forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			954 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			954 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Aggregate Expr nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Aggregate Expression Emitter
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace  {
 | |
| class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
 | |
|   CodeGenFunction &CGF;
 | |
|   CGBuilderTy &Builder;
 | |
|   AggValueSlot Dest;
 | |
|   bool IgnoreResult;
 | |
| 
 | |
|   ReturnValueSlot getReturnValueSlot() const {
 | |
|     // If the destination slot requires garbage collection, we can't
 | |
|     // use the real return value slot, because we have to use the GC
 | |
|     // API.
 | |
|     if (Dest.requiresGCollection()) return ReturnValueSlot();
 | |
| 
 | |
|     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
 | |
|   }
 | |
| 
 | |
|   AggValueSlot EnsureSlot(QualType T) {
 | |
|     if (!Dest.isIgnored()) return Dest;
 | |
|     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
 | |
|                  bool ignore)
 | |
|     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
 | |
|       IgnoreResult(ignore) {
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                               Utilities
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
 | |
|   /// represents a value lvalue, this method emits the address of the lvalue,
 | |
|   /// then loads the result into DestPtr.
 | |
|   void EmitAggLoadOfLValue(const Expr *E);
 | |
| 
 | |
|   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | |
|   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
 | |
|   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
 | |
| 
 | |
|   void EmitGCMove(const Expr *E, RValue Src);
 | |
| 
 | |
|   bool TypeRequiresGCollection(QualType T);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   void VisitStmt(Stmt *S) {
 | |
|     CGF.ErrorUnsupported(S, "aggregate expression");
 | |
|   }
 | |
|   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
 | |
|   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
 | |
|     Visit(GE->getResultExpr());
 | |
|   }
 | |
|   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
 | |
| 
 | |
|   // l-values.
 | |
|   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
 | |
|   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
 | |
|   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
 | |
|   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
 | |
|   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
|   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
|   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
|   void VisitPredefinedExpr(const PredefinedExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   // Operators.
 | |
|   void VisitCastExpr(CastExpr *E);
 | |
|   void VisitCallExpr(const CallExpr *E);
 | |
|   void VisitStmtExpr(const StmtExpr *E);
 | |
|   void VisitBinaryOperator(const BinaryOperator *BO);
 | |
|   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
 | |
|   void VisitBinAssign(const BinaryOperator *E);
 | |
|   void VisitBinComma(const BinaryOperator *E);
 | |
| 
 | |
|   void VisitObjCMessageExpr(ObjCMessageExpr *E);
 | |
|   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
|   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
 | |
| 
 | |
|   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
 | |
|   void VisitChooseExpr(const ChooseExpr *CE);
 | |
|   void VisitInitListExpr(InitListExpr *E);
 | |
|   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
 | |
|   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
 | |
|     Visit(DAE->getExpr());
 | |
|   }
 | |
|   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
 | |
|   void VisitCXXConstructExpr(const CXXConstructExpr *E);
 | |
|   void VisitExprWithCleanups(ExprWithCleanups *E);
 | |
|   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
 | |
|   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
 | |
| 
 | |
|   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
 | |
| 
 | |
|   void VisitVAArgExpr(VAArgExpr *E);
 | |
| 
 | |
|   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
 | |
|   void EmitNullInitializationToLValue(LValue Address, QualType T);
 | |
|   //  case Expr::ChooseExprClass:
 | |
|   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
 | |
| };
 | |
| }  // end anonymous namespace.
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// EmitAggLoadOfLValue - Given an expression with aggregate type that
 | |
| /// represents a value lvalue, this method emits the address of the lvalue,
 | |
| /// then loads the result into DestPtr.
 | |
| void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
 | |
|   LValue LV = CGF.EmitLValue(E);
 | |
|   EmitFinalDestCopy(E, LV);
 | |
| }
 | |
| 
 | |
| /// \brief True if the given aggregate type requires special GC API calls.
 | |
| bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
 | |
|   // Only record types have members that might require garbage collection.
 | |
|   const RecordType *RecordTy = T->getAs<RecordType>();
 | |
|   if (!RecordTy) return false;
 | |
| 
 | |
|   // Don't mess with non-trivial C++ types.
 | |
|   RecordDecl *Record = RecordTy->getDecl();
 | |
|   if (isa<CXXRecordDecl>(Record) &&
 | |
|       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
 | |
|        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether the type has an object member.
 | |
|   return Record->hasObjectMember();
 | |
| }
 | |
| 
 | |
| /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
 | |
| ///
 | |
| /// The idea is that you do something like this:
 | |
| ///   RValue Result = EmitSomething(..., getReturnValueSlot());
 | |
| ///   EmitGCMove(E, Result);
 | |
| /// If GC doesn't interfere, this will cause the result to be emitted
 | |
| /// directly into the return value slot.  If GC does interfere, a final
 | |
| /// move will be performed.
 | |
| void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
 | |
|   if (Dest.requiresGCollection()) {
 | |
|     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
 | |
|     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
 | |
|     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
 | |
|     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
 | |
|                                                     Src.getAggregateAddr(),
 | |
|                                                     SizeVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | |
| void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
 | |
|   assert(Src.isAggregate() && "value must be aggregate value!");
 | |
| 
 | |
|   // If Dest is ignored, then we're evaluating an aggregate expression
 | |
|   // in a context (like an expression statement) that doesn't care
 | |
|   // about the result.  C says that an lvalue-to-rvalue conversion is
 | |
|   // performed in these cases; C++ says that it is not.  In either
 | |
|   // case, we don't actually need to do anything unless the value is
 | |
|   // volatile.
 | |
|   if (Dest.isIgnored()) {
 | |
|     if (!Src.isVolatileQualified() ||
 | |
|         CGF.CGM.getLangOptions().CPlusPlus ||
 | |
|         (IgnoreResult && Ignore))
 | |
|       return;
 | |
| 
 | |
|     // If the source is volatile, we must read from it; to do that, we need
 | |
|     // some place to put it.
 | |
|     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
 | |
|   }
 | |
| 
 | |
|   if (Dest.requiresGCollection()) {
 | |
|     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
 | |
|     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
 | |
|     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
 | |
|     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
 | |
|                                                       Dest.getAddr(),
 | |
|                                                       Src.getAggregateAddr(),
 | |
|                                                       SizeVal);
 | |
|     return;
 | |
|   }
 | |
|   // If the result of the assignment is used, copy the LHS there also.
 | |
|   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
 | |
|   // from the source as well, as we can't eliminate it if either operand
 | |
|   // is volatile, unless copy has volatile for both source and destination..
 | |
|   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
 | |
|                         Dest.isVolatile()|Src.isVolatileQualified());
 | |
| }
 | |
| 
 | |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | |
| void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
 | |
|   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
 | |
| 
 | |
|   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
 | |
|                                             Src.isVolatileQualified()),
 | |
|                     Ignore);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Visitor Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
 | |
|   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCastExpr(CastExpr *E) {
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_Dynamic: {
 | |
|     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
 | |
|     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
 | |
|     // FIXME: Do we also need to handle property references here?
 | |
|     if (LV.isSimple())
 | |
|       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
 | |
|     else
 | |
|       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
 | |
|     
 | |
|     if (!Dest.isIgnored())
 | |
|       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
 | |
|     break;
 | |
|   }
 | |
|       
 | |
|   case CK_ToUnion: {
 | |
|     if (Dest.isIgnored()) break;
 | |
| 
 | |
|     // GCC union extension
 | |
|     QualType Ty = E->getSubExpr()->getType();
 | |
|     QualType PtrTy = CGF.getContext().getPointerType(Ty);
 | |
|     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
 | |
|                                                  CGF.ConvertType(PtrTy));
 | |
|     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
 | |
|                                Ty);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_BaseToDerived:
 | |
|   case CK_UncheckedDerivedToBase: {
 | |
|     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
 | |
|                 "should have been unpacked before we got here");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case CK_GetObjCProperty: {
 | |
|     LValue LV = CGF.EmitLValue(E->getSubExpr());
 | |
|     assert(LV.isPropertyRef());
 | |
|     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
 | |
|     EmitGCMove(E, RV);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case CK_LValueToRValue: // hope for downstream optimization
 | |
|   case CK_NoOp:
 | |
|   case CK_UserDefinedConversion:
 | |
|   case CK_ConstructorConversion:
 | |
|     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
 | |
|                                                    E->getType()) &&
 | |
|            "Implicit cast types must be compatible");
 | |
|     Visit(E->getSubExpr());
 | |
|     break;
 | |
|       
 | |
|   case CK_LValueBitCast:
 | |
|     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
 | |
|     break;
 | |
| 
 | |
|   case CK_Dependent:
 | |
|   case CK_BitCast:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_FunctionToPointerDecay:
 | |
|   case CK_NullToPointer:
 | |
|   case CK_NullToMemberPointer:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|   case CK_MemberPointerToBoolean:
 | |
|   case CK_IntegralToPointer:
 | |
|   case CK_PointerToIntegral:
 | |
|   case CK_PointerToBoolean:
 | |
|   case CK_ToVoid:
 | |
|   case CK_VectorSplat:
 | |
|   case CK_IntegralCast:
 | |
|   case CK_IntegralToBoolean:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingToBoolean:
 | |
|   case CK_FloatingCast:
 | |
|   case CK_AnyPointerToObjCPointerCast:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_ObjCObjectLValueCast:
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexToReal:
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|     llvm_unreachable("cast kind invalid for aggregate types");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
 | |
|   if (E->getCallReturnType()->isReferenceType()) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
 | |
|   EmitGCMove(E, RV);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | |
|   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
 | |
|   EmitGCMove(E, RV);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
 | |
|   llvm_unreachable("direct property access not surrounded by "
 | |
|                    "lvalue-to-rvalue cast");
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
 | |
|   CGF.EmitIgnoredExpr(E->getLHS());
 | |
|   Visit(E->getRHS());
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
 | |
|   CodeGenFunction::StmtExprEvaluation eval(CGF);
 | |
|   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
 | |
|   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
 | |
|     VisitPointerToDataMemberBinaryOperator(E);
 | |
|   else
 | |
|     CGF.ErrorUnsupported(E, "aggregate binary expression");
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
 | |
|                                                     const BinaryOperator *E) {
 | |
|   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
 | |
|   EmitFinalDestCopy(E, LV);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
 | |
|   // For an assignment to work, the value on the right has
 | |
|   // to be compatible with the value on the left.
 | |
|   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
 | |
|                                                  E->getRHS()->getType())
 | |
|          && "Invalid assignment");
 | |
| 
 | |
|   // FIXME:  __block variables need the RHS evaluated first!
 | |
|   LValue LHS = CGF.EmitLValue(E->getLHS());
 | |
| 
 | |
|   // We have to special case property setters, otherwise we must have
 | |
|   // a simple lvalue (no aggregates inside vectors, bitfields).
 | |
|   if (LHS.isPropertyRef()) {
 | |
|     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
 | |
|     QualType ArgType = RE->getSetterArgType();
 | |
|     RValue Src;
 | |
|     if (ArgType->isReferenceType())
 | |
|       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
 | |
|     else {
 | |
|       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
 | |
|       CGF.EmitAggExpr(E->getRHS(), Slot);
 | |
|       Src = Slot.asRValue();
 | |
|     }
 | |
|     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
 | |
|   } else {
 | |
|     bool GCollection = false;
 | |
|     if (CGF.getContext().getLangOptions().getGCMode())
 | |
|       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
 | |
| 
 | |
|     // Codegen the RHS so that it stores directly into the LHS.
 | |
|     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 
 | |
|                                                    GCollection);
 | |
|     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
 | |
|     EmitFinalDestCopy(E, LHS, true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::
 | |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
 | |
|   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
 | |
|   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
 | |
| 
 | |
|   // Bind the common expression if necessary.
 | |
|   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
|   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
 | |
| 
 | |
|   // Save whether the destination's lifetime is externally managed.
 | |
|   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
 | |
| 
 | |
|   eval.begin(CGF);
 | |
|   CGF.EmitBlock(LHSBlock);
 | |
|   Visit(E->getTrueExpr());
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
 | |
|   CGF.Builder.CreateBr(ContBlock);
 | |
| 
 | |
|   // If the result of an agg expression is unused, then the emission
 | |
|   // of the LHS might need to create a destination slot.  That's fine
 | |
|   // with us, and we can safely emit the RHS into the same slot, but
 | |
|   // we shouldn't claim that its lifetime is externally managed.
 | |
|   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
 | |
| 
 | |
|   eval.begin(CGF);
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   Visit(E->getFalseExpr());
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   CGF.EmitBlock(ContBlock);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
 | |
|   Visit(CE->getChosenSubExpr(CGF.getContext()));
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
 | |
|   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
 | |
|   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
 | |
| 
 | |
|   if (!ArgPtr) {
 | |
|     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
 | |
|   // Ensure that we have a slot, but if we already do, remember
 | |
|   // whether its lifetime was externally managed.
 | |
|   bool WasManaged = Dest.isLifetimeExternallyManaged();
 | |
|   Dest = EnsureSlot(E->getType());
 | |
|   Dest.setLifetimeExternallyManaged();
 | |
| 
 | |
|   Visit(E->getSubExpr());
 | |
| 
 | |
|   // Set up the temporary's destructor if its lifetime wasn't already
 | |
|   // being managed.
 | |
|   if (!WasManaged)
 | |
|     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
 | |
| }
 | |
| 
 | |
| void
 | |
| AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | |
|   AggValueSlot Slot = EnsureSlot(E->getType());
 | |
|   CGF.EmitCXXConstructExpr(E, Slot);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
 | |
|   CGF.EmitExprWithCleanups(E, Dest);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
 | |
|   QualType T = E->getType();
 | |
|   AggValueSlot Slot = EnsureSlot(T);
 | |
|   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
 | |
|   QualType T = E->getType();
 | |
|   AggValueSlot Slot = EnsureSlot(T);
 | |
|   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
 | |
| }
 | |
| 
 | |
| /// isSimpleZero - If emitting this value will obviously just cause a store of
 | |
| /// zero to memory, return true.  This can return false if uncertain, so it just
 | |
| /// handles simple cases.
 | |
| static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // 0
 | |
|   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
 | |
|     return IL->getValue() == 0;
 | |
|   // +0.0
 | |
|   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
 | |
|     return FL->getValue().isPosZero();
 | |
|   // int()
 | |
|   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
 | |
|       CGF.getTypes().isZeroInitializable(E->getType()))
 | |
|     return true;
 | |
|   // (int*)0 - Null pointer expressions.
 | |
|   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
 | |
|     return ICE->getCastKind() == CK_NullToPointer;
 | |
|   // '\0'
 | |
|   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
 | |
|     return CL->getValue() == 0;
 | |
|   
 | |
|   // Otherwise, hard case: conservatively return false.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void 
 | |
| AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
 | |
|   // FIXME: Ignore result?
 | |
|   // FIXME: Are initializers affected by volatile?
 | |
|   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
 | |
|     // Storing "i32 0" to a zero'd memory location is a noop.
 | |
|   } else if (isa<ImplicitValueInitExpr>(E)) {
 | |
|     EmitNullInitializationToLValue(LV, T);
 | |
|   } else if (T->isReferenceType()) {
 | |
|     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
 | |
|     CGF.EmitStoreThroughLValue(RV, LV, T);
 | |
|   } else if (T->isAnyComplexType()) {
 | |
|     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
 | |
|   } else if (CGF.hasAggregateLLVMType(T)) {
 | |
|     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
 | |
|                                              false, Dest.isZeroed()));
 | |
|   } else {
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
 | |
|   // If the destination slot is already zeroed out before the aggregate is
 | |
|   // copied into it, we don't have to emit any zeros here.
 | |
|   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
 | |
|     return;
 | |
|   
 | |
|   if (!CGF.hasAggregateLLVMType(T)) {
 | |
|     // For non-aggregates, we can store zero
 | |
|     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
 | |
|   } else {
 | |
|     // There's a potential optimization opportunity in combining
 | |
|     // memsets; that would be easy for arrays, but relatively
 | |
|     // difficult for structures with the current code.
 | |
|     CGF.EmitNullInitialization(LV.getAddress(), T);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
 | |
| #if 0
 | |
|   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
 | |
|   // (Length of globals? Chunks of zeroed-out space?).
 | |
|   //
 | |
|   // If we can, prefer a copy from a global; this is a lot less code for long
 | |
|   // globals, and it's easier for the current optimizers to analyze.
 | |
|   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
 | |
|     llvm::GlobalVariable* GV =
 | |
|     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
 | |
|                              llvm::GlobalValue::InternalLinkage, C, "");
 | |
|     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
|   if (E->hadArrayRangeDesignator())
 | |
|     CGF.ErrorUnsupported(E, "GNU array range designator extension");
 | |
| 
 | |
|   llvm::Value *DestPtr = Dest.getAddr();
 | |
| 
 | |
|   // Handle initialization of an array.
 | |
|   if (E->getType()->isArrayType()) {
 | |
|     const llvm::PointerType *APType =
 | |
|       cast<llvm::PointerType>(DestPtr->getType());
 | |
|     const llvm::ArrayType *AType =
 | |
|       cast<llvm::ArrayType>(APType->getElementType());
 | |
| 
 | |
|     uint64_t NumInitElements = E->getNumInits();
 | |
| 
 | |
|     if (E->getNumInits() > 0) {
 | |
|       QualType T1 = E->getType();
 | |
|       QualType T2 = E->getInit(0)->getType();
 | |
|       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
 | |
|         EmitAggLoadOfLValue(E->getInit(0));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     uint64_t NumArrayElements = AType->getNumElements();
 | |
|     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
 | |
|     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
 | |
| 
 | |
|     // FIXME: were we intentionally ignoring address spaces and GC attributes?
 | |
| 
 | |
|     for (uint64_t i = 0; i != NumArrayElements; ++i) {
 | |
|       // If we're done emitting initializers and the destination is known-zeroed
 | |
|       // then we're done.
 | |
|       if (i == NumInitElements &&
 | |
|           Dest.isZeroed() &&
 | |
|           CGF.getTypes().isZeroInitializable(ElementType))
 | |
|         break;
 | |
| 
 | |
|       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
 | |
|       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
 | |
|       
 | |
|       if (i < NumInitElements)
 | |
|         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
 | |
|       else if (Expr *filler = E->getArrayFiller())
 | |
|         EmitInitializationToLValue(filler, LV, ElementType);
 | |
|       else
 | |
|         EmitNullInitializationToLValue(LV, ElementType);
 | |
|       
 | |
|       // If the GEP didn't get used because of a dead zero init or something
 | |
|       // else, clean it up for -O0 builds and general tidiness.
 | |
|       if (llvm::GetElementPtrInst *GEP =
 | |
|             dyn_cast<llvm::GetElementPtrInst>(NextVal))
 | |
|         if (GEP->use_empty())
 | |
|           GEP->eraseFromParent();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
 | |
| 
 | |
|   // Do struct initialization; this code just sets each individual member
 | |
|   // to the approprate value.  This makes bitfield support automatic;
 | |
|   // the disadvantage is that the generated code is more difficult for
 | |
|   // the optimizer, especially with bitfields.
 | |
|   unsigned NumInitElements = E->getNumInits();
 | |
|   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
 | |
|   
 | |
|   if (E->getType()->isUnionType()) {
 | |
|     // Only initialize one field of a union. The field itself is
 | |
|     // specified by the initializer list.
 | |
|     if (!E->getInitializedFieldInUnion()) {
 | |
|       // Empty union; we have nothing to do.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       // Make sure that it's really an empty and not a failure of
 | |
|       // semantic analysis.
 | |
|       for (RecordDecl::field_iterator Field = SD->field_begin(),
 | |
|                                    FieldEnd = SD->field_end();
 | |
|            Field != FieldEnd; ++Field)
 | |
|         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
 | |
| #endif
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // FIXME: volatility
 | |
|     FieldDecl *Field = E->getInitializedFieldInUnion();
 | |
| 
 | |
|     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
 | |
|     if (NumInitElements) {
 | |
|       // Store the initializer into the field
 | |
|       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
 | |
|     } else {
 | |
|       // Default-initialize to null.
 | |
|       EmitNullInitializationToLValue(FieldLoc, Field->getType());
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Here we iterate over the fields; this makes it simpler to both
 | |
|   // default-initialize fields and skip over unnamed fields.
 | |
|   unsigned CurInitVal = 0;
 | |
|   for (RecordDecl::field_iterator Field = SD->field_begin(),
 | |
|                                FieldEnd = SD->field_end();
 | |
|        Field != FieldEnd; ++Field) {
 | |
|     // We're done once we hit the flexible array member
 | |
|     if (Field->getType()->isIncompleteArrayType())
 | |
|       break;
 | |
| 
 | |
|     if (Field->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     // Don't emit GEP before a noop store of zero.
 | |
|     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
 | |
|         CGF.getTypes().isZeroInitializable(E->getType()))
 | |
|       break;
 | |
|     
 | |
|     // FIXME: volatility
 | |
|     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
 | |
|     // We never generate write-barries for initialized fields.
 | |
|     FieldLoc.setNonGC(true);
 | |
|     
 | |
|     if (CurInitVal < NumInitElements) {
 | |
|       // Store the initializer into the field.
 | |
|       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
 | |
|                                  Field->getType());
 | |
|     } else {
 | |
|       // We're out of initalizers; default-initialize to null
 | |
|       EmitNullInitializationToLValue(FieldLoc, Field->getType());
 | |
|     }
 | |
|     
 | |
|     // If the GEP didn't get used because of a dead zero init or something
 | |
|     // else, clean it up for -O0 builds and general tidiness.
 | |
|     if (FieldLoc.isSimple())
 | |
|       if (llvm::GetElementPtrInst *GEP =
 | |
|             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
 | |
|         if (GEP->use_empty())
 | |
|           GEP->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Entry Points into this File
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
 | |
| /// non-zero bytes that will be stored when outputting the initializer for the
 | |
| /// specified initializer expression.
 | |
| static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // 0 and 0.0 won't require any non-zero stores!
 | |
|   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
 | |
| 
 | |
|   // If this is an initlist expr, sum up the size of sizes of the (present)
 | |
|   // elements.  If this is something weird, assume the whole thing is non-zero.
 | |
|   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
 | |
|   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
 | |
|     return CGF.getContext().getTypeSizeInChars(E->getType());
 | |
|   
 | |
|   // InitListExprs for structs have to be handled carefully.  If there are
 | |
|   // reference members, we need to consider the size of the reference, not the
 | |
|   // referencee.  InitListExprs for unions and arrays can't have references.
 | |
|   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
 | |
|     if (!RT->isUnionType()) {
 | |
|       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
 | |
|       CharUnits NumNonZeroBytes = CharUnits::Zero();
 | |
|       
 | |
|       unsigned ILEElement = 0;
 | |
|       for (RecordDecl::field_iterator Field = SD->field_begin(),
 | |
|            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
 | |
|         // We're done once we hit the flexible array member or run out of
 | |
|         // InitListExpr elements.
 | |
|         if (Field->getType()->isIncompleteArrayType() ||
 | |
|             ILEElement == ILE->getNumInits())
 | |
|           break;
 | |
|         if (Field->isUnnamedBitfield())
 | |
|           continue;
 | |
| 
 | |
|         const Expr *E = ILE->getInit(ILEElement++);
 | |
|         
 | |
|         // Reference values are always non-null and have the width of a pointer.
 | |
|         if (Field->getType()->isReferenceType())
 | |
|           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
 | |
|               CGF.getContext().Target.getPointerWidth(0));
 | |
|         else
 | |
|           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
 | |
|       }
 | |
|       
 | |
|       return NumNonZeroBytes;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   CharUnits NumNonZeroBytes = CharUnits::Zero();
 | |
|   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
 | |
|     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
 | |
|   return NumNonZeroBytes;
 | |
| }
 | |
| 
 | |
| /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
 | |
| /// zeros in it, emit a memset and avoid storing the individual zeros.
 | |
| ///
 | |
| static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
 | |
|                                      CodeGenFunction &CGF) {
 | |
|   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
 | |
|   // volatile stores.
 | |
|   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
 | |
|   
 | |
|   // If the type is 16-bytes or smaller, prefer individual stores over memset.
 | |
|   std::pair<CharUnits, CharUnits> TypeInfo =
 | |
|     CGF.getContext().getTypeInfoInChars(E->getType());
 | |
|   if (TypeInfo.first <= CharUnits::fromQuantity(16))
 | |
|     return;
 | |
| 
 | |
|   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
 | |
|   // we prefer to emit memset + individual stores for the rest.
 | |
|   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
 | |
|   if (NumNonZeroBytes*4 > TypeInfo.first)
 | |
|     return;
 | |
|   
 | |
|   // Okay, it seems like a good idea to use an initial memset, emit the call.
 | |
|   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
 | |
|   CharUnits Align = TypeInfo.second;
 | |
| 
 | |
|   llvm::Value *Loc = Slot.getAddr();
 | |
|   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
 | |
|   
 | |
|   Loc = CGF.Builder.CreateBitCast(Loc, BP);
 | |
|   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 
 | |
|                            Align.getQuantity(), false);
 | |
|   
 | |
|   // Tell the AggExprEmitter that the slot is known zero.
 | |
|   Slot.setZeroed();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// EmitAggExpr - Emit the computation of the specified expression of aggregate
 | |
| /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
 | |
| /// the value of the aggregate expression is not needed.  If VolatileDest is
 | |
| /// true, DestPtr cannot be 0.
 | |
| ///
 | |
| /// \param IsInitializer - true if this evaluation is initializing an
 | |
| /// object whose lifetime is already being managed.
 | |
| //
 | |
| // FIXME: Take Qualifiers object.
 | |
| void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
 | |
|                                   bool IgnoreResult) {
 | |
|   assert(E && hasAggregateLLVMType(E->getType()) &&
 | |
|          "Invalid aggregate expression to emit");
 | |
|   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
 | |
|          "slot has bits but no address");
 | |
| 
 | |
|   // Optimize the slot if possible.
 | |
|   CheckAggExprForMemSetUse(Slot, E, *this);
 | |
|  
 | |
|   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
 | |
|   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
 | |
|   llvm::Value *Temp = CreateMemTemp(E->getType());
 | |
|   LValue LV = MakeAddrLValue(Temp, E->getType());
 | |
|   EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
 | |
|                                         llvm::Value *SrcPtr, QualType Ty,
 | |
|                                         bool isVolatile) {
 | |
|   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
 | |
| 
 | |
|   if (getContext().getLangOptions().CPlusPlus) {
 | |
|     if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       assert((Record->hasTrivialCopyConstructor() || 
 | |
|               Record->hasTrivialCopyAssignment()) &&
 | |
|              "Trying to aggregate-copy a type without a trivial copy "
 | |
|              "constructor or assignment operator");
 | |
|       // Ignore empty classes in C++.
 | |
|       if (Record->isEmpty())
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
 | |
|   // C99 6.5.16.1p3, which states "If the value being stored in an object is
 | |
|   // read from another object that overlaps in anyway the storage of the first
 | |
|   // object, then the overlap shall be exact and the two objects shall have
 | |
|   // qualified or unqualified versions of a compatible type."
 | |
|   //
 | |
|   // memcpy is not defined if the source and destination pointers are exactly
 | |
|   // equal, but other compilers do this optimization, and almost every memcpy
 | |
|   // implementation handles this case safely.  If there is a libc that does not
 | |
|   // safely handle this, we can add a target hook.
 | |
| 
 | |
|   // Get size and alignment info for this aggregate.
 | |
|   std::pair<CharUnits, CharUnits> TypeInfo = 
 | |
|     getContext().getTypeInfoInChars(Ty);
 | |
| 
 | |
|   // FIXME: Handle variable sized types.
 | |
| 
 | |
|   // FIXME: If we have a volatile struct, the optimizer can remove what might
 | |
|   // appear to be `extra' memory ops:
 | |
|   //
 | |
|   // volatile struct { int i; } a, b;
 | |
|   //
 | |
|   // int main() {
 | |
|   //   a = b;
 | |
|   //   a = b;
 | |
|   // }
 | |
|   //
 | |
|   // we need to use a different call here.  We use isVolatile to indicate when
 | |
|   // either the source or the destination is volatile.
 | |
| 
 | |
|   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
 | |
|   const llvm::Type *DBP =
 | |
|     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
 | |
|   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
 | |
| 
 | |
|   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
 | |
|   const llvm::Type *SBP =
 | |
|     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
 | |
|   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
 | |
| 
 | |
|   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
 | |
|     RecordDecl *Record = RecordTy->getDecl();
 | |
|     if (Record->hasObjectMember()) {
 | |
|       CharUnits size = TypeInfo.first;
 | |
|       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
 | |
|       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
 | |
|       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
 | |
|                                                     SizeVal);
 | |
|       return;
 | |
|     }
 | |
|   } else if (getContext().getAsArrayType(Ty)) {
 | |
|     QualType BaseType = getContext().getBaseElementType(Ty);
 | |
|     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
 | |
|       if (RecordTy->getDecl()->hasObjectMember()) {
 | |
|         CharUnits size = TypeInfo.first;
 | |
|         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
 | |
|         llvm::Value *SizeVal = 
 | |
|           llvm::ConstantInt::get(SizeTy, size.getQuantity());
 | |
|         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
 | |
|                                                       SizeVal);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Builder.CreateMemCpy(DestPtr, SrcPtr,
 | |
|                        llvm::ConstantInt::get(IntPtrTy, 
 | |
|                                               TypeInfo.first.getQuantity()),
 | |
|                        TypeInfo.second.getQuantity(), isVolatile);
 | |
| }
 |