forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1518 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1518 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the C++ related Decl classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/IdentifierTable.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Decl Allocation/Deallocation Method Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
 | |
|   : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
 | |
|     UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
 | |
|     Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
 | |
|     Abstract(false), HasTrivialConstructor(true),
 | |
|     HasConstExprNonCopyMoveConstructor(false),
 | |
|     HasTrivialCopyConstructor(true), HasTrivialMoveConstructor(true),
 | |
|     HasTrivialCopyAssignment(true), HasTrivialMoveAssignment(true),
 | |
|     HasTrivialDestructor(true), HasNonLiteralTypeFieldsOrBases(false),
 | |
|     ComputedVisibleConversions(false),
 | |
|     DeclaredDefaultConstructor(false), DeclaredCopyConstructor(false), 
 | |
|     DeclaredCopyAssignment(false), DeclaredDestructor(false),
 | |
|     NumBases(0), NumVBases(0), Bases(), VBases(),
 | |
|   Definition(D), FirstFriend(0) {
 | |
| }
 | |
| 
 | |
| CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
 | |
|                              SourceLocation StartLoc, SourceLocation IdLoc,
 | |
|                              IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
 | |
|   : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
 | |
|     DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
 | |
|     TemplateOrInstantiation() { }
 | |
| 
 | |
| CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
 | |
|                                      DeclContext *DC, SourceLocation StartLoc,
 | |
|                                      SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                                      CXXRecordDecl* PrevDecl,
 | |
|                                      bool DelayTypeCreation) {
 | |
|   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
 | |
|                                            Id, PrevDecl);
 | |
| 
 | |
|   // FIXME: DelayTypeCreation seems like such a hack
 | |
|   if (!DelayTypeCreation)
 | |
|     C.getTypeDeclType(R, PrevDecl);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
 | |
|                                SourceLocation(), 0, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
 | |
|                         unsigned NumBases) {
 | |
|   ASTContext &C = getASTContext();
 | |
|   
 | |
|   // C++ [dcl.init.aggr]p1:
 | |
|   //   An aggregate is an array or a class (clause 9) with [...]
 | |
|   //   no base classes [...].
 | |
|   data().Aggregate = false;
 | |
| 
 | |
|   if (!data().Bases.isOffset() && data().NumBases > 0)
 | |
|     C.Deallocate(data().getBases());
 | |
| 
 | |
|   // The set of seen virtual base types.
 | |
|   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
 | |
|   
 | |
|   // The virtual bases of this class.
 | |
|   llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
 | |
| 
 | |
|   data().Bases = new(C) CXXBaseSpecifier [NumBases];
 | |
|   data().NumBases = NumBases;
 | |
|   for (unsigned i = 0; i < NumBases; ++i) {
 | |
|     data().getBases()[i] = *Bases[i];
 | |
|     // Keep track of inherited vbases for this base class.
 | |
|     const CXXBaseSpecifier *Base = Bases[i];
 | |
|     QualType BaseType = Base->getType();
 | |
|     // Skip dependent types; we can't do any checking on them now.
 | |
|     if (BaseType->isDependentType())
 | |
|       continue;
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     // C++ [dcl.init.aggr]p1:
 | |
|     //   An aggregate is [...] a class with [...] no base classes [...].
 | |
|     data().Aggregate = false;    
 | |
|     
 | |
|     // C++ [class]p4:
 | |
|     //   A POD-struct is an aggregate class...
 | |
|     data().PlainOldData = false;
 | |
|     
 | |
|     // A class with a non-empty base class is not empty.
 | |
|     // FIXME: Standard ref?
 | |
|     if (!BaseClassDecl->isEmpty())
 | |
|       data().Empty = false;
 | |
|     
 | |
|     // C++ [class.virtual]p1:
 | |
|     //   A class that declares or inherits a virtual function is called a 
 | |
|     //   polymorphic class.
 | |
|     if (BaseClassDecl->isPolymorphic())
 | |
|       data().Polymorphic = true;
 | |
| 
 | |
|     // Record if this base is the first non-literal field or base.
 | |
|     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
 | |
|       data().HasNonLiteralTypeFieldsOrBases = true;
 | |
|     
 | |
|     // Now go through all virtual bases of this base and add them.
 | |
|     for (CXXRecordDecl::base_class_iterator VBase =
 | |
|           BaseClassDecl->vbases_begin(),
 | |
|          E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
 | |
|       // Add this base if it's not already in the list.
 | |
|       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
 | |
|         VBases.push_back(VBase);
 | |
|     }
 | |
| 
 | |
|     if (Base->isVirtual()) {
 | |
|       // Add this base if it's not already in the list.
 | |
|       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
 | |
|           VBases.push_back(Base);
 | |
|       
 | |
|       // C++0x [meta.unary.prop] is_empty:
 | |
|       //    T is a class type, but not a union type, with ... no virtual base
 | |
|       //    classes
 | |
|       data().Empty = false;
 | |
|       
 | |
|       // C++ [class.ctor]p5:
 | |
|       //   A constructor is trivial if its class has no virtual base classes.
 | |
|       data().HasTrivialConstructor = false;
 | |
| 
 | |
|       // C++0x [class.copy]p13:
 | |
|       //   A copy/move constructor for class X is trivial if it is neither
 | |
|       //   user-provided nor deleted and if
 | |
|       //    -- class X has no virtual functions and no virtual base classes, and
 | |
|       data().HasTrivialCopyConstructor = false;
 | |
|       data().HasTrivialMoveConstructor = false;
 | |
| 
 | |
|       // C++0x [class.copy]p27:
 | |
|       //   A copy/move assignment operator for class X is trivial if it is
 | |
|       //   neither user-provided nor deleted and if
 | |
|       //    -- class X has no virtual functions and no virtual base classes, and
 | |
|       data().HasTrivialCopyAssignment = false;
 | |
|       data().HasTrivialMoveAssignment = false;
 | |
|     } else {
 | |
|       // C++ [class.ctor]p5:
 | |
|       //   A constructor is trivial if all the direct base classes of its
 | |
|       //   class have trivial constructors.
 | |
|       if (!BaseClassDecl->hasTrivialConstructor())
 | |
|         data().HasTrivialConstructor = false;
 | |
|       
 | |
|       // C++0x [class.copy]p13:
 | |
|       //   A copy/move constructor for class X is trivial if [...]
 | |
|       //    [...]
 | |
|       //    -- the constructor selected to copy/move each direct base class
 | |
|       //       subobject is trivial, and
 | |
|       // FIXME: C++0x: We need to only consider the selected constructor
 | |
|       // instead of all of them.
 | |
|       if (!BaseClassDecl->hasTrivialCopyConstructor())
 | |
|         data().HasTrivialCopyConstructor = false;
 | |
|       if (!BaseClassDecl->hasTrivialMoveConstructor())
 | |
|         data().HasTrivialMoveConstructor = false;
 | |
| 
 | |
|       // C++0x [class.copy]p27:
 | |
|       //   A copy/move assignment operator for class X is trivial if [...]
 | |
|       //    [...]
 | |
|       //    -- the assignment operator selected to copy/move each direct base
 | |
|       //       class subobject is trivial, and
 | |
|       // FIXME: C++0x: We need to only consider the selected operator instead
 | |
|       // of all of them.
 | |
|       if (!BaseClassDecl->hasTrivialCopyAssignment())
 | |
|         data().HasTrivialCopyAssignment = false;
 | |
|       if (!BaseClassDecl->hasTrivialMoveAssignment())
 | |
|         data().HasTrivialMoveAssignment = false;
 | |
|     }
 | |
|     
 | |
|     // C++ [class.ctor]p3:
 | |
|     //   A destructor is trivial if all the direct base classes of its class
 | |
|     //   have trivial destructors.
 | |
|     if (!BaseClassDecl->hasTrivialDestructor())
 | |
|       data().HasTrivialDestructor = false;
 | |
|   }
 | |
|   
 | |
|   if (VBases.empty())
 | |
|     return;
 | |
| 
 | |
|   // Create base specifier for any direct or indirect virtual bases.
 | |
|   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
 | |
|   data().NumVBases = VBases.size();
 | |
|   for (int I = 0, E = VBases.size(); I != E; ++I) {
 | |
|     TypeSourceInfo *VBaseTypeInfo = VBases[I]->getTypeSourceInfo();
 | |
| 
 | |
|     // Skip dependent types; we can't do any checking on them now.
 | |
|     if (VBaseTypeInfo->getType()->isDependentType())
 | |
|       continue;
 | |
| 
 | |
|     CXXRecordDecl *VBaseClassDecl = cast<CXXRecordDecl>(
 | |
|       VBaseTypeInfo->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     data().getVBases()[I] =
 | |
|       CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
 | |
|                        VBaseClassDecl->getTagKind() == TTK_Class,
 | |
|                        VBases[I]->getAccessSpecifier(), VBaseTypeInfo,
 | |
|                        SourceLocation());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Callback function for CXXRecordDecl::forallBases that acknowledges
 | |
| /// that it saw a base class.
 | |
| static bool SawBase(const CXXRecordDecl *, void *) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::hasAnyDependentBases() const {
 | |
|   if (!isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   return !forallBases(SawBase, 0);
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::hasConstCopyConstructor(const ASTContext &Context) const {
 | |
|   return getCopyConstructor(Context, Qualifiers::Const) != 0;
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::isTriviallyCopyable() const {
 | |
|   // C++0x [class]p5:
 | |
|   //   A trivially copyable class is a class that:
 | |
|   //   -- has no non-trivial copy constructors,
 | |
|   if (!hasTrivialCopyConstructor()) return false;
 | |
|   //   -- has no non-trivial move constructors,
 | |
|   if (!hasTrivialMoveConstructor()) return false;
 | |
|   //   -- has no non-trivial copy assignment operators,
 | |
|   if (!hasTrivialCopyAssignment()) return false;
 | |
|   //   -- has no non-trivial move assignment operators, and
 | |
|   if (!hasTrivialMoveAssignment()) return false;
 | |
|   //   -- has a trivial destructor.
 | |
|   if (!hasTrivialDestructor()) return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Perform a simplistic form of overload resolution that only considers
 | |
| /// cv-qualifiers on a single parameter, and return the best overload candidate
 | |
| /// (if there is one).
 | |
| static CXXMethodDecl *
 | |
| GetBestOverloadCandidateSimple(
 | |
|   const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
 | |
|   if (Cands.empty())
 | |
|     return 0;
 | |
|   if (Cands.size() == 1)
 | |
|     return Cands[0].first;
 | |
|   
 | |
|   unsigned Best = 0, N = Cands.size();
 | |
|   for (unsigned I = 1; I != N; ++I)
 | |
|     if (Cands[Best].second.isSupersetOf(Cands[I].second))
 | |
|       Best = I;
 | |
|   
 | |
|   for (unsigned I = 1; I != N; ++I)
 | |
|     if (Cands[Best].second.isSupersetOf(Cands[I].second))
 | |
|       return 0;
 | |
|   
 | |
|   return Cands[Best].first;
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(const ASTContext &Context,
 | |
|                                                       unsigned TypeQuals) const{
 | |
|   QualType ClassType
 | |
|     = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
 | |
|   DeclarationName ConstructorName
 | |
|     = Context.DeclarationNames.getCXXConstructorName(
 | |
|                                           Context.getCanonicalType(ClassType));
 | |
|   unsigned FoundTQs;
 | |
|   llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
 | |
|   DeclContext::lookup_const_iterator Con, ConEnd;
 | |
|   for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
 | |
|        Con != ConEnd; ++Con) {
 | |
|     // C++ [class.copy]p2:
 | |
|     //   A non-template constructor for class X is a copy constructor if [...]
 | |
|     if (isa<FunctionTemplateDecl>(*Con))
 | |
|       continue;
 | |
| 
 | |
|     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
 | |
|     if (Constructor->isCopyConstructor(FoundTQs)) {
 | |
|       if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
 | |
|           (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
 | |
|         Found.push_back(std::make_pair(
 | |
|                                  const_cast<CXXConstructorDecl *>(Constructor), 
 | |
|                                        Qualifiers::fromCVRMask(FoundTQs)));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return cast_or_null<CXXConstructorDecl>(
 | |
|                                         GetBestOverloadCandidateSimple(Found));
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
 | |
|   ASTContext &Context = getASTContext();
 | |
|   QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
 | |
|   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|   
 | |
|   llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
 | |
|   DeclContext::lookup_const_iterator Op, OpEnd;
 | |
|   for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
 | |
|     // C++ [class.copy]p9:
 | |
|     //   A user-declared copy assignment operator is a non-static non-template
 | |
|     //   member function of class X with exactly one parameter of type X, X&,
 | |
|     //   const X&, volatile X& or const volatile X&.
 | |
|     const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
 | |
|     if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
 | |
|       continue;
 | |
|     
 | |
|     const FunctionProtoType *FnType 
 | |
|       = Method->getType()->getAs<FunctionProtoType>();
 | |
|     assert(FnType && "Overloaded operator has no prototype.");
 | |
|     // Don't assert on this; an invalid decl might have been left in the AST.
 | |
|     if (FnType->getNumArgs() != 1 || FnType->isVariadic())
 | |
|       continue;
 | |
|     
 | |
|     QualType ArgType = FnType->getArgType(0);
 | |
|     Qualifiers Quals;
 | |
|     if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
 | |
|       ArgType = Ref->getPointeeType();
 | |
|       // If we have a const argument and we have a reference to a non-const,
 | |
|       // this function does not match.
 | |
|       if (ArgIsConst && !ArgType.isConstQualified())
 | |
|         continue;
 | |
|       
 | |
|       Quals = ArgType.getQualifiers();
 | |
|     } else {
 | |
|       // By-value copy-assignment operators are treated like const X&
 | |
|       // copy-assignment operators.
 | |
|       Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
 | |
|     }
 | |
|     
 | |
|     if (!Context.hasSameUnqualifiedType(ArgType, Class))
 | |
|       continue;
 | |
| 
 | |
|     // Save this copy-assignment operator. It might be "the one".
 | |
|     Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
 | |
|   }
 | |
|   
 | |
|   // Use a simplistic form of overload resolution to find the candidate.
 | |
|   return GetBestOverloadCandidateSimple(Found);
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::markedVirtualFunctionPure() {
 | |
|   // C++ [class.abstract]p2: 
 | |
|   //   A class is abstract if it has at least one pure virtual function.
 | |
|   data().Abstract = true;
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::addedMember(Decl *D) {
 | |
|   // Ignore friends and invalid declarations.
 | |
|   if (D->getFriendObjectKind() || D->isInvalidDecl())
 | |
|     return;
 | |
|   
 | |
|   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
 | |
|   if (FunTmpl)
 | |
|     D = FunTmpl->getTemplatedDecl();
 | |
|   
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|     if (Method->isVirtual()) {
 | |
|       // C++ [dcl.init.aggr]p1:
 | |
|       //   An aggregate is an array or a class with [...] no virtual functions.
 | |
|       data().Aggregate = false;
 | |
|       
 | |
|       // C++ [class]p4:
 | |
|       //   A POD-struct is an aggregate class...
 | |
|       data().PlainOldData = false;
 | |
|       
 | |
|       // Virtual functions make the class non-empty.
 | |
|       // FIXME: Standard ref?
 | |
|       data().Empty = false;
 | |
| 
 | |
|       // C++ [class.virtual]p1:
 | |
|       //   A class that declares or inherits a virtual function is called a 
 | |
|       //   polymorphic class.
 | |
|       data().Polymorphic = true;
 | |
|       
 | |
|       // None of the special member functions are trivial.
 | |
|       data().HasTrivialConstructor = false;
 | |
| 
 | |
|       // C++0x [class.copy]p13:
 | |
|       //   A copy/move constructor for class X is trivial if [...]
 | |
|       //    -- class X has no virtual functions [...]
 | |
|       data().HasTrivialCopyConstructor = false;
 | |
|       data().HasTrivialMoveConstructor = false;
 | |
| 
 | |
|       // C++0x [class.copy]p27:
 | |
|       //   A copy/move assignment operator for class X is trivial if [...]
 | |
|       //    -- class X has no virtual functions [...]
 | |
|       data().HasTrivialCopyAssignment = false;
 | |
|       data().HasTrivialMoveAssignment = false;
 | |
|       // FIXME: Destructor?
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (D->isImplicit()) {
 | |
|     // Notify that an implicit member was added after the definition
 | |
|     // was completed.
 | |
|     if (!isBeingDefined())
 | |
|       if (ASTMutationListener *L = getASTMutationListener())
 | |
|         L->AddedCXXImplicitMember(data().Definition, D);
 | |
| 
 | |
|     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | |
|       // If this is the implicit default constructor, note that we have now
 | |
|       // declared it.
 | |
|       if (Constructor->isDefaultConstructor())
 | |
|         data().DeclaredDefaultConstructor = true;
 | |
|       // If this is the implicit copy constructor, note that we have now
 | |
|       // declared it.
 | |
|       else if (Constructor->isCopyConstructor())
 | |
|         data().DeclaredCopyConstructor = true;
 | |
|       return;
 | |
|     } 
 | |
| 
 | |
|     if (isa<CXXDestructorDecl>(D)) {
 | |
|       data().DeclaredDestructor = true;
 | |
|       return;
 | |
|     } 
 | |
| 
 | |
|     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|       // If this is the implicit copy constructor, note that we have now
 | |
|       // declared it.
 | |
|       // FIXME: Move constructors
 | |
|       if (Method->getOverloadedOperator() == OO_Equal)
 | |
|         data().DeclaredCopyAssignment = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Any other implicit declarations are handled like normal declarations.
 | |
|   }
 | |
|   
 | |
|   // Handle (user-declared) constructors.
 | |
|   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | |
|     // Note that we have a user-declared constructor.
 | |
|     data().UserDeclaredConstructor = true;
 | |
| 
 | |
|     // Note that we have no need of an implicitly-declared default constructor.
 | |
|     data().DeclaredDefaultConstructor = true;
 | |
|     
 | |
|     // C++ [dcl.init.aggr]p1:
 | |
|     //   An aggregate is an array or a class (clause 9) with no
 | |
|     //   user-declared constructors (12.1) [...].
 | |
|     data().Aggregate = false;
 | |
| 
 | |
|     // C++ [class]p4:
 | |
|     //   A POD-struct is an aggregate class [...]
 | |
|     data().PlainOldData = false;
 | |
| 
 | |
|     // C++ [class.ctor]p5:
 | |
|     //   A constructor is trivial if it is an implicitly-declared default
 | |
|     //   constructor.
 | |
|     // FIXME: C++0x: don't do this for "= default" default constructors.
 | |
|     data().HasTrivialConstructor = false;
 | |
| 
 | |
|     // Note when we have a user-declared copy or move constructor, which will
 | |
|     // suppress the implicit declaration of those constructors.
 | |
|     if (!FunTmpl) {
 | |
|       if (Constructor->isCopyConstructor()) {
 | |
|         data().UserDeclaredCopyConstructor = true;
 | |
|         data().DeclaredCopyConstructor = true;
 | |
| 
 | |
|         // C++0x [class.copy]p13:
 | |
|         //   A copy/move constructor for class X is trivial if it is neither
 | |
|         //   user-provided nor deleted
 | |
|         // FIXME: C++0x: don't do this for "= default" copy constructors.
 | |
|         data().HasTrivialCopyConstructor = false;
 | |
|       } else if (Constructor->isMoveConstructor()) {
 | |
|         // C++0x [class.copy]p13:
 | |
|         //   A copy/move constructor for class X is trivial if it is neither
 | |
|         //   user-provided nor deleted
 | |
|         // FIXME: C++0x: don't do this for "= default" move constructors.
 | |
|         data().HasTrivialMoveConstructor = false;
 | |
|       }
 | |
|     }
 | |
|     if (Constructor->isConstExpr() &&
 | |
|         !Constructor->isCopyOrMoveConstructor()) {
 | |
|       // Record if we see any constexpr constructors which are niether copy
 | |
|       // nor move constructors.
 | |
|       data().HasConstExprNonCopyMoveConstructor = true;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle (user-declared) destructors.
 | |
|   if (isa<CXXDestructorDecl>(D)) {
 | |
|     data().DeclaredDestructor = true;
 | |
|     data().UserDeclaredDestructor = true;
 | |
|     
 | |
|     // C++ [class]p4: 
 | |
|     //   A POD-struct is an aggregate class that has [...] no user-defined 
 | |
|     //   destructor.
 | |
|     data().PlainOldData = false;
 | |
|     
 | |
|     // C++ [class.dtor]p3: 
 | |
|     //   A destructor is trivial if it is an implicitly-declared destructor and
 | |
|     //   [...].
 | |
|     //
 | |
|     // FIXME: C++0x: don't do this for "= default" destructors
 | |
|     data().HasTrivialDestructor = false;
 | |
|     
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Handle (user-declared) member functions.
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|     if (Method->getOverloadedOperator() == OO_Equal) {
 | |
|       // We're interested specifically in copy assignment operators.
 | |
|       const FunctionProtoType *FnType 
 | |
|         = Method->getType()->getAs<FunctionProtoType>();
 | |
|       assert(FnType && "Overloaded operator has no proto function type.");
 | |
|       assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
 | |
|       
 | |
|       // Copy assignment operators must be non-templates.
 | |
|       if (Method->getPrimaryTemplate() || FunTmpl)
 | |
|         return;
 | |
|       
 | |
|       ASTContext &Context = getASTContext();
 | |
|       QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
 | |
|                                              const_cast<CXXRecordDecl*>(this)));
 | |
| 
 | |
|       bool isRValueRefArg = false;
 | |
|       QualType ArgType = FnType->getArgType(0);
 | |
|       if (const LValueReferenceType *Ref =
 | |
|           ArgType->getAs<LValueReferenceType>()) {
 | |
|         ArgType = Ref->getPointeeType();
 | |
|       } else if (const RValueReferenceType *Ref =
 | |
|                ArgType->getAs<RValueReferenceType>()) {
 | |
|         ArgType = Ref->getPointeeType();
 | |
|         isRValueRefArg = true;
 | |
|       }
 | |
|       if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
 | |
|         return;
 | |
| 
 | |
|       // C++ [class]p4:
 | |
|       //   A POD-struct is an aggregate class that [...] has no user-defined
 | |
|       //   copy assignment operator [...].
 | |
|       // FIXME: This should be probably determined dynamically in terms of
 | |
|       // other more precise attributes to correctly model how it is specified
 | |
|       // in C++0x. Setting it here happens to do the right thing.
 | |
|       data().PlainOldData = false;
 | |
| 
 | |
|       if (!isRValueRefArg) {
 | |
|         // This is a copy assignment operator.
 | |
| 
 | |
|         // Suppress the implicit declaration of a copy constructor.
 | |
|         data().UserDeclaredCopyAssignment = true;
 | |
|         data().DeclaredCopyAssignment = true;
 | |
| 
 | |
|         // C++0x [class.copy]p27:
 | |
|         //   A copy/move assignment operator for class X is trivial if it is
 | |
|         //   neither user-provided nor deleted [...]
 | |
|         // FIXME: C++0x: don't do this for "= default" copy operators.
 | |
|         data().HasTrivialCopyAssignment = false;
 | |
|       } else {
 | |
|         // This is a move assignment operator.
 | |
| 
 | |
|         // C++0x [class.copy]p27:
 | |
|         //   A copy/move assignment operator for class X is trivial if it is
 | |
|         //   neither user-provided nor deleted [...]
 | |
|         // FIXME: C++0x: don't do this for "= default" copy operators.
 | |
|         data().HasTrivialMoveAssignment = false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Keep the list of conversion functions up-to-date.
 | |
|     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
 | |
|       // We don't record specializations.
 | |
|       if (Conversion->getPrimaryTemplate())
 | |
|         return;
 | |
|       
 | |
|       // FIXME: We intentionally don't use the decl's access here because it
 | |
|       // hasn't been set yet.  That's really just a misdesign in Sema.
 | |
| 
 | |
|       if (FunTmpl) {
 | |
|         if (FunTmpl->getPreviousDeclaration())
 | |
|           data().Conversions.replace(FunTmpl->getPreviousDeclaration(),
 | |
|                                      FunTmpl);
 | |
|         else
 | |
|           data().Conversions.addDecl(FunTmpl);
 | |
|       } else {
 | |
|         if (Conversion->getPreviousDeclaration())
 | |
|           data().Conversions.replace(Conversion->getPreviousDeclaration(),
 | |
|                                      Conversion);
 | |
|         else
 | |
|           data().Conversions.addDecl(Conversion);        
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Handle non-static data members.
 | |
|   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
 | |
|     // C++ [dcl.init.aggr]p1:
 | |
|     //   An aggregate is an array or a class (clause 9) with [...] no
 | |
|     //   private or protected non-static data members (clause 11).
 | |
|     //
 | |
|     // A POD must be an aggregate.    
 | |
|     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
 | |
|       data().Aggregate = false;
 | |
|       data().PlainOldData = false;
 | |
|     }
 | |
|     
 | |
|     // C++0x [class]p9:
 | |
|     //   A POD struct is a class that is both a trivial class and a 
 | |
|     //   standard-layout class, and has no non-static data members of type 
 | |
|     //   non-POD struct, non-POD union (or array of such types).
 | |
|     ASTContext &Context = getASTContext();
 | |
|     QualType T = Context.getBaseElementType(Field->getType());
 | |
|     if (!T->isPODType())
 | |
|       data().PlainOldData = false;
 | |
|     if (T->isReferenceType())
 | |
|       data().HasTrivialConstructor = false;
 | |
| 
 | |
|     // Record if this field is the first non-literal field or base.
 | |
|     if (!hasNonLiteralTypeFieldsOrBases() && !T->isLiteralType())
 | |
|       data().HasNonLiteralTypeFieldsOrBases = true;
 | |
| 
 | |
|     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
 | |
|       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|       if (FieldRec->getDefinition()) {
 | |
|         if (!FieldRec->hasTrivialConstructor())
 | |
|           data().HasTrivialConstructor = false;
 | |
| 
 | |
|         // C++0x [class.copy]p13:
 | |
|         //   A copy/move constructor for class X is trivial if [...]
 | |
|         //    [...]
 | |
|         //    -- for each non-static data member of X that is of class type (or
 | |
|         //       an array thereof), the constructor selected to copy/move that
 | |
|         //       member is trivial;
 | |
|         // FIXME: C++0x: We don't correctly model 'selected' constructors.
 | |
|         if (!FieldRec->hasTrivialCopyConstructor())
 | |
|           data().HasTrivialCopyConstructor = false;
 | |
|         if (!FieldRec->hasTrivialMoveConstructor())
 | |
|           data().HasTrivialMoveConstructor = false;
 | |
| 
 | |
|         // C++0x [class.copy]p27:
 | |
|         //   A copy/move assignment operator for class X is trivial if [...]
 | |
|         //    [...]
 | |
|         //    -- for each non-static data member of X that is of class type (or
 | |
|         //       an array thereof), the assignment operator selected to
 | |
|         //       copy/move that member is trivial;
 | |
|         // FIXME: C++0x: We don't correctly model 'selected' operators.
 | |
|         if (!FieldRec->hasTrivialCopyAssignment())
 | |
|           data().HasTrivialCopyAssignment = false;
 | |
|         if (!FieldRec->hasTrivialMoveAssignment())
 | |
|           data().HasTrivialMoveAssignment = false;
 | |
| 
 | |
|         if (!FieldRec->hasTrivialDestructor())
 | |
|           data().HasTrivialDestructor = false;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If this is not a zero-length bit-field, then the class is not empty.
 | |
|     if (data().Empty) {
 | |
|       if (!Field->getBitWidth())
 | |
|         data().Empty = false;
 | |
|       else if (!Field->getBitWidth()->isTypeDependent() &&
 | |
|                !Field->getBitWidth()->isValueDependent()) {
 | |
|         llvm::APSInt Bits;
 | |
|         if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context))
 | |
|           if (!!Bits)
 | |
|             data().Empty = false;
 | |
|       } 
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Handle using declarations of conversion functions.
 | |
|   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
 | |
|     if (Shadow->getDeclName().getNameKind()
 | |
|           == DeclarationName::CXXConversionFunctionName)
 | |
|       data().Conversions.addDecl(Shadow, Shadow->getAccess());
 | |
| }
 | |
| 
 | |
| static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
 | |
|   QualType T;
 | |
|   if (isa<UsingShadowDecl>(Conv))
 | |
|     Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
 | |
|   if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
 | |
|     T = ConvTemp->getTemplatedDecl()->getResultType();
 | |
|   else 
 | |
|     T = cast<CXXConversionDecl>(Conv)->getConversionType();
 | |
|   return Context.getCanonicalType(T);
 | |
| }
 | |
| 
 | |
| /// Collect the visible conversions of a base class.
 | |
| ///
 | |
| /// \param Base a base class of the class we're considering
 | |
| /// \param InVirtual whether this base class is a virtual base (or a base
 | |
| ///   of a virtual base)
 | |
| /// \param Access the access along the inheritance path to this base
 | |
| /// \param ParentHiddenTypes the conversions provided by the inheritors
 | |
| ///   of this base
 | |
| /// \param Output the set to which to add conversions from non-virtual bases
 | |
| /// \param VOutput the set to which to add conversions from virtual bases
 | |
| /// \param HiddenVBaseCs the set of conversions which were hidden in a
 | |
| ///   virtual base along some inheritance path
 | |
| static void CollectVisibleConversions(ASTContext &Context,
 | |
|                                       CXXRecordDecl *Record,
 | |
|                                       bool InVirtual,
 | |
|                                       AccessSpecifier Access,
 | |
|                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
 | |
|                                       UnresolvedSetImpl &Output,
 | |
|                                       UnresolvedSetImpl &VOutput,
 | |
|                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
 | |
|   // The set of types which have conversions in this class or its
 | |
|   // subclasses.  As an optimization, we don't copy the derived set
 | |
|   // unless it might change.
 | |
|   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
 | |
|   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
 | |
| 
 | |
|   // Collect the direct conversions and figure out which conversions
 | |
|   // will be hidden in the subclasses.
 | |
|   UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
 | |
|   if (!Cs.empty()) {
 | |
|     HiddenTypesBuffer = ParentHiddenTypes;
 | |
|     HiddenTypes = &HiddenTypesBuffer;
 | |
| 
 | |
|     for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
 | |
|       bool Hidden =
 | |
|         !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
 | |
| 
 | |
|       // If this conversion is hidden and we're in a virtual base,
 | |
|       // remember that it's hidden along some inheritance path.
 | |
|       if (Hidden && InVirtual)
 | |
|         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
 | |
| 
 | |
|       // If this conversion isn't hidden, add it to the appropriate output.
 | |
|       else if (!Hidden) {
 | |
|         AccessSpecifier IAccess
 | |
|           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
 | |
| 
 | |
|         if (InVirtual)
 | |
|           VOutput.addDecl(I.getDecl(), IAccess);
 | |
|         else
 | |
|           Output.addDecl(I.getDecl(), IAccess);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Collect information recursively from any base classes.
 | |
|   for (CXXRecordDecl::base_class_iterator
 | |
|          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
 | |
|     const RecordType *RT = I->getType()->getAs<RecordType>();
 | |
|     if (!RT) continue;
 | |
| 
 | |
|     AccessSpecifier BaseAccess
 | |
|       = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
 | |
|     bool BaseInVirtual = InVirtual || I->isVirtual();
 | |
| 
 | |
|     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
 | |
|                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Collect the visible conversions of a class.
 | |
| ///
 | |
| /// This would be extremely straightforward if it weren't for virtual
 | |
| /// bases.  It might be worth special-casing that, really.
 | |
| static void CollectVisibleConversions(ASTContext &Context,
 | |
|                                       CXXRecordDecl *Record,
 | |
|                                       UnresolvedSetImpl &Output) {
 | |
|   // The collection of all conversions in virtual bases that we've
 | |
|   // found.  These will be added to the output as long as they don't
 | |
|   // appear in the hidden-conversions set.
 | |
|   UnresolvedSet<8> VBaseCs;
 | |
|   
 | |
|   // The set of conversions in virtual bases that we've determined to
 | |
|   // be hidden.
 | |
|   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
 | |
| 
 | |
|   // The set of types hidden by classes derived from this one.
 | |
|   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
 | |
| 
 | |
|   // Go ahead and collect the direct conversions and add them to the
 | |
|   // hidden-types set.
 | |
|   UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
 | |
|   Output.append(Cs.begin(), Cs.end());
 | |
|   for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
 | |
|     HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
 | |
| 
 | |
|   // Recursively collect conversions from base classes.
 | |
|   for (CXXRecordDecl::base_class_iterator
 | |
|          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
 | |
|     const RecordType *RT = I->getType()->getAs<RecordType>();
 | |
|     if (!RT) continue;
 | |
| 
 | |
|     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
 | |
|                               I->isVirtual(), I->getAccessSpecifier(),
 | |
|                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
 | |
|   }
 | |
| 
 | |
|   // Add any unhidden conversions provided by virtual bases.
 | |
|   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
 | |
|          I != E; ++I) {
 | |
|     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
 | |
|       Output.addDecl(I.getDecl(), I.getAccess());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getVisibleConversionFunctions - get all conversion functions visible
 | |
| /// in current class; including conversion function templates.
 | |
| const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
 | |
|   // If root class, all conversions are visible.
 | |
|   if (bases_begin() == bases_end())
 | |
|     return &data().Conversions;
 | |
|   // If visible conversion list is already evaluated, return it.
 | |
|   if (data().ComputedVisibleConversions)
 | |
|     return &data().VisibleConversions;
 | |
|   CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
 | |
|   data().ComputedVisibleConversions = true;
 | |
|   return &data().VisibleConversions;
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
 | |
|   // This operation is O(N) but extremely rare.  Sema only uses it to
 | |
|   // remove UsingShadowDecls in a class that were followed by a direct
 | |
|   // declaration, e.g.:
 | |
|   //   class A : B {
 | |
|   //     using B::operator int;
 | |
|   //     operator int();
 | |
|   //   };
 | |
|   // This is uncommon by itself and even more uncommon in conjunction
 | |
|   // with sufficiently large numbers of directly-declared conversions
 | |
|   // that asymptotic behavior matters.
 | |
| 
 | |
|   UnresolvedSetImpl &Convs = *getConversionFunctions();
 | |
|   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
 | |
|     if (Convs[I].getDecl() == ConvDecl) {
 | |
|       Convs.erase(I);
 | |
|       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
 | |
|              && "conversion was found multiple times in unresolved set");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("conversion not found in set!");
 | |
| }
 | |
| 
 | |
| CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
 | |
|   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
 | |
|     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
 | |
|   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
 | |
| }
 | |
| 
 | |
| void 
 | |
| CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
 | |
|                                              TemplateSpecializationKind TSK) {
 | |
|   assert(TemplateOrInstantiation.isNull() && 
 | |
|          "Previous template or instantiation?");
 | |
|   assert(!isa<ClassTemplateSpecializationDecl>(this));
 | |
|   TemplateOrInstantiation 
 | |
|     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
 | |
| }
 | |
| 
 | |
| TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
 | |
|   if (const ClassTemplateSpecializationDecl *Spec
 | |
|         = dyn_cast<ClassTemplateSpecializationDecl>(this))
 | |
|     return Spec->getSpecializationKind();
 | |
|   
 | |
|   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
 | |
|     return MSInfo->getTemplateSpecializationKind();
 | |
|   
 | |
|   return TSK_Undeclared;
 | |
| }
 | |
| 
 | |
| void 
 | |
| CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
 | |
|   if (ClassTemplateSpecializationDecl *Spec
 | |
|       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
 | |
|     Spec->setSpecializationKind(TSK);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
 | |
|     MSInfo->setTemplateSpecializationKind(TSK);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   assert(false && "Not a class template or member class specialization");
 | |
| }
 | |
| 
 | |
| CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
 | |
|   ASTContext &Context = getASTContext();
 | |
|   QualType ClassType = Context.getTypeDeclType(this);
 | |
| 
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXDestructorName(
 | |
|                                           Context.getCanonicalType(ClassType));
 | |
| 
 | |
|   DeclContext::lookup_const_iterator I, E;
 | |
|   llvm::tie(I, E) = lookup(Name);
 | |
|   if (I == E)
 | |
|     return 0;
 | |
| 
 | |
|   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
 | |
|   return Dtor;
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::completeDefinition() {
 | |
|   completeDefinition(0);
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
 | |
|   RecordDecl::completeDefinition();
 | |
|   
 | |
|   // If the class may be abstract (but hasn't been marked as such), check for
 | |
|   // any pure final overriders.
 | |
|   if (mayBeAbstract()) {
 | |
|     CXXFinalOverriderMap MyFinalOverriders;
 | |
|     if (!FinalOverriders) {
 | |
|       getFinalOverriders(MyFinalOverriders);
 | |
|       FinalOverriders = &MyFinalOverriders;
 | |
|     }
 | |
|     
 | |
|     bool Done = false;
 | |
|     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 
 | |
|                                      MEnd = FinalOverriders->end();
 | |
|          M != MEnd && !Done; ++M) {
 | |
|       for (OverridingMethods::iterator SO = M->second.begin(), 
 | |
|                                     SOEnd = M->second.end();
 | |
|            SO != SOEnd && !Done; ++SO) {
 | |
|         assert(SO->second.size() > 0 && 
 | |
|                "All virtual functions have overridding virtual functions");
 | |
|         
 | |
|         // C++ [class.abstract]p4:
 | |
|         //   A class is abstract if it contains or inherits at least one
 | |
|         //   pure virtual function for which the final overrider is pure
 | |
|         //   virtual.
 | |
|         if (SO->second.front().Method->isPure()) {
 | |
|           data().Abstract = true;
 | |
|           Done = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Set access bits correctly on the directly-declared conversions.
 | |
|   for (UnresolvedSetIterator I = data().Conversions.begin(), 
 | |
|                              E = data().Conversions.end(); 
 | |
|        I != E; ++I)
 | |
|     data().Conversions.setAccess(I, (*I)->getAccess());
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::mayBeAbstract() const {
 | |
|   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
 | |
|       isDependentContext())
 | |
|     return false;
 | |
|   
 | |
|   for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
 | |
|                                              BEnd = bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     CXXRecordDecl *BaseDecl 
 | |
|       = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (BaseDecl->isAbstract())
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *
 | |
| CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                       SourceLocation StartLoc,
 | |
|                       const DeclarationNameInfo &NameInfo,
 | |
|                       QualType T, TypeSourceInfo *TInfo,
 | |
|                       bool isStatic, StorageClass SCAsWritten, bool isInline,
 | |
|                       SourceLocation EndLocation) {
 | |
|   return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
 | |
|                                isStatic, SCAsWritten, isInline, EndLocation);
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::isUsualDeallocationFunction() const {
 | |
|   if (getOverloadedOperator() != OO_Delete &&
 | |
|       getOverloadedOperator() != OO_Array_Delete)
 | |
|     return false;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   A template instance is never a usual deallocation function,
 | |
|   //   regardless of its signature.
 | |
|   if (getPrimaryTemplate())
 | |
|     return false;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   If a class T has a member deallocation function named operator delete 
 | |
|   //   with exactly one parameter, then that function is a usual (non-placement)
 | |
|   //   deallocation function. [...]
 | |
|   if (getNumParams() == 1)
 | |
|     return true;
 | |
|   
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   [...] If class T does not declare such an operator delete but does 
 | |
|   //   declare a member deallocation function named operator delete with 
 | |
|   //   exactly two parameters, the second of which has type std::size_t (18.1),
 | |
|   //   then this function is a usual deallocation function.
 | |
|   ASTContext &Context = getASTContext();
 | |
|   if (getNumParams() != 2 ||
 | |
|       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
 | |
|                                       Context.getSizeType()))
 | |
|     return false;
 | |
|                  
 | |
|   // This function is a usual deallocation function if there are no 
 | |
|   // single-parameter deallocation functions of the same kind.
 | |
|   for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
 | |
|        R.first != R.second; ++R.first) {
 | |
|     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
 | |
|       if (FD->getNumParams() == 1)
 | |
|         return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::isCopyAssignmentOperator() const {
 | |
|   // C++0x [class.copy]p19:
 | |
|   //  A user-declared copy assignment operator X::operator= is a non-static 
 | |
|   //  non-template member function of class X with exactly one parameter of 
 | |
|   //  type X, X&, const X&, volatile X& or const volatile X&.
 | |
|   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
 | |
|       /*non-static*/ isStatic() || 
 | |
|       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
 | |
|       /*exactly one parameter*/getNumParams() != 1)
 | |
|     return false;
 | |
|       
 | |
|   QualType ParamType = getParamDecl(0)->getType();
 | |
|   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
 | |
|     ParamType = Ref->getPointeeType();
 | |
|   
 | |
|   ASTContext &Context = getASTContext();
 | |
|   QualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
 | |
|   return Context.hasSameUnqualifiedType(ClassType, ParamType);
 | |
| }
 | |
| 
 | |
| void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
 | |
|   assert(MD->isCanonicalDecl() && "Method is not canonical!");
 | |
|   assert(!MD->getParent()->isDependentContext() &&
 | |
|          "Can't add an overridden method to a class template!");
 | |
| 
 | |
|   getASTContext().addOverriddenMethod(this, MD);
 | |
| }
 | |
| 
 | |
| CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
 | |
|   return getASTContext().overridden_methods_begin(this);
 | |
| }
 | |
| 
 | |
| CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
 | |
|   return getASTContext().overridden_methods_end(this);
 | |
| }
 | |
| 
 | |
| unsigned CXXMethodDecl::size_overridden_methods() const {
 | |
|   return getASTContext().overridden_methods_size(this);
 | |
| }
 | |
| 
 | |
| QualType CXXMethodDecl::getThisType(ASTContext &C) const {
 | |
|   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
 | |
|   // If the member function is declared const, the type of this is const X*,
 | |
|   // if the member function is declared volatile, the type of this is
 | |
|   // volatile X*, and if the member function is declared const volatile,
 | |
|   // the type of this is const volatile X*.
 | |
| 
 | |
|   assert(isInstance() && "No 'this' for static methods!");
 | |
| 
 | |
|   QualType ClassTy = C.getTypeDeclType(getParent());
 | |
|   ClassTy = C.getQualifiedType(ClassTy,
 | |
|                                Qualifiers::fromCVRMask(getTypeQualifiers()));
 | |
|   return C.getPointerType(ClassTy);
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::hasInlineBody() const {
 | |
|   // If this function is a template instantiation, look at the template from 
 | |
|   // which it was instantiated.
 | |
|   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
 | |
|   if (!CheckFn)
 | |
|     CheckFn = this;
 | |
|   
 | |
|   const FunctionDecl *fn;
 | |
|   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        TypeSourceInfo *TInfo, bool IsVirtual,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R,
 | |
|                                        SourceLocation EllipsisLoc)
 | |
|   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), 
 | |
|     LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
 | |
|     SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        FieldDecl *Member,
 | |
|                                        SourceLocation MemberLoc,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R)
 | |
|   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
 | |
|     LParenLoc(L), RParenLoc(R), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        IndirectFieldDecl *Member,
 | |
|                                        SourceLocation MemberLoc,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R)
 | |
|   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
 | |
|     LParenLoc(L), RParenLoc(R), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        SourceLocation D, SourceLocation L,
 | |
|                                        CXXConstructorDecl *Target, Expr *Init,
 | |
|                                        SourceLocation R)
 | |
|   : Initializee(Target), MemberOrEllipsisLocation(D), Init(Init),
 | |
|     LParenLoc(L), RParenLoc(R), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        FieldDecl *Member,
 | |
|                                        SourceLocation MemberLoc,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R,
 | |
|                                        VarDecl **Indices,
 | |
|                                        unsigned NumIndices)
 | |
|   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 
 | |
|     LParenLoc(L), RParenLoc(R), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
 | |
| {
 | |
|   VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
 | |
|   memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
 | |
|                                                FieldDecl *Member, 
 | |
|                                                SourceLocation MemberLoc,
 | |
|                                                SourceLocation L, Expr *Init,
 | |
|                                                SourceLocation R,
 | |
|                                                VarDecl **Indices,
 | |
|                                                unsigned NumIndices) {
 | |
|   void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
 | |
|                                sizeof(VarDecl *) * NumIndices,
 | |
|                                llvm::alignOf<CXXCtorInitializer>());
 | |
|   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
 | |
|                                       Indices, NumIndices);
 | |
| }
 | |
| 
 | |
| TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
 | |
|   if (isBaseInitializer())
 | |
|     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
 | |
|   else
 | |
|     return TypeLoc();
 | |
| }
 | |
| 
 | |
| const Type *CXXCtorInitializer::getBaseClass() const {
 | |
|   if (isBaseInitializer())
 | |
|     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| SourceLocation CXXCtorInitializer::getSourceLocation() const {
 | |
|   if (isAnyMemberInitializer() || isDelegatingInitializer())
 | |
|     return getMemberLocation();
 | |
|   
 | |
|   return getBaseClassLoc().getLocalSourceRange().getBegin();
 | |
| }
 | |
| 
 | |
| SourceRange CXXCtorInitializer::getSourceRange() const {
 | |
|   return SourceRange(getSourceLocation(), getRParenLoc());
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *
 | |
| CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationNameInfo(),
 | |
|                                     QualType(), 0, false, false, false);
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *
 | |
| CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                            SourceLocation StartLoc,
 | |
|                            const DeclarationNameInfo &NameInfo,
 | |
|                            QualType T, TypeSourceInfo *TInfo,
 | |
|                            bool isExplicit,
 | |
|                            bool isInline,
 | |
|                            bool isImplicitlyDeclared) {
 | |
|   assert(NameInfo.getName().getNameKind()
 | |
|          == DeclarationName::CXXConstructorName &&
 | |
|          "Name must refer to a constructor");
 | |
|   return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
 | |
|                                     isExplicit, isInline, isImplicitlyDeclared);
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isDefaultConstructor() const {
 | |
|   // C++ [class.ctor]p5:
 | |
|   //   A default constructor for a class X is a constructor of class
 | |
|   //   X that can be called without an argument.
 | |
|   return (getNumParams() == 0) ||
 | |
|          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
 | |
| }
 | |
| 
 | |
| bool
 | |
| CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
 | |
|   return isCopyOrMoveConstructor(TypeQuals) &&
 | |
|          getParamDecl(0)->getType()->isLValueReferenceType();
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
 | |
|   return isCopyOrMoveConstructor(TypeQuals) &&
 | |
|     getParamDecl(0)->getType()->isRValueReferenceType();
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether this is a copy or move constructor.
 | |
| bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
 | |
|   // C++ [class.copy]p2:
 | |
|   //   A non-template constructor for class X is a copy constructor
 | |
|   //   if its first parameter is of type X&, const X&, volatile X& or
 | |
|   //   const volatile X&, and either there are no other parameters
 | |
|   //   or else all other parameters have default arguments (8.3.6).
 | |
|   // C++0x [class.copy]p3:
 | |
|   //   A non-template constructor for class X is a move constructor if its
 | |
|   //   first parameter is of type X&&, const X&&, volatile X&&, or 
 | |
|   //   const volatile X&&, and either there are no other parameters or else 
 | |
|   //   all other parameters have default arguments.
 | |
|   if ((getNumParams() < 1) ||
 | |
|       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
 | |
|       (getPrimaryTemplate() != 0) ||
 | |
|       (getDescribedFunctionTemplate() != 0))
 | |
|     return false;
 | |
|   
 | |
|   const ParmVarDecl *Param = getParamDecl(0);
 | |
|   
 | |
|   // Do we have a reference type? 
 | |
|   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
 | |
|   if (!ParamRefType)
 | |
|     return false;
 | |
|   
 | |
|   // Is it a reference to our class type?
 | |
|   ASTContext &Context = getASTContext();
 | |
|   
 | |
|   CanQualType PointeeType
 | |
|     = Context.getCanonicalType(ParamRefType->getPointeeType());
 | |
|   CanQualType ClassTy 
 | |
|     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
 | |
|   if (PointeeType.getUnqualifiedType() != ClassTy)
 | |
|     return false;
 | |
|   
 | |
|   // FIXME: other qualifiers?
 | |
|   
 | |
|   // We have a copy or move constructor.
 | |
|   TypeQuals = PointeeType.getCVRQualifiers();
 | |
|   return true;  
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
 | |
|   // C++ [class.conv.ctor]p1:
 | |
|   //   A constructor declared without the function-specifier explicit
 | |
|   //   that can be called with a single parameter specifies a
 | |
|   //   conversion from the type of its first parameter to the type of
 | |
|   //   its class. Such a constructor is called a converting
 | |
|   //   constructor.
 | |
|   if (isExplicit() && !AllowExplicit)
 | |
|     return false;
 | |
| 
 | |
|   return (getNumParams() == 0 &&
 | |
|           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
 | |
|          (getNumParams() == 1) ||
 | |
|          (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isSpecializationCopyingObject() const {
 | |
|   if ((getNumParams() < 1) ||
 | |
|       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
 | |
|       (getPrimaryTemplate() == 0) ||
 | |
|       (getDescribedFunctionTemplate() != 0))
 | |
|     return false;
 | |
| 
 | |
|   const ParmVarDecl *Param = getParamDecl(0);
 | |
| 
 | |
|   ASTContext &Context = getASTContext();
 | |
|   CanQualType ParamType = Context.getCanonicalType(Param->getType());
 | |
|   
 | |
|   // Is it the same as our our class type?
 | |
|   CanQualType ClassTy 
 | |
|     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
 | |
|   if (ParamType.getUnqualifiedType() != ClassTy)
 | |
|     return false;
 | |
|   
 | |
|   return true;  
 | |
| }
 | |
| 
 | |
| const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
 | |
|   // Hack: we store the inherited constructor in the overridden method table
 | |
|   method_iterator It = begin_overridden_methods();
 | |
|   if (It == end_overridden_methods())
 | |
|     return 0;
 | |
| 
 | |
|   return cast<CXXConstructorDecl>(*It);
 | |
| }
 | |
| 
 | |
| void
 | |
| CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
 | |
|   // Hack: we store the inherited constructor in the overridden method table
 | |
|   assert(size_overridden_methods() == 0 && "Base ctor already set.");
 | |
|   addOverriddenMethod(BaseCtor);
 | |
| }
 | |
| 
 | |
| CXXDestructorDecl *
 | |
| CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
 | |
|                                    QualType(), 0, false, false);
 | |
| }
 | |
| 
 | |
| CXXDestructorDecl *
 | |
| CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                           SourceLocation StartLoc,
 | |
|                           const DeclarationNameInfo &NameInfo,
 | |
|                           QualType T, TypeSourceInfo *TInfo,
 | |
|                           bool isInline,
 | |
|                           bool isImplicitlyDeclared) {
 | |
|   assert(NameInfo.getName().getNameKind()
 | |
|          == DeclarationName::CXXDestructorName &&
 | |
|          "Name must refer to a destructor");
 | |
|   return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
 | |
|                                    isImplicitlyDeclared);
 | |
| }
 | |
| 
 | |
| CXXConversionDecl *
 | |
| CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
 | |
|                                    QualType(), 0, false, false,
 | |
|                                    SourceLocation());
 | |
| }
 | |
| 
 | |
| CXXConversionDecl *
 | |
| CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                           SourceLocation StartLoc,
 | |
|                           const DeclarationNameInfo &NameInfo,
 | |
|                           QualType T, TypeSourceInfo *TInfo,
 | |
|                           bool isInline, bool isExplicit,
 | |
|                           SourceLocation EndLocation) {
 | |
|   assert(NameInfo.getName().getNameKind()
 | |
|          == DeclarationName::CXXConversionFunctionName &&
 | |
|          "Name must refer to a conversion function");
 | |
|   return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
 | |
|                                    isInline, isExplicit, EndLocation);
 | |
| }
 | |
| 
 | |
| LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
 | |
|                                          DeclContext *DC,
 | |
|                                          SourceLocation ExternLoc,
 | |
|                                          SourceLocation LangLoc,
 | |
|                                          LanguageIDs Lang,
 | |
|                                          SourceLocation RBraceLoc) {
 | |
|   return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
 | |
| }
 | |
| 
 | |
| UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                                SourceLocation L,
 | |
|                                                SourceLocation NamespaceLoc,
 | |
|                                            NestedNameSpecifierLoc QualifierLoc,
 | |
|                                                SourceLocation IdentLoc,
 | |
|                                                NamedDecl *Used,
 | |
|                                                DeclContext *CommonAncestor) {
 | |
|   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
 | |
|     Used = NS->getOriginalNamespace();
 | |
|   return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
 | |
|                                     IdentLoc, Used, CommonAncestor);
 | |
| }
 | |
| 
 | |
| NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
 | |
|   if (NamespaceAliasDecl *NA =
 | |
|         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
 | |
|     return NA->getNamespace();
 | |
|   return cast_or_null<NamespaceDecl>(NominatedNamespace);
 | |
| }
 | |
| 
 | |
| NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                                SourceLocation UsingLoc,
 | |
|                                                SourceLocation AliasLoc,
 | |
|                                                IdentifierInfo *Alias,
 | |
|                                            NestedNameSpecifierLoc QualifierLoc,
 | |
|                                                SourceLocation IdentLoc,
 | |
|                                                NamedDecl *Namespace) {
 | |
|   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
 | |
|     Namespace = NS->getOriginalNamespace();
 | |
|   return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, 
 | |
|                                     QualifierLoc, IdentLoc, Namespace);
 | |
| }
 | |
| 
 | |
| UsingDecl *UsingShadowDecl::getUsingDecl() const {
 | |
|   const UsingShadowDecl *Shadow = this;
 | |
|   while (const UsingShadowDecl *NextShadow =
 | |
|          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
 | |
|     Shadow = NextShadow;
 | |
|   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
 | |
| }
 | |
| 
 | |
| void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
 | |
|   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
 | |
|          "declaration already in set");
 | |
|   assert(S->getUsingDecl() == this);
 | |
| 
 | |
|   if (FirstUsingShadow)
 | |
|     S->UsingOrNextShadow = FirstUsingShadow;
 | |
|   FirstUsingShadow = S;
 | |
| }
 | |
| 
 | |
| void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
 | |
|   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
 | |
|          "declaration not in set");
 | |
|   assert(S->getUsingDecl() == this);
 | |
| 
 | |
|   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
 | |
| 
 | |
|   if (FirstUsingShadow == S) {
 | |
|     FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow);
 | |
|     S->UsingOrNextShadow = this;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   UsingShadowDecl *Prev = FirstUsingShadow;
 | |
|   while (Prev->UsingOrNextShadow != S)
 | |
|     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
 | |
|   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
 | |
|   S->UsingOrNextShadow = this;
 | |
| }
 | |
| 
 | |
| UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
 | |
|                              NestedNameSpecifierLoc QualifierLoc,
 | |
|                              const DeclarationNameInfo &NameInfo,
 | |
|                              bool IsTypeNameArg) {
 | |
|   return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
 | |
| }
 | |
| 
 | |
| UnresolvedUsingValueDecl *
 | |
| UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                  SourceLocation UsingLoc,
 | |
|                                  NestedNameSpecifierLoc QualifierLoc,
 | |
|                                  const DeclarationNameInfo &NameInfo) {
 | |
|   return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
 | |
|                                           QualifierLoc, NameInfo);
 | |
| }
 | |
| 
 | |
| UnresolvedUsingTypenameDecl *
 | |
| UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                     SourceLocation UsingLoc,
 | |
|                                     SourceLocation TypenameLoc,
 | |
|                                     NestedNameSpecifierLoc QualifierLoc,
 | |
|                                     SourceLocation TargetNameLoc,
 | |
|                                     DeclarationName TargetName) {
 | |
|   return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
 | |
|                                              QualifierLoc, TargetNameLoc,
 | |
|                                              TargetName.getAsIdentifierInfo());
 | |
| }
 | |
| 
 | |
| StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                            SourceLocation StaticAssertLoc,
 | |
|                                            Expr *AssertExpr,
 | |
|                                            StringLiteral *Message,
 | |
|                                            SourceLocation RParenLoc) {
 | |
|   return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
 | |
|                                   RParenLoc);
 | |
| }
 | |
| 
 | |
| static const char *getAccessName(AccessSpecifier AS) {
 | |
|   switch (AS) {
 | |
|     default:
 | |
|     case AS_none:
 | |
|       assert("Invalid access specifier!");
 | |
|       return 0;
 | |
|     case AS_public:
 | |
|       return "public";
 | |
|     case AS_private:
 | |
|       return "private";
 | |
|     case AS_protected:
 | |
|       return "protected";
 | |
|   }
 | |
| }
 | |
| 
 | |
| const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
 | |
|                                            AccessSpecifier AS) {
 | |
|   return DB << getAccessName(AS);
 | |
| }
 |