forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2679 lines
		
	
	
		
			99 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2679 lines
		
	
	
		
			99 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Frontend/CodeGenOptions.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include <cstdarg>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| using llvm::Value;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Scalar Expression Emitter
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| struct BinOpInfo {
 | |
|   Value *LHS;
 | |
|   Value *RHS;
 | |
|   QualType Ty;  // Computation Type.
 | |
|   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
 | |
|   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
 | |
| };
 | |
| 
 | |
| static bool MustVisitNullValue(const Expr *E) {
 | |
|   // If a null pointer expression's type is the C++0x nullptr_t, then
 | |
|   // it's not necessarily a simple constant and it must be evaluated
 | |
|   // for its potential side effects.
 | |
|   return E->getType()->isNullPtrType();
 | |
| }
 | |
| 
 | |
| class ScalarExprEmitter
 | |
|   : public StmtVisitor<ScalarExprEmitter, Value*> {
 | |
|   CodeGenFunction &CGF;
 | |
|   CGBuilderTy &Builder;
 | |
|   bool IgnoreResultAssign;
 | |
|   llvm::LLVMContext &VMContext;
 | |
| public:
 | |
| 
 | |
|   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
 | |
|     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
 | |
|       VMContext(cgf.getLLVMContext()) {
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                               Utilities
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   bool TestAndClearIgnoreResultAssign() {
 | |
|     bool I = IgnoreResultAssign;
 | |
|     IgnoreResultAssign = false;
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
 | |
|   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
 | |
|   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
 | |
| 
 | |
|   Value *EmitLoadOfLValue(LValue LV, QualType T) {
 | |
|     return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   /// EmitLoadOfLValue - Given an expression with complex type that represents a
 | |
|   /// value l-value, this method emits the address of the l-value, then loads
 | |
|   /// and returns the result.
 | |
|   Value *EmitLoadOfLValue(const Expr *E) {
 | |
|     return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
 | |
|   }
 | |
| 
 | |
|   /// EmitConversionToBool - Convert the specified expression value to a
 | |
|   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
 | |
|   Value *EmitConversionToBool(Value *Src, QualType DstTy);
 | |
| 
 | |
|   /// EmitScalarConversion - Emit a conversion from the specified type to the
 | |
|   /// specified destination type, both of which are LLVM scalar types.
 | |
|   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
 | |
| 
 | |
|   /// EmitComplexToScalarConversion - Emit a conversion from the specified
 | |
|   /// complex type to the specified destination type, where the destination type
 | |
|   /// is an LLVM scalar type.
 | |
|   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
 | |
|                                        QualType SrcTy, QualType DstTy);
 | |
| 
 | |
|   /// EmitNullValue - Emit a value that corresponds to null for the given type.
 | |
|   Value *EmitNullValue(QualType Ty);
 | |
| 
 | |
|   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
 | |
|   Value *EmitFloatToBoolConversion(Value *V) {
 | |
|     // Compare against 0.0 for fp scalars.
 | |
|     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
 | |
|     return Builder.CreateFCmpUNE(V, Zero, "tobool");
 | |
|   }
 | |
| 
 | |
|   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
 | |
|   Value *EmitPointerToBoolConversion(Value *V) {
 | |
|     Value *Zero = llvm::ConstantPointerNull::get(
 | |
|                                       cast<llvm::PointerType>(V->getType()));
 | |
|     return Builder.CreateICmpNE(V, Zero, "tobool");
 | |
|   }
 | |
| 
 | |
|   Value *EmitIntToBoolConversion(Value *V) {
 | |
|     // Because of the type rules of C, we often end up computing a
 | |
|     // logical value, then zero extending it to int, then wanting it
 | |
|     // as a logical value again.  Optimize this common case.
 | |
|     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
 | |
|       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
 | |
|         Value *Result = ZI->getOperand(0);
 | |
|         // If there aren't any more uses, zap the instruction to save space.
 | |
|         // Note that there can be more uses, for example if this
 | |
|         // is the result of an assignment.
 | |
|         if (ZI->use_empty())
 | |
|           ZI->eraseFromParent();
 | |
|         return Result;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Builder.CreateIsNotNull(V, "tobool");
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   Value *Visit(Expr *E) {
 | |
|     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
 | |
|   }
 | |
|     
 | |
|   Value *VisitStmt(Stmt *S) {
 | |
|     S->dump(CGF.getContext().getSourceManager());
 | |
|     assert(0 && "Stmt can't have complex result type!");
 | |
|     return 0;
 | |
|   }
 | |
|   Value *VisitExpr(Expr *S);
 | |
|   
 | |
|   Value *VisitParenExpr(ParenExpr *PE) {
 | |
|     return Visit(PE->getSubExpr()); 
 | |
|   }
 | |
|   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
 | |
|     return Visit(GE->getResultExpr());
 | |
|   }
 | |
| 
 | |
|   // Leaves.
 | |
|   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
 | |
|     return Builder.getInt(E->getValue());
 | |
|   }
 | |
|   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
 | |
|     return llvm::ConstantFP::get(VMContext, E->getValue());
 | |
|   }
 | |
|   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | |
|   }
 | |
|   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | |
|   }
 | |
|   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
 | |
|     return EmitNullValue(E->getType());
 | |
|   }
 | |
|   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
 | |
|     return EmitNullValue(E->getType());
 | |
|   }
 | |
|   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
 | |
|   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
 | |
|   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
 | |
|     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
 | |
|     return Builder.CreateBitCast(V, ConvertType(E->getType()));
 | |
|   }
 | |
| 
 | |
|   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
 | |
|   }
 | |
| 
 | |
|   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
 | |
|     if (E->isGLValue())
 | |
|       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getType());
 | |
| 
 | |
|     // Otherwise, assume the mapping is the scalar directly.
 | |
|     return CGF.getOpaqueRValueMapping(E).getScalarVal();
 | |
|   }
 | |
|     
 | |
|   // l-values.
 | |
|   Value *VisitDeclRefExpr(DeclRefExpr *E) {
 | |
|     Expr::EvalResult Result;
 | |
|     if (!E->Evaluate(Result, CGF.getContext()))
 | |
|       return EmitLoadOfLValue(E);
 | |
| 
 | |
|     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
 | |
| 
 | |
|     llvm::Constant *C;
 | |
|     if (Result.Val.isInt())
 | |
|       C = Builder.getInt(Result.Val.getInt());
 | |
|     else if (Result.Val.isFloat())
 | |
|       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
 | |
|     else
 | |
|       return EmitLoadOfLValue(E);
 | |
| 
 | |
|     // Make sure we emit a debug reference to the global variable.
 | |
|     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
 | |
|       if (!CGF.getContext().DeclMustBeEmitted(VD))
 | |
|         CGF.EmitDeclRefExprDbgValue(E, C);
 | |
|     } else if (isa<EnumConstantDecl>(E->getDecl())) {
 | |
|       CGF.EmitDeclRefExprDbgValue(E, C);
 | |
|     }
 | |
| 
 | |
|     return C;
 | |
|   }
 | |
|   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
 | |
|     return CGF.EmitObjCSelectorExpr(E);
 | |
|   }
 | |
|   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
 | |
|     return CGF.EmitObjCProtocolExpr(E);
 | |
|   }
 | |
|   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
|   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
 | |
|     assert(E->getObjectKind() == OK_Ordinary &&
 | |
|            "reached property reference without lvalue-to-rvalue");
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
|   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | |
|     if (E->getMethodDecl() && 
 | |
|         E->getMethodDecl()->getResultType()->isReferenceType())
 | |
|       return EmitLoadOfLValue(E);
 | |
|     return CGF.EmitObjCMessageExpr(E).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
 | |
|     LValue LV = CGF.EmitObjCIsaExpr(E);
 | |
|     Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
 | |
|   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
 | |
|   Value *VisitMemberExpr(MemberExpr *E);
 | |
|   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
 | |
|   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   Value *VisitInitListExpr(InitListExpr *E);
 | |
| 
 | |
|   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
 | |
|     return CGF.CGM.EmitNullConstant(E->getType());
 | |
|   }
 | |
|   Value *VisitCastExpr(CastExpr *E) {
 | |
|     // Make sure to evaluate VLA bounds now so that we have them for later.
 | |
|     if (E->getType()->isVariablyModifiedType())
 | |
|       CGF.EmitVLASize(E->getType());
 | |
| 
 | |
|     return EmitCastExpr(E);
 | |
|   }
 | |
|   Value *EmitCastExpr(CastExpr *E);
 | |
| 
 | |
|   Value *VisitCallExpr(const CallExpr *E) {
 | |
|     if (E->getCallReturnType()->isReferenceType())
 | |
|       return EmitLoadOfLValue(E);
 | |
| 
 | |
|     return CGF.EmitCallExpr(E).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   Value *VisitStmtExpr(const StmtExpr *E);
 | |
| 
 | |
|   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
 | |
| 
 | |
|   // Unary Operators.
 | |
|   Value *VisitUnaryPostDec(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, false, false);
 | |
|   }
 | |
|   Value *VisitUnaryPostInc(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, true, false);
 | |
|   }
 | |
|   Value *VisitUnaryPreDec(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, false, true);
 | |
|   }
 | |
|   Value *VisitUnaryPreInc(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, true, true);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
 | |
|                                                llvm::Value *InVal,
 | |
|                                                llvm::Value *NextVal,
 | |
|                                                bool IsInc);
 | |
| 
 | |
|   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                                        bool isInc, bool isPre);
 | |
| 
 | |
|     
 | |
|   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
 | |
|     if (isa<MemberPointerType>(E->getType())) // never sugared
 | |
|       return CGF.CGM.getMemberPointerConstant(E);
 | |
| 
 | |
|     return EmitLValue(E->getSubExpr()).getAddress();
 | |
|   }
 | |
|   Value *VisitUnaryDeref(const UnaryOperator *E) {
 | |
|     if (E->getType()->isVoidType())
 | |
|       return Visit(E->getSubExpr()); // the actual value should be unused
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
|   Value *VisitUnaryPlus(const UnaryOperator *E) {
 | |
|     // This differs from gcc, though, most likely due to a bug in gcc.
 | |
|     TestAndClearIgnoreResultAssign();
 | |
|     return Visit(E->getSubExpr());
 | |
|   }
 | |
|   Value *VisitUnaryMinus    (const UnaryOperator *E);
 | |
|   Value *VisitUnaryNot      (const UnaryOperator *E);
 | |
|   Value *VisitUnaryLNot     (const UnaryOperator *E);
 | |
|   Value *VisitUnaryReal     (const UnaryOperator *E);
 | |
|   Value *VisitUnaryImag     (const UnaryOperator *E);
 | |
|   Value *VisitUnaryExtension(const UnaryOperator *E) {
 | |
|     return Visit(E->getSubExpr());
 | |
|   }
 | |
|     
 | |
|   // C++
 | |
|   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
 | |
|     return Visit(DAE->getExpr());
 | |
|   }
 | |
|   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
 | |
|     return CGF.LoadCXXThis();
 | |
|   }
 | |
| 
 | |
|   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
 | |
|     return CGF.EmitExprWithCleanups(E).getScalarVal();
 | |
|   }
 | |
|   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
 | |
|     return CGF.EmitCXXNewExpr(E);
 | |
|   }
 | |
|   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
 | |
|     CGF.EmitCXXDeleteExpr(E);
 | |
|     return 0;
 | |
|   }
 | |
|   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
 | |
|     return Builder.getInt1(E->getValue());
 | |
|   }
 | |
| 
 | |
|   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | |
|   }
 | |
| 
 | |
|   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
 | |
|     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
 | |
|     // C++ [expr.pseudo]p1:
 | |
|     //   The result shall only be used as the operand for the function call
 | |
|     //   operator (), and the result of such a call has type void. The only
 | |
|     //   effect is the evaluation of the postfix-expression before the dot or
 | |
|     //   arrow.
 | |
|     CGF.EmitScalarExpr(E->getBase());
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
 | |
|     return EmitNullValue(E->getType());
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
 | |
|     CGF.EmitCXXThrowExpr(E);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
 | |
|     return Builder.getInt1(E->getValue());
 | |
|   }
 | |
| 
 | |
|   // Binary Operators.
 | |
|   Value *EmitMul(const BinOpInfo &Ops) {
 | |
|     if (Ops.Ty->hasSignedIntegerRepresentation()) {
 | |
|       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
 | |
|       case LangOptions::SOB_Undefined:
 | |
|         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
 | |
|       case LangOptions::SOB_Defined:
 | |
|         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
 | |
|       case LangOptions::SOB_Trapping:
 | |
|         return EmitOverflowCheckedBinOp(Ops);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (Ops.LHS->getType()->isFPOrFPVectorTy())
 | |
|       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
 | |
|     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
 | |
|   }
 | |
|   bool isTrapvOverflowBehavior() {
 | |
|     return CGF.getContext().getLangOptions().getSignedOverflowBehavior() 
 | |
|                == LangOptions::SOB_Trapping; 
 | |
|   }
 | |
|   /// Create a binary op that checks for overflow.
 | |
|   /// Currently only supports +, - and *.
 | |
|   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
 | |
|   // Emit the overflow BB when -ftrapv option is activated. 
 | |
|   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
 | |
|     Builder.SetInsertPoint(overflowBB);
 | |
|     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
 | |
|     Builder.CreateCall(Trap);
 | |
|     Builder.CreateUnreachable();
 | |
|   }
 | |
|   // Check for undefined division and modulus behaviors.
 | |
|   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 
 | |
|                                                   llvm::Value *Zero,bool isDiv);
 | |
|   Value *EmitDiv(const BinOpInfo &Ops);
 | |
|   Value *EmitRem(const BinOpInfo &Ops);
 | |
|   Value *EmitAdd(const BinOpInfo &Ops);
 | |
|   Value *EmitSub(const BinOpInfo &Ops);
 | |
|   Value *EmitShl(const BinOpInfo &Ops);
 | |
|   Value *EmitShr(const BinOpInfo &Ops);
 | |
|   Value *EmitAnd(const BinOpInfo &Ops) {
 | |
|     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
 | |
|   }
 | |
|   Value *EmitXor(const BinOpInfo &Ops) {
 | |
|     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
 | |
|   }
 | |
|   Value *EmitOr (const BinOpInfo &Ops) {
 | |
|     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
 | |
|   }
 | |
| 
 | |
|   BinOpInfo EmitBinOps(const BinaryOperator *E);
 | |
|   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
 | |
|                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
 | |
|                                   Value *&Result);
 | |
| 
 | |
|   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
 | |
|                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
 | |
| 
 | |
|   // Binary operators and binary compound assignment operators.
 | |
| #define HANDLEBINOP(OP) \
 | |
|   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
 | |
|     return Emit ## OP(EmitBinOps(E));                                      \
 | |
|   }                                                                        \
 | |
|   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
 | |
|     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
 | |
|   }
 | |
|   HANDLEBINOP(Mul)
 | |
|   HANDLEBINOP(Div)
 | |
|   HANDLEBINOP(Rem)
 | |
|   HANDLEBINOP(Add)
 | |
|   HANDLEBINOP(Sub)
 | |
|   HANDLEBINOP(Shl)
 | |
|   HANDLEBINOP(Shr)
 | |
|   HANDLEBINOP(And)
 | |
|   HANDLEBINOP(Xor)
 | |
|   HANDLEBINOP(Or)
 | |
| #undef HANDLEBINOP
 | |
| 
 | |
|   // Comparisons.
 | |
|   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
 | |
|                      unsigned SICmpOpc, unsigned FCmpOpc);
 | |
| #define VISITCOMP(CODE, UI, SI, FP) \
 | |
|     Value *VisitBin##CODE(const BinaryOperator *E) { \
 | |
|       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
 | |
|                          llvm::FCmpInst::FP); }
 | |
|   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
 | |
|   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
 | |
|   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
 | |
|   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
 | |
|   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
 | |
|   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
 | |
| #undef VISITCOMP
 | |
| 
 | |
|   Value *VisitBinAssign     (const BinaryOperator *E);
 | |
| 
 | |
|   Value *VisitBinLAnd       (const BinaryOperator *E);
 | |
|   Value *VisitBinLOr        (const BinaryOperator *E);
 | |
|   Value *VisitBinComma      (const BinaryOperator *E);
 | |
| 
 | |
|   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
 | |
|   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
 | |
| 
 | |
|   // Other Operators.
 | |
|   Value *VisitBlockExpr(const BlockExpr *BE);
 | |
|   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
 | |
|   Value *VisitChooseExpr(ChooseExpr *CE);
 | |
|   Value *VisitVAArgExpr(VAArgExpr *VE);
 | |
|   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
 | |
|     return CGF.EmitObjCStringLiteral(E);
 | |
|   }
 | |
| };
 | |
| }  // end anonymous namespace.
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// EmitConversionToBool - Convert the specified expression value to a
 | |
| /// boolean (i1) truth value.  This is equivalent to "Val != 0".
 | |
| Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
 | |
|   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
 | |
| 
 | |
|   if (SrcType->isRealFloatingType())
 | |
|     return EmitFloatToBoolConversion(Src);
 | |
| 
 | |
|   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
 | |
|     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
 | |
| 
 | |
|   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
 | |
|          "Unknown scalar type to convert");
 | |
| 
 | |
|   if (isa<llvm::IntegerType>(Src->getType()))
 | |
|     return EmitIntToBoolConversion(Src);
 | |
| 
 | |
|   assert(isa<llvm::PointerType>(Src->getType()));
 | |
|   return EmitPointerToBoolConversion(Src);
 | |
| }
 | |
| 
 | |
| /// EmitScalarConversion - Emit a conversion from the specified type to the
 | |
| /// specified destination type, both of which are LLVM scalar types.
 | |
| Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
 | |
|                                                QualType DstType) {
 | |
|   SrcType = CGF.getContext().getCanonicalType(SrcType);
 | |
|   DstType = CGF.getContext().getCanonicalType(DstType);
 | |
|   if (SrcType == DstType) return Src;
 | |
| 
 | |
|   if (DstType->isVoidType()) return 0;
 | |
| 
 | |
|   // Handle conversions to bool first, they are special: comparisons against 0.
 | |
|   if (DstType->isBooleanType())
 | |
|     return EmitConversionToBool(Src, SrcType);
 | |
| 
 | |
|   const llvm::Type *DstTy = ConvertType(DstType);
 | |
| 
 | |
|   // Ignore conversions like int -> uint.
 | |
|   if (Src->getType() == DstTy)
 | |
|     return Src;
 | |
| 
 | |
|   // Handle pointer conversions next: pointers can only be converted to/from
 | |
|   // other pointers and integers. Check for pointer types in terms of LLVM, as
 | |
|   // some native types (like Obj-C id) may map to a pointer type.
 | |
|   if (isa<llvm::PointerType>(DstTy)) {
 | |
|     // The source value may be an integer, or a pointer.
 | |
|     if (isa<llvm::PointerType>(Src->getType()))
 | |
|       return Builder.CreateBitCast(Src, DstTy, "conv");
 | |
| 
 | |
|     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
 | |
|     // First, convert to the correct width so that we control the kind of
 | |
|     // extension.
 | |
|     const llvm::Type *MiddleTy = CGF.IntPtrTy;
 | |
|     bool InputSigned = SrcType->isSignedIntegerType();
 | |
|     llvm::Value* IntResult =
 | |
|         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
 | |
|     // Then, cast to pointer.
 | |
|     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   if (isa<llvm::PointerType>(Src->getType())) {
 | |
|     // Must be an ptr to int cast.
 | |
|     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
 | |
|     return Builder.CreatePtrToInt(Src, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   // A scalar can be splatted to an extended vector of the same element type
 | |
|   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
 | |
|     // Cast the scalar to element type
 | |
|     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
 | |
|     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
 | |
| 
 | |
|     // Insert the element in element zero of an undef vector
 | |
|     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
 | |
|     llvm::Value *Idx = Builder.getInt32(0);
 | |
|     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
 | |
| 
 | |
|     // Splat the element across to all elements
 | |
|     llvm::SmallVector<llvm::Constant*, 16> Args;
 | |
|     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
 | |
|     for (unsigned i = 0; i != NumElements; ++i)
 | |
|       Args.push_back(Builder.getInt32(0));
 | |
| 
 | |
|     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
 | |
|     return Yay;
 | |
|   }
 | |
| 
 | |
|   // Allow bitcast from vector to integer/fp of the same size.
 | |
|   if (isa<llvm::VectorType>(Src->getType()) ||
 | |
|       isa<llvm::VectorType>(DstTy))
 | |
|     return Builder.CreateBitCast(Src, DstTy, "conv");
 | |
| 
 | |
|   // Finally, we have the arithmetic types: real int/float.
 | |
|   if (isa<llvm::IntegerType>(Src->getType())) {
 | |
|     bool InputSigned = SrcType->isSignedIntegerType();
 | |
|     if (isa<llvm::IntegerType>(DstTy))
 | |
|       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
 | |
|     else if (InputSigned)
 | |
|       return Builder.CreateSIToFP(Src, DstTy, "conv");
 | |
|     else
 | |
|       return Builder.CreateUIToFP(Src, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
 | |
|   if (isa<llvm::IntegerType>(DstTy)) {
 | |
|     if (DstType->isSignedIntegerType())
 | |
|       return Builder.CreateFPToSI(Src, DstTy, "conv");
 | |
|     else
 | |
|       return Builder.CreateFPToUI(Src, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
 | |
|   if (DstTy->getTypeID() < Src->getType()->getTypeID())
 | |
|     return Builder.CreateFPTrunc(Src, DstTy, "conv");
 | |
|   else
 | |
|     return Builder.CreateFPExt(Src, DstTy, "conv");
 | |
| }
 | |
| 
 | |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
 | |
| /// type to the specified destination type, where the destination type is an
 | |
| /// LLVM scalar type.
 | |
| Value *ScalarExprEmitter::
 | |
| EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
 | |
|                               QualType SrcTy, QualType DstTy) {
 | |
|   // Get the source element type.
 | |
|   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
 | |
| 
 | |
|   // Handle conversions to bool first, they are special: comparisons against 0.
 | |
|   if (DstTy->isBooleanType()) {
 | |
|     //  Complex != 0  -> (Real != 0) | (Imag != 0)
 | |
|     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
 | |
|     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
 | |
|     return Builder.CreateOr(Src.first, Src.second, "tobool");
 | |
|   }
 | |
| 
 | |
|   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
 | |
|   // the imaginary part of the complex value is discarded and the value of the
 | |
|   // real part is converted according to the conversion rules for the
 | |
|   // corresponding real type.
 | |
|   return EmitScalarConversion(Src.first, SrcTy, DstTy);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
 | |
|   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
 | |
|     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
 | |
| 
 | |
|   return llvm::Constant::getNullValue(ConvertType(Ty));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Visitor Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitExpr(Expr *E) {
 | |
|   CGF.ErrorUnsupported(E, "scalar expression");
 | |
|   if (E->getType()->isVoidType())
 | |
|     return 0;
 | |
|   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
 | |
|   // Vector Mask Case
 | |
|   if (E->getNumSubExprs() == 2 || 
 | |
|       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
 | |
|     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
 | |
|     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
 | |
|     Value *Mask;
 | |
|     
 | |
|     const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
 | |
|     unsigned LHSElts = LTy->getNumElements();
 | |
| 
 | |
|     if (E->getNumSubExprs() == 3) {
 | |
|       Mask = CGF.EmitScalarExpr(E->getExpr(2));
 | |
|       
 | |
|       // Shuffle LHS & RHS into one input vector.
 | |
|       llvm::SmallVector<llvm::Constant*, 32> concat;
 | |
|       for (unsigned i = 0; i != LHSElts; ++i) {
 | |
|         concat.push_back(Builder.getInt32(2*i));
 | |
|         concat.push_back(Builder.getInt32(2*i+1));
 | |
|       }
 | |
|       
 | |
|       Value* CV = llvm::ConstantVector::get(concat);
 | |
|       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
 | |
|       LHSElts *= 2;
 | |
|     } else {
 | |
|       Mask = RHS;
 | |
|     }
 | |
|     
 | |
|     const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
 | |
|     llvm::Constant* EltMask;
 | |
|     
 | |
|     // Treat vec3 like vec4.
 | |
|     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
 | |
|       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
 | |
|                                        (1 << llvm::Log2_32(LHSElts+2))-1);
 | |
|     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
 | |
|       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
 | |
|                                        (1 << llvm::Log2_32(LHSElts+1))-1);
 | |
|     else
 | |
|       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
 | |
|                                        (1 << llvm::Log2_32(LHSElts))-1);
 | |
|              
 | |
|     // Mask off the high bits of each shuffle index.
 | |
|     llvm::SmallVector<llvm::Constant *, 32> MaskV;
 | |
|     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
 | |
|       MaskV.push_back(EltMask);
 | |
|     
 | |
|     Value* MaskBits = llvm::ConstantVector::get(MaskV);
 | |
|     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
 | |
|     
 | |
|     // newv = undef
 | |
|     // mask = mask & maskbits
 | |
|     // for each elt
 | |
|     //   n = extract mask i
 | |
|     //   x = extract val n
 | |
|     //   newv = insert newv, x, i
 | |
|     const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
 | |
|                                                         MTy->getNumElements());
 | |
|     Value* NewV = llvm::UndefValue::get(RTy);
 | |
|     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
 | |
|       Value *Indx = Builder.getInt32(i);
 | |
|       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
 | |
|       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
 | |
|       
 | |
|       // Handle vec3 special since the index will be off by one for the RHS.
 | |
|       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
 | |
|         Value *cmpIndx, *newIndx;
 | |
|         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
 | |
|                                         "cmp_shuf_idx");
 | |
|         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
 | |
|         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
 | |
|       }
 | |
|       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
 | |
|       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
 | |
|     }
 | |
|     return NewV;
 | |
|   }
 | |
|   
 | |
|   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
 | |
|   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
 | |
|   
 | |
|   // Handle vec3 special since the index will be off by one for the RHS.
 | |
|   llvm::SmallVector<llvm::Constant*, 32> indices;
 | |
|   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
 | |
|     llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
 | |
|     const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
 | |
|     if (VTy->getNumElements() == 3) {
 | |
|       if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
 | |
|         uint64_t cVal = CI->getZExtValue();
 | |
|         if (cVal > 3) {
 | |
|           C = llvm::ConstantInt::get(C->getType(), cVal-1);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     indices.push_back(C);
 | |
|   }
 | |
| 
 | |
|   Value *SV = llvm::ConstantVector::get(indices);
 | |
|   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
 | |
| }
 | |
| Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
 | |
|   Expr::EvalResult Result;
 | |
|   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
 | |
|     if (E->isArrow())
 | |
|       CGF.EmitScalarExpr(E->getBase());
 | |
|     else
 | |
|       EmitLValue(E->getBase());
 | |
|     return Builder.getInt(Result.Val.getInt());
 | |
|   }
 | |
| 
 | |
|   // Emit debug info for aggregate now, if it was delayed to reduce 
 | |
|   // debug info size.
 | |
|   CGDebugInfo *DI = CGF.getDebugInfo();
 | |
|   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
 | |
|     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
 | |
|     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
 | |
|       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
 | |
|         DI->getOrCreateRecordType(PTy->getPointeeType(), 
 | |
|                                   M->getParent()->getLocation());
 | |
|   }
 | |
|   return EmitLoadOfLValue(E);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   // Emit subscript expressions in rvalue context's.  For most cases, this just
 | |
|   // loads the lvalue formed by the subscript expr.  However, we have to be
 | |
|   // careful, because the base of a vector subscript is occasionally an rvalue,
 | |
|   // so we can't get it as an lvalue.
 | |
|   if (!E->getBase()->getType()->isVectorType())
 | |
|     return EmitLoadOfLValue(E);
 | |
| 
 | |
|   // Handle the vector case.  The base must be a vector, the index must be an
 | |
|   // integer value.
 | |
|   Value *Base = Visit(E->getBase());
 | |
|   Value *Idx  = Visit(E->getIdx());
 | |
|   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
 | |
|   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
 | |
|   return Builder.CreateExtractElement(Base, Idx, "vecext");
 | |
| }
 | |
| 
 | |
| static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
 | |
|                                   unsigned Off, const llvm::Type *I32Ty) {
 | |
|   int MV = SVI->getMaskValue(Idx);
 | |
|   if (MV == -1) 
 | |
|     return llvm::UndefValue::get(I32Ty);
 | |
|   return llvm::ConstantInt::get(I32Ty, Off+MV);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
 | |
|   bool Ignore = TestAndClearIgnoreResultAssign();
 | |
|   (void)Ignore;
 | |
|   assert (Ignore == false && "init list ignored");
 | |
|   unsigned NumInitElements = E->getNumInits();
 | |
|   
 | |
|   if (E->hadArrayRangeDesignator())
 | |
|     CGF.ErrorUnsupported(E, "GNU array range designator extension");
 | |
|   
 | |
|   const llvm::VectorType *VType =
 | |
|     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
 | |
|   
 | |
|   // We have a scalar in braces. Just use the first element.
 | |
|   if (!VType)
 | |
|     return Visit(E->getInit(0));
 | |
|   
 | |
|   unsigned ResElts = VType->getNumElements();
 | |
|   
 | |
|   // Loop over initializers collecting the Value for each, and remembering 
 | |
|   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
 | |
|   // us to fold the shuffle for the swizzle into the shuffle for the vector
 | |
|   // initializer, since LLVM optimizers generally do not want to touch
 | |
|   // shuffles.
 | |
|   unsigned CurIdx = 0;
 | |
|   bool VIsUndefShuffle = false;
 | |
|   llvm::Value *V = llvm::UndefValue::get(VType);
 | |
|   for (unsigned i = 0; i != NumInitElements; ++i) {
 | |
|     Expr *IE = E->getInit(i);
 | |
|     Value *Init = Visit(IE);
 | |
|     llvm::SmallVector<llvm::Constant*, 16> Args;
 | |
|     
 | |
|     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
 | |
|     
 | |
|     // Handle scalar elements.  If the scalar initializer is actually one
 | |
|     // element of a different vector of the same width, use shuffle instead of 
 | |
|     // extract+insert.
 | |
|     if (!VVT) {
 | |
|       if (isa<ExtVectorElementExpr>(IE)) {
 | |
|         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
 | |
| 
 | |
|         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
 | |
|           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
 | |
|           Value *LHS = 0, *RHS = 0;
 | |
|           if (CurIdx == 0) {
 | |
|             // insert into undef -> shuffle (src, undef)
 | |
|             Args.push_back(C);
 | |
|             for (unsigned j = 1; j != ResElts; ++j)
 | |
|               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
 | |
| 
 | |
|             LHS = EI->getVectorOperand();
 | |
|             RHS = V;
 | |
|             VIsUndefShuffle = true;
 | |
|           } else if (VIsUndefShuffle) {
 | |
|             // insert into undefshuffle && size match -> shuffle (v, src)
 | |
|             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
 | |
|             for (unsigned j = 0; j != CurIdx; ++j)
 | |
|               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
 | |
|             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
 | |
|             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
 | |
|               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
 | |
|             
 | |
|             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
 | |
|             RHS = EI->getVectorOperand();
 | |
|             VIsUndefShuffle = false;
 | |
|           }
 | |
|           if (!Args.empty()) {
 | |
|             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
 | |
|             ++CurIdx;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
 | |
|                                       "vecinit");
 | |
|       VIsUndefShuffle = false;
 | |
|       ++CurIdx;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     unsigned InitElts = VVT->getNumElements();
 | |
| 
 | |
|     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 
 | |
|     // input is the same width as the vector being constructed, generate an
 | |
|     // optimized shuffle of the swizzle input into the result.
 | |
|     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
 | |
|     if (isa<ExtVectorElementExpr>(IE)) {
 | |
|       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
 | |
|       Value *SVOp = SVI->getOperand(0);
 | |
|       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
 | |
|       
 | |
|       if (OpTy->getNumElements() == ResElts) {
 | |
|         for (unsigned j = 0; j != CurIdx; ++j) {
 | |
|           // If the current vector initializer is a shuffle with undef, merge
 | |
|           // this shuffle directly into it.
 | |
|           if (VIsUndefShuffle) {
 | |
|             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
 | |
|                                       CGF.Int32Ty));
 | |
|           } else {
 | |
|             Args.push_back(Builder.getInt32(j));
 | |
|           }
 | |
|         }
 | |
|         for (unsigned j = 0, je = InitElts; j != je; ++j)
 | |
|           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
 | |
|         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
 | |
|           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
 | |
| 
 | |
|         if (VIsUndefShuffle)
 | |
|           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
 | |
| 
 | |
|         Init = SVOp;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Extend init to result vector length, and then shuffle its contribution
 | |
|     // to the vector initializer into V.
 | |
|     if (Args.empty()) {
 | |
|       for (unsigned j = 0; j != InitElts; ++j)
 | |
|         Args.push_back(Builder.getInt32(j));
 | |
|       for (unsigned j = InitElts; j != ResElts; ++j)
 | |
|         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
 | |
|       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
 | |
|                                          Mask, "vext");
 | |
| 
 | |
|       Args.clear();
 | |
|       for (unsigned j = 0; j != CurIdx; ++j)
 | |
|         Args.push_back(Builder.getInt32(j));
 | |
|       for (unsigned j = 0; j != InitElts; ++j)
 | |
|         Args.push_back(Builder.getInt32(j+Offset));
 | |
|       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
 | |
|         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
 | |
|     }
 | |
| 
 | |
|     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
 | |
|     // merging subsequent shuffles into this one.
 | |
|     if (CurIdx == 0)
 | |
|       std::swap(V, Init);
 | |
|     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
 | |
|     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
 | |
|     CurIdx += InitElts;
 | |
|   }
 | |
|   
 | |
|   // FIXME: evaluate codegen vs. shuffling against constant null vector.
 | |
|   // Emit remaining default initializers.
 | |
|   const llvm::Type *EltTy = VType->getElementType();
 | |
|   
 | |
|   // Emit remaining default initializers
 | |
|   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
 | |
|     Value *Idx = Builder.getInt32(CurIdx);
 | |
|     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
 | |
|     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
 | |
|   const Expr *E = CE->getSubExpr();
 | |
| 
 | |
|   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
 | |
|     return false;
 | |
|   
 | |
|   if (isa<CXXThisExpr>(E)) {
 | |
|     // We always assume that 'this' is never null.
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
 | |
|     // And that glvalue casts are never null.
 | |
|     if (ICE->getValueKind() != VK_RValue)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
 | |
| // have to handle a more broad range of conversions than explicit casts, as they
 | |
| // handle things like function to ptr-to-function decay etc.
 | |
| Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
 | |
|   Expr *E = CE->getSubExpr();
 | |
|   QualType DestTy = CE->getType();
 | |
|   CastKind Kind = CE->getCastKind();
 | |
|   
 | |
|   if (!DestTy->isVoidType())
 | |
|     TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   // Since almost all cast kinds apply to scalars, this switch doesn't have
 | |
|   // a default case, so the compiler will warn on a missing case.  The cases
 | |
|   // are in the same order as in the CastKind enum.
 | |
|   switch (Kind) {
 | |
|   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
 | |
|       
 | |
|   case CK_LValueBitCast: 
 | |
|   case CK_ObjCObjectLValueCast: {
 | |
|     Value *V = EmitLValue(E).getAddress();
 | |
|     V = Builder.CreateBitCast(V, 
 | |
|                           ConvertType(CGF.getContext().getPointerType(DestTy)));
 | |
|     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
 | |
|   }
 | |
|       
 | |
|   case CK_AnyPointerToObjCPointerCast:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_BitCast: {
 | |
|     Value *Src = Visit(const_cast<Expr*>(E));
 | |
|     return Builder.CreateBitCast(Src, ConvertType(DestTy));
 | |
|   }
 | |
|   case CK_NoOp:
 | |
|   case CK_UserDefinedConversion:
 | |
|     return Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|   case CK_BaseToDerived: {
 | |
|     const CXXRecordDecl *DerivedClassDecl = 
 | |
|       DestTy->getCXXRecordDeclForPointerType();
 | |
|     
 | |
|     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl, 
 | |
|                                         CE->path_begin(), CE->path_end(),
 | |
|                                         ShouldNullCheckClassCastValue(CE));
 | |
|   }
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_DerivedToBase: {
 | |
|     const RecordType *DerivedClassTy = 
 | |
|       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
 | |
|     CXXRecordDecl *DerivedClassDecl = 
 | |
|       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
 | |
| 
 | |
|     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl, 
 | |
|                                      CE->path_begin(), CE->path_end(),
 | |
|                                      ShouldNullCheckClassCastValue(CE));
 | |
|   }
 | |
|   case CK_Dynamic: {
 | |
|     Value *V = Visit(const_cast<Expr*>(E));
 | |
|     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
 | |
|     return CGF.EmitDynamicCast(V, DCE);
 | |
|   }
 | |
| 
 | |
|   case CK_ArrayToPointerDecay: {
 | |
|     assert(E->getType()->isArrayType() &&
 | |
|            "Array to pointer decay must have array source type!");
 | |
| 
 | |
|     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
 | |
| 
 | |
|     // Note that VLA pointers are always decayed, so we don't need to do
 | |
|     // anything here.
 | |
|     if (!E->getType()->isVariableArrayType()) {
 | |
|       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
 | |
|       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
 | |
|                                  ->getElementType()) &&
 | |
|              "Expected pointer to array");
 | |
|       V = Builder.CreateStructGEP(V, 0, "arraydecay");
 | |
|     }
 | |
| 
 | |
|     return V;
 | |
|   }
 | |
|   case CK_FunctionToPointerDecay:
 | |
|     return EmitLValue(E).getAddress();
 | |
| 
 | |
|   case CK_NullToPointer:
 | |
|     if (MustVisitNullValue(E))
 | |
|       (void) Visit(E);
 | |
| 
 | |
|     return llvm::ConstantPointerNull::get(
 | |
|                                cast<llvm::PointerType>(ConvertType(DestTy)));
 | |
| 
 | |
|   case CK_NullToMemberPointer: {
 | |
|     if (MustVisitNullValue(E))
 | |
|       (void) Visit(E);
 | |
| 
 | |
|     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
 | |
|     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
 | |
|   }
 | |
| 
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_DerivedToBaseMemberPointer: {
 | |
|     Value *Src = Visit(E);
 | |
|     
 | |
|     // Note that the AST doesn't distinguish between checked and
 | |
|     // unchecked member pointer conversions, so we always have to
 | |
|     // implement checked conversions here.  This is inefficient when
 | |
|     // actual control flow may be required in order to perform the
 | |
|     // check, which it is for data member pointers (but not member
 | |
|     // function pointers on Itanium and ARM).
 | |
|     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
 | |
|   }
 | |
|   
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_ConstructorConversion:
 | |
|   case CK_ToUnion:
 | |
|     llvm_unreachable("scalar cast to non-scalar value");
 | |
|     break;
 | |
| 
 | |
|   case CK_GetObjCProperty: {
 | |
|     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
 | |
|     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
 | |
|            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
 | |
|     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
 | |
|     return RV.getScalarVal();
 | |
|   }
 | |
| 
 | |
|   case CK_LValueToRValue:
 | |
|     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
 | |
|     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
 | |
|     return Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|   case CK_IntegralToPointer: {
 | |
|     Value *Src = Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|     // First, convert to the correct width so that we control the kind of
 | |
|     // extension.
 | |
|     const llvm::Type *MiddleTy = CGF.IntPtrTy;
 | |
|     bool InputSigned = E->getType()->isSignedIntegerType();
 | |
|     llvm::Value* IntResult =
 | |
|       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
 | |
| 
 | |
|     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
 | |
|   }
 | |
|   case CK_PointerToIntegral: {
 | |
|     Value *Src = Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|     // Handle conversion to bool correctly.
 | |
|     if (DestTy->isBooleanType())
 | |
|       return EmitScalarConversion(Src, E->getType(), DestTy);
 | |
| 
 | |
|     return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
 | |
|   }
 | |
|   case CK_ToVoid: {
 | |
|     CGF.EmitIgnoredExpr(E);
 | |
|     return 0;
 | |
|   }
 | |
|   case CK_VectorSplat: {
 | |
|     const llvm::Type *DstTy = ConvertType(DestTy);
 | |
|     Value *Elt = Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|     // Insert the element in element zero of an undef vector
 | |
|     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
 | |
|     llvm::Value *Idx = Builder.getInt32(0);
 | |
|     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
 | |
| 
 | |
|     // Splat the element across to all elements
 | |
|     llvm::SmallVector<llvm::Constant*, 16> Args;
 | |
|     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
 | |
|     llvm::Constant *Zero = Builder.getInt32(0);
 | |
|     for (unsigned i = 0; i < NumElements; i++)
 | |
|       Args.push_back(Zero);
 | |
| 
 | |
|     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
 | |
|     return Yay;
 | |
|   }
 | |
| 
 | |
|   case CK_IntegralCast:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingCast:
 | |
|     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
 | |
| 
 | |
|   case CK_IntegralToBoolean:
 | |
|     return EmitIntToBoolConversion(Visit(E));
 | |
|   case CK_PointerToBoolean:
 | |
|     return EmitPointerToBoolConversion(Visit(E));
 | |
|   case CK_FloatingToBoolean:
 | |
|     return EmitFloatToBoolConversion(Visit(E));
 | |
|   case CK_MemberPointerToBoolean: {
 | |
|     llvm::Value *MemPtr = Visit(E);
 | |
|     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
 | |
|     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
 | |
|   }
 | |
| 
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_IntegralComplexToReal:
 | |
|     return CGF.EmitComplexExpr(E, false, true).first;
 | |
| 
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_IntegralComplexToBoolean: {
 | |
|     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
 | |
| 
 | |
|     // TODO: kill this function off, inline appropriate case here
 | |
|     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
 | |
|   }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown scalar cast");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
 | |
|   CodeGenFunction::StmtExprEvaluation eval(CGF);
 | |
|   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
 | |
|     .getScalarVal();
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
 | |
|   LValue LV = CGF.EmitBlockDeclRefLValue(E);
 | |
|   return CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Unary Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::Value *ScalarExprEmitter::
 | |
| EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
 | |
|                                 llvm::Value *InVal,
 | |
|                                 llvm::Value *NextVal, bool IsInc) {
 | |
|   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
 | |
|   case LangOptions::SOB_Undefined:
 | |
|     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
 | |
|     break;
 | |
|   case LangOptions::SOB_Defined:
 | |
|     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
 | |
|     break;
 | |
|   case LangOptions::SOB_Trapping:
 | |
|     BinOpInfo BinOp;
 | |
|     BinOp.LHS = InVal;
 | |
|     BinOp.RHS = NextVal;
 | |
|     BinOp.Ty = E->getType();
 | |
|     BinOp.Opcode = BO_Add;
 | |
|     BinOp.E = E;
 | |
|     return EmitOverflowCheckedBinOp(BinOp);
 | |
|     break;
 | |
|   }
 | |
|   assert(false && "Unknown SignedOverflowBehaviorTy");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| llvm::Value *
 | |
| ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                                            bool isInc, bool isPre) {
 | |
|   
 | |
|   QualType type = E->getSubExpr()->getType();
 | |
|   llvm::Value *value = EmitLoadOfLValue(LV, type);
 | |
|   llvm::Value *input = value;
 | |
| 
 | |
|   int amount = (isInc ? 1 : -1);
 | |
| 
 | |
|   // Special case of integer increment that we have to check first: bool++.
 | |
|   // Due to promotion rules, we get:
 | |
|   //   bool++ -> bool = bool + 1
 | |
|   //          -> bool = (int)bool + 1
 | |
|   //          -> bool = ((int)bool + 1 != 0)
 | |
|   // An interesting aspect of this is that increment is always true.
 | |
|   // Decrement does not have this property.
 | |
|   if (isInc && type->isBooleanType()) {
 | |
|     value = Builder.getTrue();
 | |
| 
 | |
|   // Most common case by far: integer increment.
 | |
|   } else if (type->isIntegerType()) {
 | |
| 
 | |
|     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
 | |
| 
 | |
|     // Note that signed integer inc/dec with width less than int can't
 | |
|     // overflow because of promotion rules; we're just eliding a few steps here.
 | |
|     if (type->isSignedIntegerType() &&
 | |
|         value->getType()->getPrimitiveSizeInBits() >=
 | |
|             CGF.CGM.IntTy->getBitWidth())
 | |
|       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
 | |
|     else
 | |
|       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
 | |
|   
 | |
|   // Next most common: pointer increment.
 | |
|   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
 | |
|     QualType type = ptr->getPointeeType();
 | |
| 
 | |
|     // VLA types don't have constant size.
 | |
|     if (type->isVariableArrayType()) {
 | |
|       llvm::Value *vlaSize =
 | |
|         CGF.GetVLASize(CGF.getContext().getAsVariableArrayType(type));
 | |
|       value = CGF.EmitCastToVoidPtr(value);
 | |
|       if (!isInc) vlaSize = Builder.CreateNSWNeg(vlaSize, "vla.negsize");
 | |
|       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
 | |
|         value = Builder.CreateGEP(value, vlaSize, "vla.inc");
 | |
|       else
 | |
|         value = Builder.CreateInBoundsGEP(value, vlaSize, "vla.inc");
 | |
|       value = Builder.CreateBitCast(value, input->getType());
 | |
|     
 | |
|     // Arithmetic on function pointers (!) is just +-1.
 | |
|     } else if (type->isFunctionType()) {
 | |
|       llvm::Value *amt = Builder.getInt32(amount);
 | |
| 
 | |
|       value = CGF.EmitCastToVoidPtr(value);
 | |
|       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
 | |
|         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
 | |
|       else
 | |
|         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
 | |
|       value = Builder.CreateBitCast(value, input->getType());
 | |
| 
 | |
|     // For everything else, we can just do a simple increment.
 | |
|     } else {
 | |
|       llvm::Value *amt = Builder.getInt32(amount);
 | |
|       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
 | |
|         value = Builder.CreateGEP(value, amt, "incdec.ptr");
 | |
|       else
 | |
|         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
 | |
|     }
 | |
| 
 | |
|   // Vector increment/decrement.
 | |
|   } else if (type->isVectorType()) {
 | |
|     if (type->hasIntegerRepresentation()) {
 | |
|       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
 | |
| 
 | |
|       if (type->hasSignedIntegerRepresentation())
 | |
|         value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
 | |
|       else
 | |
|         value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
 | |
|     } else {
 | |
|       value = Builder.CreateFAdd(
 | |
|                   value,
 | |
|                   llvm::ConstantFP::get(value->getType(), amount),
 | |
|                   isInc ? "inc" : "dec");
 | |
|     }
 | |
| 
 | |
|   // Floating point.
 | |
|   } else if (type->isRealFloatingType()) {
 | |
|     // Add the inc/dec to the real part.
 | |
|     llvm::Value *amt;
 | |
|     if (value->getType()->isFloatTy())
 | |
|       amt = llvm::ConstantFP::get(VMContext,
 | |
|                                   llvm::APFloat(static_cast<float>(amount)));
 | |
|     else if (value->getType()->isDoubleTy())
 | |
|       amt = llvm::ConstantFP::get(VMContext,
 | |
|                                   llvm::APFloat(static_cast<double>(amount)));
 | |
|     else {
 | |
|       llvm::APFloat F(static_cast<float>(amount));
 | |
|       bool ignored;
 | |
|       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
 | |
|                 &ignored);
 | |
|       amt = llvm::ConstantFP::get(VMContext, F);
 | |
|     }
 | |
|     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
 | |
| 
 | |
|   // Objective-C pointer types.
 | |
|   } else {
 | |
|     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
 | |
|     value = CGF.EmitCastToVoidPtr(value);
 | |
| 
 | |
|     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
 | |
|     if (!isInc) size = -size;
 | |
|     llvm::Value *sizeValue =
 | |
|       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
 | |
| 
 | |
|     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
 | |
|       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
 | |
|     else
 | |
|       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
 | |
|     value = Builder.CreateBitCast(value, input->getType());
 | |
|   }
 | |
|   
 | |
|   // Store the updated result through the lvalue.
 | |
|   if (LV.isBitField())
 | |
|     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, type, &value);
 | |
|   else
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(value), LV, type);
 | |
|   
 | |
|   // If this is a postinc, return the value read from memory, otherwise use the
 | |
|   // updated value.
 | |
|   return isPre ? value : input;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   // Emit unary minus with EmitSub so we handle overflow cases etc.
 | |
|   BinOpInfo BinOp;
 | |
|   BinOp.RHS = Visit(E->getSubExpr());
 | |
|   
 | |
|   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
 | |
|     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
 | |
|   else 
 | |
|     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
 | |
|   BinOp.Ty = E->getType();
 | |
|   BinOp.Opcode = BO_Sub;
 | |
|   BinOp.E = E;
 | |
|   return EmitSub(BinOp);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   Value *Op = Visit(E->getSubExpr());
 | |
|   return Builder.CreateNot(Op, "neg");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
 | |
|   // Compare operand to zero.
 | |
|   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
 | |
| 
 | |
|   // Invert value.
 | |
|   // TODO: Could dynamically modify easy computations here.  For example, if
 | |
|   // the operand is an icmp ne, turn into icmp eq.
 | |
|   BoolVal = Builder.CreateNot(BoolVal, "lnot");
 | |
| 
 | |
|   // ZExt result to the expr type.
 | |
|   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
 | |
|   // Try folding the offsetof to a constant.
 | |
|   Expr::EvalResult EvalResult;
 | |
|   if (E->Evaluate(EvalResult, CGF.getContext()))
 | |
|     return Builder.getInt(EvalResult.Val.getInt());
 | |
| 
 | |
|   // Loop over the components of the offsetof to compute the value.
 | |
|   unsigned n = E->getNumComponents();
 | |
|   const llvm::Type* ResultType = ConvertType(E->getType());
 | |
|   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
 | |
|   QualType CurrentType = E->getTypeSourceInfo()->getType();
 | |
|   for (unsigned i = 0; i != n; ++i) {
 | |
|     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
 | |
|     llvm::Value *Offset = 0;
 | |
|     switch (ON.getKind()) {
 | |
|     case OffsetOfExpr::OffsetOfNode::Array: {
 | |
|       // Compute the index
 | |
|       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
 | |
|       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
 | |
|       bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
 | |
|       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
 | |
| 
 | |
|       // Save the element type
 | |
|       CurrentType =
 | |
|           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
 | |
| 
 | |
|       // Compute the element size
 | |
|       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
 | |
|           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
 | |
| 
 | |
|       // Multiply out to compute the result
 | |
|       Offset = Builder.CreateMul(Idx, ElemSize);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case OffsetOfExpr::OffsetOfNode::Field: {
 | |
|       FieldDecl *MemberDecl = ON.getField();
 | |
|       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
 | |
|       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|       // Compute the index of the field in its parent.
 | |
|       unsigned i = 0;
 | |
|       // FIXME: It would be nice if we didn't have to loop here!
 | |
|       for (RecordDecl::field_iterator Field = RD->field_begin(),
 | |
|                                       FieldEnd = RD->field_end();
 | |
|            Field != FieldEnd; (void)++Field, ++i) {
 | |
|         if (*Field == MemberDecl)
 | |
|           break;
 | |
|       }
 | |
|       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
 | |
| 
 | |
|       // Compute the offset to the field
 | |
|       int64_t OffsetInt = RL.getFieldOffset(i) /
 | |
|                           CGF.getContext().getCharWidth();
 | |
|       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
 | |
| 
 | |
|       // Save the element type.
 | |
|       CurrentType = MemberDecl->getType();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case OffsetOfExpr::OffsetOfNode::Identifier:
 | |
|       llvm_unreachable("dependent __builtin_offsetof");
 | |
| 
 | |
|     case OffsetOfExpr::OffsetOfNode::Base: {
 | |
|       if (ON.getBase()->isVirtual()) {
 | |
|         CGF.ErrorUnsupported(E, "virtual base in offsetof");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
 | |
|       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|       // Save the element type.
 | |
|       CurrentType = ON.getBase()->getType();
 | |
|       
 | |
|       // Compute the offset to the base.
 | |
|       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
 | |
|       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
 | |
|       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
 | |
|                           CGF.getContext().getCharWidth();
 | |
|       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     Result = Builder.CreateAdd(Result, Offset);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
 | |
| /// argument of the sizeof expression as an integer.
 | |
| Value *
 | |
| ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
 | |
|                               const UnaryExprOrTypeTraitExpr *E) {
 | |
|   QualType TypeToSize = E->getTypeOfArgument();
 | |
|   if (E->getKind() == UETT_SizeOf) {
 | |
|     if (const VariableArrayType *VAT =
 | |
|           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
 | |
|       if (E->isArgumentType()) {
 | |
|         // sizeof(type) - make sure to emit the VLA size.
 | |
|         CGF.EmitVLASize(TypeToSize);
 | |
|       } else {
 | |
|         // C99 6.5.3.4p2: If the argument is an expression of type
 | |
|         // VLA, it is evaluated.
 | |
|         CGF.EmitIgnoredExpr(E->getArgumentExpr());
 | |
|       }
 | |
| 
 | |
|       return CGF.GetVLASize(VAT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this isn't sizeof(vla), the result must be constant; use the constant
 | |
|   // folding logic so we don't have to duplicate it here.
 | |
|   Expr::EvalResult Result;
 | |
|   E->Evaluate(Result, CGF.getContext());
 | |
|   return Builder.getInt(Result.Val.getInt());
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
 | |
|   Expr *Op = E->getSubExpr();
 | |
|   if (Op->getType()->isAnyComplexType()) {
 | |
|     // If it's an l-value, load through the appropriate subobject l-value.
 | |
|     // Note that we have to ask E because Op might be an l-value that
 | |
|     // this won't work for, e.g. an Obj-C property.
 | |
|     if (E->isGLValue())
 | |
|       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
 | |
|                 .getScalarVal();
 | |
| 
 | |
|     // Otherwise, calculate and project.
 | |
|     return CGF.EmitComplexExpr(Op, false, true).first;
 | |
|   }
 | |
| 
 | |
|   return Visit(Op);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
 | |
|   Expr *Op = E->getSubExpr();
 | |
|   if (Op->getType()->isAnyComplexType()) {
 | |
|     // If it's an l-value, load through the appropriate subobject l-value.
 | |
|     // Note that we have to ask E because Op might be an l-value that
 | |
|     // this won't work for, e.g. an Obj-C property.
 | |
|     if (Op->isGLValue())
 | |
|       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
 | |
|                 .getScalarVal();
 | |
| 
 | |
|     // Otherwise, calculate and project.
 | |
|     return CGF.EmitComplexExpr(Op, true, false).second;
 | |
|   }
 | |
| 
 | |
|   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
 | |
|   // effects are evaluated, but not the actual value.
 | |
|   CGF.EmitScalarExpr(Op, true);
 | |
|   return llvm::Constant::getNullValue(ConvertType(E->getType()));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Binary Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   BinOpInfo Result;
 | |
|   Result.LHS = Visit(E->getLHS());
 | |
|   Result.RHS = Visit(E->getRHS());
 | |
|   Result.Ty  = E->getType();
 | |
|   Result.Opcode = E->getOpcode();
 | |
|   Result.E = E;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LValue ScalarExprEmitter::EmitCompoundAssignLValue(
 | |
|                                               const CompoundAssignOperator *E,
 | |
|                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
 | |
|                                                    Value *&Result) {
 | |
|   QualType LHSTy = E->getLHS()->getType();
 | |
|   BinOpInfo OpInfo;
 | |
|   
 | |
|   if (E->getComputationResultType()->isAnyComplexType()) {
 | |
|     // This needs to go through the complex expression emitter, but it's a tad
 | |
|     // complicated to do that... I'm leaving it out for now.  (Note that we do
 | |
|     // actually need the imaginary part of the RHS for multiplication and
 | |
|     // division.)
 | |
|     CGF.ErrorUnsupported(E, "complex compound assignment");
 | |
|     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
 | |
|     return LValue();
 | |
|   }
 | |
|   
 | |
|   // Emit the RHS first.  __block variables need to have the rhs evaluated
 | |
|   // first, plus this should improve codegen a little.
 | |
|   OpInfo.RHS = Visit(E->getRHS());
 | |
|   OpInfo.Ty = E->getComputationResultType();
 | |
|   OpInfo.Opcode = E->getOpcode();
 | |
|   OpInfo.E = E;
 | |
|   // Load/convert the LHS.
 | |
|   LValue LHSLV = EmitCheckedLValue(E->getLHS());
 | |
|   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
 | |
|   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
 | |
|                                     E->getComputationLHSType());
 | |
|   
 | |
|   // Expand the binary operator.
 | |
|   Result = (this->*Func)(OpInfo);
 | |
|   
 | |
|   // Convert the result back to the LHS type.
 | |
|   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
 | |
|   
 | |
|   // Store the result value into the LHS lvalue. Bit-fields are handled
 | |
|   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
 | |
|   // 'An assignment expression has the value of the left operand after the
 | |
|   // assignment...'.
 | |
|   if (LHSLV.isBitField())
 | |
|     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
 | |
|                                        &Result);
 | |
|   else
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
 | |
| 
 | |
|   return LHSLV;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
 | |
|                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
 | |
|   bool Ignore = TestAndClearIgnoreResultAssign();
 | |
|   Value *RHS;
 | |
|   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
 | |
| 
 | |
|   // If the result is clearly ignored, return now.
 | |
|   if (Ignore)
 | |
|     return 0;
 | |
| 
 | |
|   // The result of an assignment in C is the assigned r-value.
 | |
|   if (!CGF.getContext().getLangOptions().CPlusPlus)
 | |
|     return RHS;
 | |
| 
 | |
|   // Objective-C property assignment never reloads the value following a store.
 | |
|   if (LHS.isPropertyRef())
 | |
|     return RHS;
 | |
| 
 | |
|   // If the lvalue is non-volatile, return the computed value of the assignment.
 | |
|   if (!LHS.isVolatileQualified())
 | |
|     return RHS;
 | |
| 
 | |
|   // Otherwise, reload the value.
 | |
|   return EmitLoadOfLValue(LHS, E->getType());
 | |
| }
 | |
| 
 | |
| void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
 | |
|      					    const BinOpInfo &Ops, 
 | |
| 				     	    llvm::Value *Zero, bool isDiv) {
 | |
|   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
 | |
|   llvm::BasicBlock *contBB =
 | |
|     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
 | |
| 
 | |
|   const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
 | |
| 
 | |
|   if (Ops.Ty->hasSignedIntegerRepresentation()) {
 | |
|     llvm::Value *IntMin =
 | |
|       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
 | |
|     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
 | |
| 
 | |
|     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
 | |
|     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
 | |
|     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
 | |
|     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
 | |
|     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"), 
 | |
|                          overflowBB, contBB);
 | |
|   } else {
 | |
|     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero), 
 | |
|                              overflowBB, contBB);
 | |
|   }
 | |
|   EmitOverflowBB(overflowBB);
 | |
|   Builder.SetInsertPoint(contBB);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
 | |
|   if (isTrapvOverflowBehavior()) { 
 | |
|     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
 | |
| 
 | |
|     if (Ops.Ty->isIntegerType())
 | |
|       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
 | |
|     else if (Ops.Ty->isRealFloatingType()) {
 | |
|       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
 | |
|                                                           CGF.CurFn);
 | |
|       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
 | |
|       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero), 
 | |
|                                overflowBB, DivCont);
 | |
|       EmitOverflowBB(overflowBB);
 | |
|       Builder.SetInsertPoint(DivCont);
 | |
|     }
 | |
|   }
 | |
|   if (Ops.LHS->getType()->isFPOrFPVectorTy())
 | |
|     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
 | |
|   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
 | |
|     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
 | |
|   else
 | |
|     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
 | |
|   // Rem in C can't be a floating point type: C99 6.5.5p2.
 | |
|   if (isTrapvOverflowBehavior()) {
 | |
|     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
 | |
| 
 | |
|     if (Ops.Ty->isIntegerType()) 
 | |
|       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
 | |
|   }
 | |
| 
 | |
|   if (Ops.Ty->hasUnsignedIntegerRepresentation())
 | |
|     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
 | |
|   else
 | |
|     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
 | |
|   unsigned IID;
 | |
|   unsigned OpID = 0;
 | |
| 
 | |
|   switch (Ops.Opcode) {
 | |
|   case BO_Add:
 | |
|   case BO_AddAssign:
 | |
|     OpID = 1;
 | |
|     IID = llvm::Intrinsic::sadd_with_overflow;
 | |
|     break;
 | |
|   case BO_Sub:
 | |
|   case BO_SubAssign:
 | |
|     OpID = 2;
 | |
|     IID = llvm::Intrinsic::ssub_with_overflow;
 | |
|     break;
 | |
|   case BO_Mul:
 | |
|   case BO_MulAssign:
 | |
|     OpID = 3;
 | |
|     IID = llvm::Intrinsic::smul_with_overflow;
 | |
|     break;
 | |
|   default:
 | |
|     assert(false && "Unsupported operation for overflow detection");
 | |
|     IID = 0;
 | |
|   }
 | |
|   OpID <<= 1;
 | |
|   OpID |= 1;
 | |
| 
 | |
|   const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
 | |
| 
 | |
|   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
 | |
| 
 | |
|   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
 | |
|   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
 | |
|   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
 | |
| 
 | |
|   // Branch in case of overflow.
 | |
|   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
 | |
|   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
 | |
|   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
 | |
| 
 | |
|   Builder.CreateCondBr(overflow, overflowBB, continueBB);
 | |
| 
 | |
|   // Handle overflow with llvm.trap.
 | |
|   const std::string *handlerName = 
 | |
|     &CGF.getContext().getLangOptions().OverflowHandler;
 | |
|   if (handlerName->empty()) {
 | |
|     EmitOverflowBB(overflowBB);
 | |
|     Builder.SetInsertPoint(continueBB);
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   // If an overflow handler is set, then we want to call it and then use its
 | |
|   // result, if it returns.
 | |
|   Builder.SetInsertPoint(overflowBB);
 | |
| 
 | |
|   // Get the overflow handler.
 | |
|   const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
 | |
|   std::vector<const llvm::Type*> argTypes;
 | |
|   argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
 | |
|   argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
 | |
|   llvm::FunctionType *handlerTy =
 | |
|       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
 | |
|   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
 | |
| 
 | |
|   // Sign extend the args to 64-bit, so that we can use the same handler for
 | |
|   // all types of overflow.
 | |
|   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
 | |
|   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
 | |
| 
 | |
|   // Call the handler with the two arguments, the operation, and the size of
 | |
|   // the result.
 | |
|   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
 | |
|       Builder.getInt8(OpID),
 | |
|       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
 | |
| 
 | |
|   // Truncate the result back to the desired size.
 | |
|   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
 | |
|   Builder.CreateBr(continueBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(continueBB);
 | |
|   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
 | |
|   phi->addIncoming(result, initialBB);
 | |
|   phi->addIncoming(handlerResult, overflowBB);
 | |
| 
 | |
|   return phi;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
 | |
|   if (!Ops.Ty->isAnyPointerType()) {
 | |
|     if (Ops.Ty->hasSignedIntegerRepresentation()) {
 | |
|       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
 | |
|       case LangOptions::SOB_Undefined:
 | |
|         return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
 | |
|       case LangOptions::SOB_Defined:
 | |
|         return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
 | |
|       case LangOptions::SOB_Trapping:
 | |
|         return EmitOverflowCheckedBinOp(Ops);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (Ops.LHS->getType()->isFPOrFPVectorTy())
 | |
|       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
 | |
| 
 | |
|     return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
 | |
|   }
 | |
| 
 | |
|   // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
 | |
|   // use this path.
 | |
|   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
 | |
|   
 | |
|   if (Ops.Ty->isPointerType() &&
 | |
|       Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
 | |
|     // The amount of the addition needs to account for the VLA size
 | |
|     CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
 | |
|   }
 | |
|   
 | |
|   Value *Ptr, *Idx;
 | |
|   Expr *IdxExp;
 | |
|   const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
 | |
|   const ObjCObjectPointerType *OPT =
 | |
|     BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
 | |
|   if (PT || OPT) {
 | |
|     Ptr = Ops.LHS;
 | |
|     Idx = Ops.RHS;
 | |
|     IdxExp = BinOp->getRHS();
 | |
|   } else {  // int + pointer
 | |
|     PT = BinOp->getRHS()->getType()->getAs<PointerType>();
 | |
|     OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
 | |
|     assert((PT || OPT) && "Invalid add expr");
 | |
|     Ptr = Ops.RHS;
 | |
|     Idx = Ops.LHS;
 | |
|     IdxExp = BinOp->getLHS();
 | |
|   }
 | |
| 
 | |
|   unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
 | |
|   if (Width < CGF.PointerWidthInBits) {
 | |
|     // Zero or sign extend the pointer value based on whether the index is
 | |
|     // signed or not.
 | |
|     const llvm::Type *IdxType = CGF.IntPtrTy;
 | |
|     if (IdxExp->getType()->isSignedIntegerType())
 | |
|       Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
 | |
|     else
 | |
|       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
 | |
|   }
 | |
|   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
 | |
|   // Handle interface types, which are not represented with a concrete type.
 | |
|   if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
 | |
|     llvm::Value *InterfaceSize =
 | |
|       llvm::ConstantInt::get(Idx->getType(),
 | |
|           CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
 | |
|     Idx = Builder.CreateMul(Idx, InterfaceSize);
 | |
|     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
 | |
|     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
 | |
|     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
 | |
|     return Builder.CreateBitCast(Res, Ptr->getType());
 | |
|   }
 | |
| 
 | |
|   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
 | |
|   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
 | |
|   // future proof.
 | |
|   if (ElementType->isVoidType() || ElementType->isFunctionType()) {
 | |
|     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
 | |
|     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
 | |
|     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
 | |
|     return Builder.CreateBitCast(Res, Ptr->getType());
 | |
|   }
 | |
| 
 | |
|   if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
 | |
|     return Builder.CreateGEP(Ptr, Idx, "add.ptr");
 | |
|   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
 | |
|   if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
 | |
|     if (Ops.Ty->hasSignedIntegerRepresentation()) {
 | |
|       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
 | |
|       case LangOptions::SOB_Undefined:
 | |
|         return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
 | |
|       case LangOptions::SOB_Defined:
 | |
|         return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
 | |
|       case LangOptions::SOB_Trapping:
 | |
|         return EmitOverflowCheckedBinOp(Ops);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (Ops.LHS->getType()->isFPOrFPVectorTy())
 | |
|       return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
 | |
| 
 | |
|     return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
 | |
|   }
 | |
| 
 | |
|   // Must have binary (not unary) expr here.  Unary pointer increment doesn't
 | |
|   // use this path.
 | |
|   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
 | |
|   
 | |
|   if (BinOp->getLHS()->getType()->isPointerType() &&
 | |
|       BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
 | |
|     // The amount of the addition needs to account for the VLA size for
 | |
|     // ptr-int
 | |
|     // The amount of the division needs to account for the VLA size for
 | |
|     // ptr-ptr.
 | |
|     CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
 | |
|   }
 | |
| 
 | |
|   const QualType LHSType = BinOp->getLHS()->getType();
 | |
|   const QualType LHSElementType = LHSType->getPointeeType();
 | |
|   if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
 | |
|     // pointer - int
 | |
|     Value *Idx = Ops.RHS;
 | |
|     unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
 | |
|     if (Width < CGF.PointerWidthInBits) {
 | |
|       // Zero or sign extend the pointer value based on whether the index is
 | |
|       // signed or not.
 | |
|       const llvm::Type *IdxType = CGF.IntPtrTy;
 | |
|       if (BinOp->getRHS()->getType()->isSignedIntegerType())
 | |
|         Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
 | |
|       else
 | |
|         Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
 | |
|     }
 | |
|     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
 | |
| 
 | |
|     // Handle interface types, which are not represented with a concrete type.
 | |
|     if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
 | |
|       llvm::Value *InterfaceSize =
 | |
|         llvm::ConstantInt::get(Idx->getType(),
 | |
|                                CGF.getContext().
 | |
|                                  getTypeSizeInChars(OIT).getQuantity());
 | |
|       Idx = Builder.CreateMul(Idx, InterfaceSize);
 | |
|       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
 | |
|       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
 | |
|       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
 | |
|       return Builder.CreateBitCast(Res, Ops.LHS->getType());
 | |
|     }
 | |
| 
 | |
|     // Explicitly handle GNU void* and function pointer arithmetic
 | |
|     // extensions. The GNU void* casts amount to no-ops since our void* type is
 | |
|     // i8*, but this is future proof.
 | |
|     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
 | |
|       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
 | |
|       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
 | |
|       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
 | |
|       return Builder.CreateBitCast(Res, Ops.LHS->getType());
 | |
|     }
 | |
| 
 | |
|     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
 | |
|       return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
 | |
|     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
 | |
|   }
 | |
|   
 | |
|   // pointer - pointer
 | |
|   Value *LHS = Ops.LHS;
 | |
|   Value *RHS = Ops.RHS;
 | |
| 
 | |
|   CharUnits ElementSize;
 | |
| 
 | |
|   // Handle GCC extension for pointer arithmetic on void* and function pointer
 | |
|   // types.
 | |
|   if (LHSElementType->isVoidType() || LHSElementType->isFunctionType())
 | |
|     ElementSize = CharUnits::One();
 | |
|   else
 | |
|     ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
 | |
| 
 | |
|   const llvm::Type *ResultType = ConvertType(Ops.Ty);
 | |
|   LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
 | |
|   RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
 | |
|   Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
 | |
| 
 | |
|   // Optimize out the shift for element size of 1.
 | |
|   if (ElementSize.isOne())
 | |
|     return BytesBetween;
 | |
| 
 | |
|   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
 | |
|   // pointer difference in C is only defined in the case where both operands
 | |
|   // are pointing to elements of an array.
 | |
|   Value *BytesPerElt = 
 | |
|       llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
 | |
|   return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
 | |
|   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
 | |
|   // RHS to the same size as the LHS.
 | |
|   Value *RHS = Ops.RHS;
 | |
|   if (Ops.LHS->getType() != RHS->getType())
 | |
|     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
 | |
| 
 | |
|   if (CGF.CatchUndefined 
 | |
|       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
 | |
|     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
 | |
|     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
 | |
|     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
 | |
|                                  llvm::ConstantInt::get(RHS->getType(), Width)),
 | |
|                              Cont, CGF.getTrapBB());
 | |
|     CGF.EmitBlock(Cont);
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateShl(Ops.LHS, RHS, "shl");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
 | |
|   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
 | |
|   // RHS to the same size as the LHS.
 | |
|   Value *RHS = Ops.RHS;
 | |
|   if (Ops.LHS->getType() != RHS->getType())
 | |
|     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
 | |
| 
 | |
|   if (CGF.CatchUndefined 
 | |
|       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
 | |
|     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
 | |
|     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
 | |
|     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
 | |
|                                  llvm::ConstantInt::get(RHS->getType(), Width)),
 | |
|                              Cont, CGF.getTrapBB());
 | |
|     CGF.EmitBlock(Cont);
 | |
|   }
 | |
| 
 | |
|   if (Ops.Ty->hasUnsignedIntegerRepresentation())
 | |
|     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
 | |
|   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
 | |
| }
 | |
| 
 | |
| enum IntrinsicType { VCMPEQ, VCMPGT };
 | |
| // return corresponding comparison intrinsic for given vector type
 | |
| static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
 | |
|                                         BuiltinType::Kind ElemKind) {
 | |
|   switch (ElemKind) {
 | |
|   default: assert(0 && "unexpected element type");
 | |
|   case BuiltinType::Char_U:
 | |
|   case BuiltinType::UChar:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
 | |
|     break;
 | |
|   case BuiltinType::Char_S:
 | |
|   case BuiltinType::SChar:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
 | |
|     break;
 | |
|   case BuiltinType::UShort:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
 | |
|     break;
 | |
|   case BuiltinType::Short:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
 | |
|     break;
 | |
|   case BuiltinType::UInt:
 | |
|   case BuiltinType::ULong:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
 | |
|     break;
 | |
|   case BuiltinType::Int:
 | |
|   case BuiltinType::Long:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
 | |
|     break;
 | |
|   case BuiltinType::Float:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
 | |
|     break;
 | |
|   }
 | |
|   return llvm::Intrinsic::not_intrinsic;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
 | |
|                                       unsigned SICmpOpc, unsigned FCmpOpc) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   Value *Result;
 | |
|   QualType LHSTy = E->getLHS()->getType();
 | |
|   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
 | |
|     assert(E->getOpcode() == BO_EQ ||
 | |
|            E->getOpcode() == BO_NE);
 | |
|     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
 | |
|     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
 | |
|     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
 | |
|                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
 | |
|   } else if (!LHSTy->isAnyComplexType()) {
 | |
|     Value *LHS = Visit(E->getLHS());
 | |
|     Value *RHS = Visit(E->getRHS());
 | |
| 
 | |
|     // If AltiVec, the comparison results in a numeric type, so we use
 | |
|     // intrinsics comparing vectors and giving 0 or 1 as a result
 | |
|     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
 | |
|       // constants for mapping CR6 register bits to predicate result
 | |
|       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
 | |
| 
 | |
|       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
 | |
| 
 | |
|       // in several cases vector arguments order will be reversed
 | |
|       Value *FirstVecArg = LHS,
 | |
|             *SecondVecArg = RHS;
 | |
| 
 | |
|       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
 | |
|       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
 | |
|       BuiltinType::Kind ElementKind = BTy->getKind();
 | |
| 
 | |
|       switch(E->getOpcode()) {
 | |
|       default: assert(0 && "is not a comparison operation");
 | |
|       case BO_EQ:
 | |
|         CR6 = CR6_LT;
 | |
|         ID = GetIntrinsic(VCMPEQ, ElementKind);
 | |
|         break;
 | |
|       case BO_NE:
 | |
|         CR6 = CR6_EQ;
 | |
|         ID = GetIntrinsic(VCMPEQ, ElementKind);
 | |
|         break;
 | |
|       case BO_LT:
 | |
|         CR6 = CR6_LT;
 | |
|         ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|         std::swap(FirstVecArg, SecondVecArg);
 | |
|         break;
 | |
|       case BO_GT:
 | |
|         CR6 = CR6_LT;
 | |
|         ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|         break;
 | |
|       case BO_LE:
 | |
|         if (ElementKind == BuiltinType::Float) {
 | |
|           CR6 = CR6_LT;
 | |
|           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
 | |
|           std::swap(FirstVecArg, SecondVecArg);
 | |
|         }
 | |
|         else {
 | |
|           CR6 = CR6_EQ;
 | |
|           ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|         }
 | |
|         break;
 | |
|       case BO_GE:
 | |
|         if (ElementKind == BuiltinType::Float) {
 | |
|           CR6 = CR6_LT;
 | |
|           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
 | |
|         }
 | |
|         else {
 | |
|           CR6 = CR6_EQ;
 | |
|           ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|           std::swap(FirstVecArg, SecondVecArg);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       Value *CR6Param = Builder.getInt32(CR6);
 | |
|       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
 | |
|       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
 | |
|       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
 | |
|     }
 | |
| 
 | |
|     if (LHS->getType()->isFPOrFPVectorTy()) {
 | |
|       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
 | |
|                                   LHS, RHS, "cmp");
 | |
|     } else if (LHSTy->hasSignedIntegerRepresentation()) {
 | |
|       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
 | |
|                                   LHS, RHS, "cmp");
 | |
|     } else {
 | |
|       // Unsigned integers and pointers.
 | |
|       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | |
|                                   LHS, RHS, "cmp");
 | |
|     }
 | |
| 
 | |
|     // If this is a vector comparison, sign extend the result to the appropriate
 | |
|     // vector integer type and return it (don't convert to bool).
 | |
|     if (LHSTy->isVectorType())
 | |
|       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
 | |
| 
 | |
|   } else {
 | |
|     // Complex Comparison: can only be an equality comparison.
 | |
|     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
 | |
|     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
 | |
| 
 | |
|     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
 | |
| 
 | |
|     Value *ResultR, *ResultI;
 | |
|     if (CETy->isRealFloatingType()) {
 | |
|       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
 | |
|                                    LHS.first, RHS.first, "cmp.r");
 | |
|       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
 | |
|                                    LHS.second, RHS.second, "cmp.i");
 | |
|     } else {
 | |
|       // Complex comparisons can only be equality comparisons.  As such, signed
 | |
|       // and unsigned opcodes are the same.
 | |
|       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | |
|                                    LHS.first, RHS.first, "cmp.r");
 | |
|       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | |
|                                    LHS.second, RHS.second, "cmp.i");
 | |
|     }
 | |
| 
 | |
|     if (E->getOpcode() == BO_EQ) {
 | |
|       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
 | |
|     } else {
 | |
|       assert(E->getOpcode() == BO_NE &&
 | |
|              "Complex comparison other than == or != ?");
 | |
|       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
 | |
|   bool Ignore = TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   // __block variables need to have the rhs evaluated first, plus this should
 | |
|   // improve codegen just a little.
 | |
|   Value *RHS = Visit(E->getRHS());
 | |
|   LValue LHS = EmitCheckedLValue(E->getLHS());
 | |
| 
 | |
|   // Store the value into the LHS.  Bit-fields are handled specially
 | |
|   // because the result is altered by the store, i.e., [C99 6.5.16p1]
 | |
|   // 'An assignment expression has the value of the left operand after
 | |
|   // the assignment...'.
 | |
|   if (LHS.isBitField())
 | |
|     CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
 | |
|                                        &RHS);
 | |
|   else
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
 | |
| 
 | |
|   // If the result is clearly ignored, return now.
 | |
|   if (Ignore)
 | |
|     return 0;
 | |
| 
 | |
|   // The result of an assignment in C is the assigned r-value.
 | |
|   if (!CGF.getContext().getLangOptions().CPlusPlus)
 | |
|     return RHS;
 | |
| 
 | |
|   // Objective-C property assignment never reloads the value following a store.
 | |
|   if (LHS.isPropertyRef())
 | |
|     return RHS;
 | |
| 
 | |
|   // If the lvalue is non-volatile, return the computed value of the assignment.
 | |
|   if (!LHS.isVolatileQualified())
 | |
|     return RHS;
 | |
| 
 | |
|   // Otherwise, reload the value.
 | |
|   return EmitLoadOfLValue(LHS, E->getType());
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
 | |
|   const llvm::Type *ResTy = ConvertType(E->getType());
 | |
|   
 | |
|   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
 | |
|   // If we have 1 && X, just emit X without inserting the control flow.
 | |
|   bool LHSCondVal;
 | |
|   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
 | |
|     if (LHSCondVal) { // If we have 1 && X, just emit X.
 | |
|       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
|       // ZExt result to int or bool.
 | |
|       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
 | |
|     }
 | |
| 
 | |
|     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
 | |
|     if (!CGF.ContainsLabel(E->getRHS()))
 | |
|       return llvm::Constant::getNullValue(ResTy);
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
 | |
|   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
| 
 | |
|   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
 | |
|   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
 | |
| 
 | |
|   // Any edges into the ContBlock are now from an (indeterminate number of)
 | |
|   // edges from this first condition.  All of these values will be false.  Start
 | |
|   // setting up the PHI node in the Cont Block for this.
 | |
|   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
 | |
|                                             "", ContBlock);
 | |
|   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
 | |
|        PI != PE; ++PI)
 | |
|     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
 | |
| 
 | |
|   eval.begin(CGF);
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   // Reaquire the RHS block, as there may be subblocks inserted.
 | |
|   RHSBlock = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
 | |
|   // into the phi node for the edge with the value of RHSCond.
 | |
|   if (CGF.getDebugInfo())
 | |
|     // There is no need to emit line number for unconditional branch.
 | |
|     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
 | |
|   CGF.EmitBlock(ContBlock);
 | |
|   PN->addIncoming(RHSCond, RHSBlock);
 | |
| 
 | |
|   // ZExt result to int.
 | |
|   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
 | |
|   const llvm::Type *ResTy = ConvertType(E->getType());
 | |
|   
 | |
|   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
 | |
|   // If we have 0 || X, just emit X without inserting the control flow.
 | |
|   bool LHSCondVal;
 | |
|   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
 | |
|     if (!LHSCondVal) { // If we have 0 || X, just emit X.
 | |
|       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
|       // ZExt result to int or bool.
 | |
|       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
 | |
|     }
 | |
| 
 | |
|     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
 | |
|     if (!CGF.ContainsLabel(E->getRHS()))
 | |
|       return llvm::ConstantInt::get(ResTy, 1);
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
 | |
|   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
| 
 | |
|   // Branch on the LHS first.  If it is true, go to the success (cont) block.
 | |
|   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
 | |
| 
 | |
|   // Any edges into the ContBlock are now from an (indeterminate number of)
 | |
|   // edges from this first condition.  All of these values will be true.  Start
 | |
|   // setting up the PHI node in the Cont Block for this.
 | |
|   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
 | |
|                                             "", ContBlock);
 | |
|   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
 | |
|        PI != PE; ++PI)
 | |
|     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
 | |
| 
 | |
|   eval.begin(CGF);
 | |
| 
 | |
|   // Emit the RHS condition as a bool value.
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
| 
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   // Reaquire the RHS block, as there may be subblocks inserted.
 | |
|   RHSBlock = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
 | |
|   // into the phi node for the edge with the value of RHSCond.
 | |
|   CGF.EmitBlock(ContBlock);
 | |
|   PN->addIncoming(RHSCond, RHSBlock);
 | |
| 
 | |
|   // ZExt result to int.
 | |
|   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
 | |
|   CGF.EmitIgnoredExpr(E->getLHS());
 | |
|   CGF.EnsureInsertPoint();
 | |
|   return Visit(E->getRHS());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Other Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
 | |
| /// expression is cheap enough and side-effect-free enough to evaluate
 | |
| /// unconditionally instead of conditionally.  This is used to convert control
 | |
| /// flow into selects in some cases.
 | |
| static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
 | |
|                                                    CodeGenFunction &CGF) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Anything that is an integer or floating point constant is fine.
 | |
|   if (E->isConstantInitializer(CGF.getContext(), false))
 | |
|     return true;
 | |
| 
 | |
|   // Non-volatile automatic variables too, to get "cond ? X : Y" where
 | |
|   // X and Y are local variables.
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
 | |
|       if (VD->hasLocalStorage() && !(CGF.getContext()
 | |
|                                      .getCanonicalType(VD->getType())
 | |
|                                      .isVolatileQualified()))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *ScalarExprEmitter::
 | |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   // Bind the common expression if necessary.
 | |
|   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
 | |
| 
 | |
|   Expr *condExpr = E->getCond();
 | |
|   Expr *lhsExpr = E->getTrueExpr();
 | |
|   Expr *rhsExpr = E->getFalseExpr();
 | |
| 
 | |
|   // If the condition constant folds and can be elided, try to avoid emitting
 | |
|   // the condition and the dead arm.
 | |
|   bool CondExprBool;
 | |
|   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
 | |
|     Expr *live = lhsExpr, *dead = rhsExpr;
 | |
|     if (!CondExprBool) std::swap(live, dead);
 | |
| 
 | |
|     // If the dead side doesn't have labels we need, and if the Live side isn't
 | |
|     // the gnu missing ?: extension (which we could handle, but don't bother
 | |
|     // to), just emit the Live part.
 | |
|     if (!CGF.ContainsLabel(dead))
 | |
|       return Visit(live);
 | |
|   }
 | |
| 
 | |
|   // OpenCL: If the condition is a vector, we can treat this condition like
 | |
|   // the select function.
 | |
|   if (CGF.getContext().getLangOptions().OpenCL 
 | |
|       && condExpr->getType()->isVectorType()) {
 | |
|     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
 | |
|     llvm::Value *LHS = Visit(lhsExpr);
 | |
|     llvm::Value *RHS = Visit(rhsExpr);
 | |
|     
 | |
|     const llvm::Type *condType = ConvertType(condExpr->getType());
 | |
|     const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
 | |
|     
 | |
|     unsigned numElem = vecTy->getNumElements();      
 | |
|     const llvm::Type *elemType = vecTy->getElementType();
 | |
|     
 | |
|     std::vector<llvm::Constant*> Zvals;
 | |
|     for (unsigned i = 0; i < numElem; ++i)
 | |
|       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
 | |
| 
 | |
|     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);    
 | |
|     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
 | |
|     llvm::Value *tmp = Builder.CreateSExt(TestMSB, 
 | |
|                                           llvm::VectorType::get(elemType,
 | |
|                                                                 numElem),         
 | |
|                                           "sext");
 | |
|     llvm::Value *tmp2 = Builder.CreateNot(tmp);
 | |
|     
 | |
|     // Cast float to int to perform ANDs if necessary.
 | |
|     llvm::Value *RHSTmp = RHS;
 | |
|     llvm::Value *LHSTmp = LHS;
 | |
|     bool wasCast = false;
 | |
|     const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
 | |
|     if (rhsVTy->getElementType()->isFloatTy()) {
 | |
|       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
 | |
|       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
 | |
|       wasCast = true;
 | |
|     }
 | |
|     
 | |
|     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
 | |
|     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
 | |
|     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
 | |
|     if (wasCast)
 | |
|       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
 | |
| 
 | |
|     return tmp5;
 | |
|   }
 | |
|   
 | |
|   // If this is a really simple expression (like x ? 4 : 5), emit this as a
 | |
|   // select instead of as control flow.  We can only do this if it is cheap and
 | |
|   // safe to evaluate the LHS and RHS unconditionally.
 | |
|   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
 | |
|       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
 | |
|     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
 | |
|     llvm::Value *LHS = Visit(lhsExpr);
 | |
|     llvm::Value *RHS = Visit(rhsExpr);
 | |
|     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
 | |
|   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
|   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
 | |
| 
 | |
|   CGF.EmitBlock(LHSBlock);
 | |
|   eval.begin(CGF);
 | |
|   Value *LHS = Visit(lhsExpr);
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   LHSBlock = Builder.GetInsertBlock();
 | |
|   Builder.CreateBr(ContBlock);
 | |
| 
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   eval.begin(CGF);
 | |
|   Value *RHS = Visit(rhsExpr);
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   RHSBlock = Builder.GetInsertBlock();
 | |
|   CGF.EmitBlock(ContBlock);
 | |
| 
 | |
|   // If the LHS or RHS is a throw expression, it will be legitimately null.
 | |
|   if (!LHS)
 | |
|     return RHS;
 | |
|   if (!RHS)
 | |
|     return LHS;
 | |
| 
 | |
|   // Create a PHI node for the real part.
 | |
|   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
 | |
|   PN->addIncoming(LHS, LHSBlock);
 | |
|   PN->addIncoming(RHS, RHSBlock);
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
 | |
|   return Visit(E->getChosenSubExpr(CGF.getContext()));
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
 | |
|   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
 | |
|   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
 | |
| 
 | |
|   // If EmitVAArg fails, we fall back to the LLVM instruction.
 | |
|   if (!ArgPtr)
 | |
|     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
 | |
| 
 | |
|   // FIXME Volatility.
 | |
|   return Builder.CreateLoad(ArgPtr);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
 | |
|   return CGF.EmitBlockLiteral(block);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Entry Point into this File
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// EmitScalarExpr - Emit the computation of the specified expression of scalar
 | |
| /// type, ignoring the result.
 | |
| Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
 | |
|   assert(E && !hasAggregateLLVMType(E->getType()) &&
 | |
|          "Invalid scalar expression to emit");
 | |
| 
 | |
|   if (isa<CXXDefaultArgExpr>(E))
 | |
|     disableDebugInfo();
 | |
|   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
 | |
|     .Visit(const_cast<Expr*>(E));
 | |
|   if (isa<CXXDefaultArgExpr>(E))
 | |
|     enableDebugInfo();
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// EmitScalarConversion - Emit a conversion from the specified type to the
 | |
| /// specified destination type, both of which are LLVM scalar types.
 | |
| Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
 | |
|                                              QualType DstTy) {
 | |
|   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
 | |
|          "Invalid scalar expression to emit");
 | |
|   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
 | |
| }
 | |
| 
 | |
| /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
 | |
| /// type to the specified destination type, where the destination type is an
 | |
| /// LLVM scalar type.
 | |
| Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
 | |
|                                                       QualType SrcTy,
 | |
|                                                       QualType DstTy) {
 | |
|   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
 | |
|          "Invalid complex -> scalar conversion");
 | |
|   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
 | |
|                                                                 DstTy);
 | |
| }
 | |
| 
 | |
| 
 | |
| llvm::Value *CodeGenFunction::
 | |
| EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                         bool isInc, bool isPre) {
 | |
|   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
 | |
|   llvm::Value *V;
 | |
|   // object->isa or (*object).isa
 | |
|   // Generate code as for: *(Class*)object
 | |
|   // build Class* type
 | |
|   const llvm::Type *ClassPtrTy = ConvertType(E->getType());
 | |
| 
 | |
|   Expr *BaseExpr = E->getBase();
 | |
|   if (BaseExpr->isRValue()) {
 | |
|     V = CreateTempAlloca(ClassPtrTy, "resval");
 | |
|     llvm::Value *Src = EmitScalarExpr(BaseExpr);
 | |
|     Builder.CreateStore(Src, V);
 | |
|     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
 | |
|       MakeAddrLValue(V, E->getType()), E->getType());
 | |
|   } else {
 | |
|     if (E->isArrow())
 | |
|       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
 | |
|     else
 | |
|       V = EmitLValue(BaseExpr).getAddress();
 | |
|   }
 | |
|   
 | |
|   // build Class* type
 | |
|   ClassPtrTy = ClassPtrTy->getPointerTo();
 | |
|   V = Builder.CreateBitCast(V, ClassPtrTy);
 | |
|   return MakeAddrLValue(V, E->getType());
 | |
| }
 | |
| 
 | |
| 
 | |
| LValue CodeGenFunction::EmitCompoundAssignmentLValue(
 | |
|                                             const CompoundAssignOperator *E) {
 | |
|   ScalarExprEmitter Scalar(*this);
 | |
|   Value *Result = 0;
 | |
|   switch (E->getOpcode()) {
 | |
| #define COMPOUND_OP(Op)                                                       \
 | |
|     case BO_##Op##Assign:                                                     \
 | |
|       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
 | |
|                                              Result)
 | |
|   COMPOUND_OP(Mul);
 | |
|   COMPOUND_OP(Div);
 | |
|   COMPOUND_OP(Rem);
 | |
|   COMPOUND_OP(Add);
 | |
|   COMPOUND_OP(Sub);
 | |
|   COMPOUND_OP(Shl);
 | |
|   COMPOUND_OP(Shr);
 | |
|   COMPOUND_OP(And);
 | |
|   COMPOUND_OP(Xor);
 | |
|   COMPOUND_OP(Or);
 | |
| #undef COMPOUND_OP
 | |
|       
 | |
|   case BO_PtrMemD:
 | |
|   case BO_PtrMemI:
 | |
|   case BO_Mul:
 | |
|   case BO_Div:
 | |
|   case BO_Rem:
 | |
|   case BO_Add:
 | |
|   case BO_Sub:
 | |
|   case BO_Shl:
 | |
|   case BO_Shr:
 | |
|   case BO_LT:
 | |
|   case BO_GT:
 | |
|   case BO_LE:
 | |
|   case BO_GE:
 | |
|   case BO_EQ:
 | |
|   case BO_NE:
 | |
|   case BO_And:
 | |
|   case BO_Xor:
 | |
|   case BO_Or:
 | |
|   case BO_LAnd:
 | |
|   case BO_LOr:
 | |
|   case BO_Assign:
 | |
|   case BO_Comma:
 | |
|     assert(false && "Not valid compound assignment operators");
 | |
|     break;
 | |
|   }
 | |
|    
 | |
|   llvm_unreachable("Unhandled compound assignment operator");
 | |
| }
 |