec && "Invalid BlockDescriptorType");
 | 
						|
  BlockDescriptorType = Rec->getDecl();
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getBlockDescriptorExtendedType() const {
 | 
						|
  if (BlockDescriptorExtendedType)
 | 
						|
    return getTagDeclType(BlockDescriptorExtendedType);
 | 
						|
 | 
						|
  RecordDecl *T;
 | 
						|
  // FIXME: Needs the FlagAppleBlock bit.
 | 
						|
  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
 | 
						|
                       &Idents.get("__block_descriptor_withcopydispose"));
 | 
						|
  T->startDefinition();
 | 
						|
  
 | 
						|
  QualType FieldTypes[] = {
 | 
						|
    UnsignedLongTy,
 | 
						|
    UnsignedLongTy,
 | 
						|
    getPointerType(VoidPtrTy),
 | 
						|
    getPointerType(VoidPtrTy)
 | 
						|
  };
 | 
						|
 | 
						|
  const char *FieldNames[] = {
 | 
						|
    "reserved",
 | 
						|
    "Size",
 | 
						|
    "CopyFuncPtr",
 | 
						|
    "DestroyFuncPtr"
 | 
						|
  };
 | 
						|
 | 
						|
  for (size_t i = 0; i < 4; ++i) {
 | 
						|
    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
 | 
						|
                                         SourceLocation(),
 | 
						|
                                         &Idents.get(FieldNames[i]),
 | 
						|
                                         FieldTypes[i], /*TInfo=*/0,
 | 
						|
                                         /*BitWidth=*/0,
 | 
						|
                                         /*Mutable=*/false);
 | 
						|
    Field->setAccess(AS_public);
 | 
						|
    T->addDecl(Field);
 | 
						|
  }
 | 
						|
 | 
						|
  T->completeDefinition();
 | 
						|
 | 
						|
  BlockDescriptorExtendedType = T;
 | 
						|
 | 
						|
  return getTagDeclType(BlockDescriptorExtendedType);
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setBlockDescriptorExtendedType(QualType T) {
 | 
						|
  const RecordType *Rec = T->getAs<RecordType>();
 | 
						|
  assert(Rec && "Invalid BlockDescriptorType");
 | 
						|
  BlockDescriptorExtendedType = Rec->getDecl();
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::BlockRequiresCopying(QualType Ty) const {
 | 
						|
  if (Ty->isBlockPointerType())
 | 
						|
    return true;
 | 
						|
  if (isObjCNSObjectType(Ty))
 | 
						|
    return true;
 | 
						|
  if (Ty->isObjCObjectPointerType())
 | 
						|
    return true;
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
      return RD->hasConstCopyConstructor(*this);
 | 
						|
      
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
QualType
 | 
						|
ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
 | 
						|
  //  type = struct __Block_byref_1_X {
 | 
						|
  //    void *__isa;
 | 
						|
  //    struct __Block_byref_1_X *__forwarding;
 | 
						|
  //    unsigned int __flags;
 | 
						|
  //    unsigned int __size;
 | 
						|
  //    void *__copy_helper;            // as needed
 | 
						|
  //    void *__destroy_help            // as needed
 | 
						|
  //    int X;
 | 
						|
  //  } *
 | 
						|
 | 
						|
  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
 | 
						|
 | 
						|
  // FIXME: Move up
 | 
						|
  llvm::SmallString<36> Name;
 | 
						|
  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
 | 
						|
                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
 | 
						|
  RecordDecl *T;
 | 
						|
  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
 | 
						|
  T->startDefinition();
 | 
						|
  QualType Int32Ty = IntTy;
 | 
						|
  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
 | 
						|
  QualType FieldTypes[] = {
 | 
						|
    getPointerType(VoidPtrTy),
 | 
						|
    getPointerType(getTagDeclType(T)),
 | 
						|
    Int32Ty,
 | 
						|
    Int32Ty,
 | 
						|
    getPointerType(VoidPtrTy),
 | 
						|
    getPointerType(VoidPtrTy),
 | 
						|
    Ty
 | 
						|
  };
 | 
						|
 | 
						|
  llvm::StringRef FieldNames[] = {
 | 
						|
    "__isa",
 | 
						|
    "__forwarding",
 | 
						|
    "__flags",
 | 
						|
    "__size",
 | 
						|
    "__copy_helper",
 | 
						|
    "__destroy_helper",
 | 
						|
    DeclName,
 | 
						|
  };
 | 
						|
 | 
						|
  for (size_t i = 0; i < 7; ++i) {
 | 
						|
    if (!HasCopyAndDispose && i >=4 && i <= 5)
 | 
						|
      continue;
 | 
						|
    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
 | 
						|
                                         SourceLocation(),
 | 
						|
                                         &Idents.get(FieldNames[i]),
 | 
						|
                                         FieldTypes[i], /*TInfo=*/0,
 | 
						|
                                         /*BitWidth=*/0, /*Mutable=*/false);
 | 
						|
    Field->setAccess(AS_public);
 | 
						|
    T->addDecl(Field);
 | 
						|
  }
 | 
						|
 | 
						|
  T->completeDefinition();
 | 
						|
 | 
						|
  return getPointerType(getTagDeclType(T));
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCFastEnumerationStateType(QualType T) {
 | 
						|
  const RecordType *Rec = T->getAs<RecordType>();
 | 
						|
  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
 | 
						|
  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
 | 
						|
}
 | 
						|
 | 
						|
// This returns true if a type has been typedefed to BOOL:
 | 
						|
// typedef <type> BOOL;
 | 
						|
static bool isTypeTypedefedAsBOOL(QualType T) {
 | 
						|
  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
 | 
						|
    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
 | 
						|
      return II->isStr("BOOL");
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
 | 
						|
/// purpose.
 | 
						|
CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
 | 
						|
  CharUnits sz = getTypeSizeInChars(type);
 | 
						|
 | 
						|
  // Make all integer and enum types at least as large as an int
 | 
						|
  if (sz.isPositive() && type->isIntegralOrEnumerationType())
 | 
						|
    sz = std::max(sz, getTypeSizeInChars(IntTy));
 | 
						|
  // Treat arrays as pointers, since that's how they're passed in.
 | 
						|
  else if (type->isArrayType())
 | 
						|
    sz = getTypeSizeInChars(VoidPtrTy);
 | 
						|
  return sz;
 | 
						|
}
 | 
						|
 | 
						|
static inline 
 | 
						|
std::string charUnitsToString(const CharUnits &CU) {
 | 
						|
  return llvm::itostr(CU.getQuantity());
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCEncodingForBlock - Return the encoded type for this block
 | 
						|
/// declaration.
 | 
						|
std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
 | 
						|
  std::string S;
 | 
						|
 | 
						|
  const BlockDecl *Decl = Expr->getBlockDecl();
 | 
						|
  QualType BlockTy =
 | 
						|
      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
 | 
						|
  // Encode result type.
 | 
						|
  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
 | 
						|
  // Compute size of all parameters.
 | 
						|
  // Start with computing size of a pointer in number of bytes.
 | 
						|
  // FIXME: There might(should) be a better way of doing this computation!
 | 
						|
  SourceLocation Loc;
 | 
						|
  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
 | 
						|
  CharUnits ParmOffset = PtrSize;
 | 
						|
  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
 | 
						|
       E = Decl->param_end(); PI != E; ++PI) {
 | 
						|
    QualType PType = (*PI)->getType();
 | 
						|
    CharUnits sz = getObjCEncodingTypeSize(PType);
 | 
						|
    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
 | 
						|
    ParmOffset += sz;
 | 
						|
  }
 | 
						|
  // Size of the argument frame
 | 
						|
  S += charUnitsToString(ParmOffset);
 | 
						|
  // Block pointer and offset.
 | 
						|
  S += "@?0";
 | 
						|
  ParmOffset = PtrSize;
 | 
						|
  
 | 
						|
  // Argument types.
 | 
						|
  ParmOffset = PtrSize;
 | 
						|
  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
 | 
						|
       Decl->param_end(); PI != E; ++PI) {
 | 
						|
    ParmVarDecl *PVDecl = *PI;
 | 
						|
    QualType PType = PVDecl->getOriginalType(); 
 | 
						|
    if (const ArrayType *AT =
 | 
						|
          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
 | 
						|
      // Use array's original type only if it has known number of
 | 
						|
      // elements.
 | 
						|
      if (!isa<ConstantArrayType>(AT))
 | 
						|
        PType = PVDecl->getType();
 | 
						|
    } else if (PType->isFunctionType())
 | 
						|
      PType = PVDecl->getType();
 | 
						|
    getObjCEncodingForType(PType, S);
 | 
						|
    S += charUnitsToString(ParmOffset);
 | 
						|
    ParmOffset += getObjCEncodingTypeSize(PType);
 | 
						|
  }
 | 
						|
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
 | 
						|
                                                std::string& S) {
 | 
						|
  // Encode result type.
 | 
						|
  getObjCEncodingForType(Decl->getResultType(), S);
 | 
						|
  CharUnits ParmOffset;
 | 
						|
  // Compute size of all parameters.
 | 
						|
  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
 | 
						|
       E = Decl->param_end(); PI != E; ++PI) {
 | 
						|
    QualType PType = (*PI)->getType();
 | 
						|
    CharUnits sz = getObjCEncodingTypeSize(PType);
 | 
						|
    assert (sz.isPositive() && 
 | 
						|
        "getObjCEncodingForMethodDecl - Incomplete param type");
 | 
						|
    ParmOffset += sz;
 | 
						|
  }
 | 
						|
  S += charUnitsToString(ParmOffset);
 | 
						|
  ParmOffset = CharUnits::Zero();
 | 
						|
 | 
						|
  // Argument types.
 | 
						|
  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
 | 
						|
       E = Decl->param_end(); PI != E; ++PI) {
 | 
						|
    ParmVarDecl *PVDecl = *PI;
 | 
						|
    QualType PType = PVDecl->getOriginalType();
 | 
						|
    if (const ArrayType *AT =
 | 
						|
          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
 | 
						|
      // Use array's original type only if it has known number of
 | 
						|
      // elements.
 | 
						|
      if (!isa<ConstantArrayType>(AT))
 | 
						|
        PType = PVDecl->getType();
 | 
						|
    } else if (PType->isFunctionType())
 | 
						|
      PType = PVDecl->getType();
 | 
						|
    getObjCEncodingForType(PType, S);
 | 
						|
    S += charUnitsToString(ParmOffset);
 | 
						|
    ParmOffset += getObjCEncodingTypeSize(PType);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
 | 
						|
/// declaration.
 | 
						|
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
 | 
						|
                                              std::string& S) const {
 | 
						|
  // FIXME: This is not very efficient.
 | 
						|
  // Encode type qualifer, 'in', 'inout', etc. for the return type.
 | 
						|
  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
 | 
						|
  // Encode result type.
 | 
						|
  getObjCEncodingForType(Decl->getResultType(), S);
 | 
						|
  // Compute size of all parameters.
 | 
						|
  // Start with computing size of a pointer in number of bytes.
 | 
						|
  // FIXME: There might(should) be a better way of doing this computation!
 | 
						|
  SourceLocation Loc;
 | 
						|
  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
 | 
						|
  // The first two arguments (self and _cmd) are pointers; account for
 | 
						|
  // their size.
 | 
						|
  CharUnits ParmOffset = 2 * PtrSize;
 | 
						|
  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
 | 
						|
       E = Decl->sel_param_end(); PI != E; ++PI) {
 | 
						|
    QualType PType = (*PI)->getType();
 | 
						|
    CharUnits sz = getObjCEncodingTypeSize(PType);
 | 
						|
    assert (sz.isPositive() && 
 | 
						|
        "getObjCEncodingForMethodDecl - Incomplete param type");
 | 
						|
    ParmOffset += sz;
 | 
						|
  }
 | 
						|
  S += charUnitsToString(ParmOffset);
 | 
						|
  S += "@0:";
 | 
						|
  S += charUnitsToString(PtrSize);
 | 
						|
 | 
						|
  // Argument types.
 | 
						|
  ParmOffset = 2 * PtrSize;
 | 
						|
  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
 | 
						|
       E = Decl->sel_param_end(); PI != E; ++PI) {
 | 
						|
    ParmVarDecl *PVDecl = *PI;
 | 
						|
    QualType PType = PVDecl->getOriginalType();
 | 
						|
    if (const ArrayType *AT =
 | 
						|
          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
 | 
						|
      // Use array's original type only if it has known number of
 | 
						|
      // elements.
 | 
						|
      if (!isa<ConstantArrayType>(AT))
 | 
						|
        PType = PVDecl->getType();
 | 
						|
    } else if (PType->isFunctionType())
 | 
						|
      PType = PVDecl->getType();
 | 
						|
    // Process argument qualifiers for user supplied arguments; such as,
 | 
						|
    // 'in', 'inout', etc.
 | 
						|
    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
 | 
						|
    getObjCEncodingForType(PType, S);
 | 
						|
    S += charUnitsToString(ParmOffset);
 | 
						|
    ParmOffset += getObjCEncodingTypeSize(PType);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
 | 
						|
/// property declaration. If non-NULL, Container must be either an
 | 
						|
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
 | 
						|
/// NULL when getting encodings for protocol properties.
 | 
						|
/// Property attributes are stored as a comma-delimited C string. The simple
 | 
						|
/// attributes readonly and bycopy are encoded as single characters. The
 | 
						|
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
 | 
						|
/// encoded as single characters, followed by an identifier. Property types
 | 
						|
/// are also encoded as a parametrized attribute. The characters used to encode
 | 
						|
/// these attributes are defined by the following enumeration:
 | 
						|
/// @code
 | 
						|
/// enum PropertyAttributes {
 | 
						|
/// kPropertyReadOnly = 'R',   // property is read-only.
 | 
						|
/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
 | 
						|
/// kPropertyByref = '&',  // property is a reference to the value last assigned
 | 
						|
/// kPropertyDynamic = 'D',    // property is dynamic
 | 
						|
/// kPropertyGetter = 'G',     // followed by getter selector name
 | 
						|
/// kPropertySetter = 'S',     // followed by setter selector name
 | 
						|
/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
 | 
						|
/// kPropertyType = 't'              // followed by old-style type encoding.
 | 
						|
/// kPropertyWeak = 'W'              // 'weak' property
 | 
						|
/// kPropertyStrong = 'P'            // property GC'able
 | 
						|
/// kPropertyNonAtomic = 'N'         // property non-atomic
 | 
						|
/// };
 | 
						|
/// @endcode
 | 
						|
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
 | 
						|
                                                const Decl *Container,
 | 
						|
                                                std::string& S) const {
 | 
						|
  // Collect information from the property implementation decl(s).
 | 
						|
  bool Dynamic = false;
 | 
						|
  ObjCPropertyImplDecl *SynthesizePID = 0;
 | 
						|
 | 
						|
  // FIXME: Duplicated code due to poor abstraction.
 | 
						|
  if (Container) {
 | 
						|
    if (const ObjCCategoryImplDecl *CID =
 | 
						|
        dyn_cast<ObjCCategoryImplDecl>(Container)) {
 | 
						|
      for (ObjCCategoryImplDecl::propimpl_iterator
 | 
						|
             i = CID->propimpl_begin(), e = CID->propimpl_end();
 | 
						|
           i != e; ++i) {
 | 
						|
        ObjCPropertyImplDecl *PID = *i;
 | 
						|
        if (PID->getPropertyDecl() == PD) {
 | 
						|
          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
 | 
						|
            Dynamic = true;
 | 
						|
          } else {
 | 
						|
            SynthesizePID = PID;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
 | 
						|
      for (ObjCCategoryImplDecl::propimpl_iterator
 | 
						|
             i = OID->propimpl_begin(), e = OID->propimpl_end();
 | 
						|
           i != e; ++i) {
 | 
						|
        ObjCPropertyImplDecl *PID = *i;
 | 
						|
        if (PID->getPropertyDecl() == PD) {
 | 
						|
          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
 | 
						|
            Dynamic = true;
 | 
						|
          } else {
 | 
						|
            SynthesizePID = PID;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: This is not very efficient.
 | 
						|
  S = "T";
 | 
						|
 | 
						|
  // Encode result type.
 | 
						|
  // GCC has some special rules regarding encoding of properties which
 | 
						|
  // closely resembles encoding of ivars.
 | 
						|
  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
 | 
						|
                             true /* outermost type */,
 | 
						|
                             true /* encoding for property */);
 | 
						|
 | 
						|
  if (PD->isReadOnly()) {
 | 
						|
    S += ",R";
 | 
						|
  } else {
 | 
						|
    switch (PD->getSetterKind()) {
 | 
						|
    case ObjCPropertyDecl::Assign: break;
 | 
						|
    case ObjCPropertyDecl::Copy:   S += ",C"; break;
 | 
						|
    case ObjCPropertyDecl::Retain: S += ",&"; break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // It really isn't clear at all what this means, since properties
 | 
						|
  // are "dynamic by default".
 | 
						|
  if (Dynamic)
 | 
						|
    S += ",D";
 | 
						|
 | 
						|
  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
 | 
						|
    S += ",N";
 | 
						|
 | 
						|
  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
 | 
						|
    S += ",G";
 | 
						|
    S += PD->getGetterName().getAsString();
 | 
						|
  }
 | 
						|
 | 
						|
  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
 | 
						|
    S += ",S";
 | 
						|
    S += PD->getSetterName().getAsString();
 | 
						|
  }
 | 
						|
 | 
						|
  if (SynthesizePID) {
 | 
						|
    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
 | 
						|
    S += ",V";
 | 
						|
    S += OID->getNameAsString();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: OBJCGC: weak & strong
 | 
						|
}
 | 
						|
 | 
						|
/// getLegacyIntegralTypeEncoding -
 | 
						|
/// Another legacy compatibility encoding: 32-bit longs are encoded as
 | 
						|
/// 'l' or 'L' , but not always.  For typedefs, we need to use
 | 
						|
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
 | 
						|
///
 | 
						|
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
 | 
						|
  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
 | 
						|
    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
 | 
						|
      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
 | 
						|
        PointeeTy = UnsignedIntTy;
 | 
						|
      else
 | 
						|
        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
 | 
						|
          PointeeTy = IntTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
 | 
						|
                                        const FieldDecl *Field) const {
 | 
						|
  // We follow the behavior of gcc, expanding structures which are
 | 
						|
  // directly pointed to, and expanding embedded structures. Note that
 | 
						|
  // these rules are sufficient to prevent recursive encoding of the
 | 
						|
  // same type.
 | 
						|
  getObjCEncodingForTypeImpl(T, S, true, true, Field,
 | 
						|
                             true /* outermost type */);
 | 
						|
}
 | 
						|
 | 
						|
static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
 | 
						|
    switch (T->getAs<BuiltinType>()->getKind()) {
 | 
						|
    default: assert(0 && "Unhandled builtin type kind");
 | 
						|
    case BuiltinType::Void:       return 'v';
 | 
						|
    case BuiltinType::Bool:       return 'B';
 | 
						|
    case BuiltinType::Char_U:
 | 
						|
    case BuiltinType::UChar:      return 'C';
 | 
						|
    case BuiltinType::UShort:     return 'S';
 | 
						|
    case BuiltinType::UInt:       return 'I';
 | 
						|
    case BuiltinType::ULong:
 | 
						|
        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
 | 
						|
    case BuiltinType::UInt128:    return 'T';
 | 
						|
    case BuiltinType::ULongLong:  return 'Q';
 | 
						|
    case BuiltinType::Char_S:
 | 
						|
    case BuiltinType::SChar:      return 'c';
 | 
						|
    case BuiltinType::Short:      return 's';
 | 
						|
    case BuiltinType::WChar_S:
 | 
						|
    case BuiltinType::WChar_U:
 | 
						|
    case BuiltinType::Int:        return 'i';
 | 
						|
    case BuiltinType::Long:
 | 
						|
      return C->getIntWidth(T) == 32 ? 'l' : 'q';
 | 
						|
    case BuiltinType::LongLong:   return 'q';
 | 
						|
    case BuiltinType::Int128:     return 't';
 | 
						|
    case BuiltinType::Float:      return 'f';
 | 
						|
    case BuiltinType::Double:     return 'd';
 | 
						|
    case BuiltinType::LongDouble: return 'D';
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void EncodeBitField(const ASTContext *Ctx, std::string& S,
 | 
						|
                           QualType T, const FieldDecl *FD) {
 | 
						|
  const Expr *E = FD->getBitWidth();
 | 
						|
  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
 | 
						|
  S += 'b';
 | 
						|
  // The NeXT runtime encodes bit fields as b followed by the number of bits.
 | 
						|
  // The GNU runtime requires more information; bitfields are encoded as b,
 | 
						|
  // then the offset (in bits) of the first element, then the type of the
 | 
						|
  // bitfield, then the size in bits.  For example, in this structure:
 | 
						|
  //
 | 
						|
  // struct
 | 
						|
  // {
 | 
						|
  //    int integer;
 | 
						|
  //    int flags:2;
 | 
						|
  // };
 | 
						|
  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
 | 
						|
  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
 | 
						|
  // information is not especially sensible, but we're stuck with it for
 | 
						|
  // compatibility with GCC, although providing it breaks anything that
 | 
						|
  // actually uses runtime introspection and wants to work on both runtimes...
 | 
						|
  if (!Ctx->getLangOptions().NeXTRuntime) {
 | 
						|
    const RecordDecl *RD = FD->getParent();
 | 
						|
    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
 | 
						|
    // FIXME: This same linear search is also used in ExprConstant - it might
 | 
						|
    // be better if the FieldDecl stored its offset.  We'd be increasing the
 | 
						|
    // size of the object slightly, but saving some time every time it is used.
 | 
						|
    unsigned i = 0;
 | 
						|
    for (RecordDecl::field_iterator Field = RD->field_begin(),
 | 
						|
                                 FieldEnd = RD->field_end();
 | 
						|
         Field != FieldEnd; (void)++Field, ++i) {
 | 
						|
      if (*Field == FD)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    S += llvm::utostr(RL.getFieldOffset(i));
 | 
						|
    if (T->isEnumeralType())
 | 
						|
      S += 'i';
 | 
						|
    else
 | 
						|
      S += ObjCEncodingForPrimitiveKind(Ctx, T);
 | 
						|
  }
 | 
						|
  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
 | 
						|
  S += llvm::utostr(N);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Use SmallString for accumulating string.
 | 
						|
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
 | 
						|
                                            bool ExpandPointedToStructures,
 | 
						|
                                            bool ExpandStructures,
 | 
						|
                                            const FieldDecl *FD,
 | 
						|
                                            bool OutermostType,
 | 
						|
                                            bool EncodingProperty) const {
 | 
						|
  if (T->getAs<BuiltinType>()) {
 | 
						|
    if (FD && FD->isBitField())
 | 
						|
      return EncodeBitField(this, S, T, FD);
 | 
						|
    S += ObjCEncodingForPrimitiveKind(this, T);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ComplexType *CT = T->getAs<ComplexType>()) {
 | 
						|
    S += 'j';
 | 
						|
    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
 | 
						|
                               false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // encoding for pointer or r3eference types.
 | 
						|
  QualType PointeeTy;
 | 
						|
  if (const PointerType *PT = T->getAs<PointerType>()) {
 | 
						|
    if (PT->isObjCSelType()) {
 | 
						|
      S += ':';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    PointeeTy = PT->getPointeeType();
 | 
						|
  }
 | 
						|
  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
 | 
						|
    PointeeTy = RT->getPointeeType();
 | 
						|
  if (!PointeeTy.isNull()) {
 | 
						|
    bool isReadOnly = false;
 | 
						|
    // For historical/compatibility reasons, the read-only qualifier of the
 | 
						|
    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
 | 
						|
    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
 | 
						|
    // Also, do not emit the 'r' for anything but the outermost type!
 | 
						|
    if (isa<TypedefType>(T.getTypePtr())) {
 | 
						|
      if (OutermostType && T.isConstQualified()) {
 | 
						|
        isReadOnly = true;
 | 
						|
        S += 'r';
 | 
						|
      }
 | 
						|
    } else if (OutermostType) {
 | 
						|
      QualType P = PointeeTy;
 | 
						|
      while (P->getAs<PointerType>())
 | 
						|
        P = P->getAs<PointerType>()->getPointeeType();
 | 
						|
      if (P.isConstQualified()) {
 | 
						|
        isReadOnly = true;
 | 
						|
        S += 'r';
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (isReadOnly) {
 | 
						|
      // Another legacy compatibility encoding. Some ObjC qualifier and type
 | 
						|
      // combinations need to be rearranged.
 | 
						|
      // Rewrite "in const" from "nr" to "rn"
 | 
						|
      if (llvm::StringRef(S).endswith("nr"))
 | 
						|
        S.replace(S.end()-2, S.end(), "rn");
 | 
						|
    }
 | 
						|
 | 
						|
    if (PointeeTy->isCharType()) {
 | 
						|
      // char pointer types should be encoded as '*' unless it is a
 | 
						|
      // type that has been typedef'd to 'BOOL'.
 | 
						|
      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
 | 
						|
        S += '*';
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
 | 
						|
      // GCC binary compat: Need to convert "struct objc_class *" to "#".
 | 
						|
      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
 | 
						|
        S += '#';
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // GCC binary compat: Need to convert "struct objc_object *" to "@".
 | 
						|
      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
 | 
						|
        S += '@';
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // fall through...
 | 
						|
    }
 | 
						|
    S += '^';
 | 
						|
    getLegacyIntegralTypeEncoding(PointeeTy);
 | 
						|
 | 
						|
    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
 | 
						|
                               NULL);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (const ArrayType *AT =
 | 
						|
      // Ignore type qualifiers etc.
 | 
						|
        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
 | 
						|
    if (isa<IncompleteArrayType>(AT)) {
 | 
						|
      // Incomplete arrays are encoded as a pointer to the array element.
 | 
						|
      S += '^';
 | 
						|
 | 
						|
      getObjCEncodingForTypeImpl(AT->getElementType(), S,
 | 
						|
                                 false, ExpandStructures, FD);
 | 
						|
    } else {
 | 
						|
      S += '[';
 | 
						|
 | 
						|
      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
 | 
						|
        S += llvm::utostr(CAT->getSize().getZExtValue());
 | 
						|
      else {
 | 
						|
        //Variable length arrays are encoded as a regular array with 0 elements.
 | 
						|
        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
 | 
						|
        S += '0';
 | 
						|
      }
 | 
						|
 | 
						|
      getObjCEncodingForTypeImpl(AT->getElementType(), S,
 | 
						|
                                 false, ExpandStructures, FD);
 | 
						|
      S += ']';
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (T->getAs<FunctionType>()) {
 | 
						|
    S += '?';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const RecordType *RTy = T->getAs<RecordType>()) {
 | 
						|
    RecordDecl *RDecl = RTy->getDecl();
 | 
						|
    S += RDecl->isUnion() ? '(' : '{';
 | 
						|
    // Anonymous structures print as '?'
 | 
						|
    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
 | 
						|
      S += II->getName();
 | 
						|
      if (ClassTemplateSpecializationDecl *Spec
 | 
						|
          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
 | 
						|
        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
 | 
						|
        std::string TemplateArgsStr
 | 
						|
          = TemplateSpecializationType::PrintTemplateArgumentList(
 | 
						|
                                            TemplateArgs.data(),
 | 
						|
                                            TemplateArgs.size(),
 | 
						|
                                            (*this).PrintingPolicy);
 | 
						|
 | 
						|
        S += TemplateArgsStr;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      S += '?';
 | 
						|
    }
 | 
						|
    if (ExpandStructures) {
 | 
						|
      S += '=';
 | 
						|
      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
 | 
						|
                                   FieldEnd = RDecl->field_end();
 | 
						|
           Field != FieldEnd; ++Field) {
 | 
						|
        if (FD) {
 | 
						|
          S += '"';
 | 
						|
          S += Field->getNameAsString();
 | 
						|
          S += '"';
 | 
						|
        }
 | 
						|
 | 
						|
        // Special case bit-fields.
 | 
						|
        if (Field->isBitField()) {
 | 
						|
          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
 | 
						|
                                     (*Field));
 | 
						|
        } else {
 | 
						|
          QualType qt = Field->getType();
 | 
						|
          getLegacyIntegralTypeEncoding(qt);
 | 
						|
          getObjCEncodingForTypeImpl(qt, S, false, true,
 | 
						|
                                     FD);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    S += RDecl->isUnion() ? ')' : '}';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (T->isEnumeralType()) {
 | 
						|
    if (FD && FD->isBitField())
 | 
						|
      EncodeBitField(this, S, T, FD);
 | 
						|
    else
 | 
						|
      S += 'i';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (T->isBlockPointerType()) {
 | 
						|
    S += "@?"; // Unlike a pointer-to-function, which is "^?".
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ignore protocol qualifiers when mangling at this level.
 | 
						|
  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
 | 
						|
    T = OT->getBaseType();
 | 
						|
 | 
						|
  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
 | 
						|
    // @encode(class_name)
 | 
						|
    ObjCInterfaceDecl *OI = OIT->getDecl();
 | 
						|
    S += '{';
 | 
						|
    const IdentifierInfo *II = OI->getIdentifier();
 | 
						|
    S += II->getName();
 | 
						|
    S += '=';
 | 
						|
    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
 | 
						|
    DeepCollectObjCIvars(OI, true, Ivars);
 | 
						|
    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
 | 
						|
      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
 | 
						|
      if (Field->isBitField())
 | 
						|
        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
 | 
						|
      else
 | 
						|
        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
 | 
						|
    }
 | 
						|
    S += '}';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
 | 
						|
    if (OPT->isObjCIdType()) {
 | 
						|
      S += '@';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
 | 
						|
      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
 | 
						|
      // Since this is a binary compatibility issue, need to consult with runtime
 | 
						|
      // folks. Fortunately, this is a *very* obsure construct.
 | 
						|
      S += '#';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (OPT->isObjCQualifiedIdType()) {
 | 
						|
      getObjCEncodingForTypeImpl(getObjCIdType(), S,
 | 
						|
                                 ExpandPointedToStructures,
 | 
						|
                                 ExpandStructures, FD);
 | 
						|
      if (FD || EncodingProperty) {
 | 
						|
        // Note that we do extended encoding of protocol qualifer list
 | 
						|
        // Only when doing ivar or property encoding.
 | 
						|
        S += '"';
 | 
						|
        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
 | 
						|
             E = OPT->qual_end(); I != E; ++I) {
 | 
						|
          S += '<';
 | 
						|
          S += (*I)->getNameAsString();
 | 
						|
          S += '>';
 | 
						|
        }
 | 
						|
        S += '"';
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType PointeeTy = OPT->getPointeeType();
 | 
						|
    if (!EncodingProperty &&
 | 
						|
        isa<TypedefType>(PointeeTy.getTypePtr())) {
 | 
						|
      // Another historical/compatibility reason.
 | 
						|
      // We encode the underlying type which comes out as
 | 
						|
      // {...};
 | 
						|
      S += '^';
 | 
						|
      getObjCEncodingForTypeImpl(PointeeTy, S,
 | 
						|
                                 false, ExpandPointedToStructures,
 | 
						|
                                 NULL);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    S += '@';
 | 
						|
    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
 | 
						|
      S += '"';
 | 
						|
      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
 | 
						|
      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
 | 
						|
           E = OPT->qual_end(); I != E; ++I) {
 | 
						|
        S += '<';
 | 
						|
        S += (*I)->getNameAsString();
 | 
						|
        S += '>';
 | 
						|
      }
 | 
						|
      S += '"';
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // gcc just blithely ignores member pointers.
 | 
						|
  // TODO: maybe there should be a mangling for these
 | 
						|
  if (T->getAs<MemberPointerType>())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  if (T->isVectorType()) {
 | 
						|
    // This matches gcc's encoding, even though technically it is
 | 
						|
    // insufficient.
 | 
						|
    // FIXME. We should do a better job than gcc.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(0 && "@encode for type not implemented!");
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
 | 
						|
                                                 std::string& S) const {
 | 
						|
  if (QT & Decl::OBJC_TQ_In)
 | 
						|
    S += 'n';
 | 
						|
  if (QT & Decl::OBJC_TQ_Inout)
 | 
						|
    S += 'N';
 | 
						|
  if (QT & Decl::OBJC_TQ_Out)
 | 
						|
    S += 'o';
 | 
						|
  if (QT & Decl::OBJC_TQ_Bycopy)
 | 
						|
    S += 'O';
 | 
						|
  if (QT & Decl::OBJC_TQ_Byref)
 | 
						|
    S += 'R';
 | 
						|
  if (QT & Decl::OBJC_TQ_Oneway)
 | 
						|
    S += 'V';
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setBuiltinVaListType(QualType T) {
 | 
						|
  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
 | 
						|
 | 
						|
  BuiltinVaListType = T;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCIdType(QualType T) {
 | 
						|
  ObjCIdTypedefType = T;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCSelType(QualType T) {
 | 
						|
  ObjCSelTypedefType = T;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCProtoType(QualType QT) {
 | 
						|
  ObjCProtoType = QT;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCClassType(QualType T) {
 | 
						|
  ObjCClassTypedefType = T;
 | 
						|
}
 | 
						|
 | 
						|
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
 | 
						|
  assert(ObjCConstantStringType.isNull() &&
 | 
						|
         "'NSConstantString' type already set!");
 | 
						|
 | 
						|
  ObjCConstantStringType = getObjCInterfaceType(Decl);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the template name that corresponds to a non-empty
 | 
						|
/// lookup.
 | 
						|
TemplateName
 | 
						|
ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
 | 
						|
                                      UnresolvedSetIterator End) const {
 | 
						|
  unsigned size = End - Begin;
 | 
						|
  assert(size > 1 && "set is not overloaded!");
 | 
						|
 | 
						|
  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
 | 
						|
                          size * sizeof(FunctionTemplateDecl*));
 | 
						|
  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
 | 
						|
 | 
						|
  NamedDecl **Storage = OT->getStorage();
 | 
						|
  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
 | 
						|
    NamedDecl *D = *I;
 | 
						|
    assert(isa<FunctionTemplateDecl>(D) ||
 | 
						|
           (isa<UsingShadowDecl>(D) &&
 | 
						|
            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
 | 
						|
    *Storage++ = D;
 | 
						|
  }
 | 
						|
 | 
						|
  return TemplateName(OT);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the template name that represents a qualified
 | 
						|
/// template name such as \c std::vector.
 | 
						|
TemplateName
 | 
						|
ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
 | 
						|
                                     bool TemplateKeyword,
 | 
						|
                                     TemplateDecl *Template) const {
 | 
						|
  assert(NNS && "Missing nested-name-specifier in qualified template name");
 | 
						|
  
 | 
						|
  // FIXME: Canonicalization?
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  QualifiedTemplateName *QTN =
 | 
						|
    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  if (!QTN) {
 | 
						|
    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
 | 
						|
    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  return TemplateName(QTN);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the template name that represents a dependent
 | 
						|
/// template name such as \c MetaFun::template apply.
 | 
						|
TemplateName
 | 
						|
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
 | 
						|
                                     const IdentifierInfo *Name) const {
 | 
						|
  assert((!NNS || NNS->isDependent()) &&
 | 
						|
         "Nested name specifier must be dependent");
 | 
						|
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  DependentTemplateName::Profile(ID, NNS, Name);
 | 
						|
 | 
						|
  void *InsertPos = 0;
 | 
						|
  DependentTemplateName *QTN =
 | 
						|
    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  if (QTN)
 | 
						|
    return TemplateName(QTN);
 | 
						|
 | 
						|
  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | 
						|
  if (CanonNNS == NNS) {
 | 
						|
    QTN = new (*this,4) DependentTemplateName(NNS, Name);
 | 
						|
  } else {
 | 
						|
    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
 | 
						|
    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
 | 
						|
    DependentTemplateName *CheckQTN =
 | 
						|
      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(!CheckQTN && "Dependent type name canonicalization broken");
 | 
						|
    (void)CheckQTN;
 | 
						|
  }
 | 
						|
 | 
						|
  DependentTemplateNames.InsertNode(QTN, InsertPos);
 | 
						|
  return TemplateName(QTN);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the template name that represents a dependent
 | 
						|
/// template name such as \c MetaFun::template operator+.
 | 
						|
TemplateName 
 | 
						|
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
 | 
						|
                                     OverloadedOperatorKind Operator) const {
 | 
						|
  assert((!NNS || NNS->isDependent()) &&
 | 
						|
         "Nested name specifier must be dependent");
 | 
						|
  
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  DependentTemplateName::Profile(ID, NNS, Operator);
 | 
						|
  
 | 
						|
  void *InsertPos = 0;
 | 
						|
  DependentTemplateName *QTN
 | 
						|
    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  
 | 
						|
  if (QTN)
 | 
						|
    return TemplateName(QTN);
 | 
						|
  
 | 
						|
  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | 
						|
  if (CanonNNS == NNS) {
 | 
						|
    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
 | 
						|
  } else {
 | 
						|
    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
 | 
						|
    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
 | 
						|
    
 | 
						|
    DependentTemplateName *CheckQTN
 | 
						|
      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
    assert(!CheckQTN && "Dependent template name canonicalization broken");
 | 
						|
    (void)CheckQTN;
 | 
						|
  }
 | 
						|
  
 | 
						|
  DependentTemplateNames.InsertNode(QTN, InsertPos);
 | 
						|
  return TemplateName(QTN);
 | 
						|
}
 | 
						|
 | 
						|
TemplateName 
 | 
						|
ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
 | 
						|
                                       const TemplateArgument &ArgPack) const {
 | 
						|
  ASTContext &Self = const_cast<ASTContext &>(*this);
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
 | 
						|
  
 | 
						|
  void *InsertPos = 0;
 | 
						|
  SubstTemplateTemplateParmPackStorage *Subst
 | 
						|
    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
  
 | 
						|
  if (!Subst) {
 | 
						|
    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param, 
 | 
						|
                                                           ArgPack.pack_size(),
 | 
						|
                                                         ArgPack.pack_begin());
 | 
						|
    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  return TemplateName(Subst);
 | 
						|
}
 | 
						|
 | 
						|
/// getFromTargetType - Given one of the integer types provided by
 | 
						|
/// TargetInfo, produce the corresponding type. The unsigned @p Type
 | 
						|
/// is actually a value of type @c TargetInfo::IntType.
 | 
						|
CanQualType ASTContext::getFromTargetType(unsigned Type) const {
 | 
						|
  switch (Type) {
 | 
						|
  case TargetInfo::NoInt: return CanQualType();
 | 
						|
  case TargetInfo::SignedShort: return ShortTy;
 | 
						|
  case TargetInfo::UnsignedShort: return UnsignedShortTy;
 | 
						|
  case TargetInfo::SignedInt: return IntTy;
 | 
						|
  case TargetInfo::UnsignedInt: return UnsignedIntTy;
 | 
						|
  case TargetInfo::SignedLong: return LongTy;
 | 
						|
  case TargetInfo::UnsignedLong: return UnsignedLongTy;
 | 
						|
  case TargetInfo::SignedLongLong: return LongLongTy;
 | 
						|
  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(false && "Unhandled TargetInfo::IntType value");
 | 
						|
  return CanQualType();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Type Predicates.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isObjCNSObjectType - Return true if this is an NSObject object using
 | 
						|
/// NSObject attribute on a c-style pointer type.
 | 
						|
/// FIXME - Make it work directly on types.
 | 
						|
/// FIXME: Move to Type.
 | 
						|
///
 | 
						|
bool ASTContext::isObjCNSObjectType(QualType Ty) const {
 | 
						|
  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
 | 
						|
    if (TypedefNameDecl *TD = TDT->getDecl())
 | 
						|
      if (TD->getAttr<ObjCNSObjectAttr>())
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
 | 
						|
/// garbage collection attribute.
 | 
						|
///
 | 
						|
Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
 | 
						|
  if (getLangOptions().getGCMode() == LangOptions::NonGC)
 | 
						|
    return Qualifiers::GCNone;
 | 
						|
 | 
						|
  assert(getLangOptions().ObjC1);
 | 
						|
  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
 | 
						|
 | 
						|
  // Default behaviour under objective-C's gc is for ObjC pointers
 | 
						|
  // (or pointers to them) be treated as though they were declared
 | 
						|
  // as __strong.
 | 
						|
  if (GCAttrs == Qualifiers::GCNone) {
 | 
						|
    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
 | 
						|
      return Qualifiers::Strong;
 | 
						|
    else if (Ty->isPointerType())
 | 
						|
      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
 | 
						|
  } else {
 | 
						|
    // It's not valid to set GC attributes on anything that isn't a
 | 
						|
    // pointer.
 | 
						|
#ifndef NDEBUG
 | 
						|
    QualType CT = Ty->getCanonicalTypeInternal();
 | 
						|
    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
 | 
						|
      CT = AT->getElementType();
 | 
						|
    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  return GCAttrs;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Type Compatibility Testing
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// areCompatVectorTypes - Return true if the two specified vector types are
 | 
						|
/// compatible.
 | 
						|
static bool areCompatVectorTypes(const VectorType *LHS,
 | 
						|
                                 const VectorType *RHS) {
 | 
						|
  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
 | 
						|
  return LHS->getElementType() == RHS->getElementType() &&
 | 
						|
         LHS->getNumElements() == RHS->getNumElements();
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
 | 
						|
                                          QualType SecondVec) {
 | 
						|
  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
 | 
						|
  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
 | 
						|
 | 
						|
  if (hasSameUnqualifiedType(FirstVec, SecondVec))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Treat Neon vector types and most AltiVec vector types as if they are the
 | 
						|
  // equivalent GCC vector types.
 | 
						|
  const VectorType *First = FirstVec->getAs<VectorType>();
 | 
						|
  const VectorType *Second = SecondVec->getAs<VectorType>();
 | 
						|
  if (First->getNumElements() == Second->getNumElements() &&
 | 
						|
      hasSameType(First->getElementType(), Second->getElementType()) &&
 | 
						|
      First->getVectorKind() != VectorType::AltiVecPixel &&
 | 
						|
      First->getVectorKind() != VectorType::AltiVecBool &&
 | 
						|
      Second->getVectorKind() != VectorType::AltiVecPixel &&
 | 
						|
      Second->getVectorKind() != VectorType::AltiVecBool)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
 | 
						|
/// inheritance hierarchy of 'rProto'.
 | 
						|
bool
 | 
						|
ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
 | 
						|
                                           ObjCProtocolDecl *rProto) const {
 | 
						|
  if (lProto == rProto)
 | 
						|
    return true;
 | 
						|
  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
 | 
						|
       E = rProto->protocol_end(); PI != E; ++PI)
 | 
						|
    if (ProtocolCompatibleWithProtocol(lProto, *PI))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
 | 
						|
/// return true if lhs's protocols conform to rhs's protocol; false
 | 
						|
/// otherwise.
 | 
						|
bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
 | 
						|
  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
 | 
						|
    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
 | 
						|
/// Class<p1, ...>.
 | 
						|
bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, 
 | 
						|
                                                      QualType rhs) {
 | 
						|
  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
 | 
						|
  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
 | 
						|
  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
 | 
						|
  
 | 
						|
  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
 | 
						|
       E = lhsQID->qual_end(); I != E; ++I) {
 | 
						|
    bool match = false;
 | 
						|
    ObjCProtocolDecl *lhsProto = *I;
 | 
						|
    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
 | 
						|
         E = rhsOPT->qual_end(); J != E; ++J) {
 | 
						|
      ObjCProtocolDecl *rhsProto = *J;
 | 
						|
      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
 | 
						|
        match = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!match)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
 | 
						|
/// ObjCQualifiedIDType.
 | 
						|
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
 | 
						|
                                                   bool compare) {
 | 
						|
  // Allow id<P..> and an 'id' or void* type in all cases.
 | 
						|
  if (lhs->isVoidPointerType() ||
 | 
						|
      lhs->isObjCIdType() || lhs->isObjCClassType())
 | 
						|
    return true;
 | 
						|
  else if (rhs->isVoidPointerType() ||
 | 
						|
           rhs->isObjCIdType() || rhs->isObjCClassType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
 | 
						|
    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
 | 
						|
 | 
						|
    if (!rhsOPT) return false;
 | 
						|
 | 
						|
    if (rhsOPT->qual_empty()) {
 | 
						|
      // If the RHS is a unqualified interface pointer "NSString*",
 | 
						|
      // make sure we check the class hierarchy.
 | 
						|
      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
 | 
						|
        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
 | 
						|
             E = lhsQID->qual_end(); I != E; ++I) {
 | 
						|
          // when comparing an id<P> on lhs with a static type on rhs,
 | 
						|
          // see if static class implements all of id's protocols, directly or
 | 
						|
          // through its super class and categories.
 | 
						|
          if (!rhsID->ClassImplementsProtocol(*I, true))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If there are no qualifiers and no interface, we have an 'id'.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Both the right and left sides have qualifiers.
 | 
						|
    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
 | 
						|
         E = lhsQID->qual_end(); I != E; ++I) {
 | 
						|
      ObjCProtocolDecl *lhsProto = *I;
 | 
						|
      bool match = false;
 | 
						|
 | 
						|
      // when comparing an id<P> on lhs with a static type on rhs,
 | 
						|
      // see if static class implements all of id's protocols, directly or
 | 
						|
      // through its super class and categories.
 | 
						|
      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
 | 
						|
           E = rhsOPT->qual_end(); J != E; ++J) {
 | 
						|
        ObjCProtocolDecl *rhsProto = *J;
 | 
						|
        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | 
						|
            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
 | 
						|
          match = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If the RHS is a qualified interface pointer "NSString<P>*",
 | 
						|
      // make sure we check the class hierarchy.
 | 
						|
      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
 | 
						|
        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
 | 
						|
             E = lhsQID->qual_end(); I != E; ++I) {
 | 
						|
          // when comparing an id<P> on lhs with a static type on rhs,
 | 
						|
          // see if static class implements all of id's protocols, directly or
 | 
						|
          // through its super class and categories.
 | 
						|
          if (rhsID->ClassImplementsProtocol(*I, true)) {
 | 
						|
            match = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!match)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
 | 
						|
  assert(rhsQID && "One of the LHS/RHS should be id<x>");
 | 
						|
 | 
						|
  if (const ObjCObjectPointerType *lhsOPT =
 | 
						|
        lhs->getAsObjCInterfacePointerType()) {
 | 
						|
    // If both the right and left sides have qualifiers.
 | 
						|
    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
 | 
						|
         E = lhsOPT->qual_end(); I != E; ++I) {
 | 
						|
      ObjCProtocolDecl *lhsProto = *I;
 | 
						|
      bool match = false;
 | 
						|
 | 
						|
      // when comparing an id<P> on rhs with a static type on lhs,
 | 
						|
      // see if static class implements all of id's protocols, directly or
 | 
						|
      // through its super class and categories.
 | 
						|
      // First, lhs protocols in the qualifier list must be found, direct
 | 
						|
      // or indirect in rhs's qualifier list or it is a mismatch.
 | 
						|
      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
 | 
						|
           E = rhsQID->qual_end(); J != E; ++J) {
 | 
						|
        ObjCProtocolDecl *rhsProto = *J;
 | 
						|
        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | 
						|
            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
 | 
						|
          match = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!match)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Static class's protocols, or its super class or category protocols
 | 
						|
    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
 | 
						|
    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
 | 
						|
      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
 | 
						|
      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
 | 
						|
      // This is rather dubious but matches gcc's behavior. If lhs has
 | 
						|
      // no type qualifier and its class has no static protocol(s)
 | 
						|
      // assume that it is mismatch.
 | 
						|
      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
 | 
						|
        return false;
 | 
						|
      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
 | 
						|
           LHSInheritedProtocols.begin(),
 | 
						|
           E = LHSInheritedProtocols.end(); I != E; ++I) {
 | 
						|
        bool match = false;
 | 
						|
        ObjCProtocolDecl *lhsProto = (*I);
 | 
						|
        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
 | 
						|
             E = rhsQID->qual_end(); J != E; ++J) {
 | 
						|
          ObjCProtocolDecl *rhsProto = *J;
 | 
						|
          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | 
						|
              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
 | 
						|
            match = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (!match)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// canAssignObjCInterfaces - Return true if the two interface types are
 | 
						|
/// compatible for assignment from RHS to LHS.  This handles validation of any
 | 
						|
/// protocol qualifiers on the LHS or RHS.
 | 
						|
///
 | 
						|
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
 | 
						|
                                         const ObjCObjectPointerType *RHSOPT) {
 | 
						|
  const ObjCObjectType* LHS = LHSOPT->getObjectType();
 | 
						|
  const ObjCObjectType* RHS = RHSOPT->getObjectType();
 | 
						|
 | 
						|
  // If either type represents the built-in 'id' or 'Class' types, return true.
 | 
						|
  if (LHS->isObjCUnqualifiedIdOrClass() ||
 | 
						|
      RHS->isObjCUnqualifiedIdOrClass())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
 | 
						|
    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
 | 
						|
                                             QualType(RHSOPT,0),
 | 
						|
                                             false);
 | 
						|
  
 | 
						|
  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
 | 
						|
    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
 | 
						|
                                                QualType(RHSOPT,0));
 | 
						|
  
 | 
						|
  // If we have 2 user-defined types, fall into that path.
 | 
						|
  if (LHS->getInterface() && RHS->getInterface())
 | 
						|
    return canAssignObjCInterfaces(LHS, RHS);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
 | 
						|
/// for providing type-safety for objective-c pointers used to pass/return 
 | 
						|
/// arguments in block literals. When passed as arguments, passing 'A*' where
 | 
						|
/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
 | 
						|
/// not OK. For the return type, the opposite is not OK.
 | 
						|
bool ASTContext::canAssignObjCInterfacesInBlockPointer(
 | 
						|
                                         const ObjCObjectPointerType *LHSOPT,
 | 
						|
                                         const ObjCObjectPointerType *RHSOPT,
 | 
						|
                                         bool BlockReturnType) {
 | 
						|
  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  if (LHSOPT->isObjCBuiltinType()) {
 | 
						|
    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
 | 
						|
    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
 | 
						|
                                             QualType(RHSOPT,0),
 | 
						|
                                             false);
 | 
						|
  
 | 
						|
  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
 | 
						|
  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
 | 
						|
  if (LHS && RHS)  { // We have 2 user-defined types.
 | 
						|
    if (LHS != RHS) {
 | 
						|
      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
 | 
						|
        return BlockReturnType;
 | 
						|
      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
 | 
						|
        return !BlockReturnType;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getIntersectionOfProtocols - This routine finds the intersection of set
 | 
						|
/// of protocols inherited from two distinct objective-c pointer objects.
 | 
						|
/// It is used to build composite qualifier list of the composite type of
 | 
						|
/// the conditional expression involving two objective-c pointer objects.
 | 
						|
static 
 | 
						|
void getIntersectionOfProtocols(ASTContext &Context,
 | 
						|
                                const ObjCObjectPointerType *LHSOPT,
 | 
						|
                                const ObjCObjectPointerType *RHSOPT,
 | 
						|
      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
 | 
						|
  
 | 
						|
  const ObjCObjectType* LHS = LHSOPT->getObjectType();
 | 
						|
  const ObjCObjectType* RHS = RHSOPT->getObjectType();
 | 
						|
  assert(LHS->getInterface() && "LHS must have an interface base");
 | 
						|
  assert(RHS->getInterface() && "RHS must have an interface base");
 | 
						|
  
 | 
						|
  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
 | 
						|
  unsigned LHSNumProtocols = LHS->getNumProtocols();
 | 
						|
  if (LHSNumProtocols > 0)
 | 
						|
    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
 | 
						|
  else {
 | 
						|
    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
 | 
						|
    Context.CollectInheritedProtocols(LHS->getInterface(),
 | 
						|
                                      LHSInheritedProtocols);
 | 
						|
    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(), 
 | 
						|
                                LHSInheritedProtocols.end());
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned RHSNumProtocols = RHS->getNumProtocols();
 | 
						|
  if (RHSNumProtocols > 0) {
 | 
						|
    ObjCProtocolDecl **RHSProtocols =
 | 
						|
      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
 | 
						|
    for (unsigned i = 0; i < RHSNumProtocols; ++i)
 | 
						|
      if (InheritedProtocolSet.count(RHSProtocols[i]))
 | 
						|
        IntersectionOfProtocols.push_back(RHSProtocols[i]);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
 | 
						|
    Context.CollectInheritedProtocols(RHS->getInterface(),
 | 
						|
                                      RHSInheritedProtocols);
 | 
						|
    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I = 
 | 
						|
         RHSInheritedProtocols.begin(),
 | 
						|
         E = RHSInheritedProtocols.end(); I != E; ++I) 
 | 
						|
      if (InheritedProtocolSet.count((*I)))
 | 
						|
        IntersectionOfProtocols.push_back((*I));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// areCommonBaseCompatible - Returns common base class of the two classes if
 | 
						|
/// one found. Note that this is O'2 algorithm. But it will be called as the
 | 
						|
/// last type comparison in a ?-exp of ObjC pointer types before a 
 | 
						|
/// warning is issued. So, its invokation is extremely rare.
 | 
						|
QualType ASTContext::areCommonBaseCompatible(
 | 
						|
                                          const ObjCObjectPointerType *Lptr,
 | 
						|
                                          const ObjCObjectPointerType *Rptr) {
 | 
						|
  const ObjCObjectType *LHS = Lptr->getObjectType();
 | 
						|
  const ObjCObjectType *RHS = Rptr->getObjectType();
 | 
						|
  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
 | 
						|
  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
 | 
						|
  if (!LDecl || !RDecl || (LDecl == RDecl))
 | 
						|
    return QualType();
 | 
						|
  
 | 
						|
  do {
 | 
						|
    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
 | 
						|
    if (canAssignObjCInterfaces(LHS, RHS)) {
 | 
						|
      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
 | 
						|
      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
 | 
						|
 | 
						|
      QualType Result = QualType(LHS, 0);
 | 
						|
      if (!Protocols.empty())
 | 
						|
        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
 | 
						|
      Result = getObjCObjectPointerType(Result);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  } while ((LDecl = LDecl->getSuperClass()));
 | 
						|
    
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
 | 
						|
                                         const ObjCObjectType *RHS) {
 | 
						|
  assert(LHS->getInterface() && "LHS is not an interface type");
 | 
						|
  assert(RHS->getInterface() && "RHS is not an interface type");
 | 
						|
 | 
						|
  // Verify that the base decls are compatible: the RHS must be a subclass of
 | 
						|
  // the LHS.
 | 
						|
  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
 | 
						|
  // protocol qualified at all, then we are good.
 | 
						|
  if (LHS->getNumProtocols() == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, 
 | 
						|
  // more detailed analysis is required.
 | 
						|
  if (RHS->getNumProtocols() == 0) {
 | 
						|
    // OK, if LHS is a superclass of RHS *and*
 | 
						|
    // this superclass is assignment compatible with LHS.
 | 
						|
    // false otherwise.
 | 
						|
    bool IsSuperClass = 
 | 
						|
      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
 | 
						|
    if (IsSuperClass) {
 | 
						|
      // OK if conversion of LHS to SuperClass results in narrowing of types
 | 
						|
      // ; i.e., SuperClass may implement at least one of the protocols
 | 
						|
      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
 | 
						|
      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
 | 
						|
      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
 | 
						|
      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
 | 
						|
      // If super class has no protocols, it is not a match.
 | 
						|
      if (SuperClassInheritedProtocols.empty())
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
 | 
						|
           LHSPE = LHS->qual_end();
 | 
						|
           LHSPI != LHSPE; LHSPI++) {
 | 
						|
        bool SuperImplementsProtocol = false;
 | 
						|
        ObjCProtocolDecl *LHSProto = (*LHSPI);
 | 
						|
        
 | 
						|
        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
 | 
						|
             SuperClassInheritedProtocols.begin(),
 | 
						|
             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
 | 
						|
          ObjCProtocolDecl *SuperClassProto = (*I);
 | 
						|
          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
 | 
						|
            SuperImplementsProtocol = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (!SuperImplementsProtocol)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
 | 
						|
                                     LHSPE = LHS->qual_end();
 | 
						|
       LHSPI != LHSPE; LHSPI++) {
 | 
						|
    bool RHSImplementsProtocol = false;
 | 
						|
 | 
						|
    // If the RHS doesn't implement the protocol on the left, the types
 | 
						|
    // are incompatible.
 | 
						|
    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
 | 
						|
                                       RHSPE = RHS->qual_end();
 | 
						|
         RHSPI != RHSPE; RHSPI++) {
 | 
						|
      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
 | 
						|
        RHSImplementsProtocol = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // FIXME: For better diagnostics, consider passing back the protocol name.
 | 
						|
    if (!RHSImplementsProtocol)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // The RHS implements all protocols listed on the LHS.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
 | 
						|
  // get the "pointed to" types
 | 
						|
  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
 | 
						|
  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
 | 
						|
 | 
						|
  if (!LHSOPT || !RHSOPT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
 | 
						|
         canAssignObjCInterfaces(RHSOPT, LHSOPT);
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
 | 
						|
  return canAssignObjCInterfaces(
 | 
						|
                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
 | 
						|
                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
 | 
						|
}
 | 
						|
 | 
						|
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
 | 
						|
/// both shall have the identically qualified version of a compatible type.
 | 
						|
/// C99 6.2.7p1: Two types have compatible types if their types are the
 | 
						|
/// same. See 6.7.[2,3,5] for additional rules.
 | 
						|
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
 | 
						|
                                    bool CompareUnqualified) {
 | 
						|
  if (getLangOptions().CPlusPlus)
 | 
						|
    return hasSameType(LHS, RHS);
 | 
						|
  
 | 
						|
  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
 | 
						|
  return !mergeTypes(LHS, RHS, true).isNull();
 | 
						|
}
 | 
						|
 | 
						|
/// mergeTransparentUnionType - if T is a transparent union type and a member
 | 
						|
/// of T is compatible with SubType, return the merged type, else return
 | 
						|
/// QualType()
 | 
						|
QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
 | 
						|
                                               bool OfBlockPointer,
 | 
						|
                                               bool Unqualified) {
 | 
						|
  if (const RecordType *UT = T->getAsUnionType()) {
 | 
						|
    RecordDecl *UD = UT->getDecl();
 | 
						|
    if (UD->hasAttr<TransparentUnionAttr>()) {
 | 
						|
      for (RecordDecl::field_iterator it = UD->field_begin(),
 | 
						|
           itend = UD->field_end(); it != itend; ++it) {
 | 
						|
        QualType ET = it->getType().getUnqualifiedType();
 | 
						|
        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
 | 
						|
        if (!MT.isNull())
 | 
						|
          return MT;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// mergeFunctionArgumentTypes - merge two types which appear as function
 | 
						|
/// argument types
 | 
						|
QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs, 
 | 
						|
                                                bool OfBlockPointer,
 | 
						|
                                                bool Unqualified) {
 | 
						|
  // GNU extension: two types are compatible if they appear as a function
 | 
						|
  // argument, one of the types is a transparent union type and the other
 | 
						|
  // type is compatible with a union member
 | 
						|
  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
 | 
						|
                                              Unqualified);
 | 
						|
  if (!lmerge.isNull())
 | 
						|
    return lmerge;
 | 
						|
 | 
						|
  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
 | 
						|
                                              Unqualified);
 | 
						|
  if (!rmerge.isNull())
 | 
						|
    return rmerge;
 | 
						|
 | 
						|
  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, 
 | 
						|
                                        bool OfBlockPointer,
 | 
						|
                                        bool Unqualified) {
 | 
						|
  const FunctionType *lbase = lhs->getAs<FunctionType>();
 | 
						|
  const FunctionType *rbase = rhs->getAs<FunctionType>();
 | 
						|
  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
 | 
						|
  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
 | 
						|
  bool allLTypes = true;
 | 
						|
  bool allRTypes = true;
 | 
						|
 | 
						|
  // Check return type
 | 
						|
  QualType retType;
 | 
						|
  if (OfBlockPointer) {
 | 
						|
    QualType RHS = rbase->getResultType();
 | 
						|
    QualType LHS = lbase->getResultType();
 | 
						|
    bool UnqualifiedResult = Unqualified;
 | 
						|
    if (!UnqualifiedResult)
 | 
						|
      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
 | 
						|
    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
 | 
						|
                         Unqualified);
 | 
						|
  if (retType.isNull()) return QualType();
 | 
						|
  
 | 
						|
  if (Unqualified)
 | 
						|
    retType = retType.getUnqualifiedType();
 | 
						|
 | 
						|
  CanQualType LRetType = getCanonicalType(lbase->getResultType());
 | 
						|
  CanQualType RRetType = getCanonicalType(rbase->getResultType());
 | 
						|
  if (Unqualified) {
 | 
						|
    LRetType = LRetType.getUnqualifiedType();
 | 
						|
    RRetType = RRetType.getUnqualifiedType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (getCanonicalType(retType) != LRetType)
 | 
						|
    allLTypes = false;
 | 
						|
  if (getCanonicalType(retType) != RRetType)
 | 
						|
    allRTypes = false;
 | 
						|
 | 
						|
  // FIXME: double check this
 | 
						|
  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
 | 
						|
  //                           rbase->getRegParmAttr() != 0 &&
 | 
						|
  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
 | 
						|
  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
 | 
						|
  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
 | 
						|
 | 
						|
  // Compatible functions must have compatible calling conventions
 | 
						|
  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Regparm is part of the calling convention.
 | 
						|
  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
 | 
						|
    return QualType();
 | 
						|
  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // It's noreturn if either type is.
 | 
						|
  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
 | 
						|
  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
 | 
						|
  if (NoReturn != lbaseInfo.getNoReturn())
 | 
						|
    allLTypes = false;
 | 
						|
  if (NoReturn != rbaseInfo.getNoReturn())
 | 
						|
    allRTypes = false;
 | 
						|
 | 
						|
  FunctionType::ExtInfo einfo(NoReturn,
 | 
						|
                              lbaseInfo.getHasRegParm(),
 | 
						|
                              lbaseInfo.getRegParm(),
 | 
						|
                              lbaseInfo.getCC());
 | 
						|
 | 
						|
  if (lproto && rproto) { // two C99 style function prototypes
 | 
						|
    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
 | 
						|
           "C++ shouldn't be here");
 | 
						|
    unsigned lproto_nargs = lproto->getNumArgs();
 | 
						|
    unsigned rproto_nargs = rproto->getNumArgs();
 | 
						|
 | 
						|
    // Compatible functions must have the same number of arguments
 | 
						|
    if (lproto_nargs != rproto_nargs)
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    // Variadic and non-variadic functions aren't compatible
 | 
						|
    if (lproto->isVariadic() != rproto->isVariadic())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    if (lproto->getTypeQuals() != rproto->getTypeQuals())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    // Check argument compatibility
 | 
						|
    llvm::SmallVector<QualType, 10> types;
 | 
						|
    for (unsigned i = 0; i < lproto_nargs; i++) {
 | 
						|
      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
 | 
						|
      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
 | 
						|
      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
 | 
						|
                                                    OfBlockPointer,
 | 
						|
                                                    Unqualified);
 | 
						|
      if (argtype.isNull()) return QualType();
 | 
						|
      
 | 
						|
      if (Unqualified)
 | 
						|
        argtype = argtype.getUnqualifiedType();
 | 
						|
      
 | 
						|
      types.push_back(argtype);
 | 
						|
      if (Unqualified) {
 | 
						|
        largtype = largtype.getUnqualifiedType();
 | 
						|
        rargtype = rargtype.getUnqualifiedType();
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (getCanonicalType(argtype) != getCanonicalType(largtype))
 | 
						|
        allLTypes = false;
 | 
						|
      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
 | 
						|
        allRTypes = false;
 | 
						|
    }
 | 
						|
    if (allLTypes) return lhs;
 | 
						|
    if (allRTypes) return rhs;
 | 
						|
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
 | 
						|
    EPI.ExtInfo = einfo;
 | 
						|
    return getFunctionType(retType, types.begin(), types.size(), EPI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (lproto) allRTypes = false;
 | 
						|
  if (rproto) allLTypes = false;
 | 
						|
 | 
						|
  const FunctionProtoType *proto = lproto ? lproto : rproto;
 | 
						|
  if (proto) {
 | 
						|
    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
 | 
						|
    if (proto->isVariadic()) return QualType();
 | 
						|
    // Check that the types are compatible with the types that
 | 
						|
    // would result from default argument promotions (C99 6.7.5.3p15).
 | 
						|
    // The only types actually affected are promotable integer
 | 
						|
    // types and floats, which would be passed as a different
 | 
						|
    // type depending on whether the prototype is visible.
 | 
						|
    unsigned proto_nargs = proto->getNumArgs();
 | 
						|
    for (unsigned i = 0; i < proto_nargs; ++i) {
 | 
						|
      QualType argTy = proto->getArgType(i);
 | 
						|
      
 | 
						|
      // Look at the promotion type of enum types, since that is the type used
 | 
						|
      // to pass enum values.
 | 
						|
      if (const EnumType *Enum = argTy->getAs<EnumType>())
 | 
						|
        argTy = Enum->getDecl()->getPromotionType();
 | 
						|
      
 | 
						|
      if (argTy->isPromotableIntegerType() ||
 | 
						|
          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
 | 
						|
        return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    if (allLTypes) return lhs;
 | 
						|
    if (allRTypes) return rhs;
 | 
						|
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
 | 
						|
    EPI.ExtInfo = einfo;
 | 
						|
    return getFunctionType(retType, proto->arg_type_begin(),
 | 
						|
                           proto->getNumArgs(), EPI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (allLTypes) return lhs;
 | 
						|
  if (allRTypes) return rhs;
 | 
						|
  return getFunctionNoProtoType(retType, einfo);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, 
 | 
						|
                                bool OfBlockPointer,
 | 
						|
                                bool Unqualified, bool BlockReturnType) {
 | 
						|
  // C++ [expr]: If an expression initially has the type "reference to T", the
 | 
						|
  // type is adjusted to "T" prior to any further analysis, the expression
 | 
						|
  // designates the object or function denoted by the reference, and the
 | 
						|
  // expression is an lvalue unless the reference is an rvalue reference and
 | 
						|
  // the expression is a function call (possibly inside parentheses).
 | 
						|
  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
 | 
						|
  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
 | 
						|
 | 
						|
  if (Unqualified) {
 | 
						|
    LHS = LHS.getUnqualifiedType();
 | 
						|
    RHS = RHS.getUnqualifiedType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  QualType LHSCan = getCanonicalType(LHS),
 | 
						|
           RHSCan = getCanonicalType(RHS);
 | 
						|
 | 
						|
  // If two types are identical, they are compatible.
 | 
						|
  if (LHSCan == RHSCan)
 | 
						|
    return LHS;
 | 
						|
 | 
						|
  // If the qualifiers are different, the types aren't compatible... mostly.
 | 
						|
  Qualifiers LQuals = LHSCan.getLocalQualifiers();
 | 
						|
  Qualifiers RQuals = RHSCan.getLocalQualifiers();
 | 
						|
  if (LQuals != RQuals) {
 | 
						|
    // If any of these qualifiers are different, we have a type
 | 
						|
    // mismatch.
 | 
						|
    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
 | 
						|
        LQuals.getAddressSpace() != RQuals.getAddressSpace())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    // Exactly one GC qualifier difference is allowed: __strong is
 | 
						|
    // okay if the other type has no GC qualifier but is an Objective
 | 
						|
    // C object pointer (i.e. implicitly strong by default).  We fix
 | 
						|
    // this by pretending that the unqualified type was actually
 | 
						|
    // qualified __strong.
 | 
						|
    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
 | 
						|
    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
 | 
						|
    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
 | 
						|
 | 
						|
    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
 | 
						|
      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
 | 
						|
    }
 | 
						|
    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
 | 
						|
      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
 | 
						|
    }
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, qualifiers are equal.
 | 
						|
 | 
						|
  Type::TypeClass LHSClass = LHSCan->getTypeClass();
 | 
						|
  Type::TypeClass RHSClass = RHSCan->getTypeClass();
 | 
						|
 | 
						|
  // We want to consider the two function types to be the same for these
 | 
						|
  // comparisons, just force one to the other.
 | 
						|
  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
 | 
						|
  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
 | 
						|
 | 
						|
  // Same as above for arrays
 | 
						|
  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
 | 
						|
    LHSClass = Type::ConstantArray;
 | 
						|
  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
 | 
						|
    RHSClass = Type::ConstantArray;
 | 
						|
 | 
						|
  // ObjCInterfaces are just specialized ObjCObjects.
 | 
						|
  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
 | 
						|
  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
 | 
						|
 | 
						|
  // Canonicalize ExtVector -> Vector.
 | 
						|
  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
 | 
						|
  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
 | 
						|
 | 
						|
  // If the canonical type classes don't match.
 | 
						|
  if (LHSClass != RHSClass) {
 | 
						|
    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
 | 
						|
    // a signed integer type, or an unsigned integer type.
 | 
						|
    // Compatibility is based on the underlying type, not the promotion
 | 
						|
    // type.
 | 
						|
    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
 | 
						|
      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
 | 
						|
        return RHS;
 | 
						|
    }
 | 
						|
    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
 | 
						|
      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
 | 
						|
        return LHS;
 | 
						|
    }
 | 
						|
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // The canonical type classes match.
 | 
						|
  switch (LHSClass) {
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | 
						|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    assert(false && "Non-canonical and dependent types shouldn't get here");
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  case Type::LValueReference:
 | 
						|
  case Type::RValueReference:
 | 
						|
  case Type::MemberPointer:
 | 
						|
    assert(false && "C++ should never be in mergeTypes");
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  case Type::ObjCInterface:
 | 
						|
  case Type::IncompleteArray:
 | 
						|
  case Type::VariableArray:
 | 
						|
  case Type::FunctionProto:
 | 
						|
  case Type::ExtVector:
 | 
						|
    assert(false && "Types are eliminated above");
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  case Type::Pointer:
 | 
						|
  {
 | 
						|
    // Merge two pointer types, while trying to preserve typedef info
 | 
						|
    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
 | 
						|
    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
 | 
						|
    if (Unqualified) {
 | 
						|
      LHSPointee = LHSPointee.getUnqualifiedType();
 | 
						|
      RHSPointee = RHSPointee.getUnqualifiedType();
 | 
						|
    }
 | 
						|
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, 
 | 
						|
                                     Unqualified);
 | 
						|
    if (ResultType.isNull()) return QualType();
 | 
						|
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
 | 
						|
      return LHS;
 | 
						|
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
 | 
						|
      return RHS;
 | 
						|
    return getPointerType(ResultType);
 | 
						|
  }
 | 
						|
  case Type::BlockPointer:
 | 
						|
  {
 | 
						|
    // Merge two block pointer types, while trying to preserve typedef info
 | 
						|
    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
 | 
						|
    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
 | 
						|
    if (Unqualified) {
 | 
						|
      LHSPointee = LHSPointee.getUnqualifiedType();
 | 
						|
      RHSPointee = RHSPointee.getUnqualifiedType();
 | 
						|
    }
 | 
						|
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
 | 
						|
                                     Unqualified);
 | 
						|
    if (ResultType.isNull()) return QualType();
 | 
						|
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
 | 
						|
      return LHS;
 | 
						|
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
 | 
						|
      return RHS;
 | 
						|
    return getBlockPointerType(ResultType);
 | 
						|
  }
 | 
						|
  case Type::ConstantArray:
 | 
						|
  {
 | 
						|
    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
 | 
						|
    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
 | 
						|
    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    QualType LHSElem = getAsArrayType(LHS)->getElementType();
 | 
						|
    QualType RHSElem = getAsArrayType(RHS)->getElementType();
 | 
						|
    if (Unqualified) {
 | 
						|
      LHSElem = LHSElem.getUnqualifiedType();
 | 
						|
      RHSElem = RHSElem.getUnqualifiedType();
 | 
						|
    }
 | 
						|
    
 | 
						|
    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
 | 
						|
    if (ResultType.isNull()) return QualType();
 | 
						|
    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
 | 
						|
      return LHS;
 | 
						|
    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
 | 
						|
      return RHS;
 | 
						|
    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
 | 
						|
                                          ArrayType::ArraySizeModifier(), 0);
 | 
						|
    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
 | 
						|
                                          ArrayType::ArraySizeModifier(), 0);
 | 
						|
    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
 | 
						|
    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
 | 
						|
    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
 | 
						|
      return LHS;
 | 
						|
    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
 | 
						|
      return RHS;
 | 
						|
    if (LVAT) {
 | 
						|
      // FIXME: This isn't correct! But tricky to implement because
 | 
						|
      // the array's size has to be the size of LHS, but the type
 | 
						|
      // has to be different.
 | 
						|
      return LHS;
 | 
						|
    }
 | 
						|
    if (RVAT) {
 | 
						|
      // FIXME: This isn't correct! But tricky to implement because
 | 
						|
      // the array's size has to be the size of RHS, but the type
 | 
						|
      // has to be different.
 | 
						|
      return RHS;
 | 
						|
    }
 | 
						|
    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
 | 
						|
    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
 | 
						|
    return getIncompleteArrayType(ResultType,
 | 
						|
                                  ArrayType::ArraySizeModifier(), 0);
 | 
						|
  }
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
 | 
						|
  case Type::Record:
 | 
						|
  case Type::Enum:
 | 
						|
    return QualType();
 | 
						|
  case Type::Builtin:
 | 
						|
    // Only exactly equal builtin types are compatible, which is tested above.
 | 
						|
    return QualType();
 | 
						|
  case Type::Complex:
 | 
						|
    // Distinct complex types are incompatible.
 | 
						|
    return QualType();
 | 
						|
  case Type::Vector:
 | 
						|
    // FIXME: The merged type should be an ExtVector!
 | 
						|
    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
 | 
						|
                             RHSCan->getAs<VectorType>()))
 | 
						|
      return LHS;
 | 
						|
    return QualType();
 | 
						|
  case Type::ObjCObject: {
 | 
						|
    // Check if the types are assignment compatible.
 | 
						|
    // FIXME: This should be type compatibility, e.g. whether
 | 
						|
    // "LHS x; RHS x;" at global scope is legal.
 | 
						|
    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
 | 
						|
    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
 | 
						|
    if (canAssignObjCInterfaces(LHSIface, RHSIface))
 | 
						|
      return LHS;
 | 
						|
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
  case Type::ObjCObjectPointer: {
 | 
						|
    if (OfBlockPointer) {
 | 
						|
      if (canAssignObjCInterfacesInBlockPointer(
 | 
						|
                                          LHS->getAs<ObjCObjectPointerType>(),
 | 
						|
                                          RHS->getAs<ObjCObjectPointerType>(),
 | 
						|
                                          BlockReturnType))
 | 
						|
      return LHS;
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
 | 
						|
                                RHS->getAs<ObjCObjectPointerType>()))
 | 
						|
      return LHS;
 | 
						|
 | 
						|
    return QualType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
 | 
						|
/// 'RHS' attributes and returns the merged version; including for function
 | 
						|
/// return types.
 | 
						|
QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
 | 
						|
  QualType LHSCan = getCanonicalType(LHS),
 | 
						|
  RHSCan = getCanonicalType(RHS);
 | 
						|
  // If two types are identical, they are compatible.
 | 
						|
  if (LHSCan == RHSCan)
 | 
						|
    return LHS;
 | 
						|
  if (RHSCan->isFunctionType()) {
 | 
						|
    if (!LHSCan->isFunctionType())
 | 
						|
      return QualType();
 | 
						|
    QualType OldReturnType = 
 | 
						|
      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
 | 
						|
    QualType NewReturnType =
 | 
						|
      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
 | 
						|
    QualType ResReturnType = 
 | 
						|
      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
 | 
						|
    if (ResReturnType.isNull())
 | 
						|
      return QualType();
 | 
						|
    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
 | 
						|
      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
 | 
						|
      // In either case, use OldReturnType to build the new function type.
 | 
						|
      const FunctionType *F = LHS->getAs<FunctionType>();
 | 
						|
      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
 | 
						|
        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | 
						|
        EPI.ExtInfo = getFunctionExtInfo(LHS);
 | 
						|
        QualType ResultType
 | 
						|
          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
 | 
						|
                            FPT->getNumArgs(), EPI);
 | 
						|
        return ResultType;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the qualifiers are different, the types can still be merged.
 | 
						|
  Qualifiers LQuals = LHSCan.getLocalQualifiers();
 | 
						|
  Qualifiers RQuals = RHSCan.getLocalQualifiers();
 | 
						|
  if (LQuals != RQuals) {
 | 
						|
    // If any of these qualifiers are different, we have a type mismatch.
 | 
						|
    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
 | 
						|
        LQuals.getAddressSpace() != RQuals.getAddressSpace())
 | 
						|
      return QualType();
 | 
						|
    
 | 
						|
    // Exactly one GC qualifier difference is allowed: __strong is
 | 
						|
    // okay if the other type has no GC qualifier but is an Objective
 | 
						|
    // C object pointer (i.e. implicitly strong by default).  We fix
 | 
						|
    // this by pretending that the unqualified type was actually
 | 
						|
    // qualified __strong.
 | 
						|
    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
 | 
						|
    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
 | 
						|
    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
 | 
						|
    
 | 
						|
    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
 | 
						|
      return QualType();
 | 
						|
    
 | 
						|
    if (GC_L == Qualifiers::Strong)
 | 
						|
      return LHS;
 | 
						|
    if (GC_R == Qualifiers::Strong)
 | 
						|
      return RHS;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
 | 
						|
    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
 | 
						|
    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
 | 
						|
    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
 | 
						|
    if (ResQT == LHSBaseQT)
 | 
						|
      return LHS;
 | 
						|
    if (ResQT == RHSBaseQT)
 | 
						|
      return RHS;
 | 
						|
  }
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Integer Predicates
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
unsigned ASTContext::getIntWidth(QualType T) const {
 | 
						|
  if (const EnumType *ET = dyn_cast<EnumType>(T))
 | 
						|
    T = ET->getDecl()->getIntegerType();
 | 
						|
  if (T->isBooleanType())
 | 
						|
    return 1;
 | 
						|
  // For builtin types, just use the standard type sizing method
 | 
						|
  return (unsigned)getTypeSize(T);
 | 
						|
}
 | 
						|
 | 
						|
QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
 | 
						|
  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
 | 
						|
  
 | 
						|
  // Turn <4 x signed int> -> <4 x unsigned int>
 | 
						|
  if (const VectorType *VTy = T->getAs<VectorType>())
 | 
						|
    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
 | 
						|
                         VTy->getNumElements(), VTy->getVectorKind());
 | 
						|
 | 
						|
  // For enums, we return the unsigned version of the base type.
 | 
						|
  if (const EnumType *ETy = T->getAs<EnumType>())
 | 
						|
    T = ETy->getDecl()->getIntegerType();
 | 
						|
  
 | 
						|
  const BuiltinType *BTy = T->getAs<BuiltinType>();
 | 
						|
  assert(BTy && "Unexpected signed integer type");
 | 
						|
  switch (BTy->getKind()) {
 | 
						|
  case BuiltinType::Char_S:
 | 
						|
  case BuiltinType::SChar:
 | 
						|
    return UnsignedCharTy;
 | 
						|
  case BuiltinType::Short:
 | 
						|
    return UnsignedShortTy;
 | 
						|
  case BuiltinType::Int:
 | 
						|
    return UnsignedIntTy;
 | 
						|
  case BuiltinType::Long:
 | 
						|
    return UnsignedLongTy;
 | 
						|
  case BuiltinType::LongLong:
 | 
						|
    return UnsignedLongLongTy;
 | 
						|
  case BuiltinType::Int128:
 | 
						|
    return UnsignedInt128Ty;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unexpected signed integer type");
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ASTMutationListener::~ASTMutationListener() { }
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          Builtin Type Computation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
 | 
						|
/// pointer over the consumed characters.  This returns the resultant type.  If
 | 
						|
/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
 | 
						|
/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
 | 
						|
/// a vector of "i*".
 | 
						|
///
 | 
						|
/// RequiresICE is filled in on return to indicate whether the value is required
 | 
						|
/// to be an Integer Constant Expression.
 | 
						|
static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
 | 
						|
                                  ASTContext::GetBuiltinTypeError &Error,
 | 
						|
                                  bool &RequiresICE,
 | 
						|
                                  bool AllowTypeModifiers) {
 | 
						|
  // Modifiers.
 | 
						|
  int HowLong = 0;
 | 
						|
  bool Signed = false, Unsigned = false;
 | 
						|
  RequiresICE = false;
 | 
						|
  
 | 
						|
  // Read the prefixed modifiers first.
 | 
						|
  bool Done = false;
 | 
						|
  while (!Done) {
 | 
						|
    switch (*Str++) {
 | 
						|
    default: Done = true; --Str; break;
 | 
						|
    case 'I':
 | 
						|
      RequiresICE = true;
 | 
						|
      break;
 | 
						|
    case 'S':
 | 
						|
      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
 | 
						|
      assert(!Signed && "Can't use 'S' modifier multiple times!");
 | 
						|
      Signed = true;
 | 
						|
      break;
 | 
						|
    case 'U':
 | 
						|
      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
 | 
						|
      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
 | 
						|
      Unsigned = true;
 | 
						|
      break;
 | 
						|
    case 'L':
 | 
						|
      assert(HowLong <= 2 && "Can't have LLLL modifier");
 | 
						|
      ++HowLong;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Type;
 | 
						|
 | 
						|
  // Read the base type.
 | 
						|
  switch (*Str++) {
 | 
						|
  default: assert(0 && "Unknown builtin type letter!");
 | 
						|
  case 'v':
 | 
						|
    assert(HowLong == 0 && !Signed && !Unsigned &&
 | 
						|
           "Bad modifiers used with 'v'!");
 | 
						|
    Type = Context.VoidTy;
 | 
						|
    break;
 | 
						|
  case 'f':
 | 
						|
    assert(HowLong == 0 && !Signed && !Unsigned &&
 | 
						|
           "Bad modifiers used with 'f'!");
 | 
						|
    Type = Context.FloatTy;
 | 
						|
    break;
 | 
						|
  case 'd':
 | 
						|
    assert(HowLong < 2 && !Signed && !Unsigned &&
 | 
						|
           "Bad modifiers used with 'd'!");
 | 
						|
    if (HowLong)
 | 
						|
      Type = Context.LongDoubleTy;
 | 
						|
    else
 | 
						|
      Type = Context.DoubleTy;
 | 
						|
    break;
 | 
						|
  case 's':
 | 
						|
    assert(HowLong == 0 && "Bad modifiers used with 's'!");
 | 
						|
    if (Unsigned)
 | 
						|
      Type = Context.UnsignedShortTy;
 | 
						|
    else
 | 
						|
      Type = Context.ShortTy;
 | 
						|
    break;
 | 
						|
  case 'i':
 | 
						|
    if (HowLong == 3)
 | 
						|
      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
 | 
						|
    else if (HowLong == 2)
 | 
						|
      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
 | 
						|
    else if (HowLong == 1)
 | 
						|
      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
 | 
						|
    else
 | 
						|
      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
 | 
						|
    break;
 | 
						|
  case 'c':
 | 
						|
    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
 | 
						|
    if (Signed)
 | 
						|
      Type = Context.SignedCharTy;
 | 
						|
    else if (Unsigned)
 | 
						|
      Type = Context.UnsignedCharTy;
 | 
						|
    else
 | 
						|
      Type = Context.CharTy;
 | 
						|
    break;
 | 
						|
  case 'b': // boolean
 | 
						|
    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
 | 
						|
    Type = Context.BoolTy;
 | 
						|
    break;
 | 
						|
  case 'z':  // size_t.
 | 
						|
    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
 | 
						|
    Type = Context.getSizeType();
 | 
						|
    break;
 | 
						|
  case 'F':
 | 
						|
    Type = Context.getCFConstantStringType();
 | 
						|
    break;
 | 
						|
  case 'G':
 | 
						|
    Type = Context.getObjCIdType();
 | 
						|
    break;
 | 
						|
  case 'H':
 | 
						|
    Type = Context.getObjCSelType();
 | 
						|
    break;
 | 
						|
  case 'a':
 | 
						|
    Type = Context.getBuiltinVaListType();
 | 
						|
    assert(!Type.isNull() && "builtin va list type not initialized!");
 | 
						|
    break;
 | 
						|
  case 'A':
 | 
						|
    // This is a "reference" to a va_list; however, what exactly
 | 
						|
    // this means depends on how va_list is defined. There are two
 | 
						|
    // different kinds of va_list: ones passed by value, and ones
 | 
						|
    // passed by reference.  An example of a by-value va_list is
 | 
						|
    // x86, where va_list is a char*. An example of by-ref va_list
 | 
						|
    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
 | 
						|
    // we want this argument to be a char*&; for x86-64, we want
 | 
						|
    // it to be a __va_list_tag*.
 | 
						|
    Type = Context.getBuiltinVaListType();
 | 
						|
    assert(!Type.isNull() && "builtin va list type not initialized!");
 | 
						|
    if (Type->isArrayType())
 | 
						|
      Type = Context.getArrayDecayedType(Type);
 | 
						|
    else
 | 
						|
      Type = Context.getLValueReferenceType(Type);
 | 
						|
    break;
 | 
						|
  case 'V': {
 | 
						|
    char *End;
 | 
						|
    unsigned NumElements = strtoul(Str, &End, 10);
 | 
						|
    assert(End != Str && "Missing vector size");
 | 
						|
    Str = End;
 | 
						|
 | 
						|
    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 
 | 
						|
                                             RequiresICE, false);
 | 
						|
    assert(!RequiresICE && "Can't require vector ICE");
 | 
						|
    
 | 
						|
    // TODO: No way to make AltiVec vectors in builtins yet.
 | 
						|
    Type = Context.getVectorType(ElementType, NumElements,
 | 
						|
                                 VectorType::GenericVector);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case 'X': {
 | 
						|
    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
 | 
						|
                                             false);
 | 
						|
    assert(!RequiresICE && "Can't require complex ICE");
 | 
						|
    Type = Context.getComplexType(ElementType);
 | 
						|
    break;
 | 
						|
  }      
 | 
						|
  case 'P':
 | 
						|
    Type = Context.getFILEType();
 | 
						|
    if (Type.isNull()) {
 | 
						|
      Error = ASTContext::GE_Missing_stdio;
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'J':
 | 
						|
    if (Signed)
 | 
						|
      Type = Context.getsigjmp_bufType();
 | 
						|
    else
 | 
						|
      Type = Context.getjmp_bufType();
 | 
						|
 | 
						|
    if (Type.isNull()) {
 | 
						|
      Error = ASTContext::GE_Missing_setjmp;
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are modifiers and if we're allowed to parse them, go for it.
 | 
						|
  Done = !AllowTypeModifiers;
 | 
						|
  while (!Done) {
 | 
						|
    switch (char c = *Str++) {
 | 
						|
    default: Done = true; --Str; break;
 | 
						|
    case '*':
 | 
						|
    case '&': {
 | 
						|
      // Both pointers and references can have their pointee types
 | 
						|
      // qualified with an address space.
 | 
						|
      char *End;
 | 
						|
      unsigned AddrSpace = strtoul(Str, &End, 10);
 | 
						|
      if (End != Str && AddrSpace != 0) {
 | 
						|
        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
 | 
						|
        Str = End;
 | 
						|
      }
 | 
						|
      if (c == '*')
 | 
						|
        Type = Context.getPointerType(Type);
 | 
						|
      else
 | 
						|
        Type = Context.getLValueReferenceType(Type);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // FIXME: There's no way to have a built-in with an rvalue ref arg.
 | 
						|
    case 'C':
 | 
						|
      Type = Type.withConst();
 | 
						|
      break;
 | 
						|
    case 'D':
 | 
						|
      Type = Context.getVolatileType(Type);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
 | 
						|
         "Integer constant 'I' type must be an integer"); 
 | 
						|
 | 
						|
  return Type;
 | 
						|
}
 | 
						|
 | 
						|
/// GetBuiltinType - Return the type for the specified builtin.
 | 
						|
QualType ASTContext::GetBuiltinType(unsigned Id,
 | 
						|
                                    GetBuiltinTypeError &Error,
 | 
						|
                                    unsigned *IntegerConstantArgs) const {
 | 
						|
  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
 | 
						|
 | 
						|
  llvm::SmallVector<QualType, 8> ArgTypes;
 | 
						|
 | 
						|
  bool RequiresICE = false;
 | 
						|
  Error = GE_None;
 | 
						|
  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
 | 
						|
                                       RequiresICE, true);
 | 
						|
  if (Error != GE_None)
 | 
						|
    return QualType();
 | 
						|
  
 | 
						|
  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
 | 
						|
  
 | 
						|
  while (TypeStr[0] && TypeStr[0] != '.') {
 | 
						|
    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
 | 
						|
    if (Error != GE_None)
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    // If this argument is required to be an IntegerConstantExpression and the
 | 
						|
    // caller cares, fill in the bitmask we return.
 | 
						|
    if (RequiresICE && IntegerConstantArgs)
 | 
						|
      *IntegerConstantArgs |= 1 << ArgTypes.size();
 | 
						|
    
 | 
						|
    // Do array -> pointer decay.  The builtin should use the decayed type.
 | 
						|
    if (Ty->isArrayType())
 | 
						|
      Ty = getArrayDecayedType(Ty);
 | 
						|
 | 
						|
    ArgTypes.push_back(Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
 | 
						|
         "'.' should only occur at end of builtin type list!");
 | 
						|
 | 
						|
  FunctionType::ExtInfo EI;
 | 
						|
  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
 | 
						|
 | 
						|
  bool Variadic = (TypeStr[0] == '.');
 | 
						|
 | 
						|
  // We really shouldn't be making a no-proto type here, especially in C++.
 | 
						|
  if (ArgTypes.empty() && Variadic)
 | 
						|
    return getFunctionNoProtoType(ResType, EI);
 | 
						|
 | 
						|
  FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
  EPI.ExtInfo = EI;
 | 
						|
  EPI.Variadic = Variadic;
 | 
						|
 | 
						|
  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
 | 
						|
}
 | 
						|
 | 
						|
GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
 | 
						|
  GVALinkage External = GVA_StrongExternal;
 | 
						|
 | 
						|
  Linkage L = FD->getLinkage();
 | 
						|
  switch (L) {
 | 
						|
  case NoLinkage:
 | 
						|
  case InternalLinkage:
 | 
						|
  case UniqueExternalLinkage:
 | 
						|
    return GVA_Internal;
 | 
						|
    
 | 
						|
  case ExternalLinkage:
 | 
						|
    switch (FD->getTemplateSpecializationKind()) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      External = GVA_StrongExternal;
 | 
						|
      break;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      return GVA_ExplicitTemplateInstantiation;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      External = GVA_TemplateInstantiation;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FD->isInlined())
 | 
						|
    return External;
 | 
						|
    
 | 
						|
  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
 | 
						|
    // GNU or C99 inline semantics. Determine whether this symbol should be
 | 
						|
    // externally visible.
 | 
						|
    if (FD->isInlineDefinitionExternallyVisible())
 | 
						|
      return External;
 | 
						|
 | 
						|
    // C99 inline semantics, where the symbol is not externally visible.
 | 
						|
    return GVA_C99Inline;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p9:
 | 
						|
  //   [ Note: The intent is that an inline function that is the subject of 
 | 
						|
  //   an explicit instantiation declaration will still be implicitly 
 | 
						|
  //   instantiated when used so that the body can be considered for 
 | 
						|
  //   inlining, but that no out-of-line copy of the inline function would be
 | 
						|
  //   generated in the translation unit. -- end note ]
 | 
						|
  if (FD->getTemplateSpecializationKind() 
 | 
						|
                                       == TSK_ExplicitInstantiationDeclaration)
 | 
						|
    return GVA_C99Inline;
 | 
						|
 | 
						|
  return GVA_CXXInline;
 | 
						|
}
 | 
						|
 | 
						|
GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
 | 
						|
  // If this is a static data member, compute the kind of template
 | 
						|
  // specialization. Otherwise, this variable is not part of a
 | 
						|
  // template.
 | 
						|
  TemplateSpecializationKind TSK = TSK_Undeclared;
 | 
						|
  if (VD->isStaticDataMember())
 | 
						|
    TSK = VD->getTemplateSpecializationKind();
 | 
						|
 | 
						|
  Linkage L = VD->getLinkage();
 | 
						|
  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
 | 
						|
      VD->getType()->getLinkage() == UniqueExternalLinkage)
 | 
						|
    L = UniqueExternalLinkage;
 | 
						|
 | 
						|
  switch (L) {
 | 
						|
  case NoLinkage:
 | 
						|
  case InternalLinkage:
 | 
						|
  case UniqueExternalLinkage:
 | 
						|
    return GVA_Internal;
 | 
						|
 | 
						|
  case ExternalLinkage:
 | 
						|
    switch (TSK) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      return GVA_StrongExternal;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      llvm_unreachable("Variable should not be instantiated");
 | 
						|
      // Fall through to treat this like any other instantiation.
 | 
						|
        
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      return GVA_ExplicitTemplateInstantiation;
 | 
						|
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      return GVA_TemplateInstantiation;      
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return GVA_StrongExternal;
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::DeclMustBeEmitted(const Decl *D) {
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    if (!VD->isFileVarDecl())
 | 
						|
      return false;
 | 
						|
  } else if (!isa<FunctionDecl>(D))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Weak references don't produce any output by themselves.
 | 
						|
  if (D->hasAttr<WeakRefAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Aliases and used decls are required.
 | 
						|
  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    // Forward declarations aren't required.
 | 
						|
    if (!FD->isThisDeclarationADefinition())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Constructors and destructors are required.
 | 
						|
    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // The key function for a class is required.
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
      const CXXRecordDecl *RD = MD->getParent();
 | 
						|
      if (MD->isOutOfLine() && RD->isDynamicClass()) {
 | 
						|
        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
 | 
						|
        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    GVALinkage Linkage = GetGVALinkageForFunction(FD);
 | 
						|
 | 
						|
    // static, static inline, always_inline, and extern inline functions can
 | 
						|
    // always be deferred.  Normal inline functions can be deferred in C99/C++.
 | 
						|
    // Implicit template instantiations can also be deferred in C++.
 | 
						|
    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
 | 
						|
        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const VarDecl *VD = cast<VarDecl>(D);
 | 
						|
  assert(VD->isFileVarDecl() && "Expected file scoped var");
 | 
						|
 | 
						|
  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Structs that have non-trivial constructors or destructors are required.
 | 
						|
 | 
						|
  // FIXME: Handle references.
 | 
						|
  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
 | 
						|
    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
 | 
						|
      if (RD->hasDefinition() &&
 | 
						|
          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  GVALinkage L = GetGVALinkageForVariable(VD);
 | 
						|
  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
 | 
						|
    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
CallingConv ASTContext::getDefaultMethodCallConv() {
 | 
						|
  // Pass through to the C++ ABI object
 | 
						|
  return ABI->getDefaultMethodCallConv();
 | 
						|
}
 | 
						|
 | 
						|
bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
 | 
						|
  // Pass through to the C++ ABI object
 | 
						|
  return ABI->isNearlyEmpty(RD);
 | 
						|
}
 | 
						|
 | 
						|
MangleContext *ASTContext::createMangleContext() {
 | 
						|
  switch (Target.getCXXABI()) {
 | 
						|
  case CXXABI_ARM:
 | 
						|
  case CXXABI_Itanium:
 | 
						|
    return createItaniumMangleContext(*this, getDiagnostics());
 | 
						|
  case CXXABI_Microsoft:
 | 
						|
    return createMicrosoftMangleContext(*this, getDiagnostics());
 | 
						|
  }
 | 
						|
  assert(0 && "Unsupported ABI");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
CXXABI::~CXXABI() {}
 |