forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1458 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1458 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // These classes wrap the information about a call or function
 | |
| // definition used to handle ABI compliancy.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGCall.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "ABIInfo.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/Frontend/CodeGenOptions.h"
 | |
| #include "llvm/Attributes.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| /***/
 | |
| 
 | |
| static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
 | |
|   switch (CC) {
 | |
|   default: return llvm::CallingConv::C;
 | |
|   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
 | |
|   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
 | |
|   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
 | |
|   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
 | |
|   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
 | |
|   // TODO: add support for CC_X86Pascal to llvm
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Derives the 'this' type for codegen purposes, i.e. ignoring method
 | |
| /// qualification.
 | |
| /// FIXME: address space qualification?
 | |
| static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
 | |
|   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
 | |
|   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
 | |
| }
 | |
| 
 | |
| /// Returns the canonical formal type of the given C++ method.
 | |
| static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
 | |
|   return MD->getType()->getCanonicalTypeUnqualified()
 | |
|            .getAs<FunctionProtoType>();
 | |
| }
 | |
| 
 | |
| /// Returns the "extra-canonicalized" return type, which discards
 | |
| /// qualifiers on the return type.  Codegen doesn't care about them,
 | |
| /// and it makes ABI code a little easier to be able to assume that
 | |
| /// all parameter and return types are top-level unqualified.
 | |
| static CanQualType GetReturnType(QualType RetTy) {
 | |
|   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP,
 | |
|                               bool IsRecursive) {
 | |
|   return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
 | |
|                          llvm::SmallVector<CanQualType, 16>(),
 | |
|                          FTNP->getExtInfo(), IsRecursive);
 | |
| }
 | |
| 
 | |
| /// \param Args - contains any initial parameters besides those
 | |
| ///   in the formal type
 | |
| static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
 | |
|                                   llvm::SmallVectorImpl<CanQualType> &ArgTys,
 | |
|                                              CanQual<FunctionProtoType> FTP,
 | |
|                                              bool IsRecursive = false) {
 | |
|   // FIXME: Kill copy.
 | |
|   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
 | |
|     ArgTys.push_back(FTP->getArgType(i));
 | |
|   CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
 | |
|   return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo(), IsRecursive);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &
 | |
| CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP,
 | |
|                               bool IsRecursive) {
 | |
|   llvm::SmallVector<CanQualType, 16> ArgTys;
 | |
|   return ::getFunctionInfo(*this, ArgTys, FTP, IsRecursive);
 | |
| }
 | |
| 
 | |
| static CallingConv getCallingConventionForDecl(const Decl *D) {
 | |
|   // Set the appropriate calling convention for the Function.
 | |
|   if (D->hasAttr<StdCallAttr>())
 | |
|     return CC_X86StdCall;
 | |
| 
 | |
|   if (D->hasAttr<FastCallAttr>())
 | |
|     return CC_X86FastCall;
 | |
| 
 | |
|   if (D->hasAttr<ThisCallAttr>())
 | |
|     return CC_X86ThisCall;
 | |
| 
 | |
|   if (D->hasAttr<PascalAttr>())
 | |
|     return CC_X86Pascal;
 | |
| 
 | |
|   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
 | |
|     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
 | |
| 
 | |
|   return CC_C;
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
 | |
|                                                  const FunctionProtoType *FTP) {
 | |
|   llvm::SmallVector<CanQualType, 16> ArgTys;
 | |
| 
 | |
|   // Add the 'this' pointer.
 | |
|   ArgTys.push_back(GetThisType(Context, RD));
 | |
| 
 | |
|   return ::getFunctionInfo(*this, ArgTys,
 | |
|               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
 | |
|   llvm::SmallVector<CanQualType, 16> ArgTys;
 | |
| 
 | |
|   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
 | |
|   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
 | |
| 
 | |
|   // Add the 'this' pointer unless this is a static method.
 | |
|   if (MD->isInstance())
 | |
|     ArgTys.push_back(GetThisType(Context, MD->getParent()));
 | |
| 
 | |
|   return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
 | |
|                                                     CXXCtorType Type) {
 | |
|   llvm::SmallVector<CanQualType, 16> ArgTys;
 | |
|   ArgTys.push_back(GetThisType(Context, D->getParent()));
 | |
|   CanQualType ResTy = Context.VoidTy;
 | |
| 
 | |
|   TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys);
 | |
| 
 | |
|   CanQual<FunctionProtoType> FTP = GetFormalType(D);
 | |
| 
 | |
|   // Add the formal parameters.
 | |
|   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
 | |
|     ArgTys.push_back(FTP->getArgType(i));
 | |
| 
 | |
|   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
 | |
|                                                     CXXDtorType Type) {
 | |
|   llvm::SmallVector<CanQualType, 2> ArgTys;
 | |
|   ArgTys.push_back(GetThisType(Context, D->getParent()));
 | |
|   CanQualType ResTy = Context.VoidTy;
 | |
| 
 | |
|   TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys);
 | |
| 
 | |
|   CanQual<FunctionProtoType> FTP = GetFormalType(D);
 | |
|   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
 | |
| 
 | |
|   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
 | |
|   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
 | |
|     if (MD->isInstance())
 | |
|       return getFunctionInfo(MD);
 | |
| 
 | |
|   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
 | |
|   assert(isa<FunctionType>(FTy));
 | |
|   if (isa<FunctionNoProtoType>(FTy))
 | |
|     return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
 | |
|   assert(isa<FunctionProtoType>(FTy));
 | |
|   return getFunctionInfo(FTy.getAs<FunctionProtoType>());
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
 | |
|   llvm::SmallVector<CanQualType, 16> ArgTys;
 | |
|   ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
 | |
|   ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
 | |
|   // FIXME: Kill copy?
 | |
|   for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
 | |
|          e = MD->param_end(); i != e; ++i) {
 | |
|     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
 | |
|   }
 | |
|   return getFunctionInfo(GetReturnType(MD->getResultType()),
 | |
|                          ArgTys,
 | |
|                          FunctionType::ExtInfo(
 | |
|                              /*NoReturn*/ false,
 | |
|                              /*HasRegParm*/ false,
 | |
|                              /*RegParm*/ 0,
 | |
|                              getCallingConventionForDecl(MD)));
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
 | |
|   // FIXME: Do we need to handle ObjCMethodDecl?
 | |
|   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | |
| 
 | |
|   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
 | |
|     return getFunctionInfo(CD, GD.getCtorType());
 | |
| 
 | |
|   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
 | |
|     return getFunctionInfo(DD, GD.getDtorType());
 | |
| 
 | |
|   return getFunctionInfo(FD);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
 | |
|                                                     const CallArgList &Args,
 | |
|                                             const FunctionType::ExtInfo &Info) {
 | |
|   // FIXME: Kill copy.
 | |
|   llvm::SmallVector<CanQualType, 16> ArgTys;
 | |
|   for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
 | |
|        i != e; ++i)
 | |
|     ArgTys.push_back(Context.getCanonicalParamType(i->second));
 | |
|   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
 | |
|                                                     const FunctionArgList &Args,
 | |
|                                             const FunctionType::ExtInfo &Info) {
 | |
|   // FIXME: Kill copy.
 | |
|   llvm::SmallVector<CanQualType, 16> ArgTys;
 | |
|   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
 | |
|        i != e; ++i)
 | |
|     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
 | |
|   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() {
 | |
|   llvm::SmallVector<CanQualType, 1> args;
 | |
|   return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo());
 | |
| }
 | |
| 
 | |
| const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
 | |
|                            const llvm::SmallVectorImpl<CanQualType> &ArgTys,
 | |
|                                             const FunctionType::ExtInfo &Info,
 | |
|                                                     bool IsRecursive) {
 | |
| #ifndef NDEBUG
 | |
|   for (llvm::SmallVectorImpl<CanQualType>::const_iterator
 | |
|          I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
 | |
|     assert(I->isCanonicalAsParam());
 | |
| #endif
 | |
| 
 | |
|   unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
 | |
| 
 | |
|   // Lookup or create unique function info.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   CGFunctionInfo::Profile(ID, Info, ResTy,
 | |
|                           ArgTys.begin(), ArgTys.end());
 | |
| 
 | |
|   void *InsertPos = 0;
 | |
|   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (FI)
 | |
|     return *FI;
 | |
| 
 | |
|   // Construct the function info.
 | |
|   FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getHasRegParm(), Info.getRegParm(), ResTy,
 | |
|                           ArgTys.data(), ArgTys.size());
 | |
|   FunctionInfos.InsertNode(FI, InsertPos);
 | |
| 
 | |
|   // Compute ABI information.
 | |
|   getABIInfo().computeInfo(*FI);
 | |
| 
 | |
|   // Loop over all of the computed argument and return value info.  If any of
 | |
|   // them are direct or extend without a specified coerce type, specify the
 | |
|   // default now.
 | |
|   ABIArgInfo &RetInfo = FI->getReturnInfo();
 | |
|   if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0)
 | |
|     RetInfo.setCoerceToType(ConvertTypeRecursive(FI->getReturnType()));
 | |
| 
 | |
|   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
 | |
|        I != E; ++I)
 | |
|     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
 | |
|       I->info.setCoerceToType(ConvertTypeRecursive(I->type));
 | |
| 
 | |
|   // If this is a top-level call and ConvertTypeRecursive hit unresolved pointer
 | |
|   // types, resolve them now.  These pointers may point to this function, which
 | |
|   // we *just* filled in the FunctionInfo for.
 | |
|   if (!IsRecursive && !PointersToResolve.empty())
 | |
|     HandleLateResolvedPointers();
 | |
| 
 | |
|   return *FI;
 | |
| }
 | |
| 
 | |
| CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
 | |
|                                bool _NoReturn, bool _HasRegParm, unsigned _RegParm,
 | |
|                                CanQualType ResTy,
 | |
|                                const CanQualType *ArgTys,
 | |
|                                unsigned NumArgTys)
 | |
|   : CallingConvention(_CallingConvention),
 | |
|     EffectiveCallingConvention(_CallingConvention),
 | |
|     NoReturn(_NoReturn), HasRegParm(_HasRegParm), RegParm(_RegParm)
 | |
| {
 | |
|   NumArgs = NumArgTys;
 | |
| 
 | |
|   // FIXME: Coallocate with the CGFunctionInfo object.
 | |
|   Args = new ArgInfo[1 + NumArgTys];
 | |
|   Args[0].type = ResTy;
 | |
|   for (unsigned i = 0; i != NumArgTys; ++i)
 | |
|     Args[1 + i].type = ArgTys[i];
 | |
| }
 | |
| 
 | |
| /***/
 | |
| 
 | |
| void CodeGenTypes::GetExpandedTypes(QualType Ty,
 | |
|                                     std::vector<const llvm::Type*> &ArgTys,
 | |
|                                     bool IsRecursive) {
 | |
|   const RecordType *RT = Ty->getAsStructureType();
 | |
|   assert(RT && "Can only expand structure types.");
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
|   assert(!RD->hasFlexibleArrayMember() &&
 | |
|          "Cannot expand structure with flexible array.");
 | |
| 
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i) {
 | |
|     const FieldDecl *FD = *i;
 | |
|     assert(!FD->isBitField() &&
 | |
|            "Cannot expand structure with bit-field members.");
 | |
| 
 | |
|     QualType FT = FD->getType();
 | |
|     if (CodeGenFunction::hasAggregateLLVMType(FT))
 | |
|       GetExpandedTypes(FT, ArgTys, IsRecursive);
 | |
|     else
 | |
|       ArgTys.push_back(ConvertType(FT, IsRecursive));
 | |
|   }
 | |
| }
 | |
| 
 | |
| llvm::Function::arg_iterator
 | |
| CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
 | |
|                                     llvm::Function::arg_iterator AI) {
 | |
|   const RecordType *RT = Ty->getAsStructureType();
 | |
|   assert(RT && "Can only expand structure types.");
 | |
| 
 | |
|   RecordDecl *RD = RT->getDecl();
 | |
|   assert(LV.isSimple() &&
 | |
|          "Unexpected non-simple lvalue during struct expansion.");
 | |
|   llvm::Value *Addr = LV.getAddress();
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i) {
 | |
|     FieldDecl *FD = *i;
 | |
|     QualType FT = FD->getType();
 | |
| 
 | |
|     // FIXME: What are the right qualifiers here?
 | |
|     LValue LV = EmitLValueForField(Addr, FD, 0);
 | |
|     if (CodeGenFunction::hasAggregateLLVMType(FT)) {
 | |
|       AI = ExpandTypeFromArgs(FT, LV, AI);
 | |
|     } else {
 | |
|       EmitStoreThroughLValue(RValue::get(AI), LV, FT);
 | |
|       ++AI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return AI;
 | |
| }
 | |
| 
 | |
| void
 | |
| CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
 | |
|                                   llvm::SmallVector<llvm::Value*, 16> &Args) {
 | |
|   const RecordType *RT = Ty->getAsStructureType();
 | |
|   assert(RT && "Can only expand structure types.");
 | |
| 
 | |
|   RecordDecl *RD = RT->getDecl();
 | |
|   assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
 | |
|   llvm::Value *Addr = RV.getAggregateAddr();
 | |
|   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | |
|          i != e; ++i) {
 | |
|     FieldDecl *FD = *i;
 | |
|     QualType FT = FD->getType();
 | |
| 
 | |
|     // FIXME: What are the right qualifiers here?
 | |
|     LValue LV = EmitLValueForField(Addr, FD, 0);
 | |
|     if (CodeGenFunction::hasAggregateLLVMType(FT)) {
 | |
|       ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
 | |
|     } else {
 | |
|       RValue RV = EmitLoadOfLValue(LV, FT);
 | |
|       assert(RV.isScalar() &&
 | |
|              "Unexpected non-scalar rvalue during struct expansion.");
 | |
|       Args.push_back(RV.getScalarVal());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
 | |
| /// accessing some number of bytes out of it, try to gep into the struct to get
 | |
| /// at its inner goodness.  Dive as deep as possible without entering an element
 | |
| /// with an in-memory size smaller than DstSize.
 | |
| static llvm::Value *
 | |
| EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
 | |
|                                    const llvm::StructType *SrcSTy,
 | |
|                                    uint64_t DstSize, CodeGenFunction &CGF) {
 | |
|   // We can't dive into a zero-element struct.
 | |
|   if (SrcSTy->getNumElements() == 0) return SrcPtr;
 | |
| 
 | |
|   const llvm::Type *FirstElt = SrcSTy->getElementType(0);
 | |
| 
 | |
|   // If the first elt is at least as large as what we're looking for, or if the
 | |
|   // first element is the same size as the whole struct, we can enter it.
 | |
|   uint64_t FirstEltSize =
 | |
|     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
 | |
|   if (FirstEltSize < DstSize &&
 | |
|       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
 | |
|     return SrcPtr;
 | |
| 
 | |
|   // GEP into the first element.
 | |
|   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
 | |
| 
 | |
|   // If the first element is a struct, recurse.
 | |
|   const llvm::Type *SrcTy =
 | |
|     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
 | |
|   if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
 | |
|     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
 | |
| 
 | |
|   return SrcPtr;
 | |
| }
 | |
| 
 | |
| /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
 | |
| /// are either integers or pointers.  This does a truncation of the value if it
 | |
| /// is too large or a zero extension if it is too small.
 | |
| static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
 | |
|                                              const llvm::Type *Ty,
 | |
|                                              CodeGenFunction &CGF) {
 | |
|   if (Val->getType() == Ty)
 | |
|     return Val;
 | |
| 
 | |
|   if (isa<llvm::PointerType>(Val->getType())) {
 | |
|     // If this is Pointer->Pointer avoid conversion to and from int.
 | |
|     if (isa<llvm::PointerType>(Ty))
 | |
|       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
 | |
| 
 | |
|     // Convert the pointer to an integer so we can play with its width.
 | |
|     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
 | |
|   }
 | |
| 
 | |
|   const llvm::Type *DestIntTy = Ty;
 | |
|   if (isa<llvm::PointerType>(DestIntTy))
 | |
|     DestIntTy = CGF.IntPtrTy;
 | |
| 
 | |
|   if (Val->getType() != DestIntTy)
 | |
|     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
 | |
| 
 | |
|   if (isa<llvm::PointerType>(Ty))
 | |
|     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
 | |
| /// a pointer to an object of type \arg Ty.
 | |
| ///
 | |
| /// This safely handles the case when the src type is smaller than the
 | |
| /// destination type; in this situation the values of bits which not
 | |
| /// present in the src are undefined.
 | |
| static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
 | |
|                                       const llvm::Type *Ty,
 | |
|                                       CodeGenFunction &CGF) {
 | |
|   const llvm::Type *SrcTy =
 | |
|     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
 | |
| 
 | |
|   // If SrcTy and Ty are the same, just do a load.
 | |
|   if (SrcTy == Ty)
 | |
|     return CGF.Builder.CreateLoad(SrcPtr);
 | |
| 
 | |
|   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
 | |
| 
 | |
|   if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
 | |
|     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
 | |
|     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
 | |
|   }
 | |
| 
 | |
|   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
 | |
| 
 | |
|   // If the source and destination are integer or pointer types, just do an
 | |
|   // extension or truncation to the desired type.
 | |
|   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
 | |
|       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
 | |
|     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
 | |
|     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
 | |
|   }
 | |
| 
 | |
|   // If load is legal, just bitcast the src pointer.
 | |
|   if (SrcSize >= DstSize) {
 | |
|     // Generally SrcSize is never greater than DstSize, since this means we are
 | |
|     // losing bits. However, this can happen in cases where the structure has
 | |
|     // additional padding, for example due to a user specified alignment.
 | |
|     //
 | |
|     // FIXME: Assert that we aren't truncating non-padding bits when have access
 | |
|     // to that information.
 | |
|     llvm::Value *Casted =
 | |
|       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
 | |
|     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
 | |
|     // FIXME: Use better alignment / avoid requiring aligned load.
 | |
|     Load->setAlignment(1);
 | |
|     return Load;
 | |
|   }
 | |
| 
 | |
|   // Otherwise do coercion through memory. This is stupid, but
 | |
|   // simple.
 | |
|   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
 | |
|   llvm::Value *Casted =
 | |
|     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
 | |
|   llvm::StoreInst *Store =
 | |
|     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
 | |
|   // FIXME: Use better alignment / avoid requiring aligned store.
 | |
|   Store->setAlignment(1);
 | |
|   return CGF.Builder.CreateLoad(Tmp);
 | |
| }
 | |
| 
 | |
| /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
 | |
| /// where the source and destination may have different types.
 | |
| ///
 | |
| /// This safely handles the case when the src type is larger than the
 | |
| /// destination type; the upper bits of the src will be lost.
 | |
| static void CreateCoercedStore(llvm::Value *Src,
 | |
|                                llvm::Value *DstPtr,
 | |
|                                bool DstIsVolatile,
 | |
|                                CodeGenFunction &CGF) {
 | |
|   const llvm::Type *SrcTy = Src->getType();
 | |
|   const llvm::Type *DstTy =
 | |
|     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
 | |
|   if (SrcTy == DstTy) {
 | |
|     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
 | |
| 
 | |
|   if (const llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
 | |
|     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
 | |
|     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
 | |
|   }
 | |
| 
 | |
|   // If the source and destination are integer or pointer types, just do an
 | |
|   // extension or truncation to the desired type.
 | |
|   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
 | |
|       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
 | |
|     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
 | |
|     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
 | |
| 
 | |
|   // If store is legal, just bitcast the src pointer.
 | |
|   if (SrcSize <= DstSize) {
 | |
|     llvm::Value *Casted =
 | |
|       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
 | |
|     // FIXME: Use better alignment / avoid requiring aligned store.
 | |
|     CGF.Builder.CreateStore(Src, Casted, DstIsVolatile)->setAlignment(1);
 | |
|   } else {
 | |
|     // Otherwise do coercion through memory. This is stupid, but
 | |
|     // simple.
 | |
| 
 | |
|     // Generally SrcSize is never greater than DstSize, since this means we are
 | |
|     // losing bits. However, this can happen in cases where the structure has
 | |
|     // additional padding, for example due to a user specified alignment.
 | |
|     //
 | |
|     // FIXME: Assert that we aren't truncating non-padding bits when have access
 | |
|     // to that information.
 | |
|     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
 | |
|     CGF.Builder.CreateStore(Src, Tmp);
 | |
|     llvm::Value *Casted =
 | |
|       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
 | |
|     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
 | |
|     // FIXME: Use better alignment / avoid requiring aligned load.
 | |
|     Load->setAlignment(1);
 | |
|     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /***/
 | |
| 
 | |
| bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
 | |
|   return FI.getReturnInfo().isIndirect();
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
 | |
|   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
 | |
|     switch (BT->getKind()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case BuiltinType::Float:
 | |
|       return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float);
 | |
|     case BuiltinType::Double:
 | |
|       return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double);
 | |
|     case BuiltinType::LongDouble:
 | |
|       return getContext().Target.useObjCFPRetForRealType(
 | |
|         TargetInfo::LongDouble);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
 | |
|   const CGFunctionInfo &FI = getFunctionInfo(GD);
 | |
| 
 | |
|   // For definition purposes, don't consider a K&R function variadic.
 | |
|   bool Variadic = false;
 | |
|   if (const FunctionProtoType *FPT =
 | |
|         cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
 | |
|     Variadic = FPT->isVariadic();
 | |
| 
 | |
|   return GetFunctionType(FI, Variadic, false);
 | |
| }
 | |
| 
 | |
| const llvm::FunctionType *
 | |
| CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic,
 | |
|                               bool IsRecursive) {
 | |
|   std::vector<const llvm::Type*> ArgTys;
 | |
| 
 | |
|   const llvm::Type *ResultType = 0;
 | |
| 
 | |
|   QualType RetTy = FI.getReturnType();
 | |
|   const ABIArgInfo &RetAI = FI.getReturnInfo();
 | |
|   switch (RetAI.getKind()) {
 | |
|   case ABIArgInfo::Expand:
 | |
|     assert(0 && "Invalid ABI kind for return argument");
 | |
| 
 | |
|   case ABIArgInfo::Extend:
 | |
|   case ABIArgInfo::Direct:
 | |
|     ResultType = RetAI.getCoerceToType();
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Indirect: {
 | |
|     assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
 | |
|     ResultType = llvm::Type::getVoidTy(getLLVMContext());
 | |
|     const llvm::Type *STy = ConvertType(RetTy, IsRecursive);
 | |
|     unsigned AS = Context.getTargetAddressSpace(RetTy);
 | |
|     ArgTys.push_back(llvm::PointerType::get(STy, AS));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Ignore:
 | |
|     ResultType = llvm::Type::getVoidTy(getLLVMContext());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
 | |
|          ie = FI.arg_end(); it != ie; ++it) {
 | |
|     const ABIArgInfo &AI = it->info;
 | |
| 
 | |
|     switch (AI.getKind()) {
 | |
|     case ABIArgInfo::Ignore:
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       // indirect arguments are always on the stack, which is addr space #0.
 | |
|       const llvm::Type *LTy = ConvertTypeForMem(it->type, IsRecursive);
 | |
|       ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
|       // If the coerce-to type is a first class aggregate, flatten it.  Either
 | |
|       // way is semantically identical, but fast-isel and the optimizer
 | |
|       // generally likes scalar values better than FCAs.
 | |
|       const llvm::Type *ArgTy = AI.getCoerceToType();
 | |
|       if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgTy)) {
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|           ArgTys.push_back(STy->getElementType(i));
 | |
|       } else {
 | |
|         ArgTys.push_back(ArgTy);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Expand:
 | |
|       GetExpandedTypes(it->type, ArgTys, IsRecursive);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
 | |
| }
 | |
| 
 | |
| const llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
 | |
|   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | |
|   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|   if (!VerifyFuncTypeComplete(FPT)) {
 | |
|     const CGFunctionInfo *Info;
 | |
|     if (isa<CXXDestructorDecl>(MD))
 | |
|       Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType());
 | |
|     else
 | |
|       Info = &getFunctionInfo(MD);
 | |
|     return GetFunctionType(*Info, FPT->isVariadic(), false);
 | |
|   }
 | |
| 
 | |
|   return llvm::OpaqueType::get(getLLVMContext());
 | |
| }
 | |
| 
 | |
| void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
 | |
|                                            const Decl *TargetDecl,
 | |
|                                            AttributeListType &PAL,
 | |
|                                            unsigned &CallingConv) {
 | |
|   unsigned FuncAttrs = 0;
 | |
|   unsigned RetAttrs = 0;
 | |
| 
 | |
|   CallingConv = FI.getEffectiveCallingConvention();
 | |
| 
 | |
|   if (FI.isNoReturn())
 | |
|     FuncAttrs |= llvm::Attribute::NoReturn;
 | |
| 
 | |
|   // FIXME: handle sseregparm someday...
 | |
|   if (TargetDecl) {
 | |
|     if (TargetDecl->hasAttr<NoThrowAttr>())
 | |
|       FuncAttrs |= llvm::Attribute::NoUnwind;
 | |
|     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
 | |
|       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
 | |
|       if (FPT && FPT->isNothrow(getContext()))
 | |
|         FuncAttrs |= llvm::Attribute::NoUnwind;
 | |
|     }
 | |
| 
 | |
|     if (TargetDecl->hasAttr<NoReturnAttr>())
 | |
|       FuncAttrs |= llvm::Attribute::NoReturn;
 | |
|     if (TargetDecl->hasAttr<ConstAttr>())
 | |
|       FuncAttrs |= llvm::Attribute::ReadNone;
 | |
|     else if (TargetDecl->hasAttr<PureAttr>())
 | |
|       FuncAttrs |= llvm::Attribute::ReadOnly;
 | |
|     if (TargetDecl->hasAttr<MallocAttr>())
 | |
|       RetAttrs |= llvm::Attribute::NoAlias;
 | |
|   }
 | |
| 
 | |
|   if (CodeGenOpts.OptimizeSize)
 | |
|     FuncAttrs |= llvm::Attribute::OptimizeForSize;
 | |
|   if (CodeGenOpts.DisableRedZone)
 | |
|     FuncAttrs |= llvm::Attribute::NoRedZone;
 | |
|   if (CodeGenOpts.NoImplicitFloat)
 | |
|     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
 | |
| 
 | |
|   QualType RetTy = FI.getReturnType();
 | |
|   unsigned Index = 1;
 | |
|   const ABIArgInfo &RetAI = FI.getReturnInfo();
 | |
|   switch (RetAI.getKind()) {
 | |
|   case ABIArgInfo::Extend:
 | |
|    if (RetTy->hasSignedIntegerRepresentation())
 | |
|      RetAttrs |= llvm::Attribute::SExt;
 | |
|    else if (RetTy->hasUnsignedIntegerRepresentation())
 | |
|      RetAttrs |= llvm::Attribute::ZExt;
 | |
|     break;
 | |
|   case ABIArgInfo::Direct:
 | |
|   case ABIArgInfo::Ignore:
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Indirect:
 | |
|     PAL.push_back(llvm::AttributeWithIndex::get(Index,
 | |
|                                                 llvm::Attribute::StructRet));
 | |
|     ++Index;
 | |
|     // sret disables readnone and readonly
 | |
|     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
 | |
|                    llvm::Attribute::ReadNone);
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Expand:
 | |
|     assert(0 && "Invalid ABI kind for return argument");
 | |
|   }
 | |
| 
 | |
|   if (RetAttrs)
 | |
|     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
 | |
| 
 | |
|   // FIXME: RegParm should be reduced in case of global register variable.
 | |
|   signed RegParm;
 | |
|   if (FI.getHasRegParm())
 | |
|     RegParm = FI.getRegParm();
 | |
|   else
 | |
|     RegParm = CodeGenOpts.NumRegisterParameters;
 | |
| 
 | |
|   unsigned PointerWidth = getContext().Target.getPointerWidth(0);
 | |
|   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
 | |
|          ie = FI.arg_end(); it != ie; ++it) {
 | |
|     QualType ParamType = it->type;
 | |
|     const ABIArgInfo &AI = it->info;
 | |
|     unsigned Attributes = 0;
 | |
| 
 | |
|     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
 | |
|     // have the corresponding parameter variable.  It doesn't make
 | |
|     // sense to do it here because parameters are so messed up.
 | |
|     switch (AI.getKind()) {
 | |
|     case ABIArgInfo::Extend:
 | |
|       if (ParamType->isSignedIntegerType())
 | |
|         Attributes |= llvm::Attribute::SExt;
 | |
|       else if (ParamType->isUnsignedIntegerType())
 | |
|         Attributes |= llvm::Attribute::ZExt;
 | |
|       // FALL THROUGH
 | |
|     case ABIArgInfo::Direct:
 | |
|       if (RegParm > 0 &&
 | |
|           (ParamType->isIntegerType() || ParamType->isPointerType())) {
 | |
|         RegParm -=
 | |
|         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
 | |
|         if (RegParm >= 0)
 | |
|           Attributes |= llvm::Attribute::InReg;
 | |
|       }
 | |
|       // FIXME: handle sseregparm someday...
 | |
| 
 | |
|       if (const llvm::StructType *STy =
 | |
|             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
 | |
|         Index += STy->getNumElements()-1;  // 1 will be added below.
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::Indirect:
 | |
|       if (AI.getIndirectByVal())
 | |
|         Attributes |= llvm::Attribute::ByVal;
 | |
| 
 | |
|       Attributes |=
 | |
|         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
 | |
|       // byval disables readnone and readonly.
 | |
|       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
 | |
|                      llvm::Attribute::ReadNone);
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::Ignore:
 | |
|       // Skip increment, no matching LLVM parameter.
 | |
|       continue;
 | |
| 
 | |
|     case ABIArgInfo::Expand: {
 | |
|       std::vector<const llvm::Type*> Tys;
 | |
|       // FIXME: This is rather inefficient. Do we ever actually need to do
 | |
|       // anything here? The result should be just reconstructed on the other
 | |
|       // side, so extension should be a non-issue.
 | |
|       getTypes().GetExpandedTypes(ParamType, Tys, false);
 | |
|       Index += Tys.size();
 | |
|       continue;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     if (Attributes)
 | |
|       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
 | |
|     ++Index;
 | |
|   }
 | |
|   if (FuncAttrs)
 | |
|     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
 | |
| }
 | |
| 
 | |
| /// An argument came in as a promoted argument; demote it back to its
 | |
| /// declared type.
 | |
| static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
 | |
|                                          const VarDecl *var,
 | |
|                                          llvm::Value *value) {
 | |
|   const llvm::Type *varType = CGF.ConvertType(var->getType());
 | |
| 
 | |
|   // This can happen with promotions that actually don't change the
 | |
|   // underlying type, like the enum promotions.
 | |
|   if (value->getType() == varType) return value;
 | |
| 
 | |
|   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
 | |
|          && "unexpected promotion type");
 | |
| 
 | |
|   if (isa<llvm::IntegerType>(varType))
 | |
|     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
 | |
| 
 | |
|   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
 | |
|                                          llvm::Function *Fn,
 | |
|                                          const FunctionArgList &Args) {
 | |
|   // If this is an implicit-return-zero function, go ahead and
 | |
|   // initialize the return value.  TODO: it might be nice to have
 | |
|   // a more general mechanism for this that didn't require synthesized
 | |
|   // return statements.
 | |
|   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
 | |
|     if (FD->hasImplicitReturnZero()) {
 | |
|       QualType RetTy = FD->getResultType().getUnqualifiedType();
 | |
|       const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
 | |
|       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
 | |
|       Builder.CreateStore(Zero, ReturnValue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: We no longer need the types from FunctionArgList; lift up and
 | |
|   // simplify.
 | |
| 
 | |
|   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
 | |
|   llvm::Function::arg_iterator AI = Fn->arg_begin();
 | |
| 
 | |
|   // Name the struct return argument.
 | |
|   if (CGM.ReturnTypeUsesSRet(FI)) {
 | |
|     AI->setName("agg.result");
 | |
|     ++AI;
 | |
|   }
 | |
| 
 | |
|   assert(FI.arg_size() == Args.size() &&
 | |
|          "Mismatch between function signature & arguments.");
 | |
|   unsigned ArgNo = 1;
 | |
|   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
 | |
|   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 
 | |
|        i != e; ++i, ++info_it, ++ArgNo) {
 | |
|     const VarDecl *Arg = *i;
 | |
|     QualType Ty = info_it->type;
 | |
|     const ABIArgInfo &ArgI = info_it->info;
 | |
| 
 | |
|     bool isPromoted =
 | |
|       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
 | |
| 
 | |
|     switch (ArgI.getKind()) {
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       llvm::Value *V = AI;
 | |
| 
 | |
|       if (hasAggregateLLVMType(Ty)) {
 | |
|         // Aggregates and complex variables are accessed by reference.  All we
 | |
|         // need to do is realign the value, if requested
 | |
|         if (ArgI.getIndirectRealign()) {
 | |
|           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
 | |
| 
 | |
|           // Copy from the incoming argument pointer to the temporary with the
 | |
|           // appropriate alignment.
 | |
|           //
 | |
|           // FIXME: We should have a common utility for generating an aggregate
 | |
|           // copy.
 | |
|           const llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
 | |
|           CharUnits Size = getContext().getTypeSizeInChars(Ty);
 | |
|           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
 | |
|           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
 | |
|           Builder.CreateMemCpy(Dst,
 | |
|                                Src,
 | |
|                                llvm::ConstantInt::get(IntPtrTy, 
 | |
|                                                       Size.getQuantity()),
 | |
|                                ArgI.getIndirectAlign(),
 | |
|                                false);
 | |
|           V = AlignedTemp;
 | |
|         }
 | |
|       } else {
 | |
|         // Load scalar value from indirect argument.
 | |
|         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
 | |
|         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
 | |
| 
 | |
|         if (isPromoted)
 | |
|           V = emitArgumentDemotion(*this, Arg, V);
 | |
|       }
 | |
|       EmitParmDecl(*Arg, V, ArgNo);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
|       // If we have the trivial case, handle it with no muss and fuss.
 | |
|       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
 | |
|           ArgI.getCoerceToType() == ConvertType(Ty) &&
 | |
|           ArgI.getDirectOffset() == 0) {
 | |
|         assert(AI != Fn->arg_end() && "Argument mismatch!");
 | |
|         llvm::Value *V = AI;
 | |
| 
 | |
|         if (Arg->getType().isRestrictQualified())
 | |
|           AI->addAttr(llvm::Attribute::NoAlias);
 | |
| 
 | |
|         if (isPromoted)
 | |
|           V = emitArgumentDemotion(*this, Arg, V);
 | |
| 
 | |
|         EmitParmDecl(*Arg, V, ArgNo);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
 | |
| 
 | |
|       // The alignment we need to use is the max of the requested alignment for
 | |
|       // the argument plus the alignment required by our access code below.
 | |
|       unsigned AlignmentToUse =
 | |
|         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
 | |
|       AlignmentToUse = std::max(AlignmentToUse,
 | |
|                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
 | |
| 
 | |
|       Alloca->setAlignment(AlignmentToUse);
 | |
|       llvm::Value *V = Alloca;
 | |
|       llvm::Value *Ptr = V;    // Pointer to store into.
 | |
| 
 | |
|       // If the value is offset in memory, apply the offset now.
 | |
|       if (unsigned Offs = ArgI.getDirectOffset()) {
 | |
|         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
 | |
|         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
 | |
|         Ptr = Builder.CreateBitCast(Ptr,
 | |
|                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
 | |
|       }
 | |
| 
 | |
|       // If the coerce-to type is a first class aggregate, we flatten it and
 | |
|       // pass the elements. Either way is semantically identical, but fast-isel
 | |
|       // and the optimizer generally likes scalar values better than FCAs.
 | |
|       if (const llvm::StructType *STy =
 | |
|             dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
 | |
|         Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
 | |
| 
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           assert(AI != Fn->arg_end() && "Argument mismatch!");
 | |
|           AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i));
 | |
|           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
 | |
|           Builder.CreateStore(AI++, EltPtr);
 | |
|         }
 | |
|       } else {
 | |
|         // Simple case, just do a coerced store of the argument into the alloca.
 | |
|         assert(AI != Fn->arg_end() && "Argument mismatch!");
 | |
|         AI->setName(Arg->getName() + ".coerce");
 | |
|         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
 | |
|       }
 | |
| 
 | |
| 
 | |
|       // Match to what EmitParmDecl is expecting for this type.
 | |
|       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
 | |
|         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
 | |
|         if (isPromoted)
 | |
|           V = emitArgumentDemotion(*this, Arg, V);
 | |
|       }
 | |
|       EmitParmDecl(*Arg, V, ArgNo);
 | |
|       continue;  // Skip ++AI increment, already done.
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Expand: {
 | |
|       // If this structure was expanded into multiple arguments then
 | |
|       // we need to create a temporary and reconstruct it from the
 | |
|       // arguments.
 | |
|       llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr");
 | |
|       llvm::Function::arg_iterator End =
 | |
|         ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI);
 | |
|       EmitParmDecl(*Arg, Temp, ArgNo);
 | |
| 
 | |
|       // Name the arguments used in expansion and increment AI.
 | |
|       unsigned Index = 0;
 | |
|       for (; AI != End; ++AI, ++Index)
 | |
|         AI->setName(Arg->getName() + "." + llvm::Twine(Index));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Ignore:
 | |
|       // Initialize the local variable appropriately.
 | |
|       if (hasAggregateLLVMType(Ty))
 | |
|         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
 | |
|       else
 | |
|         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
 | |
|                      ArgNo);
 | |
| 
 | |
|       // Skip increment, no matching LLVM parameter.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ++AI;
 | |
|   }
 | |
|   assert(AI == Fn->arg_end() && "Argument mismatch!");
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
 | |
|   // Functions with no result always return void.
 | |
|   if (ReturnValue == 0) {
 | |
|     Builder.CreateRetVoid();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm::DebugLoc RetDbgLoc;
 | |
|   llvm::Value *RV = 0;
 | |
|   QualType RetTy = FI.getReturnType();
 | |
|   const ABIArgInfo &RetAI = FI.getReturnInfo();
 | |
| 
 | |
|   switch (RetAI.getKind()) {
 | |
|   case ABIArgInfo::Indirect: {
 | |
|     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
 | |
|     if (RetTy->isAnyComplexType()) {
 | |
|       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
 | |
|       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
 | |
|     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
 | |
|       // Do nothing; aggregrates get evaluated directly into the destination.
 | |
|     } else {
 | |
|       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
 | |
|                         false, Alignment, RetTy);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Extend:
 | |
|   case ABIArgInfo::Direct:
 | |
|     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
 | |
|         RetAI.getDirectOffset() == 0) {
 | |
|       // The internal return value temp always will have pointer-to-return-type
 | |
|       // type, just do a load.
 | |
| 
 | |
|       // If the instruction right before the insertion point is a store to the
 | |
|       // return value, we can elide the load, zap the store, and usually zap the
 | |
|       // alloca.
 | |
|       llvm::BasicBlock *InsertBB = Builder.GetInsertBlock();
 | |
|       llvm::StoreInst *SI = 0;
 | |
|       if (InsertBB->empty() ||
 | |
|           !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) ||
 | |
|           SI->getPointerOperand() != ReturnValue || SI->isVolatile()) {
 | |
|         RV = Builder.CreateLoad(ReturnValue);
 | |
|       } else {
 | |
|         // Get the stored value and nuke the now-dead store.
 | |
|         RetDbgLoc = SI->getDebugLoc();
 | |
|         RV = SI->getValueOperand();
 | |
|         SI->eraseFromParent();
 | |
| 
 | |
|         // If that was the only use of the return value, nuke it as well now.
 | |
|         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
 | |
|           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
 | |
|           ReturnValue = 0;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       llvm::Value *V = ReturnValue;
 | |
|       // If the value is offset in memory, apply the offset now.
 | |
|       if (unsigned Offs = RetAI.getDirectOffset()) {
 | |
|         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
 | |
|         V = Builder.CreateConstGEP1_32(V, Offs);
 | |
|         V = Builder.CreateBitCast(V,
 | |
|                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
 | |
|       }
 | |
| 
 | |
|       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Ignore:
 | |
|     break;
 | |
| 
 | |
|   case ABIArgInfo::Expand:
 | |
|     assert(0 && "Invalid ABI kind for return argument");
 | |
|   }
 | |
| 
 | |
|   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
 | |
|   if (!RetDbgLoc.isUnknown())
 | |
|     Ret->setDebugLoc(RetDbgLoc);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
 | |
|                                           const VarDecl *param) {
 | |
|   // StartFunction converted the ABI-lowered parameter(s) into a
 | |
|   // local alloca.  We need to turn that into an r-value suitable
 | |
|   // for EmitCall.
 | |
|   llvm::Value *local = GetAddrOfLocalVar(param);
 | |
| 
 | |
|   QualType type = param->getType();
 | |
| 
 | |
|   // For the most part, we just need to load the alloca, except:
 | |
|   // 1) aggregate r-values are actually pointers to temporaries, and
 | |
|   // 2) references to aggregates are pointers directly to the aggregate.
 | |
|   // I don't know why references to non-aggregates are different here.
 | |
|   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
 | |
|     if (hasAggregateLLVMType(ref->getPointeeType()))
 | |
|       return args.add(RValue::getAggregate(local), type);
 | |
| 
 | |
|     // Locals which are references to scalars are represented
 | |
|     // with allocas holding the pointer.
 | |
|     return args.add(RValue::get(Builder.CreateLoad(local)), type);
 | |
|   }
 | |
| 
 | |
|   if (type->isAnyComplexType()) {
 | |
|     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
 | |
|     return args.add(RValue::getComplex(complex), type);
 | |
|   }
 | |
| 
 | |
|   if (hasAggregateLLVMType(type))
 | |
|     return args.add(RValue::getAggregate(local), type);
 | |
| 
 | |
|   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
 | |
|   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
 | |
|   return args.add(RValue::get(value), type);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
 | |
|                                   QualType type) {
 | |
|   if (type->isReferenceType())
 | |
|     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
 | |
|                     type);
 | |
| 
 | |
|   args.add(EmitAnyExprToTemp(E), type);
 | |
| }
 | |
| 
 | |
| /// Emits a call or invoke instruction to the given function, depending
 | |
| /// on the current state of the EH stack.
 | |
| llvm::CallSite
 | |
| CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
 | |
|                                   llvm::Value * const *ArgBegin,
 | |
|                                   llvm::Value * const *ArgEnd,
 | |
|                                   const llvm::Twine &Name) {
 | |
|   llvm::BasicBlock *InvokeDest = getInvokeDest();
 | |
|   if (!InvokeDest)
 | |
|     return Builder.CreateCall(Callee, ArgBegin, ArgEnd, Name);
 | |
| 
 | |
|   llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
 | |
|   llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
 | |
|                                                   ArgBegin, ArgEnd, Name);
 | |
|   EmitBlock(ContBB);
 | |
|   return Invoke;
 | |
| }
 | |
| 
 | |
| RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
 | |
|                                  llvm::Value *Callee,
 | |
|                                  ReturnValueSlot ReturnValue,
 | |
|                                  const CallArgList &CallArgs,
 | |
|                                  const Decl *TargetDecl,
 | |
|                                  llvm::Instruction **callOrInvoke) {
 | |
|   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
 | |
|   llvm::SmallVector<llvm::Value*, 16> Args;
 | |
| 
 | |
|   // Handle struct-return functions by passing a pointer to the
 | |
|   // location that we would like to return into.
 | |
|   QualType RetTy = CallInfo.getReturnType();
 | |
|   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
 | |
| 
 | |
| 
 | |
|   // If the call returns a temporary with struct return, create a temporary
 | |
|   // alloca to hold the result, unless one is given to us.
 | |
|   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
 | |
|     llvm::Value *Value = ReturnValue.getValue();
 | |
|     if (!Value)
 | |
|       Value = CreateMemTemp(RetTy);
 | |
|     Args.push_back(Value);
 | |
|   }
 | |
| 
 | |
|   assert(CallInfo.arg_size() == CallArgs.size() &&
 | |
|          "Mismatch between function signature & arguments.");
 | |
|   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
 | |
|   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
 | |
|        I != E; ++I, ++info_it) {
 | |
|     const ABIArgInfo &ArgInfo = info_it->info;
 | |
|     RValue RV = I->first;
 | |
| 
 | |
|     unsigned Alignment =
 | |
|       getContext().getTypeAlignInChars(I->second).getQuantity();
 | |
|     switch (ArgInfo.getKind()) {
 | |
|     case ABIArgInfo::Indirect: {
 | |
|       if (RV.isScalar() || RV.isComplex()) {
 | |
|         // Make a temporary alloca to pass the argument.
 | |
|         Args.push_back(CreateMemTemp(I->second));
 | |
|         if (RV.isScalar())
 | |
|           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
 | |
|                             Alignment, I->second);
 | |
|         else
 | |
|           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
 | |
|       } else {
 | |
|         Args.push_back(RV.getAggregateAddr());
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Ignore:
 | |
|       break;
 | |
| 
 | |
|     case ABIArgInfo::Extend:
 | |
|     case ABIArgInfo::Direct: {
 | |
|       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
 | |
|           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
 | |
|           ArgInfo.getDirectOffset() == 0) {
 | |
|         if (RV.isScalar())
 | |
|           Args.push_back(RV.getScalarVal());
 | |
|         else
 | |
|           Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // FIXME: Avoid the conversion through memory if possible.
 | |
|       llvm::Value *SrcPtr;
 | |
|       if (RV.isScalar()) {
 | |
|         SrcPtr = CreateMemTemp(I->second, "coerce");
 | |
|         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, Alignment,
 | |
|                           I->second);
 | |
|       } else if (RV.isComplex()) {
 | |
|         SrcPtr = CreateMemTemp(I->second, "coerce");
 | |
|         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
 | |
|       } else
 | |
|         SrcPtr = RV.getAggregateAddr();
 | |
| 
 | |
|       // If the value is offset in memory, apply the offset now.
 | |
|       if (unsigned Offs = ArgInfo.getDirectOffset()) {
 | |
|         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
 | |
|         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
 | |
|         SrcPtr = Builder.CreateBitCast(SrcPtr,
 | |
|                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
 | |
| 
 | |
|       }
 | |
| 
 | |
|       // If the coerce-to type is a first class aggregate, we flatten it and
 | |
|       // pass the elements. Either way is semantically identical, but fast-isel
 | |
|       // and the optimizer generally likes scalar values better than FCAs.
 | |
|       if (const llvm::StructType *STy =
 | |
|             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
 | |
|         SrcPtr = Builder.CreateBitCast(SrcPtr,
 | |
|                                        llvm::PointerType::getUnqual(STy));
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
 | |
|           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
 | |
|           // We don't know what we're loading from.
 | |
|           LI->setAlignment(1);
 | |
|           Args.push_back(LI);
 | |
|         }
 | |
|       } else {
 | |
|         // In the simple case, just pass the coerced loaded value.
 | |
|         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
 | |
|                                          *this));
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ABIArgInfo::Expand:
 | |
|       ExpandTypeToArgs(I->second, RV, Args);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the callee is a bitcast of a function to a varargs pointer to function
 | |
|   // type, check to see if we can remove the bitcast.  This handles some cases
 | |
|   // with unprototyped functions.
 | |
|   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
 | |
|     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
 | |
|       const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
 | |
|       const llvm::FunctionType *CurFT =
 | |
|         cast<llvm::FunctionType>(CurPT->getElementType());
 | |
|       const llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
 | |
| 
 | |
|       if (CE->getOpcode() == llvm::Instruction::BitCast &&
 | |
|           ActualFT->getReturnType() == CurFT->getReturnType() &&
 | |
|           ActualFT->getNumParams() == CurFT->getNumParams() &&
 | |
|           ActualFT->getNumParams() == Args.size() &&
 | |
|           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
 | |
|         bool ArgsMatch = true;
 | |
|         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
 | |
|           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
 | |
|             ArgsMatch = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         // Strip the cast if we can get away with it.  This is a nice cleanup,
 | |
|         // but also allows us to inline the function at -O0 if it is marked
 | |
|         // always_inline.
 | |
|         if (ArgsMatch)
 | |
|           Callee = CalleeF;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|   unsigned CallingConv;
 | |
|   CodeGen::AttributeListType AttributeList;
 | |
|   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
 | |
|   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
 | |
|                                                    AttributeList.end());
 | |
| 
 | |
|   llvm::BasicBlock *InvokeDest = 0;
 | |
|   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
 | |
|     InvokeDest = getInvokeDest();
 | |
| 
 | |
|   llvm::CallSite CS;
 | |
|   if (!InvokeDest) {
 | |
|     CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
 | |
|   } else {
 | |
|     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
 | |
|     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
 | |
|                               Args.data(), Args.data()+Args.size());
 | |
|     EmitBlock(Cont);
 | |
|   }
 | |
|   if (callOrInvoke)
 | |
|     *callOrInvoke = CS.getInstruction();
 | |
| 
 | |
|   CS.setAttributes(Attrs);
 | |
|   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
 | |
| 
 | |
|   // If the call doesn't return, finish the basic block and clear the
 | |
|   // insertion point; this allows the rest of IRgen to discard
 | |
|   // unreachable code.
 | |
|   if (CS.doesNotReturn()) {
 | |
|     Builder.CreateUnreachable();
 | |
|     Builder.ClearInsertionPoint();
 | |
| 
 | |
|     // FIXME: For now, emit a dummy basic block because expr emitters in
 | |
|     // generally are not ready to handle emitting expressions at unreachable
 | |
|     // points.
 | |
|     EnsureInsertPoint();
 | |
| 
 | |
|     // Return a reasonable RValue.
 | |
|     return GetUndefRValue(RetTy);
 | |
|   }
 | |
| 
 | |
|   llvm::Instruction *CI = CS.getInstruction();
 | |
|   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
 | |
|     CI->setName("call");
 | |
| 
 | |
|   switch (RetAI.getKind()) {
 | |
|   case ABIArgInfo::Indirect: {
 | |
|     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
 | |
|     if (RetTy->isAnyComplexType())
 | |
|       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
 | |
|     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
 | |
|       return RValue::getAggregate(Args[0]);
 | |
|     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Ignore:
 | |
|     // If we are ignoring an argument that had a result, make sure to
 | |
|     // construct the appropriate return value for our caller.
 | |
|     return GetUndefRValue(RetTy);
 | |
| 
 | |
|   case ABIArgInfo::Extend:
 | |
|   case ABIArgInfo::Direct: {
 | |
|     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
 | |
|         RetAI.getDirectOffset() == 0) {
 | |
|       if (RetTy->isAnyComplexType()) {
 | |
|         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
 | |
|         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
 | |
|         return RValue::getComplex(std::make_pair(Real, Imag));
 | |
|       }
 | |
|       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
 | |
|         llvm::Value *DestPtr = ReturnValue.getValue();
 | |
|         bool DestIsVolatile = ReturnValue.isVolatile();
 | |
| 
 | |
|         if (!DestPtr) {
 | |
|           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
 | |
|           DestIsVolatile = false;
 | |
|         }
 | |
|         Builder.CreateStore(CI, DestPtr, DestIsVolatile);
 | |
|         return RValue::getAggregate(DestPtr);
 | |
|       }
 | |
|       return RValue::get(CI);
 | |
|     }
 | |
| 
 | |
|     llvm::Value *DestPtr = ReturnValue.getValue();
 | |
|     bool DestIsVolatile = ReturnValue.isVolatile();
 | |
| 
 | |
|     if (!DestPtr) {
 | |
|       DestPtr = CreateMemTemp(RetTy, "coerce");
 | |
|       DestIsVolatile = false;
 | |
|     }
 | |
| 
 | |
|     // If the value is offset in memory, apply the offset now.
 | |
|     llvm::Value *StorePtr = DestPtr;
 | |
|     if (unsigned Offs = RetAI.getDirectOffset()) {
 | |
|       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
 | |
|       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
 | |
|       StorePtr = Builder.CreateBitCast(StorePtr,
 | |
|                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
 | |
|     }
 | |
|     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
 | |
| 
 | |
|     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
 | |
|     if (RetTy->isAnyComplexType())
 | |
|       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
 | |
|     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
 | |
|       return RValue::getAggregate(DestPtr);
 | |
|     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
 | |
|   }
 | |
| 
 | |
|   case ABIArgInfo::Expand:
 | |
|     assert(0 && "Invalid ABI kind for return argument");
 | |
|   }
 | |
| 
 | |
|   assert(0 && "Unhandled ABIArgInfo::Kind");
 | |
|   return RValue::get(0);
 | |
| }
 | |
| 
 | |
| /* VarArg handling */
 | |
| 
 | |
| llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
 | |
|   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
 | |
| }
 |