forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3003 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3003 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Expr class and subclasses.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Lex/LiteralSupport.h"
 | |
| #include "clang/Lex/Lexer.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| using namespace clang;
 | |
| 
 | |
| /// isKnownToHaveBooleanValue - Return true if this is an integer expression
 | |
| /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
 | |
| /// but also int expressions which are produced by things like comparisons in
 | |
| /// C.
 | |
| bool Expr::isKnownToHaveBooleanValue() const {
 | |
|   const Expr *E = IgnoreParens();
 | |
| 
 | |
|   // If this value has _Bool type, it is obvious 0/1.
 | |
|   if (E->getType()->isBooleanType()) return true;
 | |
|   // If this is a non-scalar-integer type, we don't care enough to try. 
 | |
|   if (!E->getType()->isIntegralOrEnumerationType()) return false;
 | |
|   
 | |
|   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     switch (UO->getOpcode()) {
 | |
|     case UO_Plus:
 | |
|       return UO->getSubExpr()->isKnownToHaveBooleanValue();
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Only look through implicit casts.  If the user writes
 | |
|   // '(int) (a && b)' treat it as an arbitrary int.
 | |
|   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
 | |
|     return CE->getSubExpr()->isKnownToHaveBooleanValue();
 | |
|   
 | |
|   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     switch (BO->getOpcode()) {
 | |
|     default: return false;
 | |
|     case BO_LT:   // Relational operators.
 | |
|     case BO_GT:
 | |
|     case BO_LE:
 | |
|     case BO_GE:
 | |
|     case BO_EQ:   // Equality operators.
 | |
|     case BO_NE:
 | |
|     case BO_LAnd: // AND operator.
 | |
|     case BO_LOr:  // Logical OR operator.
 | |
|       return true;
 | |
|         
 | |
|     case BO_And:  // Bitwise AND operator.
 | |
|     case BO_Xor:  // Bitwise XOR operator.
 | |
|     case BO_Or:   // Bitwise OR operator.
 | |
|       // Handle things like (x==2)|(y==12).
 | |
|       return BO->getLHS()->isKnownToHaveBooleanValue() &&
 | |
|              BO->getRHS()->isKnownToHaveBooleanValue();
 | |
|         
 | |
|     case BO_Comma:
 | |
|     case BO_Assign:
 | |
|       return BO->getRHS()->isKnownToHaveBooleanValue();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
 | |
|     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
 | |
|            CO->getFalseExpr()->isKnownToHaveBooleanValue();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Amusing macro metaprogramming hack: check whether a class provides
 | |
| // a more specific implementation of getExprLoc().
 | |
| namespace {
 | |
|   /// This implementation is used when a class provides a custom
 | |
|   /// implementation of getExprLoc.
 | |
|   template <class E, class T>
 | |
|   SourceLocation getExprLocImpl(const Expr *expr,
 | |
|                                 SourceLocation (T::*v)() const) {
 | |
|     return static_cast<const E*>(expr)->getExprLoc();
 | |
|   }
 | |
| 
 | |
|   /// This implementation is used when a class doesn't provide
 | |
|   /// a custom implementation of getExprLoc.  Overload resolution
 | |
|   /// should pick it over the implementation above because it's
 | |
|   /// more specialized according to function template partial ordering.
 | |
|   template <class E>
 | |
|   SourceLocation getExprLocImpl(const Expr *expr,
 | |
|                                 SourceLocation (Expr::*v)() const) {
 | |
|     return static_cast<const E*>(expr)->getSourceRange().getBegin();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SourceLocation Expr::getExprLoc() const {
 | |
|   switch (getStmtClass()) {
 | |
|   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
 | |
| #define ABSTRACT_STMT(type)
 | |
| #define STMT(type, base) \
 | |
|   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
 | |
| #define EXPR(type, base) \
 | |
|   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   }
 | |
|   llvm_unreachable("unknown statement kind");
 | |
|   return SourceLocation();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Primary Expressions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ExplicitTemplateArgumentList::initializeFrom(
 | |
|                                       const TemplateArgumentListInfo &Info) {
 | |
|   LAngleLoc = Info.getLAngleLoc();
 | |
|   RAngleLoc = Info.getRAngleLoc();
 | |
|   NumTemplateArgs = Info.size();
 | |
| 
 | |
|   TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
 | |
|   for (unsigned i = 0; i != NumTemplateArgs; ++i)
 | |
|     new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
 | |
| }
 | |
| 
 | |
| void ExplicitTemplateArgumentList::initializeFrom(
 | |
|                                    const TemplateArgumentListInfo &Info,
 | |
|                                    bool &Dependent, 
 | |
|                                    bool &ContainsUnexpandedParameterPack) {
 | |
|   LAngleLoc = Info.getLAngleLoc();
 | |
|   RAngleLoc = Info.getRAngleLoc();
 | |
|   NumTemplateArgs = Info.size();
 | |
| 
 | |
|   TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
 | |
|   for (unsigned i = 0; i != NumTemplateArgs; ++i) {
 | |
|     Dependent = Dependent || Info[i].getArgument().isDependent();
 | |
|     ContainsUnexpandedParameterPack 
 | |
|       = ContainsUnexpandedParameterPack || 
 | |
|         Info[i].getArgument().containsUnexpandedParameterPack();
 | |
| 
 | |
|     new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ExplicitTemplateArgumentList::copyInto(
 | |
|                                       TemplateArgumentListInfo &Info) const {
 | |
|   Info.setLAngleLoc(LAngleLoc);
 | |
|   Info.setRAngleLoc(RAngleLoc);
 | |
|   for (unsigned I = 0; I != NumTemplateArgs; ++I)
 | |
|     Info.addArgument(getTemplateArgs()[I]);
 | |
| }
 | |
| 
 | |
| std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
 | |
|   return sizeof(ExplicitTemplateArgumentList) +
 | |
|          sizeof(TemplateArgumentLoc) * NumTemplateArgs;
 | |
| }
 | |
| 
 | |
| std::size_t ExplicitTemplateArgumentList::sizeFor(
 | |
|                                       const TemplateArgumentListInfo &Info) {
 | |
|   return sizeFor(Info.size());
 | |
| }
 | |
| 
 | |
| /// \brief Compute the type- and value-dependence of a declaration reference
 | |
| /// based on the declaration being referenced.
 | |
| static void computeDeclRefDependence(NamedDecl *D, QualType T,
 | |
|                                      bool &TypeDependent,
 | |
|                                      bool &ValueDependent) {
 | |
|   TypeDependent = false;
 | |
|   ValueDependent = false;
 | |
|   
 | |
| 
 | |
|   // (TD) C++ [temp.dep.expr]p3:
 | |
|   //   An id-expression is type-dependent if it contains:
 | |
|   //
 | |
|   // and 
 | |
|   //
 | |
|   // (VD) C++ [temp.dep.constexpr]p2:
 | |
|   //  An identifier is value-dependent if it is:
 | |
|   
 | |
|   //  (TD)  - an identifier that was declared with dependent type
 | |
|   //  (VD)  - a name declared with a dependent type,
 | |
|   if (T->isDependentType()) {
 | |
|     TypeDependent = true;
 | |
|     ValueDependent = true;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   //  (TD)  - a conversion-function-id that specifies a dependent type
 | |
|   if (D->getDeclName().getNameKind() 
 | |
|            == DeclarationName::CXXConversionFunctionName &&
 | |
|            D->getDeclName().getCXXNameType()->isDependentType()) {
 | |
|     TypeDependent = true;
 | |
|     ValueDependent = true;
 | |
|     return;
 | |
|   }
 | |
|   //  (VD)  - the name of a non-type template parameter,
 | |
|   if (isa<NonTypeTemplateParmDecl>(D)) {
 | |
|     ValueDependent = true;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   //  (VD) - a constant with integral or enumeration type and is
 | |
|   //         initialized with an expression that is value-dependent.
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | |
|     if (Var->getType()->isIntegralOrEnumerationType() &&
 | |
|         Var->getType().getCVRQualifiers() == Qualifiers::Const) {
 | |
|       if (const Expr *Init = Var->getAnyInitializer())
 | |
|         if (Init->isValueDependent())
 | |
|           ValueDependent = true;
 | |
|     } 
 | |
|     
 | |
|     // (VD) - FIXME: Missing from the standard: 
 | |
|     //      -  a member function or a static data member of the current 
 | |
|     //         instantiation
 | |
|     else if (Var->isStaticDataMember() && 
 | |
|              Var->getDeclContext()->isDependentContext())
 | |
|       ValueDependent = true;
 | |
|     
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // (VD) - FIXME: Missing from the standard: 
 | |
|   //      -  a member function or a static data member of the current 
 | |
|   //         instantiation
 | |
|   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
 | |
|     ValueDependent = true;
 | |
|     return;
 | |
|   }  
 | |
| }
 | |
| 
 | |
| void DeclRefExpr::computeDependence() {
 | |
|   bool TypeDependent = false;
 | |
|   bool ValueDependent = false;
 | |
|   computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent);
 | |
|   
 | |
|   // (TD) C++ [temp.dep.expr]p3:
 | |
|   //   An id-expression is type-dependent if it contains:
 | |
|   //
 | |
|   // and 
 | |
|   //
 | |
|   // (VD) C++ [temp.dep.constexpr]p2:
 | |
|   //  An identifier is value-dependent if it is:
 | |
|   if (!TypeDependent && !ValueDependent &&
 | |
|       hasExplicitTemplateArgs() && 
 | |
|       TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|                                                             getTemplateArgs(), 
 | |
|                                                        getNumTemplateArgs())) {
 | |
|     TypeDependent = true;
 | |
|     ValueDependent = true;
 | |
|   }
 | |
|   
 | |
|   ExprBits.TypeDependent = TypeDependent;
 | |
|   ExprBits.ValueDependent = ValueDependent;
 | |
|   
 | |
|   // Is the declaration a parameter pack?
 | |
|   if (getDecl()->isParameterPack())
 | |
|     ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| }
 | |
| 
 | |
| DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc, 
 | |
|                          ValueDecl *D, SourceLocation NameLoc,
 | |
|                          const TemplateArgumentListInfo *TemplateArgs,
 | |
|                          QualType T, ExprValueKind VK)
 | |
|   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
 | |
|     DecoratedD(D,
 | |
|                (QualifierLoc? HasQualifierFlag : 0) |
 | |
|                (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
 | |
|     Loc(NameLoc) {
 | |
|   if (QualifierLoc) {
 | |
|     NameQualifier *NQ = getNameQualifier();
 | |
|     NQ->QualifierLoc = QualifierLoc;
 | |
|   }
 | |
|       
 | |
|   if (TemplateArgs)
 | |
|     getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
 | |
| 
 | |
|   computeDependence();
 | |
| }
 | |
| 
 | |
| DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
 | |
|                          ValueDecl *D, const DeclarationNameInfo &NameInfo,
 | |
|                          const TemplateArgumentListInfo *TemplateArgs,
 | |
|                          QualType T, ExprValueKind VK)
 | |
|   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
 | |
|     DecoratedD(D,
 | |
|                (QualifierLoc? HasQualifierFlag : 0) |
 | |
|                (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
 | |
|     Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
 | |
|   if (QualifierLoc) {
 | |
|     NameQualifier *NQ = getNameQualifier();
 | |
|     NQ->QualifierLoc = QualifierLoc;
 | |
|   }
 | |
| 
 | |
|   if (TemplateArgs)
 | |
|     getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
 | |
| 
 | |
|   computeDependence();
 | |
| }
 | |
| 
 | |
| DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
 | |
|                                  NestedNameSpecifierLoc QualifierLoc,
 | |
|                                  ValueDecl *D,
 | |
|                                  SourceLocation NameLoc,
 | |
|                                  QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   return Create(Context, QualifierLoc, D,
 | |
|                 DeclarationNameInfo(D->getDeclName(), NameLoc),
 | |
|                 T, VK, TemplateArgs);
 | |
| }
 | |
| 
 | |
| DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
 | |
|                                  NestedNameSpecifierLoc QualifierLoc,
 | |
|                                  ValueDecl *D,
 | |
|                                  const DeclarationNameInfo &NameInfo,
 | |
|                                  QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   std::size_t Size = sizeof(DeclRefExpr);
 | |
|   if (QualifierLoc != 0)
 | |
|     Size += sizeof(NameQualifier);
 | |
|   
 | |
|   if (TemplateArgs)
 | |
|     Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
 | |
|   
 | |
|   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
 | |
|   return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, TemplateArgs, T, VK);
 | |
| }
 | |
| 
 | |
| DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, 
 | |
|                                       bool HasQualifier,
 | |
|                                       bool HasExplicitTemplateArgs,
 | |
|                                       unsigned NumTemplateArgs) {
 | |
|   std::size_t Size = sizeof(DeclRefExpr);
 | |
|   if (HasQualifier)
 | |
|     Size += sizeof(NameQualifier);
 | |
|   
 | |
|   if (HasExplicitTemplateArgs)
 | |
|     Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
 | |
|   
 | |
|   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
 | |
|   return new (Mem) DeclRefExpr(EmptyShell());
 | |
| }
 | |
| 
 | |
| SourceRange DeclRefExpr::getSourceRange() const {
 | |
|   SourceRange R = getNameInfo().getSourceRange();
 | |
|   if (hasQualifier())
 | |
|     R.setBegin(getQualifierLoc().getBeginLoc());
 | |
|   if (hasExplicitTemplateArgs())
 | |
|     R.setEnd(getRAngleLoc());
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| // FIXME: Maybe this should use DeclPrinter with a special "print predefined
 | |
| // expr" policy instead.
 | |
| std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
 | |
|   ASTContext &Context = CurrentDecl->getASTContext();
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
 | |
|     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
 | |
|       return FD->getNameAsString();
 | |
| 
 | |
|     llvm::SmallString<256> Name;
 | |
|     llvm::raw_svector_ostream Out(Name);
 | |
| 
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
 | |
|         Out << "virtual ";
 | |
|       if (MD->isStatic())
 | |
|         Out << "static ";
 | |
|     }
 | |
| 
 | |
|     PrintingPolicy Policy(Context.getLangOptions());
 | |
| 
 | |
|     std::string Proto = FD->getQualifiedNameAsString(Policy);
 | |
| 
 | |
|     const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
 | |
|     const FunctionProtoType *FT = 0;
 | |
|     if (FD->hasWrittenPrototype())
 | |
|       FT = dyn_cast<FunctionProtoType>(AFT);
 | |
| 
 | |
|     Proto += "(";
 | |
|     if (FT) {
 | |
|       llvm::raw_string_ostream POut(Proto);
 | |
|       for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
 | |
|         if (i) POut << ", ";
 | |
|         std::string Param;
 | |
|         FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
 | |
|         POut << Param;
 | |
|       }
 | |
| 
 | |
|       if (FT->isVariadic()) {
 | |
|         if (FD->getNumParams()) POut << ", ";
 | |
|         POut << "...";
 | |
|       }
 | |
|     }
 | |
|     Proto += ")";
 | |
| 
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|       Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
 | |
|       if (ThisQuals.hasConst())
 | |
|         Proto += " const";
 | |
|       if (ThisQuals.hasVolatile())
 | |
|         Proto += " volatile";
 | |
|     }
 | |
| 
 | |
|     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
 | |
|       AFT->getResultType().getAsStringInternal(Proto, Policy);
 | |
| 
 | |
|     Out << Proto;
 | |
| 
 | |
|     Out.flush();
 | |
|     return Name.str().str();
 | |
|   }
 | |
|   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
 | |
|     llvm::SmallString<256> Name;
 | |
|     llvm::raw_svector_ostream Out(Name);
 | |
|     Out << (MD->isInstanceMethod() ? '-' : '+');
 | |
|     Out << '[';
 | |
| 
 | |
|     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
 | |
|     // a null check to avoid a crash.
 | |
|     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
 | |
|       Out << ID;
 | |
| 
 | |
|     if (const ObjCCategoryImplDecl *CID =
 | |
|         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
 | |
|       Out << '(' << CID << ')';
 | |
| 
 | |
|     Out <<  ' ';
 | |
|     Out << MD->getSelector().getAsString();
 | |
|     Out <<  ']';
 | |
| 
 | |
|     Out.flush();
 | |
|     return Name.str().str();
 | |
|   }
 | |
|   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
 | |
|     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
 | |
|     return "top level";
 | |
|   }
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
 | |
|   if (hasAllocation())
 | |
|     C.Deallocate(pVal);
 | |
| 
 | |
|   BitWidth = Val.getBitWidth();
 | |
|   unsigned NumWords = Val.getNumWords();
 | |
|   const uint64_t* Words = Val.getRawData();
 | |
|   if (NumWords > 1) {
 | |
|     pVal = new (C) uint64_t[NumWords];
 | |
|     std::copy(Words, Words + NumWords, pVal);
 | |
|   } else if (NumWords == 1)
 | |
|     VAL = Words[0];
 | |
|   else
 | |
|     VAL = 0;
 | |
| }
 | |
| 
 | |
| IntegerLiteral *
 | |
| IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
 | |
|                        QualType type, SourceLocation l) {
 | |
|   return new (C) IntegerLiteral(C, V, type, l);
 | |
| }
 | |
| 
 | |
| IntegerLiteral *
 | |
| IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) IntegerLiteral(Empty);
 | |
| }
 | |
| 
 | |
| FloatingLiteral *
 | |
| FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
 | |
|                         bool isexact, QualType Type, SourceLocation L) {
 | |
|   return new (C) FloatingLiteral(C, V, isexact, Type, L);
 | |
| }
 | |
| 
 | |
| FloatingLiteral *
 | |
| FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) FloatingLiteral(Empty);
 | |
| }
 | |
| 
 | |
| /// getValueAsApproximateDouble - This returns the value as an inaccurate
 | |
| /// double.  Note that this may cause loss of precision, but is useful for
 | |
| /// debugging dumps, etc.
 | |
| double FloatingLiteral::getValueAsApproximateDouble() const {
 | |
|   llvm::APFloat V = getValue();
 | |
|   bool ignored;
 | |
|   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
 | |
|             &ignored);
 | |
|   return V.convertToDouble();
 | |
| }
 | |
| 
 | |
| StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
 | |
|                                      unsigned ByteLength, bool Wide,
 | |
|                                      bool Pascal, QualType Ty,
 | |
|                                      const SourceLocation *Loc,
 | |
|                                      unsigned NumStrs) {
 | |
|   // Allocate enough space for the StringLiteral plus an array of locations for
 | |
|   // any concatenated string tokens.
 | |
|   void *Mem = C.Allocate(sizeof(StringLiteral)+
 | |
|                          sizeof(SourceLocation)*(NumStrs-1),
 | |
|                          llvm::alignOf<StringLiteral>());
 | |
|   StringLiteral *SL = new (Mem) StringLiteral(Ty);
 | |
| 
 | |
|   // OPTIMIZE: could allocate this appended to the StringLiteral.
 | |
|   char *AStrData = new (C, 1) char[ByteLength];
 | |
|   memcpy(AStrData, StrData, ByteLength);
 | |
|   SL->StrData = AStrData;
 | |
|   SL->ByteLength = ByteLength;
 | |
|   SL->IsWide = Wide;
 | |
|   SL->IsPascal = Pascal;
 | |
|   SL->TokLocs[0] = Loc[0];
 | |
|   SL->NumConcatenated = NumStrs;
 | |
| 
 | |
|   if (NumStrs != 1)
 | |
|     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
 | |
|   return SL;
 | |
| }
 | |
| 
 | |
| StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
 | |
|   void *Mem = C.Allocate(sizeof(StringLiteral)+
 | |
|                          sizeof(SourceLocation)*(NumStrs-1),
 | |
|                          llvm::alignOf<StringLiteral>());
 | |
|   StringLiteral *SL = new (Mem) StringLiteral(QualType());
 | |
|   SL->StrData = 0;
 | |
|   SL->ByteLength = 0;
 | |
|   SL->NumConcatenated = NumStrs;
 | |
|   return SL;
 | |
| }
 | |
| 
 | |
| void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
 | |
|   char *AStrData = new (C, 1) char[Str.size()];
 | |
|   memcpy(AStrData, Str.data(), Str.size());
 | |
|   StrData = AStrData;
 | |
|   ByteLength = Str.size();
 | |
| }
 | |
| 
 | |
| /// getLocationOfByte - Return a source location that points to the specified
 | |
| /// byte of this string literal.
 | |
| ///
 | |
| /// Strings are amazingly complex.  They can be formed from multiple tokens and
 | |
| /// can have escape sequences in them in addition to the usual trigraph and
 | |
| /// escaped newline business.  This routine handles this complexity.
 | |
| ///
 | |
| SourceLocation StringLiteral::
 | |
| getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
 | |
|                   const LangOptions &Features, const TargetInfo &Target) const {
 | |
|   assert(!isWide() && "This doesn't work for wide strings yet");
 | |
|   
 | |
|   // Loop over all of the tokens in this string until we find the one that
 | |
|   // contains the byte we're looking for.
 | |
|   unsigned TokNo = 0;
 | |
|   while (1) {
 | |
|     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
 | |
|     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
 | |
|     
 | |
|     // Get the spelling of the string so that we can get the data that makes up
 | |
|     // the string literal, not the identifier for the macro it is potentially
 | |
|     // expanded through.
 | |
|     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
 | |
|     
 | |
|     // Re-lex the token to get its length and original spelling.
 | |
|     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
 | |
|     bool Invalid = false;
 | |
|     llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
 | |
|     if (Invalid)
 | |
|       return StrTokSpellingLoc;
 | |
|     
 | |
|     const char *StrData = Buffer.data()+LocInfo.second;
 | |
|     
 | |
|     // Create a langops struct and enable trigraphs.  This is sufficient for
 | |
|     // relexing tokens.
 | |
|     LangOptions LangOpts;
 | |
|     LangOpts.Trigraphs = true;
 | |
|     
 | |
|     // Create a lexer starting at the beginning of this token.
 | |
|     Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
 | |
|                    Buffer.end());
 | |
|     Token TheTok;
 | |
|     TheLexer.LexFromRawLexer(TheTok);
 | |
|     
 | |
|     // Use the StringLiteralParser to compute the length of the string in bytes.
 | |
|     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
 | |
|     unsigned TokNumBytes = SLP.GetStringLength();
 | |
|     
 | |
|     // If the byte is in this token, return the location of the byte.
 | |
|     if (ByteNo < TokNumBytes ||
 | |
|         (ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
 | |
|       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 
 | |
|       
 | |
|       // Now that we know the offset of the token in the spelling, use the
 | |
|       // preprocessor to get the offset in the original source.
 | |
|       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
 | |
|     }
 | |
|     
 | |
|     // Move to the next string token.
 | |
|     ++TokNo;
 | |
|     ByteNo -= TokNumBytes;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | |
| /// corresponds to, e.g. "sizeof" or "[pre]++".
 | |
| const char *UnaryOperator::getOpcodeStr(Opcode Op) {
 | |
|   switch (Op) {
 | |
|   default: assert(0 && "Unknown unary operator");
 | |
|   case UO_PostInc: return "++";
 | |
|   case UO_PostDec: return "--";
 | |
|   case UO_PreInc:  return "++";
 | |
|   case UO_PreDec:  return "--";
 | |
|   case UO_AddrOf:  return "&";
 | |
|   case UO_Deref:   return "*";
 | |
|   case UO_Plus:    return "+";
 | |
|   case UO_Minus:   return "-";
 | |
|   case UO_Not:     return "~";
 | |
|   case UO_LNot:    return "!";
 | |
|   case UO_Real:    return "__real";
 | |
|   case UO_Imag:    return "__imag";
 | |
|   case UO_Extension: return "__extension__";
 | |
|   }
 | |
| }
 | |
| 
 | |
| UnaryOperatorKind
 | |
| UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
 | |
|   switch (OO) {
 | |
|   default: assert(false && "No unary operator for overloaded function");
 | |
|   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
 | |
|   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
 | |
|   case OO_Amp:        return UO_AddrOf;
 | |
|   case OO_Star:       return UO_Deref;
 | |
|   case OO_Plus:       return UO_Plus;
 | |
|   case OO_Minus:      return UO_Minus;
 | |
|   case OO_Tilde:      return UO_Not;
 | |
|   case OO_Exclaim:    return UO_LNot;
 | |
|   }
 | |
| }
 | |
| 
 | |
| OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
 | |
|   switch (Opc) {
 | |
|   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
 | |
|   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
 | |
|   case UO_AddrOf: return OO_Amp;
 | |
|   case UO_Deref: return OO_Star;
 | |
|   case UO_Plus: return OO_Plus;
 | |
|   case UO_Minus: return OO_Minus;
 | |
|   case UO_Not: return OO_Tilde;
 | |
|   case UO_LNot: return OO_Exclaim;
 | |
|   default: return OO_None;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Postfix Operators.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
 | |
|                    Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
 | |
|                    SourceLocation rparenloc)
 | |
|   : Expr(SC, t, VK, OK_Ordinary,
 | |
|          fn->isTypeDependent(),
 | |
|          fn->isValueDependent(),
 | |
|          fn->containsUnexpandedParameterPack()),
 | |
|     NumArgs(numargs) {
 | |
| 
 | |
|   SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
 | |
|   SubExprs[FN] = fn;
 | |
|   for (unsigned i = 0; i != numargs; ++i) {
 | |
|     if (args[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (args[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (args[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
 | |
|   }
 | |
| 
 | |
|   CallExprBits.NumPreArgs = NumPreArgs;
 | |
|   RParenLoc = rparenloc;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
 | |
|                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
 | |
|   : Expr(CallExprClass, t, VK, OK_Ordinary,
 | |
|          fn->isTypeDependent(),
 | |
|          fn->isValueDependent(),
 | |
|          fn->containsUnexpandedParameterPack()),
 | |
|     NumArgs(numargs) {
 | |
| 
 | |
|   SubExprs = new (C) Stmt*[numargs+PREARGS_START];
 | |
|   SubExprs[FN] = fn;
 | |
|   for (unsigned i = 0; i != numargs; ++i) {
 | |
|     if (args[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (args[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (args[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     SubExprs[i+PREARGS_START] = args[i];
 | |
|   }
 | |
| 
 | |
|   CallExprBits.NumPreArgs = 0;
 | |
|   RParenLoc = rparenloc;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
 | |
|   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
 | |
|   // FIXME: Why do we allocate this?
 | |
|   SubExprs = new (C) Stmt*[PREARGS_START];
 | |
|   CallExprBits.NumPreArgs = 0;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
 | |
|                    EmptyShell Empty)
 | |
|   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
 | |
|   // FIXME: Why do we allocate this?
 | |
|   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
 | |
|   CallExprBits.NumPreArgs = NumPreArgs;
 | |
| }
 | |
| 
 | |
| Decl *CallExpr::getCalleeDecl() {
 | |
|   Expr *CEE = getCallee()->IgnoreParenCasts();
 | |
|   // If we're calling a dereference, look at the pointer instead.
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
 | |
|     if (BO->isPtrMemOp())
 | |
|       CEE = BO->getRHS()->IgnoreParenCasts();
 | |
|   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
 | |
|     if (UO->getOpcode() == UO_Deref)
 | |
|       CEE = UO->getSubExpr()->IgnoreParenCasts();
 | |
|   }
 | |
|   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
 | |
|     return DRE->getDecl();
 | |
|   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
 | |
|     return ME->getMemberDecl();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| FunctionDecl *CallExpr::getDirectCallee() {
 | |
|   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
 | |
| }
 | |
| 
 | |
| /// setNumArgs - This changes the number of arguments present in this call.
 | |
| /// Any orphaned expressions are deleted by this, and any new operands are set
 | |
| /// to null.
 | |
| void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
 | |
|   // No change, just return.
 | |
|   if (NumArgs == getNumArgs()) return;
 | |
| 
 | |
|   // If shrinking # arguments, just delete the extras and forgot them.
 | |
|   if (NumArgs < getNumArgs()) {
 | |
|     this->NumArgs = NumArgs;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we are growing the # arguments.  New an bigger argument array.
 | |
|   unsigned NumPreArgs = getNumPreArgs();
 | |
|   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
 | |
|   // Copy over args.
 | |
|   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
 | |
|     NewSubExprs[i] = SubExprs[i];
 | |
|   // Null out new args.
 | |
|   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
 | |
|        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
 | |
|     NewSubExprs[i] = 0;
 | |
| 
 | |
|   if (SubExprs) C.Deallocate(SubExprs);
 | |
|   SubExprs = NewSubExprs;
 | |
|   this->NumArgs = NumArgs;
 | |
| }
 | |
| 
 | |
| /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
 | |
| /// not, return 0.
 | |
| unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
 | |
|   // All simple function calls (e.g. func()) are implicitly cast to pointer to
 | |
|   // function. As a result, we try and obtain the DeclRefExpr from the
 | |
|   // ImplicitCastExpr.
 | |
|   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
 | |
|   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
 | |
|     return 0;
 | |
| 
 | |
|   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
 | |
|   if (!DRE)
 | |
|     return 0;
 | |
| 
 | |
|   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
 | |
|   if (!FDecl)
 | |
|     return 0;
 | |
| 
 | |
|   if (!FDecl->getIdentifier())
 | |
|     return 0;
 | |
| 
 | |
|   return FDecl->getBuiltinID();
 | |
| }
 | |
| 
 | |
| QualType CallExpr::getCallReturnType() const {
 | |
|   QualType CalleeType = getCallee()->getType();
 | |
|   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
 | |
|     CalleeType = FnTypePtr->getPointeeType();
 | |
|   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
 | |
|     CalleeType = BPT->getPointeeType();
 | |
|   else if (const MemberPointerType *MPT
 | |
|                                       = CalleeType->getAs<MemberPointerType>())
 | |
|     CalleeType = MPT->getPointeeType();
 | |
|     
 | |
|   const FunctionType *FnType = CalleeType->getAs<FunctionType>();
 | |
|   return FnType->getResultType();
 | |
| }
 | |
| 
 | |
| SourceRange CallExpr::getSourceRange() const {
 | |
|   if (isa<CXXOperatorCallExpr>(this))
 | |
|     return cast<CXXOperatorCallExpr>(this)->getSourceRange();
 | |
| 
 | |
|   SourceLocation begin = getCallee()->getLocStart();
 | |
|   if (begin.isInvalid() && getNumArgs() > 0)
 | |
|     begin = getArg(0)->getLocStart();
 | |
|   SourceLocation end = getRParenLoc();
 | |
|   if (end.isInvalid() && getNumArgs() > 0)
 | |
|     end = getArg(getNumArgs() - 1)->getLocEnd();
 | |
|   return SourceRange(begin, end);
 | |
| }
 | |
| 
 | |
| OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type, 
 | |
|                                    SourceLocation OperatorLoc,
 | |
|                                    TypeSourceInfo *tsi, 
 | |
|                                    OffsetOfNode* compsPtr, unsigned numComps, 
 | |
|                                    Expr** exprsPtr, unsigned numExprs,
 | |
|                                    SourceLocation RParenLoc) {
 | |
|   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
 | |
|                          sizeof(OffsetOfNode) * numComps + 
 | |
|                          sizeof(Expr*) * numExprs);
 | |
| 
 | |
|   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
 | |
|                                 exprsPtr, numExprs, RParenLoc);
 | |
| }
 | |
| 
 | |
| OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
 | |
|                                         unsigned numComps, unsigned numExprs) {
 | |
|   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
 | |
|                          sizeof(OffsetOfNode) * numComps +
 | |
|                          sizeof(Expr*) * numExprs);
 | |
|   return new (Mem) OffsetOfExpr(numComps, numExprs);
 | |
| }
 | |
| 
 | |
| OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type, 
 | |
|                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
 | |
|                            OffsetOfNode* compsPtr, unsigned numComps, 
 | |
|                            Expr** exprsPtr, unsigned numExprs,
 | |
|                            SourceLocation RParenLoc)
 | |
|   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
 | |
|          /*TypeDependent=*/false, 
 | |
|          /*ValueDependent=*/tsi->getType()->isDependentType(),
 | |
|          tsi->getType()->containsUnexpandedParameterPack()),
 | |
|     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 
 | |
|     NumComps(numComps), NumExprs(numExprs) 
 | |
| {
 | |
|   for(unsigned i = 0; i < numComps; ++i) {
 | |
|     setComponent(i, compsPtr[i]);
 | |
|   }
 | |
|   
 | |
|   for(unsigned i = 0; i < numExprs; ++i) {
 | |
|     if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (exprsPtr[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     setIndexExpr(i, exprsPtr[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
 | |
|   assert(getKind() == Field || getKind() == Identifier);
 | |
|   if (getKind() == Field)
 | |
|     return getField()->getIdentifier();
 | |
|   
 | |
|   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
 | |
| }
 | |
| 
 | |
| MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
 | |
|                                NestedNameSpecifierLoc QualifierLoc,
 | |
|                                ValueDecl *memberdecl,
 | |
|                                DeclAccessPair founddecl,
 | |
|                                DeclarationNameInfo nameinfo,
 | |
|                                const TemplateArgumentListInfo *targs,
 | |
|                                QualType ty,
 | |
|                                ExprValueKind vk,
 | |
|                                ExprObjectKind ok) {
 | |
|   std::size_t Size = sizeof(MemberExpr);
 | |
| 
 | |
|   bool hasQualOrFound = (QualifierLoc ||
 | |
|                          founddecl.getDecl() != memberdecl ||
 | |
|                          founddecl.getAccess() != memberdecl->getAccess());
 | |
|   if (hasQualOrFound)
 | |
|     Size += sizeof(MemberNameQualifier);
 | |
| 
 | |
|   if (targs)
 | |
|     Size += ExplicitTemplateArgumentList::sizeFor(*targs);
 | |
| 
 | |
|   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
 | |
|   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
 | |
|                                        ty, vk, ok);
 | |
| 
 | |
|   if (hasQualOrFound) {
 | |
|     // FIXME: Wrong. We should be looking at the member declaration we found.
 | |
|     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
 | |
|       E->setValueDependent(true);
 | |
|       E->setTypeDependent(true);
 | |
|     }
 | |
|     E->HasQualifierOrFoundDecl = true;
 | |
| 
 | |
|     MemberNameQualifier *NQ = E->getMemberQualifier();
 | |
|     NQ->QualifierLoc = QualifierLoc;
 | |
|     NQ->FoundDecl = founddecl;
 | |
|   }
 | |
| 
 | |
|   if (targs) {
 | |
|     E->HasExplicitTemplateArgumentList = true;
 | |
|     E->getExplicitTemplateArgs().initializeFrom(*targs);
 | |
|   }
 | |
| 
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| SourceRange MemberExpr::getSourceRange() const {
 | |
|   SourceLocation StartLoc;
 | |
|   if (isImplicitAccess()) {
 | |
|     if (hasQualifier())
 | |
|       StartLoc = getQualifierLoc().getBeginLoc();
 | |
|     else
 | |
|       StartLoc = MemberLoc;
 | |
|   } else {
 | |
|     // FIXME: We don't want this to happen. Rather, we should be able to
 | |
|     // detect all kinds of implicit accesses more cleanly.
 | |
|     StartLoc = getBase()->getLocStart();
 | |
|     if (StartLoc.isInvalid())
 | |
|       StartLoc = MemberLoc;
 | |
|   }
 | |
|   
 | |
|   SourceLocation EndLoc = 
 | |
|     HasExplicitTemplateArgumentList? getRAngleLoc() 
 | |
|                                    : getMemberNameInfo().getEndLoc();
 | |
|   
 | |
|   return SourceRange(StartLoc, EndLoc);
 | |
| }
 | |
| 
 | |
| const char *CastExpr::getCastKindName() const {
 | |
|   switch (getCastKind()) {
 | |
|   case CK_Dependent:
 | |
|     return "Dependent";
 | |
|   case CK_BitCast:
 | |
|     return "BitCast";
 | |
|   case CK_LValueBitCast:
 | |
|     return "LValueBitCast";
 | |
|   case CK_LValueToRValue:
 | |
|     return "LValueToRValue";
 | |
|   case CK_GetObjCProperty:
 | |
|     return "GetObjCProperty";
 | |
|   case CK_NoOp:
 | |
|     return "NoOp";
 | |
|   case CK_BaseToDerived:
 | |
|     return "BaseToDerived";
 | |
|   case CK_DerivedToBase:
 | |
|     return "DerivedToBase";
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|     return "UncheckedDerivedToBase";
 | |
|   case CK_Dynamic:
 | |
|     return "Dynamic";
 | |
|   case CK_ToUnion:
 | |
|     return "ToUnion";
 | |
|   case CK_ArrayToPointerDecay:
 | |
|     return "ArrayToPointerDecay";
 | |
|   case CK_FunctionToPointerDecay:
 | |
|     return "FunctionToPointerDecay";
 | |
|   case CK_NullToMemberPointer:
 | |
|     return "NullToMemberPointer";
 | |
|   case CK_NullToPointer:
 | |
|     return "NullToPointer";
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|     return "BaseToDerivedMemberPointer";
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|     return "DerivedToBaseMemberPointer";
 | |
|   case CK_UserDefinedConversion:
 | |
|     return "UserDefinedConversion";
 | |
|   case CK_ConstructorConversion:
 | |
|     return "ConstructorConversion";
 | |
|   case CK_IntegralToPointer:
 | |
|     return "IntegralToPointer";
 | |
|   case CK_PointerToIntegral:
 | |
|     return "PointerToIntegral";
 | |
|   case CK_PointerToBoolean:
 | |
|     return "PointerToBoolean";
 | |
|   case CK_ToVoid:
 | |
|     return "ToVoid";
 | |
|   case CK_VectorSplat:
 | |
|     return "VectorSplat";
 | |
|   case CK_IntegralCast:
 | |
|     return "IntegralCast";
 | |
|   case CK_IntegralToBoolean:
 | |
|     return "IntegralToBoolean";
 | |
|   case CK_IntegralToFloating:
 | |
|     return "IntegralToFloating";
 | |
|   case CK_FloatingToIntegral:
 | |
|     return "FloatingToIntegral";
 | |
|   case CK_FloatingCast:
 | |
|     return "FloatingCast";
 | |
|   case CK_FloatingToBoolean:
 | |
|     return "FloatingToBoolean";
 | |
|   case CK_MemberPointerToBoolean:
 | |
|     return "MemberPointerToBoolean";
 | |
|   case CK_AnyPointerToObjCPointerCast:
 | |
|     return "AnyPointerToObjCPointerCast";
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|     return "AnyPointerToBlockPointerCast";
 | |
|   case CK_ObjCObjectLValueCast:
 | |
|     return "ObjCObjectLValueCast";
 | |
|   case CK_FloatingRealToComplex:
 | |
|     return "FloatingRealToComplex";
 | |
|   case CK_FloatingComplexToReal:
 | |
|     return "FloatingComplexToReal";
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|     return "FloatingComplexToBoolean";
 | |
|   case CK_FloatingComplexCast:
 | |
|     return "FloatingComplexCast";
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|     return "FloatingComplexToIntegralComplex";
 | |
|   case CK_IntegralRealToComplex:
 | |
|     return "IntegralRealToComplex";
 | |
|   case CK_IntegralComplexToReal:
 | |
|     return "IntegralComplexToReal";
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|     return "IntegralComplexToBoolean";
 | |
|   case CK_IntegralComplexCast:
 | |
|     return "IntegralComplexCast";
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|     return "IntegralComplexToFloatingComplex";
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled cast kind!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Expr *CastExpr::getSubExprAsWritten() {
 | |
|   Expr *SubExpr = 0;
 | |
|   CastExpr *E = this;
 | |
|   do {
 | |
|     SubExpr = E->getSubExpr();
 | |
|     
 | |
|     // Skip any temporary bindings; they're implicit.
 | |
|     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
 | |
|       SubExpr = Binder->getSubExpr();
 | |
|     
 | |
|     // Conversions by constructor and conversion functions have a
 | |
|     // subexpression describing the call; strip it off.
 | |
|     if (E->getCastKind() == CK_ConstructorConversion)
 | |
|       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
 | |
|     else if (E->getCastKind() == CK_UserDefinedConversion)
 | |
|       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
 | |
|     
 | |
|     // If the subexpression we're left with is an implicit cast, look
 | |
|     // through that, too.
 | |
|   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));  
 | |
|   
 | |
|   return SubExpr;
 | |
| }
 | |
| 
 | |
| CXXBaseSpecifier **CastExpr::path_buffer() {
 | |
|   switch (getStmtClass()) {
 | |
| #define ABSTRACT_STMT(x)
 | |
| #define CASTEXPR(Type, Base) \
 | |
|   case Stmt::Type##Class: \
 | |
|     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
 | |
| #define STMT(Type, Base)
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   default:
 | |
|     llvm_unreachable("non-cast expressions not possible here");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CastExpr::setCastPath(const CXXCastPath &Path) {
 | |
|   assert(Path.size() == path_size());
 | |
|   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
 | |
| }
 | |
| 
 | |
| ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
 | |
|                                            CastKind Kind, Expr *Operand,
 | |
|                                            const CXXCastPath *BasePath,
 | |
|                                            ExprValueKind VK) {
 | |
|   unsigned PathSize = (BasePath ? BasePath->size() : 0);
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   ImplicitCastExpr *E =
 | |
|     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
 | |
|   if (PathSize) E->setCastPath(*BasePath);
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
 | |
|                                                 unsigned PathSize) {
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
 | |
| }
 | |
| 
 | |
| 
 | |
| CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
 | |
|                                        ExprValueKind VK, CastKind K, Expr *Op,
 | |
|                                        const CXXCastPath *BasePath,
 | |
|                                        TypeSourceInfo *WrittenTy,
 | |
|                                        SourceLocation L, SourceLocation R) {
 | |
|   unsigned PathSize = (BasePath ? BasePath->size() : 0);
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   CStyleCastExpr *E =
 | |
|     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
 | |
|   if (PathSize) E->setCastPath(*BasePath);
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
 | |
| }
 | |
| 
 | |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | |
| /// corresponds to, e.g. "<<=".
 | |
| const char *BinaryOperator::getOpcodeStr(Opcode Op) {
 | |
|   switch (Op) {
 | |
|   case BO_PtrMemD:   return ".*";
 | |
|   case BO_PtrMemI:   return "->*";
 | |
|   case BO_Mul:       return "*";
 | |
|   case BO_Div:       return "/";
 | |
|   case BO_Rem:       return "%";
 | |
|   case BO_Add:       return "+";
 | |
|   case BO_Sub:       return "-";
 | |
|   case BO_Shl:       return "<<";
 | |
|   case BO_Shr:       return ">>";
 | |
|   case BO_LT:        return "<";
 | |
|   case BO_GT:        return ">";
 | |
|   case BO_LE:        return "<=";
 | |
|   case BO_GE:        return ">=";
 | |
|   case BO_EQ:        return "==";
 | |
|   case BO_NE:        return "!=";
 | |
|   case BO_And:       return "&";
 | |
|   case BO_Xor:       return "^";
 | |
|   case BO_Or:        return "|";
 | |
|   case BO_LAnd:      return "&&";
 | |
|   case BO_LOr:       return "||";
 | |
|   case BO_Assign:    return "=";
 | |
|   case BO_MulAssign: return "*=";
 | |
|   case BO_DivAssign: return "/=";
 | |
|   case BO_RemAssign: return "%=";
 | |
|   case BO_AddAssign: return "+=";
 | |
|   case BO_SubAssign: return "-=";
 | |
|   case BO_ShlAssign: return "<<=";
 | |
|   case BO_ShrAssign: return ">>=";
 | |
|   case BO_AndAssign: return "&=";
 | |
|   case BO_XorAssign: return "^=";
 | |
|   case BO_OrAssign:  return "|=";
 | |
|   case BO_Comma:     return ",";
 | |
|   }
 | |
| 
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| BinaryOperatorKind
 | |
| BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
 | |
|   switch (OO) {
 | |
|   default: assert(false && "Not an overloadable binary operator");
 | |
|   case OO_Plus: return BO_Add;
 | |
|   case OO_Minus: return BO_Sub;
 | |
|   case OO_Star: return BO_Mul;
 | |
|   case OO_Slash: return BO_Div;
 | |
|   case OO_Percent: return BO_Rem;
 | |
|   case OO_Caret: return BO_Xor;
 | |
|   case OO_Amp: return BO_And;
 | |
|   case OO_Pipe: return BO_Or;
 | |
|   case OO_Equal: return BO_Assign;
 | |
|   case OO_Less: return BO_LT;
 | |
|   case OO_Greater: return BO_GT;
 | |
|   case OO_PlusEqual: return BO_AddAssign;
 | |
|   case OO_MinusEqual: return BO_SubAssign;
 | |
|   case OO_StarEqual: return BO_MulAssign;
 | |
|   case OO_SlashEqual: return BO_DivAssign;
 | |
|   case OO_PercentEqual: return BO_RemAssign;
 | |
|   case OO_CaretEqual: return BO_XorAssign;
 | |
|   case OO_AmpEqual: return BO_AndAssign;
 | |
|   case OO_PipeEqual: return BO_OrAssign;
 | |
|   case OO_LessLess: return BO_Shl;
 | |
|   case OO_GreaterGreater: return BO_Shr;
 | |
|   case OO_LessLessEqual: return BO_ShlAssign;
 | |
|   case OO_GreaterGreaterEqual: return BO_ShrAssign;
 | |
|   case OO_EqualEqual: return BO_EQ;
 | |
|   case OO_ExclaimEqual: return BO_NE;
 | |
|   case OO_LessEqual: return BO_LE;
 | |
|   case OO_GreaterEqual: return BO_GE;
 | |
|   case OO_AmpAmp: return BO_LAnd;
 | |
|   case OO_PipePipe: return BO_LOr;
 | |
|   case OO_Comma: return BO_Comma;
 | |
|   case OO_ArrowStar: return BO_PtrMemI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
 | |
|   static const OverloadedOperatorKind OverOps[] = {
 | |
|     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
 | |
|     OO_Star, OO_Slash, OO_Percent,
 | |
|     OO_Plus, OO_Minus,
 | |
|     OO_LessLess, OO_GreaterGreater,
 | |
|     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
 | |
|     OO_EqualEqual, OO_ExclaimEqual,
 | |
|     OO_Amp,
 | |
|     OO_Caret,
 | |
|     OO_Pipe,
 | |
|     OO_AmpAmp,
 | |
|     OO_PipePipe,
 | |
|     OO_Equal, OO_StarEqual,
 | |
|     OO_SlashEqual, OO_PercentEqual,
 | |
|     OO_PlusEqual, OO_MinusEqual,
 | |
|     OO_LessLessEqual, OO_GreaterGreaterEqual,
 | |
|     OO_AmpEqual, OO_CaretEqual,
 | |
|     OO_PipeEqual,
 | |
|     OO_Comma
 | |
|   };
 | |
|   return OverOps[Opc];
 | |
| }
 | |
| 
 | |
| InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
 | |
|                            Expr **initExprs, unsigned numInits,
 | |
|                            SourceLocation rbraceloc)
 | |
|   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
 | |
|          false),
 | |
|     InitExprs(C, numInits),
 | |
|     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
 | |
|     HadArrayRangeDesignator(false) 
 | |
| {      
 | |
|   for (unsigned I = 0; I != numInits; ++I) {
 | |
|     if (initExprs[I]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (initExprs[I]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (initExprs[I]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
|   }
 | |
|       
 | |
|   InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
 | |
| }
 | |
| 
 | |
| void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
 | |
|   if (NumInits > InitExprs.size())
 | |
|     InitExprs.reserve(C, NumInits);
 | |
| }
 | |
| 
 | |
| void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
 | |
|   InitExprs.resize(C, NumInits, 0);
 | |
| }
 | |
| 
 | |
| Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
 | |
|   if (Init >= InitExprs.size()) {
 | |
|     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
 | |
|     InitExprs.back() = expr;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
 | |
|   InitExprs[Init] = expr;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void InitListExpr::setArrayFiller(Expr *filler) {
 | |
|   ArrayFillerOrUnionFieldInit = filler;
 | |
|   // Fill out any "holes" in the array due to designated initializers.
 | |
|   Expr **inits = getInits();
 | |
|   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
 | |
|     if (inits[i] == 0)
 | |
|       inits[i] = filler;
 | |
| }
 | |
| 
 | |
| SourceRange InitListExpr::getSourceRange() const {
 | |
|   if (SyntacticForm)
 | |
|     return SyntacticForm->getSourceRange();
 | |
|   SourceLocation Beg = LBraceLoc, End = RBraceLoc;
 | |
|   if (Beg.isInvalid()) {
 | |
|     // Find the first non-null initializer.
 | |
|     for (InitExprsTy::const_iterator I = InitExprs.begin(),
 | |
|                                      E = InitExprs.end(); 
 | |
|       I != E; ++I) {
 | |
|       if (Stmt *S = *I) {
 | |
|         Beg = S->getLocStart();
 | |
|         break;
 | |
|       }  
 | |
|     }
 | |
|   }
 | |
|   if (End.isInvalid()) {
 | |
|     // Find the first non-null initializer from the end.
 | |
|     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
 | |
|                                              E = InitExprs.rend();
 | |
|       I != E; ++I) {
 | |
|       if (Stmt *S = *I) {
 | |
|         End = S->getSourceRange().getEnd();
 | |
|         break;
 | |
|       }  
 | |
|     }
 | |
|   }
 | |
|   return SourceRange(Beg, End);
 | |
| }
 | |
| 
 | |
| /// getFunctionType - Return the underlying function type for this block.
 | |
| ///
 | |
| const FunctionType *BlockExpr::getFunctionType() const {
 | |
|   return getType()->getAs<BlockPointerType>()->
 | |
|                     getPointeeType()->getAs<FunctionType>();
 | |
| }
 | |
| 
 | |
| SourceLocation BlockExpr::getCaretLocation() const {
 | |
|   return TheBlock->getCaretLocation();
 | |
| }
 | |
| const Stmt *BlockExpr::getBody() const {
 | |
|   return TheBlock->getBody();
 | |
| }
 | |
| Stmt *BlockExpr::getBody() {
 | |
|   return TheBlock->getBody();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Generic Expression Routines
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isUnusedResultAWarning - Return true if this immediate expression should
 | |
| /// be warned about if the result is unused.  If so, fill in Loc and Ranges
 | |
| /// with location to warn on and the source range[s] to report with the
 | |
| /// warning.
 | |
| bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
 | |
|                                   SourceRange &R2, ASTContext &Ctx) const {
 | |
|   // Don't warn if the expr is type dependent. The type could end up
 | |
|   // instantiating to void.
 | |
|   if (isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   switch (getStmtClass()) {
 | |
|   default:
 | |
|     if (getType()->isVoidType())
 | |
|       return false;
 | |
|     Loc = getExprLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
|   case ParenExprClass:
 | |
|     return cast<ParenExpr>(this)->getSubExpr()->
 | |
|       isUnusedResultAWarning(Loc, R1, R2, Ctx);
 | |
|   case GenericSelectionExprClass:
 | |
|     return cast<GenericSelectionExpr>(this)->getResultExpr()->
 | |
|       isUnusedResultAWarning(Loc, R1, R2, Ctx);
 | |
|   case UnaryOperatorClass: {
 | |
|     const UnaryOperator *UO = cast<UnaryOperator>(this);
 | |
| 
 | |
|     switch (UO->getOpcode()) {
 | |
|     default: break;
 | |
|     case UO_PostInc:
 | |
|     case UO_PostDec:
 | |
|     case UO_PreInc:
 | |
|     case UO_PreDec:                 // ++/--
 | |
|       return false;  // Not a warning.
 | |
|     case UO_Deref:
 | |
|       // Dereferencing a volatile pointer is a side-effect.
 | |
|       if (Ctx.getCanonicalType(getType()).isVolatileQualified())
 | |
|         return false;
 | |
|       break;
 | |
|     case UO_Real:
 | |
|     case UO_Imag:
 | |
|       // accessing a piece of a volatile complex is a side-effect.
 | |
|       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
 | |
|           .isVolatileQualified())
 | |
|         return false;
 | |
|       break;
 | |
|     case UO_Extension:
 | |
|       return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
 | |
|     }
 | |
|     Loc = UO->getOperatorLoc();
 | |
|     R1 = UO->getSubExpr()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case BinaryOperatorClass: {
 | |
|     const BinaryOperator *BO = cast<BinaryOperator>(this);
 | |
|     switch (BO->getOpcode()) {
 | |
|       default:
 | |
|         break;
 | |
|       // Consider the RHS of comma for side effects. LHS was checked by
 | |
|       // Sema::CheckCommaOperands.
 | |
|       case BO_Comma:
 | |
|         // ((foo = <blah>), 0) is an idiom for hiding the result (and
 | |
|         // lvalue-ness) of an assignment written in a macro.
 | |
|         if (IntegerLiteral *IE =
 | |
|               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
 | |
|           if (IE->getValue() == 0)
 | |
|             return false;
 | |
|         return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
 | |
|       // Consider '||', '&&' to have side effects if the LHS or RHS does.
 | |
|       case BO_LAnd:
 | |
|       case BO_LOr:
 | |
|         if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
 | |
|             !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
 | |
|           return false;
 | |
|         break;
 | |
|     }
 | |
|     if (BO->isAssignmentOp())
 | |
|       return false;
 | |
|     Loc = BO->getOperatorLoc();
 | |
|     R1 = BO->getLHS()->getSourceRange();
 | |
|     R2 = BO->getRHS()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case CompoundAssignOperatorClass:
 | |
|   case VAArgExprClass:
 | |
|     return false;
 | |
| 
 | |
|   case ConditionalOperatorClass: {
 | |
|     // If only one of the LHS or RHS is a warning, the operator might
 | |
|     // be being used for control flow. Only warn if both the LHS and
 | |
|     // RHS are warnings.
 | |
|     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
 | |
|     if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
 | |
|       return false;
 | |
|     if (!Exp->getLHS())
 | |
|       return true;
 | |
|     return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
 | |
|   }
 | |
| 
 | |
|   case MemberExprClass:
 | |
|     // If the base pointer or element is to a volatile pointer/field, accessing
 | |
|     // it is a side effect.
 | |
|     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
 | |
|       return false;
 | |
|     Loc = cast<MemberExpr>(this)->getMemberLoc();
 | |
|     R1 = SourceRange(Loc, Loc);
 | |
|     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
 | |
|     return true;
 | |
| 
 | |
|   case ArraySubscriptExprClass:
 | |
|     // If the base pointer or element is to a volatile pointer/field, accessing
 | |
|     // it is a side effect.
 | |
|     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
 | |
|       return false;
 | |
|     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
 | |
|     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
 | |
|     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
 | |
|     return true;
 | |
| 
 | |
|   case CallExprClass:
 | |
|   case CXXOperatorCallExprClass:
 | |
|   case CXXMemberCallExprClass: {
 | |
|     // If this is a direct call, get the callee.
 | |
|     const CallExpr *CE = cast<CallExpr>(this);
 | |
|     if (const Decl *FD = CE->getCalleeDecl()) {
 | |
|       // If the callee has attribute pure, const, or warn_unused_result, warn
 | |
|       // about it. void foo() { strlen("bar"); } should warn.
 | |
|       //
 | |
|       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
 | |
|       // updated to match for QoI.
 | |
|       if (FD->getAttr<WarnUnusedResultAttr>() ||
 | |
|           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
 | |
|         Loc = CE->getCallee()->getLocStart();
 | |
|         R1 = CE->getCallee()->getSourceRange();
 | |
| 
 | |
|         if (unsigned NumArgs = CE->getNumArgs())
 | |
|           R2 = SourceRange(CE->getArg(0)->getLocStart(),
 | |
|                            CE->getArg(NumArgs-1)->getLocEnd());
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case CXXTemporaryObjectExprClass:
 | |
|   case CXXConstructExprClass:
 | |
|     return false;
 | |
| 
 | |
|   case ObjCMessageExprClass: {
 | |
|     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
 | |
|     const ObjCMethodDecl *MD = ME->getMethodDecl();
 | |
|     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
 | |
|       Loc = getExprLoc();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case ObjCPropertyRefExprClass:
 | |
|     Loc = getExprLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
| 
 | |
|   case StmtExprClass: {
 | |
|     // Statement exprs don't logically have side effects themselves, but are
 | |
|     // sometimes used in macros in ways that give them a type that is unused.
 | |
|     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
 | |
|     // however, if the result of the stmt expr is dead, we don't want to emit a
 | |
|     // warning.
 | |
|     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
 | |
|     if (!CS->body_empty()) {
 | |
|       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
 | |
|         return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
 | |
|       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
 | |
|         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
 | |
|           return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
 | |
|     }
 | |
| 
 | |
|     if (getType()->isVoidType())
 | |
|       return false;
 | |
|     Loc = cast<StmtExpr>(this)->getLParenLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case CStyleCastExprClass:
 | |
|     // If this is an explicit cast to void, allow it.  People do this when they
 | |
|     // think they know what they're doing :).
 | |
|     if (getType()->isVoidType())
 | |
|       return false;
 | |
|     Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
 | |
|     R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
 | |
|     return true;
 | |
|   case CXXFunctionalCastExprClass: {
 | |
|     if (getType()->isVoidType())
 | |
|       return false;
 | |
|     const CastExpr *CE = cast<CastExpr>(this);
 | |
|     
 | |
|     // If this is a cast to void or a constructor conversion, check the operand.
 | |
|     // Otherwise, the result of the cast is unused.
 | |
|     if (CE->getCastKind() == CK_ToVoid ||
 | |
|         CE->getCastKind() == CK_ConstructorConversion)
 | |
|       return (cast<CastExpr>(this)->getSubExpr()
 | |
|               ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
 | |
|     Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
 | |
|     R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ImplicitCastExprClass:
 | |
|     // Check the operand, since implicit casts are inserted by Sema
 | |
|     return (cast<ImplicitCastExpr>(this)
 | |
|             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
 | |
| 
 | |
|   case CXXDefaultArgExprClass:
 | |
|     return (cast<CXXDefaultArgExpr>(this)
 | |
|             ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
 | |
| 
 | |
|   case CXXNewExprClass:
 | |
|     // FIXME: In theory, there might be new expressions that don't have side
 | |
|     // effects (e.g. a placement new with an uninitialized POD).
 | |
|   case CXXDeleteExprClass:
 | |
|     return false;
 | |
|   case CXXBindTemporaryExprClass:
 | |
|     return (cast<CXXBindTemporaryExpr>(this)
 | |
|             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
 | |
|   case ExprWithCleanupsClass:
 | |
|     return (cast<ExprWithCleanups>(this)
 | |
|             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isOBJCGCCandidate - Check if an expression is objc gc'able.
 | |
| /// returns true, if it is; false otherwise.
 | |
| bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
 | |
|   const Expr *E = IgnoreParens();
 | |
|   switch (E->getStmtClass()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ObjCIvarRefExprClass:
 | |
|     return true;
 | |
|   case Expr::UnaryOperatorClass:
 | |
|     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | |
|   case ImplicitCastExprClass:
 | |
|     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | |
|   case CStyleCastExprClass:
 | |
|     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | |
|   case DeclRefExprClass: {
 | |
|     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|       if (VD->hasGlobalStorage())
 | |
|         return true;
 | |
|       QualType T = VD->getType();
 | |
|       // dereferencing to a  pointer is always a gc'able candidate,
 | |
|       // unless it is __weak.
 | |
|       return T->isPointerType() &&
 | |
|              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case MemberExprClass: {
 | |
|     const MemberExpr *M = cast<MemberExpr>(E);
 | |
|     return M->getBase()->isOBJCGCCandidate(Ctx);
 | |
|   }
 | |
|   case ArraySubscriptExprClass:
 | |
|     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
 | |
|   if (isTypeDependent())
 | |
|     return false;
 | |
|   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
 | |
| }
 | |
| 
 | |
| static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
 | |
|                                           Expr::CanThrowResult CT2) {
 | |
|   // CanThrowResult constants are ordered so that the maximum is the correct
 | |
|   // merge result.
 | |
|   return CT1 > CT2 ? CT1 : CT2;
 | |
| }
 | |
| 
 | |
| static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
 | |
|   Expr *E = const_cast<Expr*>(CE);
 | |
|   Expr::CanThrowResult R = Expr::CT_Cannot;
 | |
|   for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
 | |
|     R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
 | |
|   }
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Decl *D,
 | |
|                                            bool NullThrows = true) {
 | |
|   if (!D)
 | |
|     return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
 | |
| 
 | |
|   // See if we can get a function type from the decl somehow.
 | |
|   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
 | |
|   if (!VD) // If we have no clue what we're calling, assume the worst.
 | |
|     return Expr::CT_Can;
 | |
| 
 | |
|   // As an extension, we assume that __attribute__((nothrow)) functions don't
 | |
|   // throw.
 | |
|   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
 | |
|     return Expr::CT_Cannot;
 | |
| 
 | |
|   QualType T = VD->getType();
 | |
|   const FunctionProtoType *FT;
 | |
|   if ((FT = T->getAs<FunctionProtoType>())) {
 | |
|   } else if (const PointerType *PT = T->getAs<PointerType>())
 | |
|     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
 | |
|   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
 | |
|     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
 | |
|   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
 | |
|     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
 | |
|   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
 | |
|     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   if (!FT)
 | |
|     return Expr::CT_Can;
 | |
| 
 | |
|   return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
 | |
| }
 | |
| 
 | |
| static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
 | |
|   if (DC->isTypeDependent())
 | |
|     return Expr::CT_Dependent;
 | |
| 
 | |
|   if (!DC->getTypeAsWritten()->isReferenceType())
 | |
|     return Expr::CT_Cannot;
 | |
| 
 | |
|   return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
 | |
| }
 | |
| 
 | |
| static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
 | |
|                                            const CXXTypeidExpr *DC) {
 | |
|   if (DC->isTypeOperand())
 | |
|     return Expr::CT_Cannot;
 | |
| 
 | |
|   Expr *Op = DC->getExprOperand();
 | |
|   if (Op->isTypeDependent())
 | |
|     return Expr::CT_Dependent;
 | |
| 
 | |
|   const RecordType *RT = Op->getType()->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return Expr::CT_Cannot;
 | |
| 
 | |
|   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
 | |
|     return Expr::CT_Cannot;
 | |
| 
 | |
|   if (Op->Classify(C).isPRValue())
 | |
|     return Expr::CT_Cannot;
 | |
| 
 | |
|   return Expr::CT_Can;
 | |
| }
 | |
| 
 | |
| Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
 | |
|   // C++ [expr.unary.noexcept]p3:
 | |
|   //   [Can throw] if in a potentially-evaluated context the expression would
 | |
|   //   contain:
 | |
|   switch (getStmtClass()) {
 | |
|   case CXXThrowExprClass:
 | |
|     //   - a potentially evaluated throw-expression
 | |
|     return CT_Can;
 | |
| 
 | |
|   case CXXDynamicCastExprClass: {
 | |
|     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
 | |
|     //     where T is a reference type, that requires a run-time check
 | |
|     CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
 | |
|   }
 | |
| 
 | |
|   case CXXTypeidExprClass:
 | |
|     //   - a potentially evaluated typeid expression applied to a glvalue
 | |
|     //     expression whose type is a polymorphic class type
 | |
|     return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
 | |
| 
 | |
|     //   - a potentially evaluated call to a function, member function, function
 | |
|     //     pointer, or member function pointer that does not have a non-throwing
 | |
|     //     exception-specification
 | |
|   case CallExprClass:
 | |
|   case CXXOperatorCallExprClass:
 | |
|   case CXXMemberCallExprClass: {
 | |
|     CanThrowResult CT = CanCalleeThrow(C,cast<CallExpr>(this)->getCalleeDecl());
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
 | |
|   }
 | |
| 
 | |
|   case CXXConstructExprClass:
 | |
|   case CXXTemporaryObjectExprClass: {
 | |
|     CanThrowResult CT = CanCalleeThrow(C,
 | |
|         cast<CXXConstructExpr>(this)->getConstructor());
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
 | |
|   }
 | |
| 
 | |
|   case CXXNewExprClass: {
 | |
|     CanThrowResult CT = MergeCanThrow(
 | |
|         CanCalleeThrow(C, cast<CXXNewExpr>(this)->getOperatorNew()),
 | |
|         CanCalleeThrow(C, cast<CXXNewExpr>(this)->getConstructor(),
 | |
|                        /*NullThrows*/false));
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
 | |
|   }
 | |
| 
 | |
|   case CXXDeleteExprClass: {
 | |
|     CanThrowResult CT = CanCalleeThrow(C,
 | |
|         cast<CXXDeleteExpr>(this)->getOperatorDelete());
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
 | |
|     // Unwrap exactly one implicit cast, which converts all pointers to void*.
 | |
|     if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
 | |
|       Arg = Cast->getSubExpr();
 | |
|     if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
 | |
|       if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
 | |
|         CanThrowResult CT2 = CanCalleeThrow(C,
 | |
|             cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
 | |
|         if (CT2 == CT_Can)
 | |
|           return CT2;
 | |
|         CT = MergeCanThrow(CT, CT2);
 | |
|       }
 | |
|     }
 | |
|     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
 | |
|   }
 | |
| 
 | |
|   case CXXBindTemporaryExprClass: {
 | |
|     // The bound temporary has to be destroyed again, which might throw.
 | |
|     CanThrowResult CT = CanCalleeThrow(C,
 | |
|       cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
 | |
|     if (CT == CT_Can)
 | |
|       return CT;
 | |
|     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
 | |
|   }
 | |
| 
 | |
|     // ObjC message sends are like function calls, but never have exception
 | |
|     // specs.
 | |
|   case ObjCMessageExprClass:
 | |
|   case ObjCPropertyRefExprClass:
 | |
|     return CT_Can;
 | |
| 
 | |
|     // Many other things have subexpressions, so we have to test those.
 | |
|     // Some are simple:
 | |
|   case ParenExprClass:
 | |
|   case MemberExprClass:
 | |
|   case CXXReinterpretCastExprClass:
 | |
|   case CXXConstCastExprClass:
 | |
|   case ConditionalOperatorClass:
 | |
|   case CompoundLiteralExprClass:
 | |
|   case ExtVectorElementExprClass:
 | |
|   case InitListExprClass:
 | |
|   case DesignatedInitExprClass:
 | |
|   case ParenListExprClass:
 | |
|   case VAArgExprClass:
 | |
|   case CXXDefaultArgExprClass:
 | |
|   case ExprWithCleanupsClass:
 | |
|   case ObjCIvarRefExprClass:
 | |
|   case ObjCIsaExprClass:
 | |
|   case ShuffleVectorExprClass:
 | |
|     return CanSubExprsThrow(C, this);
 | |
| 
 | |
|     // Some might be dependent for other reasons.
 | |
|   case UnaryOperatorClass:
 | |
|   case ArraySubscriptExprClass:
 | |
|   case ImplicitCastExprClass:
 | |
|   case CStyleCastExprClass:
 | |
|   case CXXStaticCastExprClass:
 | |
|   case CXXFunctionalCastExprClass:
 | |
|   case BinaryOperatorClass:
 | |
|   case CompoundAssignOperatorClass: {
 | |
|     CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
 | |
|     return MergeCanThrow(CT, CanSubExprsThrow(C, this));
 | |
|   }
 | |
| 
 | |
|     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
 | |
|   case StmtExprClass:
 | |
|     return CT_Can;
 | |
| 
 | |
|   case ChooseExprClass:
 | |
|     if (isTypeDependent() || isValueDependent())
 | |
|       return CT_Dependent;
 | |
|     return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
 | |
| 
 | |
|   case GenericSelectionExprClass:
 | |
|     if (cast<GenericSelectionExpr>(this)->isResultDependent())
 | |
|       return CT_Dependent;
 | |
|     return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
 | |
| 
 | |
|     // Some expressions are always dependent.
 | |
|   case DependentScopeDeclRefExprClass:
 | |
|   case CXXUnresolvedConstructExprClass:
 | |
|   case CXXDependentScopeMemberExprClass:
 | |
|     return CT_Dependent;
 | |
| 
 | |
|   default:
 | |
|     // All other expressions don't have subexpressions, or else they are
 | |
|     // unevaluated.
 | |
|     return CT_Cannot;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expr* Expr::IgnoreParens() {
 | |
|   Expr* E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (P->getOpcode() == UO_Extension) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|       if (!P->isResultDependent()) {
 | |
|         E = P->getResultExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
 | |
| /// or CastExprs or ImplicitCastExprs, returning their operand.
 | |
| Expr *Expr::IgnoreParenCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (P->getOpcode() == UO_Extension) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|       if (!P->isResultDependent()) {
 | |
|         E = P->getResultExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
 | |
| /// casts.  This is intended purely as a temporary workaround for code
 | |
| /// that hasn't yet been rewritten to do the right thing about those
 | |
| /// casts, and may disappear along with the last internal use.
 | |
| Expr *Expr::IgnoreParenLValueCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
 | |
|       if (P->getCastKind() == CK_LValueToRValue) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (P->getOpcode() == UO_Extension) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|       if (!P->isResultDependent()) {
 | |
|         E = P->getResultExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return E;
 | |
| }
 | |
|   
 | |
| Expr *Expr::IgnoreParenImpCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (P->getOpcode() == UO_Extension) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|       if (!P->isResultDependent()) {
 | |
|         E = P->getResultExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
 | |
| /// value (including ptr->int casts of the same size).  Strip off any
 | |
| /// ParenExpr or CastExprs, returning their operand.
 | |
| Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
 | |
|       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
 | |
|       // ptr<->int casts of the same width.  We also ignore all identity casts.
 | |
|       Expr *SE = P->getSubExpr();
 | |
| 
 | |
|       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
 | |
|         E = SE;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if ((E->getType()->isPointerType() ||
 | |
|            E->getType()->isIntegralType(Ctx)) &&
 | |
|           (SE->getType()->isPointerType() ||
 | |
|            SE->getType()->isIntegralType(Ctx)) &&
 | |
|           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
 | |
|         E = SE;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (P->getOpcode() == UO_Extension) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|       if (!P->isResultDependent()) {
 | |
|         E = P->getResultExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Expr::isDefaultArgument() const {
 | |
|   const Expr *E = this;
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
 | |
|     E = ICE->getSubExprAsWritten();
 | |
|   
 | |
|   return isa<CXXDefaultArgExpr>(E);
 | |
| }
 | |
| 
 | |
| /// \brief Skip over any no-op casts and any temporary-binding
 | |
| /// expressions.
 | |
| static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_NoOp)
 | |
|       E = ICE->getSubExpr();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
 | |
|     E = BE->getSubExpr();
 | |
| 
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_NoOp)
 | |
|       E = ICE->getSubExpr();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return E->IgnoreParens();
 | |
| }
 | |
| 
 | |
| /// isTemporaryObject - Determines if this expression produces a
 | |
| /// temporary of the given class type.
 | |
| bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
 | |
|   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
 | |
|     return false;
 | |
| 
 | |
|   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
 | |
| 
 | |
|   // Temporaries are by definition pr-values of class type.
 | |
|   if (!E->Classify(C).isPRValue()) {
 | |
|     // In this context, property reference is a message call and is pr-value.
 | |
|     if (!isa<ObjCPropertyRefExpr>(E))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Black-list a few cases which yield pr-values of class type that don't
 | |
|   // refer to temporaries of that type:
 | |
| 
 | |
|   // - implicit derived-to-base conversions
 | |
|   if (isa<ImplicitCastExpr>(E)) {
 | |
|     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
 | |
|     case CK_DerivedToBase:
 | |
|     case CK_UncheckedDerivedToBase:
 | |
|       return false;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // - member expressions (all)
 | |
|   if (isa<MemberExpr>(E))
 | |
|     return false;
 | |
| 
 | |
|   // - opaque values (all)
 | |
|   if (isa<OpaqueValueExpr>(E))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Expr::isImplicitCXXThis() const {
 | |
|   const Expr *E = this;
 | |
|   
 | |
|   // Strip away parentheses and casts we don't care about.
 | |
|   while (true) {
 | |
|     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
 | |
|       E = Paren->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|       if (ICE->getCastKind() == CK_NoOp ||
 | |
|           ICE->getCastKind() == CK_LValueToRValue ||
 | |
|           ICE->getCastKind() == CK_DerivedToBase || 
 | |
|           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
 | |
|         E = ICE->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (UnOp->getOpcode() == UO_Extension) {
 | |
|         E = UnOp->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
 | |
|     return This->isImplicit();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasAnyTypeDependentArguments - Determines if any of the expressions
 | |
| /// in Exprs is type-dependent.
 | |
| bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
 | |
|   for (unsigned I = 0; I < NumExprs; ++I)
 | |
|     if (Exprs[I]->isTypeDependent())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasAnyValueDependentArguments - Determines if any of the expressions
 | |
| /// in Exprs is value-dependent.
 | |
| bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
 | |
|   for (unsigned I = 0; I < NumExprs; ++I)
 | |
|     if (Exprs[I]->isValueDependent())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
 | |
|   // This function is attempting whether an expression is an initializer
 | |
|   // which can be evaluated at compile-time.  isEvaluatable handles most
 | |
|   // of the cases, but it can't deal with some initializer-specific
 | |
|   // expressions, and it can't deal with aggregates; we deal with those here,
 | |
|   // and fall back to isEvaluatable for the other cases.
 | |
| 
 | |
|   // If we ever capture reference-binding directly in the AST, we can
 | |
|   // kill the second parameter.
 | |
| 
 | |
|   if (IsForRef) {
 | |
|     EvalResult Result;
 | |
|     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
 | |
|   }
 | |
| 
 | |
|   switch (getStmtClass()) {
 | |
|   default: break;
 | |
|   case StringLiteralClass:
 | |
|   case ObjCStringLiteralClass:
 | |
|   case ObjCEncodeExprClass:
 | |
|     return true;
 | |
|   case CXXTemporaryObjectExprClass:
 | |
|   case CXXConstructExprClass: {
 | |
|     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
 | |
| 
 | |
|     // Only if it's
 | |
|     // 1) an application of the trivial default constructor or
 | |
|     if (!CE->getConstructor()->isTrivial()) return false;
 | |
|     if (!CE->getNumArgs()) return true;
 | |
| 
 | |
|     // 2) an elidable trivial copy construction of an operand which is
 | |
|     //    itself a constant initializer.  Note that we consider the
 | |
|     //    operand on its own, *not* as a reference binding.
 | |
|     return CE->isElidable() &&
 | |
|            CE->getArg(0)->isConstantInitializer(Ctx, false);
 | |
|   }
 | |
|   case CompoundLiteralExprClass: {
 | |
|     // This handles gcc's extension that allows global initializers like
 | |
|     // "struct x {int x;} x = (struct x) {};".
 | |
|     // FIXME: This accepts other cases it shouldn't!
 | |
|     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
 | |
|     return Exp->isConstantInitializer(Ctx, false);
 | |
|   }
 | |
|   case InitListExprClass: {
 | |
|     // FIXME: This doesn't deal with fields with reference types correctly.
 | |
|     // FIXME: This incorrectly allows pointers cast to integers to be assigned
 | |
|     // to bitfields.
 | |
|     const InitListExpr *Exp = cast<InitListExpr>(this);
 | |
|     unsigned numInits = Exp->getNumInits();
 | |
|     for (unsigned i = 0; i < numInits; i++) {
 | |
|       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case ImplicitValueInitExprClass:
 | |
|     return true;
 | |
|   case ParenExprClass:
 | |
|     return cast<ParenExpr>(this)->getSubExpr()
 | |
|       ->isConstantInitializer(Ctx, IsForRef);
 | |
|   case GenericSelectionExprClass:
 | |
|     if (cast<GenericSelectionExpr>(this)->isResultDependent())
 | |
|       return false;
 | |
|     return cast<GenericSelectionExpr>(this)->getResultExpr()
 | |
|       ->isConstantInitializer(Ctx, IsForRef);
 | |
|   case ChooseExprClass:
 | |
|     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
 | |
|       ->isConstantInitializer(Ctx, IsForRef);
 | |
|   case UnaryOperatorClass: {
 | |
|     const UnaryOperator* Exp = cast<UnaryOperator>(this);
 | |
|     if (Exp->getOpcode() == UO_Extension)
 | |
|       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
 | |
|     break;
 | |
|   }
 | |
|   case BinaryOperatorClass: {
 | |
|     // Special case &&foo - &&bar.  It would be nice to generalize this somehow
 | |
|     // but this handles the common case.
 | |
|     const BinaryOperator *Exp = cast<BinaryOperator>(this);
 | |
|     if (Exp->getOpcode() == BO_Sub &&
 | |
|         isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
 | |
|         isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   case CXXFunctionalCastExprClass:
 | |
|   case CXXStaticCastExprClass:
 | |
|   case ImplicitCastExprClass:
 | |
|   case CStyleCastExprClass:
 | |
|     // Handle casts with a destination that's a struct or union; this
 | |
|     // deals with both the gcc no-op struct cast extension and the
 | |
|     // cast-to-union extension.
 | |
|     if (getType()->isRecordType())
 | |
|       return cast<CastExpr>(this)->getSubExpr()
 | |
|         ->isConstantInitializer(Ctx, false);
 | |
|       
 | |
|     // Integer->integer casts can be handled here, which is important for
 | |
|     // things like (int)(&&x-&&y).  Scary but true.
 | |
|     if (getType()->isIntegerType() &&
 | |
|         cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
 | |
|       return cast<CastExpr>(this)->getSubExpr()
 | |
|         ->isConstantInitializer(Ctx, false);
 | |
|       
 | |
|     break;
 | |
|   }
 | |
|   return isEvaluatable(Ctx);
 | |
| }
 | |
| 
 | |
| /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 
 | |
| /// pointer constant or not, as well as the specific kind of constant detected.
 | |
| /// Null pointer constants can be integer constant expressions with the
 | |
| /// value zero, casts of zero to void*, nullptr (C++0X), or __null
 | |
| /// (a GNU extension).
 | |
| Expr::NullPointerConstantKind
 | |
| Expr::isNullPointerConstant(ASTContext &Ctx,
 | |
|                             NullPointerConstantValueDependence NPC) const {
 | |
|   if (isValueDependent()) {
 | |
|     switch (NPC) {
 | |
|     case NPC_NeverValueDependent:
 | |
|       assert(false && "Unexpected value dependent expression!");
 | |
|       // If the unthinkable happens, fall through to the safest alternative.
 | |
|         
 | |
|     case NPC_ValueDependentIsNull:
 | |
|       if (isTypeDependent() || getType()->isIntegralType(Ctx))
 | |
|         return NPCK_ZeroInteger;
 | |
|       else
 | |
|         return NPCK_NotNull;
 | |
|         
 | |
|     case NPC_ValueDependentIsNotNull:
 | |
|       return NPCK_NotNull;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Strip off a cast to void*, if it exists. Except in C++.
 | |
|   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
 | |
|     if (!Ctx.getLangOptions().CPlusPlus) {
 | |
|       // Check that it is a cast to void*.
 | |
|       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
 | |
|         QualType Pointee = PT->getPointeeType();
 | |
|         if (!Pointee.hasQualifiers() &&
 | |
|             Pointee->isVoidType() &&                              // to void*
 | |
|             CE->getSubExpr()->getType()->isIntegerType())         // from int.
 | |
|           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|       }
 | |
|     }
 | |
|   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
 | |
|     // Ignore the ImplicitCastExpr type entirely.
 | |
|     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
 | |
|     // Accept ((void*)0) as a null pointer constant, as many other
 | |
|     // implementations do.
 | |
|     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const GenericSelectionExpr *GE =
 | |
|                dyn_cast<GenericSelectionExpr>(this)) {
 | |
|     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const CXXDefaultArgExpr *DefaultArg
 | |
|                = dyn_cast<CXXDefaultArgExpr>(this)) {
 | |
|     // See through default argument expressions
 | |
|     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (isa<GNUNullExpr>(this)) {
 | |
|     // The GNU __null extension is always a null pointer constant.
 | |
|     return NPCK_GNUNull;
 | |
|   }
 | |
| 
 | |
|   // C++0x nullptr_t is always a null pointer constant.
 | |
|   if (getType()->isNullPtrType())
 | |
|     return NPCK_CXX0X_nullptr;
 | |
| 
 | |
|   if (const RecordType *UT = getType()->getAsUnionType())
 | |
|     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | |
|       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
 | |
|         const Expr *InitExpr = CLE->getInitializer();
 | |
|         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
 | |
|           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
 | |
|       }
 | |
|   // This expression must be an integer type.
 | |
|   if (!getType()->isIntegerType() || 
 | |
|       (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
 | |
|     return NPCK_NotNull;
 | |
| 
 | |
|   // If we have an integer constant expression, we need to *evaluate* it and
 | |
|   // test for the value 0.
 | |
|   llvm::APSInt Result;
 | |
|   bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
 | |
| 
 | |
|   return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
 | |
| }
 | |
| 
 | |
| /// \brief If this expression is an l-value for an Objective C
 | |
| /// property, find the underlying property reference expression.
 | |
| const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
 | |
|   const Expr *E = this;
 | |
|   while (true) {
 | |
|     assert((E->getValueKind() == VK_LValue &&
 | |
|             E->getObjectKind() == OK_ObjCProperty) &&
 | |
|            "expression is not a property reference");
 | |
|     E = E->IgnoreParenCasts();
 | |
|     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|       if (BO->getOpcode() == BO_Comma) {
 | |
|         E = BO->getRHS();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return cast<ObjCPropertyRefExpr>(E);
 | |
| }
 | |
| 
 | |
| FieldDecl *Expr::getBitField() {
 | |
|   Expr *E = this->IgnoreParens();
 | |
| 
 | |
|   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_LValueToRValue ||
 | |
|         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
 | |
|       E = ICE->getSubExpr()->IgnoreParens();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
 | |
|     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
 | |
|       if (Field->isBitField())
 | |
|         return Field;
 | |
| 
 | |
|   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
 | |
|     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
 | |
|       if (Field->isBitField())
 | |
|         return Field;
 | |
| 
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
 | |
|     if (BinOp->isAssignmentOp() && BinOp->getLHS())
 | |
|       return BinOp->getLHS()->getBitField();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool Expr::refersToVectorElement() const {
 | |
|   const Expr *E = this->IgnoreParens();
 | |
|   
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getValueKind() != VK_RValue &&
 | |
|         ICE->getCastKind() == CK_NoOp)
 | |
|       E = ICE->getSubExpr()->IgnoreParens();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
 | |
|     return ASE->getBase()->getType()->isVectorType();
 | |
| 
 | |
|   if (isa<ExtVectorElementExpr>(E))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isArrow - Return true if the base expression is a pointer to vector,
 | |
| /// return false if the base expression is a vector.
 | |
| bool ExtVectorElementExpr::isArrow() const {
 | |
|   return getBase()->getType()->isPointerType();
 | |
| }
 | |
| 
 | |
| unsigned ExtVectorElementExpr::getNumElements() const {
 | |
|   if (const VectorType *VT = getType()->getAs<VectorType>())
 | |
|     return VT->getNumElements();
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// containsDuplicateElements - Return true if any element access is repeated.
 | |
| bool ExtVectorElementExpr::containsDuplicateElements() const {
 | |
|   // FIXME: Refactor this code to an accessor on the AST node which returns the
 | |
|   // "type" of component access, and share with code below and in Sema.
 | |
|   llvm::StringRef Comp = Accessor->getName();
 | |
| 
 | |
|   // Halving swizzles do not contain duplicate elements.
 | |
|   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
 | |
|     return false;
 | |
| 
 | |
|   // Advance past s-char prefix on hex swizzles.
 | |
|   if (Comp[0] == 's' || Comp[0] == 'S')
 | |
|     Comp = Comp.substr(1);
 | |
| 
 | |
|   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
 | |
|     if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
 | |
| void ExtVectorElementExpr::getEncodedElementAccess(
 | |
|                                   llvm::SmallVectorImpl<unsigned> &Elts) const {
 | |
|   llvm::StringRef Comp = Accessor->getName();
 | |
|   if (Comp[0] == 's' || Comp[0] == 'S')
 | |
|     Comp = Comp.substr(1);
 | |
| 
 | |
|   bool isHi =   Comp == "hi";
 | |
|   bool isLo =   Comp == "lo";
 | |
|   bool isEven = Comp == "even";
 | |
|   bool isOdd  = Comp == "odd";
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
 | |
|     uint64_t Index;
 | |
| 
 | |
|     if (isHi)
 | |
|       Index = e + i;
 | |
|     else if (isLo)
 | |
|       Index = i;
 | |
|     else if (isEven)
 | |
|       Index = 2 * i;
 | |
|     else if (isOdd)
 | |
|       Index = 2 * i + 1;
 | |
|     else
 | |
|       Index = ExtVectorType::getAccessorIdx(Comp[i]);
 | |
| 
 | |
|     Elts.push_back(Index);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr::ObjCMessageExpr(QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  SourceLocation LBracLoc,
 | |
|                                  SourceLocation SuperLoc,
 | |
|                                  bool IsInstanceSuper,
 | |
|                                  QualType SuperType,
 | |
|                                  Selector Sel, 
 | |
|                                  SourceLocation SelLoc,
 | |
|                                  ObjCMethodDecl *Method,
 | |
|                                  Expr **Args, unsigned NumArgs,
 | |
|                                  SourceLocation RBracLoc)
 | |
|   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
 | |
|          /*TypeDependent=*/false, /*ValueDependent=*/false,
 | |
|          /*ContainsUnexpandedParameterPack=*/false),
 | |
|     NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
 | |
|     HasMethod(Method != 0), SuperLoc(SuperLoc),
 | |
|     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
 | |
|                                                        : Sel.getAsOpaquePtr())),
 | |
|     SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 
 | |
| {
 | |
|   setReceiverPointer(SuperType.getAsOpaquePtr());
 | |
|   if (NumArgs)
 | |
|     memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr::ObjCMessageExpr(QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  SourceLocation LBracLoc,
 | |
|                                  TypeSourceInfo *Receiver,
 | |
|                                  Selector Sel,
 | |
|                                  SourceLocation SelLoc,
 | |
|                                  ObjCMethodDecl *Method,
 | |
|                                  Expr **Args, unsigned NumArgs,
 | |
|                                  SourceLocation RBracLoc)
 | |
|   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
 | |
|          T->isDependentType(), T->containsUnexpandedParameterPack()),
 | |
|     NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
 | |
|     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
 | |
|                                                        : Sel.getAsOpaquePtr())),
 | |
|     SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 
 | |
| {
 | |
|   setReceiverPointer(Receiver);
 | |
|   Expr **MyArgs = getArgs();
 | |
|   for (unsigned I = 0; I != NumArgs; ++I) {
 | |
|     if (Args[I]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (Args[I]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (Args[I]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
|   
 | |
|     MyArgs[I] = Args[I];
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr::ObjCMessageExpr(QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  SourceLocation LBracLoc,
 | |
|                                  Expr *Receiver,
 | |
|                                  Selector Sel, 
 | |
|                                  SourceLocation SelLoc,
 | |
|                                  ObjCMethodDecl *Method,
 | |
|                                  Expr **Args, unsigned NumArgs,
 | |
|                                  SourceLocation RBracLoc)
 | |
|   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
 | |
|          Receiver->isTypeDependent(),
 | |
|          Receiver->containsUnexpandedParameterPack()),
 | |
|     NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
 | |
|     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
 | |
|                                                        : Sel.getAsOpaquePtr())),
 | |
|     SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 
 | |
| {
 | |
|   setReceiverPointer(Receiver);
 | |
|   Expr **MyArgs = getArgs();
 | |
|   for (unsigned I = 0; I != NumArgs; ++I) {
 | |
|     if (Args[I]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (Args[I]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (Args[I]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
|   
 | |
|     MyArgs[I] = Args[I];
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
 | |
|                                          ExprValueKind VK,
 | |
|                                          SourceLocation LBracLoc,
 | |
|                                          SourceLocation SuperLoc,
 | |
|                                          bool IsInstanceSuper,
 | |
|                                          QualType SuperType,
 | |
|                                          Selector Sel, 
 | |
|                                          SourceLocation SelLoc,
 | |
|                                          ObjCMethodDecl *Method,
 | |
|                                          Expr **Args, unsigned NumArgs,
 | |
|                                          SourceLocation RBracLoc) {
 | |
|   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 
 | |
|     NumArgs * sizeof(Expr *);
 | |
|   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
 | |
|   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
 | |
|                                    SuperType, Sel, SelLoc, Method, Args,NumArgs, 
 | |
|                                    RBracLoc);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
 | |
|                                          ExprValueKind VK,
 | |
|                                          SourceLocation LBracLoc,
 | |
|                                          TypeSourceInfo *Receiver,
 | |
|                                          Selector Sel, 
 | |
|                                          SourceLocation SelLoc,
 | |
|                                          ObjCMethodDecl *Method,
 | |
|                                          Expr **Args, unsigned NumArgs,
 | |
|                                          SourceLocation RBracLoc) {
 | |
|   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 
 | |
|     NumArgs * sizeof(Expr *);
 | |
|   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
 | |
|   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
 | |
|                                    Method, Args, NumArgs, RBracLoc);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
 | |
|                                          ExprValueKind VK,
 | |
|                                          SourceLocation LBracLoc,
 | |
|                                          Expr *Receiver,
 | |
|                                          Selector Sel,
 | |
|                                          SourceLocation SelLoc,
 | |
|                                          ObjCMethodDecl *Method,
 | |
|                                          Expr **Args, unsigned NumArgs,
 | |
|                                          SourceLocation RBracLoc) {
 | |
|   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 
 | |
|     NumArgs * sizeof(Expr *);
 | |
|   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
 | |
|   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
 | |
|                                    Method, Args, NumArgs, RBracLoc);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context, 
 | |
|                                               unsigned NumArgs) {
 | |
|   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 
 | |
|     NumArgs * sizeof(Expr *);
 | |
|   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
 | |
|   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
 | |
| }
 | |
| 
 | |
| SourceRange ObjCMessageExpr::getReceiverRange() const {
 | |
|   switch (getReceiverKind()) {
 | |
|   case Instance:
 | |
|     return getInstanceReceiver()->getSourceRange();
 | |
| 
 | |
|   case Class:
 | |
|     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
 | |
| 
 | |
|   case SuperInstance:
 | |
|   case SuperClass:
 | |
|     return getSuperLoc();
 | |
|   }
 | |
| 
 | |
|   return SourceLocation();
 | |
| }
 | |
| 
 | |
| Selector ObjCMessageExpr::getSelector() const {
 | |
|   if (HasMethod)
 | |
|     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
 | |
|                                                                ->getSelector();
 | |
|   return Selector(SelectorOrMethod); 
 | |
| }
 | |
| 
 | |
| ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
 | |
|   switch (getReceiverKind()) {
 | |
|   case Instance:
 | |
|     if (const ObjCObjectPointerType *Ptr
 | |
|           = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
 | |
|       return Ptr->getInterfaceDecl();
 | |
|     break;
 | |
| 
 | |
|   case Class:
 | |
|     if (const ObjCObjectType *Ty
 | |
|           = getClassReceiver()->getAs<ObjCObjectType>())
 | |
|       return Ty->getInterface();
 | |
|     break;
 | |
| 
 | |
|   case SuperInstance:
 | |
|     if (const ObjCObjectPointerType *Ptr
 | |
|           = getSuperType()->getAs<ObjCObjectPointerType>())
 | |
|       return Ptr->getInterfaceDecl();
 | |
|     break;
 | |
| 
 | |
|   case SuperClass:
 | |
|     if (const ObjCObjectType *Iface
 | |
|           = getSuperType()->getAs<ObjCObjectType>())
 | |
|       return Iface->getInterface();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
 | |
|   return getCond()->EvaluateAsInt(C) != 0;
 | |
| }
 | |
| 
 | |
| ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
 | |
|                                      QualType Type, SourceLocation BLoc,
 | |
|                                      SourceLocation RP) 
 | |
|    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
 | |
|           Type->isDependentType(), Type->isDependentType(),
 | |
|           Type->containsUnexpandedParameterPack()),
 | |
|      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) 
 | |
| {
 | |
|   SubExprs = new (C) Stmt*[nexpr];
 | |
|   for (unsigned i = 0; i < nexpr; i++) {
 | |
|     if (args[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (args[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (args[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     SubExprs[i] = args[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
 | |
|                                  unsigned NumExprs) {
 | |
|   if (SubExprs) C.Deallocate(SubExprs);
 | |
| 
 | |
|   SubExprs = new (C) Stmt* [NumExprs];
 | |
|   this->NumExprs = NumExprs;
 | |
|   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
 | |
| }
 | |
| 
 | |
| GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
 | |
|                                SourceLocation GenericLoc, Expr *ControllingExpr,
 | |
|                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
 | |
|                                unsigned NumAssocs, SourceLocation DefaultLoc,
 | |
|                                SourceLocation RParenLoc,
 | |
|                                bool ContainsUnexpandedParameterPack,
 | |
|                                unsigned ResultIndex)
 | |
|   : Expr(GenericSelectionExprClass,
 | |
|          AssocExprs[ResultIndex]->getType(),
 | |
|          AssocExprs[ResultIndex]->getValueKind(),
 | |
|          AssocExprs[ResultIndex]->getObjectKind(),
 | |
|          AssocExprs[ResultIndex]->isTypeDependent(),
 | |
|          AssocExprs[ResultIndex]->isValueDependent(),
 | |
|          ContainsUnexpandedParameterPack),
 | |
|     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
 | |
|     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
 | |
|     ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
 | |
|     RParenLoc(RParenLoc) {
 | |
|   SubExprs[CONTROLLING] = ControllingExpr;
 | |
|   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
 | |
|   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
 | |
| }
 | |
| 
 | |
| GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
 | |
|                                SourceLocation GenericLoc, Expr *ControllingExpr,
 | |
|                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
 | |
|                                unsigned NumAssocs, SourceLocation DefaultLoc,
 | |
|                                SourceLocation RParenLoc,
 | |
|                                bool ContainsUnexpandedParameterPack)
 | |
|   : Expr(GenericSelectionExprClass,
 | |
|          Context.DependentTy,
 | |
|          VK_RValue,
 | |
|          OK_Ordinary,
 | |
|          /*isTypeDependent=*/  true,
 | |
|          /*isValueDependent=*/ true,
 | |
|          ContainsUnexpandedParameterPack),
 | |
|     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
 | |
|     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
 | |
|     ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
 | |
|     RParenLoc(RParenLoc) {
 | |
|   SubExprs[CONTROLLING] = ControllingExpr;
 | |
|   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
 | |
|   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DesignatedInitExpr
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
 | |
|   assert(Kind == FieldDesignator && "Only valid on a field designator");
 | |
|   if (Field.NameOrField & 0x01)
 | |
|     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
 | |
|   else
 | |
|     return getField()->getIdentifier();
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, 
 | |
|                                        unsigned NumDesignators,
 | |
|                                        const Designator *Designators,
 | |
|                                        SourceLocation EqualOrColonLoc,
 | |
|                                        bool GNUSyntax,
 | |
|                                        Expr **IndexExprs,
 | |
|                                        unsigned NumIndexExprs,
 | |
|                                        Expr *Init)
 | |
|   : Expr(DesignatedInitExprClass, Ty,
 | |
|          Init->getValueKind(), Init->getObjectKind(),
 | |
|          Init->isTypeDependent(), Init->isValueDependent(),
 | |
|          Init->containsUnexpandedParameterPack()),
 | |
|     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
 | |
|     NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
 | |
|   this->Designators = new (C) Designator[NumDesignators];
 | |
| 
 | |
|   // Record the initializer itself.
 | |
|   child_range Child = children();
 | |
|   *Child++ = Init;
 | |
| 
 | |
|   // Copy the designators and their subexpressions, computing
 | |
|   // value-dependence along the way.
 | |
|   unsigned IndexIdx = 0;
 | |
|   for (unsigned I = 0; I != NumDesignators; ++I) {
 | |
|     this->Designators[I] = Designators[I];
 | |
| 
 | |
|     if (this->Designators[I].isArrayDesignator()) {
 | |
|       // Compute type- and value-dependence.
 | |
|       Expr *Index = IndexExprs[IndexIdx];
 | |
|       if (Index->isTypeDependent() || Index->isValueDependent())
 | |
|         ExprBits.ValueDependent = true;
 | |
| 
 | |
|       // Propagate unexpanded parameter packs.
 | |
|       if (Index->containsUnexpandedParameterPack())
 | |
|         ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|       // Copy the index expressions into permanent storage.
 | |
|       *Child++ = IndexExprs[IndexIdx++];
 | |
|     } else if (this->Designators[I].isArrayRangeDesignator()) {
 | |
|       // Compute type- and value-dependence.
 | |
|       Expr *Start = IndexExprs[IndexIdx];
 | |
|       Expr *End = IndexExprs[IndexIdx + 1];
 | |
|       if (Start->isTypeDependent() || Start->isValueDependent() ||
 | |
|           End->isTypeDependent() || End->isValueDependent())
 | |
|         ExprBits.ValueDependent = true;
 | |
| 
 | |
|       // Propagate unexpanded parameter packs.
 | |
|       if (Start->containsUnexpandedParameterPack() ||
 | |
|           End->containsUnexpandedParameterPack())
 | |
|         ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|       // Copy the start/end expressions into permanent storage.
 | |
|       *Child++ = IndexExprs[IndexIdx++];
 | |
|       *Child++ = IndexExprs[IndexIdx++];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr *
 | |
| DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
 | |
|                            unsigned NumDesignators,
 | |
|                            Expr **IndexExprs, unsigned NumIndexExprs,
 | |
|                            SourceLocation ColonOrEqualLoc,
 | |
|                            bool UsesColonSyntax, Expr *Init) {
 | |
|   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
 | |
|                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
 | |
|   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
 | |
|                                       ColonOrEqualLoc, UsesColonSyntax,
 | |
|                                       IndexExprs, NumIndexExprs, Init);
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
 | |
|                                                     unsigned NumIndexExprs) {
 | |
|   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
 | |
|                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
 | |
|   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
 | |
| }
 | |
| 
 | |
| void DesignatedInitExpr::setDesignators(ASTContext &C,
 | |
|                                         const Designator *Desigs,
 | |
|                                         unsigned NumDesigs) {
 | |
|   Designators = new (C) Designator[NumDesigs];
 | |
|   NumDesignators = NumDesigs;
 | |
|   for (unsigned I = 0; I != NumDesigs; ++I)
 | |
|     Designators[I] = Desigs[I];
 | |
| }
 | |
| 
 | |
| SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
 | |
|   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
 | |
|   if (size() == 1)
 | |
|     return DIE->getDesignator(0)->getSourceRange();
 | |
|   return SourceRange(DIE->getDesignator(0)->getStartLocation(),
 | |
|                      DIE->getDesignator(size()-1)->getEndLocation());
 | |
| }
 | |
| 
 | |
| SourceRange DesignatedInitExpr::getSourceRange() const {
 | |
|   SourceLocation StartLoc;
 | |
|   Designator &First =
 | |
|     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
 | |
|   if (First.isFieldDesignator()) {
 | |
|     if (GNUSyntax)
 | |
|       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
 | |
|     else
 | |
|       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
 | |
|   } else
 | |
|     StartLoc =
 | |
|       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
 | |
|   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
 | |
|   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
 | |
|   char* Ptr = static_cast<char*>(static_cast<void *>(this));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
 | |
|   assert(D.Kind == Designator::ArrayRangeDesignator &&
 | |
|          "Requires array range designator");
 | |
|   char* Ptr = static_cast<char*>(static_cast<void *>(this));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
 | |
|   assert(D.Kind == Designator::ArrayRangeDesignator &&
 | |
|          "Requires array range designator");
 | |
|   char* Ptr = static_cast<char*>(static_cast<void *>(this));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
 | |
| }
 | |
| 
 | |
| /// \brief Replaces the designator at index @p Idx with the series
 | |
| /// of designators in [First, Last).
 | |
| void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
 | |
|                                           const Designator *First,
 | |
|                                           const Designator *Last) {
 | |
|   unsigned NumNewDesignators = Last - First;
 | |
|   if (NumNewDesignators == 0) {
 | |
|     std::copy_backward(Designators + Idx + 1,
 | |
|                        Designators + NumDesignators,
 | |
|                        Designators + Idx);
 | |
|     --NumNewDesignators;
 | |
|     return;
 | |
|   } else if (NumNewDesignators == 1) {
 | |
|     Designators[Idx] = *First;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Designator *NewDesignators
 | |
|     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
 | |
|   std::copy(Designators, Designators + Idx, NewDesignators);
 | |
|   std::copy(First, Last, NewDesignators + Idx);
 | |
|   std::copy(Designators + Idx + 1, Designators + NumDesignators,
 | |
|             NewDesignators + Idx + NumNewDesignators);
 | |
|   Designators = NewDesignators;
 | |
|   NumDesignators = NumDesignators - 1 + NumNewDesignators;
 | |
| }
 | |
| 
 | |
| ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
 | |
|                              Expr **exprs, unsigned nexprs,
 | |
|                              SourceLocation rparenloc)
 | |
|   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
 | |
|          false, false, false),
 | |
|     NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
 | |
| 
 | |
|   Exprs = new (C) Stmt*[nexprs];
 | |
|   for (unsigned i = 0; i != nexprs; ++i) {
 | |
|     if (exprs[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (exprs[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (exprs[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     Exprs[i] = exprs[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
 | |
|   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
 | |
|     e = ewc->getSubExpr();
 | |
|   e = cast<CXXConstructExpr>(e)->getArg(0);
 | |
|   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
 | |
|     e = ice->getSubExpr();
 | |
|   return cast<OpaqueValueExpr>(e);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ExprIterator.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
 | |
| Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
 | |
| Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
 | |
| const Expr* ConstExprIterator::operator[](size_t idx) const {
 | |
|   return cast<Expr>(I[idx]);
 | |
| }
 | |
| const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
 | |
| const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Child Iterators for iterating over subexpressions/substatements
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // UnaryExprOrTypeTraitExpr
 | |
| Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
 | |
|   // If this is of a type and the type is a VLA type (and not a typedef), the
 | |
|   // size expression of the VLA needs to be treated as an executable expression.
 | |
|   // Why isn't this weirdness documented better in StmtIterator?
 | |
|   if (isArgumentType()) {
 | |
|     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
 | |
|                                    getArgumentType().getTypePtr()))
 | |
|       return child_range(child_iterator(T), child_iterator());
 | |
|     return child_range();
 | |
|   }
 | |
|   return child_range(&Argument.Ex, &Argument.Ex + 1);
 | |
| }
 | |
| 
 | |
| // ObjCMessageExpr
 | |
| Stmt::child_range ObjCMessageExpr::children() {
 | |
|   Stmt **begin;
 | |
|   if (getReceiverKind() == Instance)
 | |
|     begin = reinterpret_cast<Stmt **>(this + 1);
 | |
|   else
 | |
|     begin = reinterpret_cast<Stmt **>(getArgs());
 | |
|   return child_range(begin,
 | |
|                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
 | |
| }
 | |
| 
 | |
| // Blocks
 | |
| BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
 | |
|                                    SourceLocation l, bool ByRef, 
 | |
|                                    bool constAdded)
 | |
|   : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false,
 | |
|          d->isParameterPack()),
 | |
|     D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
 | |
| {
 | |
|   bool TypeDependent = false;
 | |
|   bool ValueDependent = false;
 | |
|   computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent);
 | |
|   ExprBits.TypeDependent = TypeDependent;
 | |
|   ExprBits.ValueDependent = ValueDependent;
 | |
| }
 | |
| 
 |