forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1933 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1933 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Sema/SemaDiagnostic.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/CrashRecoveryContext.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
 | |
| /// For a class hierarchy like
 | |
| ///
 | |
| /// class A { };
 | |
| /// class B : A { };
 | |
| /// class C : A, B { };
 | |
| ///
 | |
| /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
 | |
| /// instances, one for B and two for A.
 | |
| ///
 | |
| /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
 | |
| struct BaseSubobjectInfo {
 | |
|   /// Class - The class for this base info.
 | |
|   const CXXRecordDecl *Class;
 | |
| 
 | |
|   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
 | |
|   bool IsVirtual;
 | |
| 
 | |
|   /// Bases - Information about the base subobjects.
 | |
|   llvm::SmallVector<BaseSubobjectInfo*, 4> Bases;
 | |
| 
 | |
|   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
 | |
|   /// of this base info (if one exists).
 | |
|   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
 | |
| 
 | |
|   // FIXME: Document.
 | |
|   const BaseSubobjectInfo *Derived;
 | |
| };
 | |
| 
 | |
| /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
 | |
| /// offsets while laying out a C++ class.
 | |
| class EmptySubobjectMap {
 | |
|   const ASTContext &Context;
 | |
|   uint64_t CharWidth;
 | |
|   
 | |
|   /// Class - The class whose empty entries we're keeping track of.
 | |
|   const CXXRecordDecl *Class;
 | |
| 
 | |
|   /// EmptyClassOffsets - A map from offsets to empty record decls.
 | |
|   typedef llvm::SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
 | |
|   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
 | |
|   EmptyClassOffsetsMapTy EmptyClassOffsets;
 | |
|   
 | |
|   /// MaxEmptyClassOffset - The highest offset known to contain an empty
 | |
|   /// base subobject.
 | |
|   CharUnits MaxEmptyClassOffset;
 | |
|   
 | |
|   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
 | |
|   /// member subobject that is empty.
 | |
|   void ComputeEmptySubobjectSizes();
 | |
|   
 | |
|   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
 | |
|   
 | |
|   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
 | |
|                                  CharUnits Offset, bool PlacingEmptyBase);
 | |
|   
 | |
|   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 
 | |
|                                   const CXXRecordDecl *Class,
 | |
|                                   CharUnits Offset);
 | |
|   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
 | |
|   
 | |
|   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
 | |
|   /// subobjects beyond the given offset.
 | |
|   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
 | |
|     return Offset <= MaxEmptyClassOffset;
 | |
|   }
 | |
| 
 | |
|   CharUnits 
 | |
|   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
 | |
|     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
 | |
|     assert(FieldOffset % CharWidth == 0 && 
 | |
|            "Field offset not at char boundary!");
 | |
| 
 | |
|     return Context.toCharUnitsFromBits(FieldOffset);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
 | |
|                                  CharUnits Offset) const;
 | |
| 
 | |
|   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                      CharUnits Offset);
 | |
| 
 | |
|   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                       const CXXRecordDecl *Class,
 | |
|                                       CharUnits Offset) const;
 | |
|   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
 | |
|                                       CharUnits Offset) const;
 | |
| 
 | |
| public:
 | |
|   /// This holds the size of the largest empty subobject (either a base
 | |
|   /// or a member). Will be zero if the record being built doesn't contain
 | |
|   /// any empty classes.
 | |
|   CharUnits SizeOfLargestEmptySubobject;
 | |
| 
 | |
|   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
 | |
|   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
 | |
|       ComputeEmptySubobjectSizes();
 | |
|   }
 | |
| 
 | |
|   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
 | |
|   /// at the given offset.
 | |
|   /// Returns false if placing the record will result in two components
 | |
|   /// (direct or indirect) of the same type having the same offset.
 | |
|   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
 | |
|                             CharUnits Offset);
 | |
| 
 | |
|   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
 | |
|   /// offset.
 | |
|   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
 | |
| };
 | |
| 
 | |
| void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
 | |
|   // Check the bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
 | |
|        E = Class->bases_end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits EmptySize;
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
 | |
|     if (BaseDecl->isEmpty()) {
 | |
|       // If the class decl is empty, get its size.
 | |
|       EmptySize = Layout.getSize();
 | |
|     } else {
 | |
|       // Otherwise, we get the largest empty subobject for the decl.
 | |
|       EmptySize = Layout.getSizeOfLargestEmptySubobject();
 | |
|     }
 | |
| 
 | |
|     if (EmptySize > SizeOfLargestEmptySubobject)
 | |
|       SizeOfLargestEmptySubobject = EmptySize;
 | |
|   }
 | |
| 
 | |
|   // Check the fields.
 | |
|   for (CXXRecordDecl::field_iterator I = Class->field_begin(),
 | |
|        E = Class->field_end(); I != E; ++I) {
 | |
|     const FieldDecl *FD = *I;
 | |
| 
 | |
|     const RecordType *RT =
 | |
|       Context.getBaseElementType(FD->getType())->getAs<RecordType>();
 | |
| 
 | |
|     // We only care about record types.
 | |
|     if (!RT)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits EmptySize;
 | |
|     const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
 | |
|     if (MemberDecl->isEmpty()) {
 | |
|       // If the class decl is empty, get its size.
 | |
|       EmptySize = Layout.getSize();
 | |
|     } else {
 | |
|       // Otherwise, we get the largest empty subobject for the decl.
 | |
|       EmptySize = Layout.getSizeOfLargestEmptySubobject();
 | |
|     }
 | |
| 
 | |
|     if (EmptySize > SizeOfLargestEmptySubobject)
 | |
|       SizeOfLargestEmptySubobject = EmptySize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                              CharUnits Offset) const {
 | |
|   // We only need to check empty bases.
 | |
|   if (!RD->isEmpty())
 | |
|     return true;
 | |
| 
 | |
|   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
 | |
|   if (I == EmptyClassOffsets.end())
 | |
|     return true;
 | |
|   
 | |
|   const ClassVectorTy& Classes = I->second;
 | |
|   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
 | |
|     return true;
 | |
| 
 | |
|   // There is already an empty class of the same type at this offset.
 | |
|   return false;
 | |
| }
 | |
|   
 | |
| void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                              CharUnits Offset) {
 | |
|   // We only care about empty bases.
 | |
|   if (!RD->isEmpty())
 | |
|     return;
 | |
| 
 | |
|   // If we have empty structures inside an union, we can assign both
 | |
|   // the same offset. Just avoid pushing them twice in the list.
 | |
|   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
 | |
|   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
 | |
|     return;
 | |
|   
 | |
|   Classes.push_back(RD);
 | |
|   
 | |
|   // Update the empty class offset.
 | |
|   if (Offset > MaxEmptyClassOffset)
 | |
|     MaxEmptyClassOffset = Offset;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                                  CharUnits Offset) {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
 | |
|     return false;
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
 | |
|     BaseSubobjectInfo* Base = Info->Bases[I];
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
| 
 | |
|     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
 | |
| 
 | |
|     if (Info == PrimaryVirtualBaseInfo->Derived) {
 | |
|       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 
 | |
|        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     const FieldDecl *FD = *I;
 | |
|     if (FD->isBitField())
 | |
|       continue;
 | |
|   
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 
 | |
|                                                   CharUnits Offset,
 | |
|                                                   bool PlacingEmptyBase) {
 | |
|   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
 | |
|     // We know that the only empty subobjects that can conflict with empty
 | |
|     // subobject of non-empty bases, are empty bases that can be placed at
 | |
|     // offset zero. Because of this, we only need to keep track of empty base 
 | |
|     // subobjects with offsets less than the size of the largest empty
 | |
|     // subobject for our class.    
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   AddSubobjectAtOffset(Info->Class, Offset);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
 | |
|     BaseSubobjectInfo* Base = Info->Bases[I];
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
|     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
 | |
|   }
 | |
| 
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
 | |
|     
 | |
|     if (Info == PrimaryVirtualBaseInfo->Derived)
 | |
|       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
 | |
|                                 PlacingEmptyBase);
 | |
|   }
 | |
| 
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 
 | |
|        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     const FieldDecl *FD = *I;
 | |
|     if (FD->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     UpdateEmptyFieldSubobjects(FD, FieldOffset);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                              CharUnits Offset) {
 | |
|   // If we know this class doesn't have any empty subobjects we don't need to
 | |
|   // bother checking.
 | |
|   if (SizeOfLargestEmptySubobject.isZero())
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
 | |
|     return false;
 | |
| 
 | |
|   // We are able to place the base at this offset. Make sure to update the
 | |
|   // empty base subobject map.
 | |
|   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 
 | |
|                                                   const CXXRecordDecl *Class,
 | |
|                                                   CharUnits Offset) const {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceSubobjectAtOffset(RD, Offset))
 | |
|     return false;
 | |
|   
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (RD == Class) {
 | |
|     // This is the most derived class, traverse virtual bases as well.
 | |
|     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|          E = RD->vbases_end(); I != E; ++I) {
 | |
|       const CXXRecordDecl *VBaseDecl =
 | |
|         cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|       
 | |
|       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
 | |
|       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|        I != E; ++I, ++FieldNo) {
 | |
|     const FieldDecl *FD = *I;
 | |
|     if (FD->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
 | |
|                                                   CharUnits Offset) const {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
|   
 | |
|   QualType T = FD->getType();
 | |
|   if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
 | |
|   }
 | |
| 
 | |
|   // If we have an array type we need to look at every element.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
 | |
|     QualType ElemTy = Context.getBaseElementType(AT);
 | |
|     const RecordType *RT = ElemTy->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       return true;
 | |
|   
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
 | |
|     CharUnits ElementOffset = Offset;
 | |
|     for (uint64_t I = 0; I != NumElements; ++I) {
 | |
|       // We don't have to keep looking past the maximum offset that's known to
 | |
|       // contain an empty class.
 | |
|       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
 | |
|         return true;
 | |
|       
 | |
|       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
 | |
|         return false;
 | |
| 
 | |
|       ElementOffset += Layout.getSize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, 
 | |
|                                          CharUnits Offset) {
 | |
|   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
 | |
|     return false;
 | |
|   
 | |
|   // We are able to place the member variable at this offset.
 | |
|   // Make sure to update the empty base subobject map.
 | |
|   UpdateEmptyFieldSubobjects(FD, Offset);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 
 | |
|                                                    const CXXRecordDecl *Class,
 | |
|                                                    CharUnits Offset) {
 | |
|   // We know that the only empty subobjects that can conflict with empty
 | |
|   // field subobjects are subobjects of empty bases that can be placed at offset
 | |
|   // zero. Because of this, we only need to keep track of empty field 
 | |
|   // subobjects with offsets less than the size of the largest empty
 | |
|   // subobject for our class.
 | |
|   if (Offset >= SizeOfLargestEmptySubobject)
 | |
|     return;
 | |
| 
 | |
|   AddSubobjectAtOffset(RD, Offset);
 | |
| 
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
 | |
|     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
 | |
|   }
 | |
| 
 | |
|   if (RD == Class) {
 | |
|     // This is the most derived class, traverse virtual bases as well.
 | |
|     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|          E = RD->vbases_end(); I != E; ++I) {
 | |
|       const CXXRecordDecl *VBaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|       
 | |
|       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
 | |
|       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|        I != E; ++I, ++FieldNo) {
 | |
|     const FieldDecl *FD = *I;
 | |
|     if (FD->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
| 
 | |
|     UpdateEmptyFieldSubobjects(FD, FieldOffset);
 | |
|   }
 | |
| }
 | |
|   
 | |
| void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
 | |
|                                                    CharUnits Offset) {
 | |
|   QualType T = FD->getType();
 | |
|   if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     UpdateEmptyFieldSubobjects(RD, RD, Offset);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we have an array type we need to update every element.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
 | |
|     QualType ElemTy = Context.getBaseElementType(AT);
 | |
|     const RecordType *RT = ElemTy->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       return;
 | |
|     
 | |
|     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     
 | |
|     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
 | |
|     CharUnits ElementOffset = Offset;
 | |
|     
 | |
|     for (uint64_t I = 0; I != NumElements; ++I) {
 | |
|       // We know that the only empty subobjects that can conflict with empty
 | |
|       // field subobjects are subobjects of empty bases that can be placed at 
 | |
|       // offset zero. Because of this, we only need to keep track of empty field
 | |
|       // subobjects with offsets less than the size of the largest empty
 | |
|       // subobject for our class.
 | |
|       if (ElementOffset >= SizeOfLargestEmptySubobject)
 | |
|         return;
 | |
| 
 | |
|       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
 | |
|       ElementOffset += Layout.getSize();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| class RecordLayoutBuilder {
 | |
| protected:
 | |
|   // FIXME: Remove this and make the appropriate fields public.
 | |
|   friend class clang::ASTContext;
 | |
| 
 | |
|   const ASTContext &Context;
 | |
| 
 | |
|   EmptySubobjectMap *EmptySubobjects;
 | |
| 
 | |
|   /// Size - The current size of the record layout.
 | |
|   uint64_t Size;
 | |
| 
 | |
|   /// Alignment - The current alignment of the record layout.
 | |
|   CharUnits Alignment;
 | |
| 
 | |
|   /// \brief The alignment if attribute packed is not used.
 | |
|   CharUnits UnpackedAlignment;
 | |
| 
 | |
|   llvm::SmallVector<uint64_t, 16> FieldOffsets;
 | |
| 
 | |
|   /// Packed - Whether the record is packed or not.
 | |
|   unsigned Packed : 1;
 | |
| 
 | |
|   unsigned IsUnion : 1;
 | |
| 
 | |
|   unsigned IsMac68kAlign : 1;
 | |
| 
 | |
|   /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
 | |
|   /// this contains the number of bits in the last byte that can be used for
 | |
|   /// an adjacent bitfield if necessary.
 | |
|   unsigned char UnfilledBitsInLastByte;
 | |
| 
 | |
|   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
 | |
|   /// #pragma pack.
 | |
|   CharUnits MaxFieldAlignment;
 | |
| 
 | |
|   /// DataSize - The data size of the record being laid out.
 | |
|   uint64_t DataSize;
 | |
| 
 | |
|   CharUnits NonVirtualSize;
 | |
|   CharUnits NonVirtualAlignment;
 | |
| 
 | |
|   /// PrimaryBase - the primary base class (if one exists) of the class
 | |
|   /// we're laying out.
 | |
|   const CXXRecordDecl *PrimaryBase;
 | |
| 
 | |
|   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
 | |
|   /// out is virtual.
 | |
|   bool PrimaryBaseIsVirtual;
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
 | |
| 
 | |
|   /// Bases - base classes and their offsets in the record.
 | |
|   BaseOffsetsMapTy Bases;
 | |
| 
 | |
|   // VBases - virtual base classes and their offsets in the record.
 | |
|   BaseOffsetsMapTy VBases;
 | |
| 
 | |
|   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
 | |
|   /// primary base classes for some other direct or indirect base class.
 | |
|   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
 | |
| 
 | |
|   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
 | |
|   /// inheritance graph order. Used for determining the primary base class.
 | |
|   const CXXRecordDecl *FirstNearlyEmptyVBase;
 | |
| 
 | |
|   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
 | |
|   /// avoid visiting virtual bases more than once.
 | |
|   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
 | |
| 
 | |
|   RecordLayoutBuilder(const ASTContext &Context, EmptySubobjectMap
 | |
|                       *EmptySubobjects)
 | |
|     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), 
 | |
|       Alignment(CharUnits::One()), UnpackedAlignment(Alignment),
 | |
|       Packed(false), IsUnion(false), IsMac68kAlign(false), 
 | |
|       UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()), 
 | |
|       DataSize(0), NonVirtualSize(CharUnits::Zero()), 
 | |
|       NonVirtualAlignment(CharUnits::One()), PrimaryBase(0), 
 | |
|       PrimaryBaseIsVirtual(false), FirstNearlyEmptyVBase(0) { }
 | |
| 
 | |
|   void Layout(const RecordDecl *D);
 | |
|   void Layout(const CXXRecordDecl *D);
 | |
|   void Layout(const ObjCInterfaceDecl *D);
 | |
| 
 | |
|   void LayoutFields(const RecordDecl *D);
 | |
|   void LayoutField(const FieldDecl *D);
 | |
|   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
 | |
|                           bool FieldPacked, const FieldDecl *D);
 | |
|   void LayoutBitField(const FieldDecl *D);
 | |
| 
 | |
|   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
 | |
|   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
 | |
|   
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
 | |
|     BaseSubobjectInfoMapTy;
 | |
| 
 | |
|   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
 | |
|   /// of the class we're laying out to their base subobject info.
 | |
|   BaseSubobjectInfoMapTy VirtualBaseInfo;
 | |
|   
 | |
|   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
 | |
|   /// class we're laying out to their base subobject info.
 | |
|   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
 | |
| 
 | |
|   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
 | |
|   /// bases of the given class.
 | |
|   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
 | |
|   /// single class and all of its base classes.
 | |
|   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 
 | |
|                                               bool IsVirtual,
 | |
|                                               BaseSubobjectInfo *Derived);
 | |
| 
 | |
|   /// DeterminePrimaryBase - Determine the primary base of the given class.
 | |
|   void DeterminePrimaryBase(const CXXRecordDecl *RD);
 | |
| 
 | |
|   void SelectPrimaryVBase(const CXXRecordDecl *RD);
 | |
| 
 | |
|   virtual CharUnits GetVirtualPointersSize(const CXXRecordDecl *RD) const;
 | |
| 
 | |
|   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
 | |
|   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
 | |
|   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
 | |
|   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
 | |
|                                     CharUnits Offset);
 | |
| 
 | |
|   /// LayoutVirtualBases - Lays out all the virtual bases.
 | |
|   void LayoutVirtualBases(const CXXRecordDecl *RD,
 | |
|                           const CXXRecordDecl *MostDerivedClass);
 | |
| 
 | |
|   /// LayoutVirtualBase - Lays out a single virtual base.
 | |
|   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   /// LayoutBase - Will lay out a base and return the offset where it was
 | |
|   /// placed, in chars.
 | |
|   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   /// InitializeLayout - Initialize record layout for the given record decl.
 | |
|   void InitializeLayout(const Decl *D);
 | |
| 
 | |
|   /// FinishLayout - Finalize record layout. Adjust record size based on the
 | |
|   /// alignment.
 | |
|   void FinishLayout(const NamedDecl *D);
 | |
| 
 | |
|   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
 | |
|   void UpdateAlignment(CharUnits NewAlignment) {
 | |
|     UpdateAlignment(NewAlignment, NewAlignment);
 | |
|   }
 | |
| 
 | |
|   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
 | |
|                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
 | |
|                           bool isPacked, const FieldDecl *D);
 | |
| 
 | |
|   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
 | |
| 
 | |
|   CharUnits getSize() const { 
 | |
|     assert(Size % Context.getCharWidth() == 0);
 | |
|     return Context.toCharUnitsFromBits(Size); 
 | |
|   }
 | |
|   uint64_t getSizeInBits() const { return Size; }
 | |
| 
 | |
|   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
 | |
|   void setSize(uint64_t NewSize) { Size = NewSize; }
 | |
| 
 | |
|   CharUnits getDataSize() const { 
 | |
|     assert(DataSize % Context.getCharWidth() == 0);
 | |
|     return Context.toCharUnitsFromBits(DataSize); 
 | |
|   }
 | |
|   uint64_t getDataSizeInBits() const { return DataSize; }
 | |
| 
 | |
|   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
 | |
|   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
 | |
| 
 | |
| 
 | |
|   RecordLayoutBuilder(const RecordLayoutBuilder&);   // DO NOT IMPLEMENT
 | |
|   void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
 | |
| public:
 | |
|   static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD);
 | |
| 
 | |
|   virtual ~RecordLayoutBuilder() { }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
|     assert(!I->getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
| 
 | |
|     const CXXRecordDecl *Base =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     // Check if this is a nearly empty virtual base.
 | |
|     if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
 | |
|       // If it's not an indirect primary base, then we've found our primary
 | |
|       // base.
 | |
|       if (!IndirectPrimaryBases.count(Base)) {
 | |
|         PrimaryBase = Base;
 | |
|         PrimaryBaseIsVirtual = true;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Is this the first nearly empty virtual base?
 | |
|       if (!FirstNearlyEmptyVBase)
 | |
|         FirstNearlyEmptyVBase = Base;
 | |
|     }
 | |
| 
 | |
|     SelectPrimaryVBase(Base);
 | |
|     if (PrimaryBase)
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CharUnits
 | |
| RecordLayoutBuilder::GetVirtualPointersSize(const CXXRecordDecl *RD) const {
 | |
|   return Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0));
 | |
| }
 | |
| 
 | |
| /// DeterminePrimaryBase - Determine the primary base of the given class.
 | |
| void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
 | |
|   // If the class isn't dynamic, it won't have a primary base.
 | |
|   if (!RD->isDynamicClass())
 | |
|     return;
 | |
| 
 | |
|   // Compute all the primary virtual bases for all of our direct and
 | |
|   // indirect bases, and record all their primary virtual base classes.
 | |
|   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
 | |
| 
 | |
|   // If the record has a dynamic base class, attempt to choose a primary base
 | |
|   // class. It is the first (in direct base class order) non-virtual dynamic
 | |
|   // base class, if one exists.
 | |
|   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
 | |
|          e = RD->bases_end(); i != e; ++i) {
 | |
|     // Ignore virtual bases.
 | |
|     if (i->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *Base =
 | |
|       cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     if (Base->isDynamicClass()) {
 | |
|       // We found it.
 | |
|       PrimaryBase = Base;
 | |
|       PrimaryBaseIsVirtual = false;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it is the first nearly empty virtual base that is not an
 | |
|   // indirect primary virtual base class, if one exists.
 | |
|   if (RD->getNumVBases() != 0) {
 | |
|     SelectPrimaryVBase(RD);
 | |
|     if (PrimaryBase)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it is the first nearly empty virtual base that is not an
 | |
|   // indirect primary virtual base class, if one exists.
 | |
|   if (FirstNearlyEmptyVBase) {
 | |
|     PrimaryBase = FirstNearlyEmptyVBase;
 | |
|     PrimaryBaseIsVirtual = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise there is no primary base class.
 | |
|   assert(!PrimaryBase && "Should not get here with a primary base!");
 | |
| 
 | |
|   // Allocate the virtual table pointer at offset zero.
 | |
|   assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(getSize() + GetVirtualPointersSize(RD));
 | |
|   setDataSize(getSize());
 | |
| 
 | |
|   CharUnits UnpackedBaseAlign = 
 | |
|     Context.toCharUnitsFromBits(Context.Target.getPointerAlign(0));
 | |
|   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
 | |
| 
 | |
|   // The maximum field alignment overrides base align.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
 | |
|     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // Update the alignment.
 | |
|   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| }
 | |
| 
 | |
| BaseSubobjectInfo *
 | |
| RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 
 | |
|                                               bool IsVirtual,
 | |
|                                               BaseSubobjectInfo *Derived) {
 | |
|   BaseSubobjectInfo *Info;
 | |
|   
 | |
|   if (IsVirtual) {
 | |
|     // Check if we already have info about this virtual base.
 | |
|     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
 | |
|     if (InfoSlot) {
 | |
|       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
 | |
|       return InfoSlot;
 | |
|     }
 | |
| 
 | |
|     // We don't, create it.
 | |
|     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
 | |
|     Info = InfoSlot;
 | |
|   } else {
 | |
|     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
 | |
|   }
 | |
|   
 | |
|   Info->Class = RD;
 | |
|   Info->IsVirtual = IsVirtual;
 | |
|   Info->Derived = 0;
 | |
|   Info->PrimaryVirtualBaseInfo = 0;
 | |
|   
 | |
|   const CXXRecordDecl *PrimaryVirtualBase = 0;
 | |
|   BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
 | |
| 
 | |
|   // Check if this base has a primary virtual base.
 | |
|   if (RD->getNumVBases()) {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     if (Layout.isPrimaryBaseVirtual()) {
 | |
|       // This base does have a primary virtual base.
 | |
|       PrimaryVirtualBase = Layout.getPrimaryBase();
 | |
|       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
 | |
|       
 | |
|       // Now check if we have base subobject info about this primary base.
 | |
|       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
 | |
|       
 | |
|       if (PrimaryVirtualBaseInfo) {
 | |
|         if (PrimaryVirtualBaseInfo->Derived) {
 | |
|           // We did have info about this primary base, and it turns out that it
 | |
|           // has already been claimed as a primary virtual base for another
 | |
|           // base. 
 | |
|           PrimaryVirtualBase = 0;        
 | |
|         } else {
 | |
|           // We can claim this base as our primary base.
 | |
|           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
 | |
|           PrimaryVirtualBaseInfo->Derived = Info;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now go through all direct bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     bool IsVirtual = I->isVirtual();
 | |
|     
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|     
 | |
|     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
 | |
|   }
 | |
|   
 | |
|   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
 | |
|     // Traversing the bases must have created the base info for our primary
 | |
|     // virtual base.
 | |
|     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
 | |
|     assert(PrimaryVirtualBaseInfo &&
 | |
|            "Did not create a primary virtual base!");
 | |
|       
 | |
|     // Claim the primary virtual base as our primary virtual base.
 | |
|     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
 | |
|     PrimaryVirtualBaseInfo->Derived = Info;
 | |
|   }
 | |
|   
 | |
|   return Info;
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     bool IsVirtual = I->isVirtual();
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
|     
 | |
|     // Compute the base subobject info for this base.
 | |
|     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
 | |
| 
 | |
|     if (IsVirtual) {
 | |
|       // ComputeBaseInfo has already added this base for us.
 | |
|       assert(VirtualBaseInfo.count(BaseDecl) &&
 | |
|              "Did not add virtual base!");
 | |
|     } else {
 | |
|       // Add the base info to the map of non-virtual bases.
 | |
|       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
 | |
|              "Non-virtual base already exists!");
 | |
|       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
 | |
|   // Then, determine the primary base class.
 | |
|   DeterminePrimaryBase(RD);
 | |
| 
 | |
|   // Compute base subobject info.
 | |
|   ComputeBaseSubobjectInfo(RD);
 | |
|   
 | |
|   // If we have a primary base class, lay it out.
 | |
|   if (PrimaryBase) {
 | |
|     if (PrimaryBaseIsVirtual) {
 | |
|       // If the primary virtual base was a primary virtual base of some other
 | |
|       // base class we'll have to steal it.
 | |
|       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
 | |
|       PrimaryBaseInfo->Derived = 0;
 | |
|       
 | |
|       // We have a virtual primary base, insert it as an indirect primary base.
 | |
|       IndirectPrimaryBases.insert(PrimaryBase);
 | |
| 
 | |
|       assert(!VisitedVirtualBases.count(PrimaryBase) &&
 | |
|              "vbase already visited!");
 | |
|       VisitedVirtualBases.insert(PrimaryBase);
 | |
| 
 | |
|       LayoutVirtualBase(PrimaryBaseInfo);
 | |
|     } else {
 | |
|       BaseSubobjectInfo *PrimaryBaseInfo = 
 | |
|         NonVirtualBaseInfo.lookup(PrimaryBase);
 | |
|       assert(PrimaryBaseInfo && 
 | |
|              "Did not find base info for non-virtual primary base!");
 | |
| 
 | |
|       LayoutNonVirtualBase(PrimaryBaseInfo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now lay out the non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
| 
 | |
|     // Ignore virtual bases.
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     // Skip the primary base.
 | |
|     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     // Lay out the base.
 | |
|     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
 | |
|     assert(BaseInfo && "Did not find base info for non-virtual base!");
 | |
| 
 | |
|     LayoutNonVirtualBase(BaseInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
 | |
|   // Layout the base.
 | |
|   CharUnits Offset = LayoutBase(Base);
 | |
| 
 | |
|   // Add its base class offset.
 | |
|   assert(!Bases.count(Base->Class) && "base offset already exists!");
 | |
|   Bases.insert(std::make_pair(Base->Class, Offset));
 | |
| 
 | |
|   AddPrimaryVirtualBaseOffsets(Base, Offset);
 | |
| }
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 
 | |
|                                                   CharUnits Offset) {
 | |
|   // This base isn't interesting, it has no virtual bases.
 | |
|   if (!Info->Class->getNumVBases())
 | |
|     return;
 | |
|   
 | |
|   // First, check if we have a virtual primary base to add offsets for.
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     assert(Info->PrimaryVirtualBaseInfo->IsVirtual && 
 | |
|            "Primary virtual base is not virtual!");
 | |
|     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
 | |
|       // Add the offset.
 | |
|       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && 
 | |
|              "primary vbase offset already exists!");
 | |
|       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
 | |
|                                    Offset));
 | |
| 
 | |
|       // Traverse the primary virtual base.
 | |
|       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now go through all direct non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
 | |
|     const BaseSubobjectInfo *Base = Info->Bases[I];
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
|     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
 | |
|                                         const CXXRecordDecl *MostDerivedClass) {
 | |
|   const CXXRecordDecl *PrimaryBase;
 | |
|   bool PrimaryBaseIsVirtual;
 | |
| 
 | |
|   if (MostDerivedClass == RD) {
 | |
|     PrimaryBase = this->PrimaryBase;
 | |
|     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
 | |
|   } else {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     PrimaryBase = Layout.getPrimaryBase();
 | |
|     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
|     assert(!I->getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     if (I->isVirtual()) {
 | |
|       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
 | |
|         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
 | |
| 
 | |
|         // Only lay out the virtual base if it's not an indirect primary base.
 | |
|         if (!IndirectPrimaryBase) {
 | |
|           // Only visit virtual bases once.
 | |
|           if (!VisitedVirtualBases.insert(BaseDecl))
 | |
|             continue;
 | |
| 
 | |
|           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
 | |
|           assert(BaseInfo && "Did not find virtual base info!");
 | |
|           LayoutVirtualBase(BaseInfo);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!BaseDecl->getNumVBases()) {
 | |
|       // This base isn't interesting since it doesn't have any virtual bases.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     LayoutVirtualBases(BaseDecl, MostDerivedClass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
 | |
|   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
 | |
|   
 | |
|   // Layout the base.
 | |
|   CharUnits Offset = LayoutBase(Base);
 | |
| 
 | |
|   // Add its base class offset.
 | |
|   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
 | |
|   VBases.insert(std::make_pair(Base->Class, Offset));
 | |
|   
 | |
|   AddPrimaryVirtualBaseOffsets(Base, Offset);
 | |
| }
 | |
| 
 | |
| CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
 | |
| 
 | |
|   // If we have an empty base class, try to place it at offset 0.
 | |
|   if (Base->Class->isEmpty() &&
 | |
|       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
 | |
|     setSize(std::max(getSize(), Layout.getSize()));
 | |
| 
 | |
|     return CharUnits::Zero();
 | |
|   }
 | |
| 
 | |
|   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
 | |
|   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
 | |
| 
 | |
|   // The maximum field alignment overrides base align.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
 | |
|     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // Round up the current record size to the base's alignment boundary.
 | |
|   CharUnits Offset = getDataSize().RoundUpToAlignment(BaseAlign);
 | |
| 
 | |
|   // Try to place the base.
 | |
|   while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
 | |
|     Offset += BaseAlign;
 | |
| 
 | |
|   if (!Base->Class->isEmpty()) {
 | |
|     // Update the data size.
 | |
|     setDataSize(Offset + Layout.getNonVirtualSize());
 | |
| 
 | |
|     setSize(std::max(getSize(), getDataSize()));
 | |
|   } else
 | |
|     setSize(std::max(getSize(), Offset + Layout.getSize()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
 | |
|     IsUnion = RD->isUnion();
 | |
| 
 | |
|   Packed = D->hasAttr<PackedAttr>();
 | |
| 
 | |
|   // mac68k alignment supersedes maximum field alignment and attribute aligned,
 | |
|   // and forces all structures to have 2-byte alignment. The IBM docs on it
 | |
|   // allude to additional (more complicated) semantics, especially with regard
 | |
|   // to bit-fields, but gcc appears not to follow that.
 | |
|   if (D->hasAttr<AlignMac68kAttr>()) {
 | |
|     IsMac68kAlign = true;
 | |
|     MaxFieldAlignment = CharUnits::fromQuantity(2);
 | |
|     Alignment = CharUnits::fromQuantity(2);
 | |
|   } else {
 | |
|     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
 | |
|       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
 | |
| 
 | |
|     if (unsigned MaxAlign = D->getMaxAlignment())
 | |
|       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::Layout(const RecordDecl *D) {
 | |
|   InitializeLayout(D);
 | |
|   LayoutFields(D);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   FinishLayout(D);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
 | |
|   InitializeLayout(RD);
 | |
| 
 | |
|   // Lay out the vtable and the non-virtual bases.
 | |
|   LayoutNonVirtualBases(RD);
 | |
| 
 | |
|   LayoutFields(RD);
 | |
| 
 | |
|   NonVirtualSize = Context.toCharUnitsFromBits(
 | |
|         llvm::RoundUpToAlignment(getSizeInBits(), 
 | |
|                                  Context.Target.getCharAlign()));
 | |
|   NonVirtualAlignment = Alignment;
 | |
| 
 | |
|   // Lay out the virtual bases and add the primary virtual base offsets.
 | |
|   LayoutVirtualBases(RD, RD);
 | |
| 
 | |
|   VisitedVirtualBases.clear();
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   FinishLayout(RD);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that we have base offsets for all bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|        E = RD->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     assert(Bases.count(BaseDecl) && "Did not find base offset!");
 | |
|   }
 | |
| 
 | |
|   // And all virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|        E = RD->vbases_end(); I != E; ++I) {
 | |
|     const CXXRecordDecl *BaseDecl =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     assert(VBases.count(BaseDecl) && "Did not find base offset!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
 | |
|   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
 | |
|     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
 | |
| 
 | |
|     UpdateAlignment(SL.getAlignment());
 | |
| 
 | |
|     // We start laying out ivars not at the end of the superclass
 | |
|     // structure, but at the next byte following the last field.
 | |
|     setSize(SL.getDataSize());
 | |
|     setDataSize(getSize());
 | |
|   }
 | |
| 
 | |
|   InitializeLayout(D);
 | |
| 
 | |
|   // Layout each ivar sequentially.
 | |
|   llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
 | |
|   Context.ShallowCollectObjCIvars(D, Ivars);
 | |
|   for (unsigned i = 0, e = Ivars.size(); i != e; ++i)
 | |
|     LayoutField(Ivars[i]);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   FinishLayout(D);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
 | |
|   // Layout each field, for now, just sequentially, respecting alignment.  In
 | |
|   // the future, this will need to be tweakable by targets.
 | |
|   for (RecordDecl::field_iterator Field = D->field_begin(),
 | |
|          FieldEnd = D->field_end(); Field != FieldEnd; ++Field)
 | |
|     LayoutField(*Field);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
 | |
|                                              uint64_t TypeSize,
 | |
|                                              bool FieldPacked,
 | |
|                                              const FieldDecl *D) {
 | |
|   assert(Context.getLangOptions().CPlusPlus &&
 | |
|          "Can only have wide bit-fields in C++!");
 | |
| 
 | |
|   // Itanium C++ ABI 2.4:
 | |
|   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
 | |
|   //   sizeof(T')*8 <= n.
 | |
| 
 | |
|   QualType IntegralPODTypes[] = {
 | |
|     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
 | |
|     Context.UnsignedLongTy, Context.UnsignedLongLongTy
 | |
|   };
 | |
| 
 | |
|   QualType Type;
 | |
|   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
 | |
|        I != E; ++I) {
 | |
|     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
 | |
| 
 | |
|     if (Size > FieldSize)
 | |
|       break;
 | |
| 
 | |
|     Type = IntegralPODTypes[I];
 | |
|   }
 | |
|   assert(!Type.isNull() && "Did not find a type!");
 | |
| 
 | |
|   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
 | |
| 
 | |
|   // We're not going to use any of the unfilled bits in the last byte.
 | |
|   UnfilledBitsInLastByte = 0;
 | |
| 
 | |
|   uint64_t FieldOffset;
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
 | |
| 
 | |
|   if (IsUnion) {
 | |
|     setDataSize(std::max(getDataSizeInBits(), FieldSize));
 | |
|     FieldOffset = 0;
 | |
|   } else {
 | |
|     // The bitfield is allocated starting at the next offset aligned appropriately
 | |
|     // for T', with length n bits.
 | |
|     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(), 
 | |
|                                            Context.toBits(TypeAlign));
 | |
| 
 | |
|     uint64_t NewSizeInBits = FieldOffset + FieldSize;
 | |
| 
 | |
|     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, 
 | |
|                                          Context.Target.getCharAlign()));
 | |
|     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
 | |
|   }
 | |
| 
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(FieldOffset);
 | |
| 
 | |
|   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
 | |
|                     Context.toBits(TypeAlign), FieldPacked, D);
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(TypeAlign);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
 | |
|   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
 | |
|   uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
 | |
|   uint64_t FieldSize = D->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
 | |
| 
 | |
|   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
 | |
|   uint64_t TypeSize = FieldInfo.first;
 | |
|   unsigned FieldAlign = FieldInfo.second;
 | |
| 
 | |
|   if (FieldSize > TypeSize) {
 | |
|     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The align if the field is not packed. This is to check if the attribute
 | |
|   // was unnecessary (-Wpacked).
 | |
|   unsigned UnpackedFieldAlign = FieldAlign;
 | |
|   uint64_t UnpackedFieldOffset = FieldOffset;
 | |
|   if (!Context.Target.useBitFieldTypeAlignment())
 | |
|     UnpackedFieldAlign = 1;
 | |
| 
 | |
|   if (FieldPacked || !Context.Target.useBitFieldTypeAlignment())
 | |
|     FieldAlign = 1;
 | |
|   FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
 | |
|   UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
 | |
| 
 | |
|   // The maximum field alignment overrides the aligned attribute.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
 | |
|     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
 | |
|     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
 | |
|   }
 | |
| 
 | |
|   // Check if we need to add padding to give the field the correct alignment.
 | |
|   if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
 | |
|     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
 | |
| 
 | |
|   if (FieldSize == 0 ||
 | |
|       (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize)
 | |
|     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
 | |
|                                                    UnpackedFieldAlign);
 | |
| 
 | |
|   // Padding members don't affect overall alignment.
 | |
|   if (!D->getIdentifier())
 | |
|     FieldAlign = UnpackedFieldAlign = 1;
 | |
| 
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(FieldOffset);
 | |
| 
 | |
|   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
 | |
|                     UnpackedFieldAlign, FieldPacked, D);
 | |
| 
 | |
|   // Update DataSize to include the last byte containing (part of) the bitfield.
 | |
|   if (IsUnion) {
 | |
|     // FIXME: I think FieldSize should be TypeSize here.
 | |
|     setDataSize(std::max(getDataSizeInBits(), FieldSize));
 | |
|   } else {
 | |
|     uint64_t NewSizeInBits = FieldOffset + FieldSize;
 | |
| 
 | |
|     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, 
 | |
|                                          Context.Target.getCharAlign()));
 | |
|     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
 | |
|   }
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), 
 | |
|                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
 | |
|   if (D->isBitField()) {
 | |
|     LayoutBitField(D);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
 | |
| 
 | |
|   // Reset the unfilled bits.
 | |
|   UnfilledBitsInLastByte = 0;
 | |
| 
 | |
|   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
 | |
|   CharUnits FieldOffset = 
 | |
|     IsUnion ? CharUnits::Zero() : getDataSize();
 | |
|   CharUnits FieldSize;
 | |
|   CharUnits FieldAlign;
 | |
| 
 | |
|   if (D->getType()->isIncompleteArrayType()) {
 | |
|     // This is a flexible array member; we can't directly
 | |
|     // query getTypeInfo about these, so we figure it out here.
 | |
|     // Flexible array members don't have any size, but they
 | |
|     // have to be aligned appropriately for their element type.
 | |
|     FieldSize = CharUnits::Zero();
 | |
|     const ArrayType* ATy = Context.getAsArrayType(D->getType());
 | |
|     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
 | |
|   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
 | |
|     unsigned AS = RT->getPointeeType().getAddressSpace();
 | |
|     FieldSize = 
 | |
|       Context.toCharUnitsFromBits(Context.Target.getPointerWidth(AS));
 | |
|     FieldAlign = 
 | |
|       Context.toCharUnitsFromBits(Context.Target.getPointerAlign(AS));
 | |
|   } else {
 | |
|     std::pair<CharUnits, CharUnits> FieldInfo = 
 | |
|       Context.getTypeInfoInChars(D->getType());
 | |
|     FieldSize = FieldInfo.first;
 | |
|     FieldAlign = FieldInfo.second;
 | |
| 
 | |
|     if (Context.getLangOptions().MSBitfields) {
 | |
|       // If MS bitfield layout is required, figure out what type is being
 | |
|       // laid out and align the field to the width of that type.
 | |
|       
 | |
|       // Resolve all typedefs down to their base type and round up the field
 | |
|       // alignment if necessary.
 | |
|       QualType T = Context.getBaseElementType(D->getType());
 | |
|       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
 | |
|         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
 | |
|         if (TypeSize > FieldAlign)
 | |
|           FieldAlign = TypeSize;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The align if the field is not packed. This is to check if the attribute
 | |
|   // was unnecessary (-Wpacked).
 | |
|   CharUnits UnpackedFieldAlign = FieldAlign;
 | |
|   CharUnits UnpackedFieldOffset = FieldOffset;
 | |
| 
 | |
|   if (FieldPacked)
 | |
|     FieldAlign = CharUnits::One();
 | |
|   CharUnits MaxAlignmentInChars = 
 | |
|     Context.toCharUnitsFromBits(D->getMaxAlignment());
 | |
|   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
 | |
|   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
 | |
| 
 | |
|   // The maximum field alignment overrides the aligned attribute.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
 | |
|     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // Round up the current record size to the field's alignment boundary.
 | |
|   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
 | |
|   UnpackedFieldOffset = 
 | |
|     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
 | |
| 
 | |
|   if (!IsUnion && EmptySubobjects) {
 | |
|     // Check if we can place the field at this offset.
 | |
|     while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
 | |
|       // We couldn't place the field at the offset. Try again at a new offset.
 | |
|       FieldOffset += FieldAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(Context.toBits(FieldOffset));
 | |
| 
 | |
|   CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, 
 | |
|                     Context.toBits(UnpackedFieldOffset),
 | |
|                     Context.toBits(UnpackedFieldAlign), FieldPacked, D);
 | |
| 
 | |
|   // Reserve space for this field.
 | |
|   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
 | |
|   if (IsUnion)
 | |
|     setSize(std::max(getSizeInBits(), FieldSizeInBits));
 | |
|   else
 | |
|     setSize(FieldOffset + FieldSize);
 | |
| 
 | |
|   // Update the data size.
 | |
|   setDataSize(getSizeInBits());
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
 | |
|   // In C++, records cannot be of size 0.
 | |
|   if (Context.getLangOptions().CPlusPlus && getSizeInBits() == 0) {
 | |
|     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|       // Compatibility with gcc requires a class (pod or non-pod)
 | |
|       // which is not empty but of size 0; such as having fields of
 | |
|       // array of zero-length, remains of Size 0
 | |
|       if (RD->isEmpty())
 | |
|         setSize(CharUnits::One());
 | |
|     }
 | |
|     else
 | |
|       setSize(CharUnits::One());
 | |
|   }
 | |
|   // Finally, round the size of the record up to the alignment of the
 | |
|   // record itself.
 | |
|   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte;
 | |
|   uint64_t UnpackedSizeInBits = 
 | |
|     llvm::RoundUpToAlignment(getSizeInBits(), 
 | |
|                              Context.toBits(UnpackedAlignment));
 | |
|   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
 | |
|   setSize(llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment)));
 | |
| 
 | |
|   unsigned CharBitNum = Context.Target.getCharWidth();
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
 | |
|     // Warn if padding was introduced to the struct/class/union.
 | |
|     if (getSizeInBits() > UnpaddedSize) {
 | |
|       unsigned PadSize = getSizeInBits() - UnpaddedSize;
 | |
|       bool InBits = true;
 | |
|       if (PadSize % CharBitNum == 0) {
 | |
|         PadSize = PadSize / CharBitNum;
 | |
|         InBits = false;
 | |
|       }
 | |
|       Diag(RD->getLocation(), diag::warn_padded_struct_size)
 | |
|           << Context.getTypeDeclType(RD)
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
 | |
|     }
 | |
| 
 | |
|     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
 | |
|     // bother since there won't be alignment issues.
 | |
|     if (Packed && UnpackedAlignment > CharUnits::One() && 
 | |
|         getSize() == UnpackedSize)
 | |
|       Diag(D->getLocation(), diag::warn_unnecessary_packed)
 | |
|           << Context.getTypeDeclType(RD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
 | |
|                                           CharUnits UnpackedNewAlignment) {
 | |
|   // The alignment is not modified when using 'mac68k' alignment.
 | |
|   if (IsMac68kAlign)
 | |
|     return;
 | |
| 
 | |
|   if (NewAlignment > Alignment) {
 | |
|     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() && 
 | |
|            "Alignment not a power of 2"));
 | |
|     Alignment = NewAlignment;
 | |
|   }
 | |
| 
 | |
|   if (UnpackedNewAlignment > UnpackedAlignment) {
 | |
|     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
 | |
|            "Alignment not a power of 2"));
 | |
|     UnpackedAlignment = UnpackedNewAlignment;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
 | |
|                                             uint64_t UnpaddedOffset,
 | |
|                                             uint64_t UnpackedOffset,
 | |
|                                             unsigned UnpackedAlign,
 | |
|                                             bool isPacked,
 | |
|                                             const FieldDecl *D) {
 | |
|   // We let objc ivars without warning, objc interfaces generally are not used
 | |
|   // for padding tricks.
 | |
|   if (isa<ObjCIvarDecl>(D))
 | |
|     return;
 | |
| 
 | |
|   unsigned CharBitNum = Context.Target.getCharWidth();
 | |
| 
 | |
|   // Warn if padding was introduced to the struct/class.
 | |
|   if (!IsUnion && Offset > UnpaddedOffset) {
 | |
|     unsigned PadSize = Offset - UnpaddedOffset;
 | |
|     bool InBits = true;
 | |
|     if (PadSize % CharBitNum == 0) {
 | |
|       PadSize = PadSize / CharBitNum;
 | |
|       InBits = false;
 | |
|     }
 | |
|     if (D->getIdentifier())
 | |
|       Diag(D->getLocation(), diag::warn_padded_struct_field)
 | |
|           << (D->getParent()->isStruct() ? 0 : 1) // struct|class
 | |
|           << Context.getTypeDeclType(D->getParent())
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
 | |
|           << D->getIdentifier();
 | |
|     else
 | |
|       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
 | |
|           << (D->getParent()->isStruct() ? 0 : 1) // struct|class
 | |
|           << Context.getTypeDeclType(D->getParent())
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
 | |
|   }
 | |
| 
 | |
|   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
 | |
|   // bother since there won't be alignment issues.
 | |
|   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
 | |
|     Diag(D->getLocation(), diag::warn_unnecessary_packed)
 | |
|         << D->getIdentifier();
 | |
| }
 | |
| 
 | |
| const CXXMethodDecl *
 | |
| RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
 | |
|   // If a class isn't polymorphic it doesn't have a key function.
 | |
|   if (!RD->isPolymorphic())
 | |
|     return 0;
 | |
| 
 | |
|   // A class inside an anonymous namespace doesn't have a key function.  (Or
 | |
|   // at least, there's no point to assigning a key function to such a class;
 | |
|   // this doesn't affect the ABI.)
 | |
|   if (RD->isInAnonymousNamespace())
 | |
|     return 0;
 | |
| 
 | |
|   // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
 | |
|   // Same behavior as GCC.
 | |
|   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
 | |
|   if (TSK == TSK_ImplicitInstantiation ||
 | |
|       TSK == TSK_ExplicitInstantiationDefinition)
 | |
|     return 0;
 | |
| 
 | |
|   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
 | |
|          E = RD->method_end(); I != E; ++I) {
 | |
|     const CXXMethodDecl *MD = *I;
 | |
| 
 | |
|     if (!MD->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->isPure())
 | |
|       continue;
 | |
| 
 | |
|     // Ignore implicit member functions, they are always marked as inline, but
 | |
|     // they don't have a body until they're defined.
 | |
|     if (MD->isImplicit())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->isInlineSpecified())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->hasInlineBody())
 | |
|       continue;
 | |
| 
 | |
|     // We found it.
 | |
|     return MD;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| DiagnosticBuilder
 | |
| RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
 | |
|   return Context.getDiagnostics().Report(Loc, DiagID);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // This class implements layout specific to the Microsoft ABI.
 | |
|   class MSRecordLayoutBuilder : public RecordLayoutBuilder {
 | |
|   public:
 | |
|     MSRecordLayoutBuilder(const ASTContext& Ctx,
 | |
|                           EmptySubobjectMap *EmptySubobjects) :
 | |
|       RecordLayoutBuilder(Ctx, EmptySubobjects) {}
 | |
| 
 | |
|     virtual CharUnits GetVirtualPointersSize(const CXXRecordDecl *RD) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| CharUnits
 | |
| MSRecordLayoutBuilder::GetVirtualPointersSize(const CXXRecordDecl *RD) const {
 | |
|   // We should reserve space for two pointers if the class has both
 | |
|   // virtual functions and virtual bases.
 | |
|   CharUnits PointerWidth = 
 | |
|     Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0));
 | |
|   if (RD->isPolymorphic() && RD->getNumVBases() > 0)
 | |
|     return 2 * PointerWidth;
 | |
|   return PointerWidth;
 | |
| }
 | |
| 
 | |
| /// getASTRecordLayout - Get or compute information about the layout of the
 | |
| /// specified record (struct/union/class), which indicates its size and field
 | |
| /// position information.
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getASTRecordLayout(const RecordDecl *D) const {
 | |
|   D = D->getDefinition();
 | |
|   assert(D && "Cannot get layout of forward declarations!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   // Note that we can't save a reference to the entry because this function
 | |
|   // is recursive.
 | |
|   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
 | |
|   if (Entry) return *Entry;
 | |
| 
 | |
|   const ASTRecordLayout *NewEntry;
 | |
| 
 | |
|   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|     EmptySubobjectMap EmptySubobjects(*this, RD);
 | |
| 
 | |
|     // When compiling for Microsoft, use the special MS builder.
 | |
|     llvm::OwningPtr<RecordLayoutBuilder> Builder;
 | |
|     switch (Target.getCXXABI()) {
 | |
|     default:
 | |
|       Builder.reset(new RecordLayoutBuilder(*this, &EmptySubobjects));
 | |
|       break;
 | |
|     case CXXABI_Microsoft:
 | |
|       Builder.reset(new MSRecordLayoutBuilder(*this, &EmptySubobjects));
 | |
|     }
 | |
|     // Recover resources if we crash before exiting this method.
 | |
|     llvm::CrashRecoveryContextCleanupRegistrar<RecordLayoutBuilder>
 | |
|       RecordBuilderCleanup(Builder.get());
 | |
|     
 | |
|     Builder->Layout(RD);
 | |
| 
 | |
|     // FIXME: This is not always correct. See the part about bitfields at
 | |
|     // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
 | |
|     // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
 | |
|     bool IsPODForThePurposeOfLayout = cast<CXXRecordDecl>(D)->isPOD();
 | |
| 
 | |
|     // FIXME: This should be done in FinalizeLayout.
 | |
|     CharUnits DataSize =
 | |
|       IsPODForThePurposeOfLayout ? Builder->getSize() : Builder->getDataSize();
 | |
|     CharUnits NonVirtualSize = 
 | |
|       IsPODForThePurposeOfLayout ? DataSize : Builder->NonVirtualSize;
 | |
| 
 | |
|     NewEntry =
 | |
|       new (*this) ASTRecordLayout(*this, Builder->getSize(), 
 | |
|                                   Builder->Alignment,
 | |
|                                   DataSize, 
 | |
|                                   Builder->FieldOffsets.data(),
 | |
|                                   Builder->FieldOffsets.size(),
 | |
|                                   NonVirtualSize,
 | |
|                                   Builder->NonVirtualAlignment,
 | |
|                                   EmptySubobjects.SizeOfLargestEmptySubobject,
 | |
|                                   Builder->PrimaryBase,
 | |
|                                   Builder->PrimaryBaseIsVirtual,
 | |
|                                   Builder->Bases, Builder->VBases);
 | |
|   } else {
 | |
|     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
 | |
|     Builder.Layout(D);
 | |
| 
 | |
|     NewEntry =
 | |
|       new (*this) ASTRecordLayout(*this, Builder.getSize(), 
 | |
|                                   Builder.Alignment,
 | |
|                                   Builder.getSize(),
 | |
|                                   Builder.FieldOffsets.data(),
 | |
|                                   Builder.FieldOffsets.size());
 | |
|   }
 | |
| 
 | |
|   ASTRecordLayouts[D] = NewEntry;
 | |
| 
 | |
|   if (getLangOptions().DumpRecordLayouts) {
 | |
|     llvm::errs() << "\n*** Dumping AST Record Layout\n";
 | |
|     DumpRecordLayout(D, llvm::errs());
 | |
|   }
 | |
| 
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
 | |
|   RD = cast<CXXRecordDecl>(RD->getDefinition());
 | |
|   assert(RD && "Cannot get key function for forward declarations!");
 | |
| 
 | |
|   const CXXMethodDecl *&Entry = KeyFunctions[RD];
 | |
|   if (!Entry)
 | |
|     Entry = RecordLayoutBuilder::ComputeKeyFunction(RD);
 | |
| 
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| /// getInterfaceLayoutImpl - Get or compute information about the
 | |
| /// layout of the given interface.
 | |
| ///
 | |
| /// \param Impl - If given, also include the layout of the interface's
 | |
| /// implementation. This may differ by including synthesized ivars.
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
 | |
|                           const ObjCImplementationDecl *Impl) const {
 | |
|   assert(!D->isForwardDecl() && "Invalid interface decl!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   ObjCContainerDecl *Key =
 | |
|     Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
 | |
|   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
 | |
|     return *Entry;
 | |
| 
 | |
|   // Add in synthesized ivar count if laying out an implementation.
 | |
|   if (Impl) {
 | |
|     unsigned SynthCount = CountNonClassIvars(D);
 | |
|     // If there aren't any sythesized ivars then reuse the interface
 | |
|     // entry. Note we can't cache this because we simply free all
 | |
|     // entries later; however we shouldn't look up implementations
 | |
|     // frequently.
 | |
|     if (SynthCount == 0)
 | |
|       return getObjCLayout(D, 0);
 | |
|   }
 | |
| 
 | |
|   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
 | |
|   Builder.Layout(D);
 | |
| 
 | |
|   const ASTRecordLayout *NewEntry =
 | |
|     new (*this) ASTRecordLayout(*this, Builder.getSize(), 
 | |
|                                 Builder.Alignment,
 | |
|                                 Builder.getDataSize(),
 | |
|                                 Builder.FieldOffsets.data(),
 | |
|                                 Builder.FieldOffsets.size());
 | |
| 
 | |
|   ObjCLayouts[Key] = NewEntry;
 | |
| 
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| static void PrintOffset(llvm::raw_ostream &OS,
 | |
|                         CharUnits Offset, unsigned IndentLevel) {
 | |
|   OS << llvm::format("%4d | ", Offset.getQuantity());
 | |
|   OS.indent(IndentLevel * 2);
 | |
| }
 | |
| 
 | |
| static void DumpCXXRecordLayout(llvm::raw_ostream &OS,
 | |
|                                 const CXXRecordDecl *RD, const ASTContext &C,
 | |
|                                 CharUnits Offset,
 | |
|                                 unsigned IndentLevel,
 | |
|                                 const char* Description,
 | |
|                                 bool IncludeVirtualBases) {
 | |
|   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
 | |
| 
 | |
|   PrintOffset(OS, Offset, IndentLevel);
 | |
|   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
 | |
|   if (Description)
 | |
|     OS << ' ' << Description;
 | |
|   if (RD->isEmpty())
 | |
|     OS << " (empty)";
 | |
|   OS << '\n';
 | |
| 
 | |
|   IndentLevel++;
 | |
| 
 | |
|   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
 | |
| 
 | |
|   // Vtable pointer.
 | |
|   if (RD->isDynamicClass() && !PrimaryBase) {
 | |
|     PrintOffset(OS, Offset, IndentLevel);
 | |
|     OS << '(' << RD << " vtable pointer)\n";
 | |
|   }
 | |
|   // Dump (non-virtual) bases
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
|     assert(!I->getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
|     if (I->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *Base =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
 | |
| 
 | |
|     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
 | |
|                         Base == PrimaryBase ? "(primary base)" : "(base)",
 | |
|                         /*IncludeVirtualBases=*/false);
 | |
|   }
 | |
| 
 | |
|   // Dump fields.
 | |
|   uint64_t FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
 | |
|          E = RD->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     const FieldDecl *Field = *I;
 | |
|     CharUnits FieldOffset = Offset + 
 | |
|       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
 | |
| 
 | |
|     if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
 | |
|       if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
 | |
|         DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
 | |
|                             Field->getName().data(),
 | |
|                             /*IncludeVirtualBases=*/true);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PrintOffset(OS, FieldOffset, IndentLevel);
 | |
|     OS << Field->getType().getAsString() << ' ' << Field << '\n';
 | |
|   }
 | |
| 
 | |
|   if (!IncludeVirtualBases)
 | |
|     return;
 | |
| 
 | |
|   // Dump virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
 | |
|          E = RD->vbases_end(); I != E; ++I) {
 | |
|     assert(I->isVirtual() && "Found non-virtual class!");
 | |
|     const CXXRecordDecl *VBase =
 | |
|       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
 | |
|     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
 | |
|                         VBase == PrimaryBase ?
 | |
|                         "(primary virtual base)" : "(virtual base)",
 | |
|                         /*IncludeVirtualBases=*/false);
 | |
|   }
 | |
| 
 | |
|   OS << "  sizeof=" << Layout.getSize().getQuantity();
 | |
|   OS << ", dsize=" << Layout.getDataSize().getQuantity();
 | |
|   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
 | |
|   OS << "  nvsize=" << Layout.getNonVirtualSize().getQuantity();
 | |
|   OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << '\n';
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| void ASTContext::DumpRecordLayout(const RecordDecl *RD,
 | |
|                                   llvm::raw_ostream &OS) const {
 | |
|   const ASTRecordLayout &Info = getASTRecordLayout(RD);
 | |
| 
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
 | |
|                                /*IncludeVirtualBases=*/true);
 | |
| 
 | |
|   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
 | |
|   OS << "Record: ";
 | |
|   RD->dump();
 | |
|   OS << "\nLayout: ";
 | |
|   OS << "<ASTRecordLayout\n";
 | |
|   OS << "  Size:" << toBits(Info.getSize()) << "\n";
 | |
|   OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
 | |
|   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
 | |
|   OS << "  FieldOffsets: [";
 | |
|   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
 | |
|     if (i) OS << ", ";
 | |
|     OS << Info.getFieldOffset(i);
 | |
|   }
 | |
|   OS << "]>\n";
 | |
| }
 |