forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1634 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1634 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Stmt nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Basic/PrettyStackTrace.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Statement Emission
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void CodeGenFunction::EmitStopPoint(const Stmt *S) {
 | |
|   if (CGDebugInfo *DI = getDebugInfo()) {
 | |
|     if (isa<DeclStmt>(S))
 | |
|       DI->setLocation(S->getLocEnd());
 | |
|     else
 | |
|       DI->setLocation(S->getLocStart());
 | |
|     DI->UpdateLineDirectiveRegion(Builder);
 | |
|     DI->EmitStopPoint(Builder);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitStmt(const Stmt *S) {
 | |
|   assert(S && "Null statement?");
 | |
| 
 | |
|   // Check if we can handle this without bothering to generate an
 | |
|   // insert point or debug info.
 | |
|   if (EmitSimpleStmt(S))
 | |
|     return;
 | |
| 
 | |
|   // Check if we are generating unreachable code.
 | |
|   if (!HaveInsertPoint()) {
 | |
|     // If so, and the statement doesn't contain a label, then we do not need to
 | |
|     // generate actual code. This is safe because (1) the current point is
 | |
|     // unreachable, so we don't need to execute the code, and (2) we've already
 | |
|     // handled the statements which update internal data structures (like the
 | |
|     // local variable map) which could be used by subsequent statements.
 | |
|     if (!ContainsLabel(S)) {
 | |
|       // Verify that any decl statements were handled as simple, they may be in
 | |
|       // scope of subsequent reachable statements.
 | |
|       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, make a new block to hold the code.
 | |
|     EnsureInsertPoint();
 | |
|   }
 | |
| 
 | |
|   // Generate a stoppoint if we are emitting debug info.
 | |
|   EmitStopPoint(S);
 | |
| 
 | |
|   switch (S->getStmtClass()) {
 | |
|   case Stmt::NoStmtClass:
 | |
|   case Stmt::CXXCatchStmtClass:
 | |
|     llvm_unreachable("invalid statement class to emit generically");
 | |
|   case Stmt::NullStmtClass:
 | |
|   case Stmt::CompoundStmtClass:
 | |
|   case Stmt::DeclStmtClass:
 | |
|   case Stmt::LabelStmtClass:
 | |
|   case Stmt::GotoStmtClass:
 | |
|   case Stmt::BreakStmtClass:
 | |
|   case Stmt::ContinueStmtClass:
 | |
|   case Stmt::DefaultStmtClass:
 | |
|   case Stmt::CaseStmtClass:
 | |
|     llvm_unreachable("should have emitted these statements as simple");
 | |
| 
 | |
| #define STMT(Type, Base)
 | |
| #define ABSTRACT_STMT(Op)
 | |
| #define EXPR(Type, Base) \
 | |
|   case Stmt::Type##Class:
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   {
 | |
|     // Remember the block we came in on.
 | |
|     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
 | |
|     assert(incoming && "expression emission must have an insertion point");
 | |
| 
 | |
|     EmitIgnoredExpr(cast<Expr>(S));
 | |
| 
 | |
|     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
 | |
|     assert(outgoing && "expression emission cleared block!");
 | |
| 
 | |
|     // The expression emitters assume (reasonably!) that the insertion
 | |
|     // point is always set.  To maintain that, the call-emission code
 | |
|     // for noreturn functions has to enter a new block with no
 | |
|     // predecessors.  We want to kill that block and mark the current
 | |
|     // insertion point unreachable in the common case of a call like
 | |
|     // "exit();".  Since expression emission doesn't otherwise create
 | |
|     // blocks with no predecessors, we can just test for that.
 | |
|     // However, we must be careful not to do this to our incoming
 | |
|     // block, because *statement* emission does sometimes create
 | |
|     // reachable blocks which will have no predecessors until later in
 | |
|     // the function.  This occurs with, e.g., labels that are not
 | |
|     // reachable by fallthrough.
 | |
|     if (incoming != outgoing && outgoing->use_empty()) {
 | |
|       outgoing->eraseFromParent();
 | |
|       Builder.ClearInsertionPoint();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Stmt::IndirectGotoStmtClass:
 | |
|     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
 | |
| 
 | |
|   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
 | |
|   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
 | |
|   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
 | |
|   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
 | |
| 
 | |
|   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
 | |
| 
 | |
|   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
 | |
|   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
 | |
| 
 | |
|   case Stmt::ObjCAtTryStmtClass:
 | |
|     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::ObjCAtCatchStmtClass:
 | |
|     assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
 | |
|     break;
 | |
|   case Stmt::ObjCAtFinallyStmtClass:
 | |
|     assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
 | |
|     break;
 | |
|   case Stmt::ObjCAtThrowStmtClass:
 | |
|     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::ObjCAtSynchronizedStmtClass:
 | |
|     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::ObjCForCollectionStmtClass:
 | |
|     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
 | |
|     break;
 | |
|       
 | |
|   case Stmt::CXXTryStmtClass:
 | |
|     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
 | |
|     break;
 | |
|   case Stmt::CXXForRangeStmtClass:
 | |
|     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
 | |
|   switch (S->getStmtClass()) {
 | |
|   default: return false;
 | |
|   case Stmt::NullStmtClass: break;
 | |
|   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
 | |
|   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
 | |
|   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
 | |
|   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
 | |
|   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
 | |
|   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
 | |
|   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
 | |
|   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
 | |
| /// this captures the expression result of the last sub-statement and returns it
 | |
| /// (for use by the statement expression extension).
 | |
| RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
 | |
|                                          AggValueSlot AggSlot) {
 | |
|   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
 | |
|                              "LLVM IR generation of compound statement ('{}')");
 | |
| 
 | |
|   CGDebugInfo *DI = getDebugInfo();
 | |
|   if (DI) {
 | |
|     DI->setLocation(S.getLBracLoc());
 | |
|     DI->EmitRegionStart(Builder);
 | |
|   }
 | |
| 
 | |
|   // Keep track of the current cleanup stack depth.
 | |
|   RunCleanupsScope Scope(*this);
 | |
| 
 | |
|   for (CompoundStmt::const_body_iterator I = S.body_begin(),
 | |
|        E = S.body_end()-GetLast; I != E; ++I)
 | |
|     EmitStmt(*I);
 | |
| 
 | |
|   if (DI) {
 | |
|     DI->setLocation(S.getRBracLoc());
 | |
|     DI->EmitRegionEnd(Builder);
 | |
|   }
 | |
| 
 | |
|   RValue RV;
 | |
|   if (!GetLast)
 | |
|     RV = RValue::get(0);
 | |
|   else {
 | |
|     // We have to special case labels here.  They are statements, but when put
 | |
|     // at the end of a statement expression, they yield the value of their
 | |
|     // subexpression.  Handle this by walking through all labels we encounter,
 | |
|     // emitting them before we evaluate the subexpr.
 | |
|     const Stmt *LastStmt = S.body_back();
 | |
|     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
 | |
|       EmitLabel(LS->getDecl());
 | |
|       LastStmt = LS->getSubStmt();
 | |
|     }
 | |
| 
 | |
|     EnsureInsertPoint();
 | |
| 
 | |
|     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
 | |
|   }
 | |
| 
 | |
|   return RV;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
 | |
|   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
 | |
| 
 | |
|   // If there is a cleanup stack, then we it isn't worth trying to
 | |
|   // simplify this block (we would need to remove it from the scope map
 | |
|   // and cleanup entry).
 | |
|   if (!EHStack.empty())
 | |
|     return;
 | |
| 
 | |
|   // Can only simplify direct branches.
 | |
|   if (!BI || !BI->isUnconditional())
 | |
|     return;
 | |
| 
 | |
|   BB->replaceAllUsesWith(BI->getSuccessor(0));
 | |
|   BI->eraseFromParent();
 | |
|   BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
 | |
|   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Fall out of the current block (if necessary).
 | |
|   EmitBranch(BB);
 | |
| 
 | |
|   if (IsFinished && BB->use_empty()) {
 | |
|     delete BB;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Place the block after the current block, if possible, or else at
 | |
|   // the end of the function.
 | |
|   if (CurBB && CurBB->getParent())
 | |
|     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
 | |
|   else
 | |
|     CurFn->getBasicBlockList().push_back(BB);
 | |
|   Builder.SetInsertPoint(BB);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
 | |
|   // Emit a branch from the current block to the target one if this
 | |
|   // was a real block.  If this was just a fall-through block after a
 | |
|   // terminator, don't emit it.
 | |
|   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   if (!CurBB || CurBB->getTerminator()) {
 | |
|     // If there is no insert point or the previous block is already
 | |
|     // terminated, don't touch it.
 | |
|   } else {
 | |
|     // Otherwise, create a fall-through branch.
 | |
|     Builder.CreateBr(Target);
 | |
|   }
 | |
| 
 | |
|   Builder.ClearInsertionPoint();
 | |
| }
 | |
| 
 | |
| CodeGenFunction::JumpDest
 | |
| CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
 | |
|   JumpDest &Dest = LabelMap[D];
 | |
|   if (Dest.isValid()) return Dest;
 | |
| 
 | |
|   // Create, but don't insert, the new block.
 | |
|   Dest = JumpDest(createBasicBlock(D->getName()),
 | |
|                   EHScopeStack::stable_iterator::invalid(),
 | |
|                   NextCleanupDestIndex++);
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitLabel(const LabelDecl *D) {
 | |
|   JumpDest &Dest = LabelMap[D];
 | |
| 
 | |
|   // If we didn't need a forward reference to this label, just go
 | |
|   // ahead and create a destination at the current scope.
 | |
|   if (!Dest.isValid()) {
 | |
|     Dest = getJumpDestInCurrentScope(D->getName());
 | |
| 
 | |
|   // Otherwise, we need to give this label a target depth and remove
 | |
|   // it from the branch-fixups list.
 | |
|   } else {
 | |
|     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
 | |
|     Dest = JumpDest(Dest.getBlock(),
 | |
|                     EHStack.stable_begin(),
 | |
|                     Dest.getDestIndex());
 | |
| 
 | |
|     ResolveBranchFixups(Dest.getBlock());
 | |
|   }
 | |
| 
 | |
|   EmitBlock(Dest.getBlock());
 | |
| }
 | |
| 
 | |
| 
 | |
| void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
 | |
|   EmitLabel(S.getDecl());
 | |
|   EmitStmt(S.getSubStmt());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
 | |
|   // If this code is reachable then emit a stop point (if generating
 | |
|   // debug info). We have to do this ourselves because we are on the
 | |
|   // "simple" statement path.
 | |
|   if (HaveInsertPoint())
 | |
|     EmitStopPoint(&S);
 | |
| 
 | |
|   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
 | |
| }
 | |
| 
 | |
| 
 | |
| void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
 | |
|   if (const LabelDecl *Target = S.getConstantTarget()) {
 | |
|     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Ensure that we have an i8* for our PHI node.
 | |
|   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
 | |
|                                          Int8PtrTy, "addr");
 | |
|   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
 | |
|   
 | |
| 
 | |
|   // Get the basic block for the indirect goto.
 | |
|   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
 | |
|   
 | |
|   // The first instruction in the block has to be the PHI for the switch dest,
 | |
|   // add an entry for this branch.
 | |
|   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
 | |
|   
 | |
|   EmitBranch(IndGotoBB);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
 | |
|   // C99 6.8.4.1: The first substatement is executed if the expression compares
 | |
|   // unequal to 0.  The condition must be a scalar type.
 | |
|   RunCleanupsScope ConditionScope(*this);
 | |
| 
 | |
|   if (S.getConditionVariable())
 | |
|     EmitAutoVarDecl(*S.getConditionVariable());
 | |
| 
 | |
|   // If the condition constant folds and can be elided, try to avoid emitting
 | |
|   // the condition and the dead arm of the if/else.
 | |
|   bool CondConstant;
 | |
|   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
 | |
|     // Figure out which block (then or else) is executed.
 | |
|     const Stmt *Executed = S.getThen();
 | |
|     const Stmt *Skipped  = S.getElse();
 | |
|     if (!CondConstant)  // Condition false?
 | |
|       std::swap(Executed, Skipped);
 | |
| 
 | |
|     // If the skipped block has no labels in it, just emit the executed block.
 | |
|     // This avoids emitting dead code and simplifies the CFG substantially.
 | |
|     if (!ContainsLabel(Skipped)) {
 | |
|       if (Executed) {
 | |
|         RunCleanupsScope ExecutedScope(*this);
 | |
|         EmitStmt(Executed);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
 | |
|   // the conditional branch.
 | |
|   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
 | |
|   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
 | |
|   llvm::BasicBlock *ElseBlock = ContBlock;
 | |
|   if (S.getElse())
 | |
|     ElseBlock = createBasicBlock("if.else");
 | |
|   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
 | |
| 
 | |
|   // Emit the 'then' code.
 | |
|   EmitBlock(ThenBlock); 
 | |
|   {
 | |
|     RunCleanupsScope ThenScope(*this);
 | |
|     EmitStmt(S.getThen());
 | |
|   }
 | |
|   EmitBranch(ContBlock);
 | |
| 
 | |
|   // Emit the 'else' code if present.
 | |
|   if (const Stmt *Else = S.getElse()) {
 | |
|     // There is no need to emit line number for unconditional branch.
 | |
|     if (getDebugInfo())
 | |
|       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
 | |
|     EmitBlock(ElseBlock);
 | |
|     {
 | |
|       RunCleanupsScope ElseScope(*this);
 | |
|       EmitStmt(Else);
 | |
|     }
 | |
|     // There is no need to emit line number for unconditional branch.
 | |
|     if (getDebugInfo())
 | |
|       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
 | |
|     EmitBranch(ContBlock);
 | |
|   }
 | |
| 
 | |
|   // Emit the continuation block for code after the if.
 | |
|   EmitBlock(ContBlock, true);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
 | |
|   // Emit the header for the loop, which will also become
 | |
|   // the continue target.
 | |
|   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
 | |
|   EmitBlock(LoopHeader.getBlock());
 | |
| 
 | |
|   // Create an exit block for when the condition fails, which will
 | |
|   // also become the break target.
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
 | |
| 
 | |
|   // C++ [stmt.while]p2:
 | |
|   //   When the condition of a while statement is a declaration, the
 | |
|   //   scope of the variable that is declared extends from its point
 | |
|   //   of declaration (3.3.2) to the end of the while statement.
 | |
|   //   [...]
 | |
|   //   The object created in a condition is destroyed and created
 | |
|   //   with each iteration of the loop.
 | |
|   RunCleanupsScope ConditionScope(*this);
 | |
| 
 | |
|   if (S.getConditionVariable())
 | |
|     EmitAutoVarDecl(*S.getConditionVariable());
 | |
|   
 | |
|   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
 | |
|   // evaluation of the controlling expression takes place before each
 | |
|   // execution of the loop body.
 | |
|   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
|    
 | |
|   // while(1) is common, avoid extra exit blocks.  Be sure
 | |
|   // to correctly handle break/continue though.
 | |
|   bool EmitBoolCondBranch = true;
 | |
|   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
 | |
|     if (C->isOne())
 | |
|       EmitBoolCondBranch = false;
 | |
| 
 | |
|   // As long as the condition is true, go to the loop body.
 | |
|   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
 | |
|   if (EmitBoolCondBranch) {
 | |
|     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
 | |
|     if (ConditionScope.requiresCleanups())
 | |
|       ExitBlock = createBasicBlock("while.exit");
 | |
| 
 | |
|     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
 | |
| 
 | |
|     if (ExitBlock != LoopExit.getBlock()) {
 | |
|       EmitBlock(ExitBlock);
 | |
|       EmitBranchThroughCleanup(LoopExit);
 | |
|     }
 | |
|   }
 | |
|  
 | |
|   // Emit the loop body.  We have to emit this in a cleanup scope
 | |
|   // because it might be a singleton DeclStmt.
 | |
|   {
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitBlock(LoopBody);
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   // Immediately force cleanup.
 | |
|   ConditionScope.ForceCleanup();
 | |
| 
 | |
|   // Branch to the loop header again.
 | |
|   EmitBranch(LoopHeader.getBlock());
 | |
| 
 | |
|   // Emit the exit block.
 | |
|   EmitBlock(LoopExit.getBlock(), true);
 | |
| 
 | |
|   // The LoopHeader typically is just a branch if we skipped emitting
 | |
|   // a branch, try to erase it.
 | |
|   if (!EmitBoolCondBranch)
 | |
|     SimplifyForwardingBlocks(LoopHeader.getBlock());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
 | |
|   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
 | |
| 
 | |
|   // Emit the body of the loop.
 | |
|   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
 | |
|   EmitBlock(LoopBody);
 | |
|   {
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   EmitBlock(LoopCond.getBlock());
 | |
| 
 | |
|   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
 | |
|   // after each execution of the loop body."
 | |
| 
 | |
|   // Evaluate the conditional in the while header.
 | |
|   // C99 6.8.5p2/p4: The first substatement is executed if the expression
 | |
|   // compares unequal to 0.  The condition must be a scalar type.
 | |
|   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
| 
 | |
|   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
 | |
|   // to correctly handle break/continue though.
 | |
|   bool EmitBoolCondBranch = true;
 | |
|   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
 | |
|     if (C->isZero())
 | |
|       EmitBoolCondBranch = false;
 | |
| 
 | |
|   // As long as the condition is true, iterate the loop.
 | |
|   if (EmitBoolCondBranch)
 | |
|     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
 | |
| 
 | |
|   // Emit the exit block.
 | |
|   EmitBlock(LoopExit.getBlock());
 | |
| 
 | |
|   // The DoCond block typically is just a branch if we skipped
 | |
|   // emitting a branch, try to erase it.
 | |
|   if (!EmitBoolCondBranch)
 | |
|     SimplifyForwardingBlocks(LoopCond.getBlock());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitForStmt(const ForStmt &S) {
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
 | |
| 
 | |
|   RunCleanupsScope ForScope(*this);
 | |
| 
 | |
|   CGDebugInfo *DI = getDebugInfo();
 | |
|   if (DI) {
 | |
|     DI->setLocation(S.getSourceRange().getBegin());
 | |
|     DI->EmitRegionStart(Builder);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the first part before the loop.
 | |
|   if (S.getInit())
 | |
|     EmitStmt(S.getInit());
 | |
| 
 | |
|   // Start the loop with a block that tests the condition.
 | |
|   // If there's an increment, the continue scope will be overwritten
 | |
|   // later.
 | |
|   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
 | |
|   llvm::BasicBlock *CondBlock = Continue.getBlock();
 | |
|   EmitBlock(CondBlock);
 | |
| 
 | |
|   // Create a cleanup scope for the condition variable cleanups.
 | |
|   RunCleanupsScope ConditionScope(*this);
 | |
|   
 | |
|   llvm::Value *BoolCondVal = 0;
 | |
|   if (S.getCond()) {
 | |
|     // If the for statement has a condition scope, emit the local variable
 | |
|     // declaration.
 | |
|     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
 | |
|     if (S.getConditionVariable()) {
 | |
|       EmitAutoVarDecl(*S.getConditionVariable());
 | |
|     }
 | |
| 
 | |
|     // If there are any cleanups between here and the loop-exit scope,
 | |
|     // create a block to stage a loop exit along.
 | |
|     if (ForScope.requiresCleanups())
 | |
|       ExitBlock = createBasicBlock("for.cond.cleanup");
 | |
|     
 | |
|     // As long as the condition is true, iterate the loop.
 | |
|     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
 | |
| 
 | |
|     // C99 6.8.5p2/p4: The first substatement is executed if the expression
 | |
|     // compares unequal to 0.  The condition must be a scalar type.
 | |
|     BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
|     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
 | |
| 
 | |
|     if (ExitBlock != LoopExit.getBlock()) {
 | |
|       EmitBlock(ExitBlock);
 | |
|       EmitBranchThroughCleanup(LoopExit);
 | |
|     }
 | |
| 
 | |
|     EmitBlock(ForBody);
 | |
|   } else {
 | |
|     // Treat it as a non-zero constant.  Don't even create a new block for the
 | |
|     // body, just fall into it.
 | |
|   }
 | |
| 
 | |
|   // If the for loop doesn't have an increment we can just use the
 | |
|   // condition as the continue block.  Otherwise we'll need to create
 | |
|   // a block for it (in the current scope, i.e. in the scope of the
 | |
|   // condition), and that we will become our continue block.
 | |
|   if (S.getInc())
 | |
|     Continue = getJumpDestInCurrentScope("for.inc");
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
 | |
| 
 | |
|   {
 | |
|     // Create a separate cleanup scope for the body, in case it is not
 | |
|     // a compound statement.
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   // If there is an increment, emit it next.
 | |
|   if (S.getInc()) {
 | |
|     EmitBlock(Continue.getBlock());
 | |
|     EmitStmt(S.getInc());
 | |
|   }
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   ConditionScope.ForceCleanup();
 | |
|   EmitBranch(CondBlock);
 | |
| 
 | |
|   ForScope.ForceCleanup();
 | |
| 
 | |
|   if (DI) {
 | |
|     DI->setLocation(S.getSourceRange().getEnd());
 | |
|     DI->EmitRegionEnd(Builder);
 | |
|   }
 | |
| 
 | |
|   // Emit the fall-through block.
 | |
|   EmitBlock(LoopExit.getBlock(), true);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
 | |
|   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
 | |
| 
 | |
|   RunCleanupsScope ForScope(*this);
 | |
| 
 | |
|   CGDebugInfo *DI = getDebugInfo();
 | |
|   if (DI) {
 | |
|     DI->setLocation(S.getSourceRange().getBegin());
 | |
|     DI->EmitRegionStart(Builder);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the first pieces before the loop.
 | |
|   EmitStmt(S.getRangeStmt());
 | |
|   EmitStmt(S.getBeginEndStmt());
 | |
| 
 | |
|   // Start the loop with a block that tests the condition.
 | |
|   // If there's an increment, the continue scope will be overwritten
 | |
|   // later.
 | |
|   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
 | |
|   EmitBlock(CondBlock);
 | |
| 
 | |
|   // If there are any cleanups between here and the loop-exit scope,
 | |
|   // create a block to stage a loop exit along.
 | |
|   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
 | |
|   if (ForScope.requiresCleanups())
 | |
|     ExitBlock = createBasicBlock("for.cond.cleanup");
 | |
|   
 | |
|   // The loop body, consisting of the specified body and the loop variable.
 | |
|   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
 | |
| 
 | |
|   // The body is executed if the expression, contextually converted
 | |
|   // to bool, is true.
 | |
|   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
 | |
|   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
 | |
| 
 | |
|   if (ExitBlock != LoopExit.getBlock()) {
 | |
|     EmitBlock(ExitBlock);
 | |
|     EmitBranchThroughCleanup(LoopExit);
 | |
|   }
 | |
| 
 | |
|   EmitBlock(ForBody);
 | |
| 
 | |
|   // Create a block for the increment. In case of a 'continue', we jump there.
 | |
|   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
 | |
| 
 | |
|   // Store the blocks to use for break and continue.
 | |
|   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
 | |
| 
 | |
|   {
 | |
|     // Create a separate cleanup scope for the loop variable and body.
 | |
|     RunCleanupsScope BodyScope(*this);
 | |
|     EmitStmt(S.getLoopVarStmt());
 | |
|     EmitStmt(S.getBody());
 | |
|   }
 | |
| 
 | |
|   // If there is an increment, emit it next.
 | |
|   EmitBlock(Continue.getBlock());
 | |
|   EmitStmt(S.getInc());
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   EmitBranch(CondBlock);
 | |
| 
 | |
|   ForScope.ForceCleanup();
 | |
| 
 | |
|   if (DI) {
 | |
|     DI->setLocation(S.getSourceRange().getEnd());
 | |
|     DI->EmitRegionEnd(Builder);
 | |
|   }
 | |
| 
 | |
|   // Emit the fall-through block.
 | |
|   EmitBlock(LoopExit.getBlock(), true);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
 | |
|   if (RV.isScalar()) {
 | |
|     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
 | |
|   } else if (RV.isAggregate()) {
 | |
|     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
 | |
|   } else {
 | |
|     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
 | |
|   }
 | |
|   EmitBranchThroughCleanup(ReturnBlock);
 | |
| }
 | |
| 
 | |
| /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
 | |
| /// if the function returns void, or may be missing one if the function returns
 | |
| /// non-void.  Fun stuff :).
 | |
| void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
 | |
|   // Emit the result value, even if unused, to evalute the side effects.
 | |
|   const Expr *RV = S.getRetValue();
 | |
| 
 | |
|   // FIXME: Clean this up by using an LValue for ReturnTemp,
 | |
|   // EmitStoreThroughLValue, and EmitAnyExpr.
 | |
|   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
 | |
|       !Target.useGlobalsForAutomaticVariables()) {
 | |
|     // Apply the named return value optimization for this return statement,
 | |
|     // which means doing nothing: the appropriate result has already been
 | |
|     // constructed into the NRVO variable.
 | |
|     
 | |
|     // If there is an NRVO flag for this variable, set it to 1 into indicate
 | |
|     // that the cleanup code should not destroy the variable.
 | |
|     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
 | |
|       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
 | |
|   } else if (!ReturnValue) {
 | |
|     // Make sure not to return anything, but evaluate the expression
 | |
|     // for side effects.
 | |
|     if (RV)
 | |
|       EmitAnyExpr(RV);
 | |
|   } else if (RV == 0) {
 | |
|     // Do nothing (return value is left uninitialized)
 | |
|   } else if (FnRetTy->isReferenceType()) {
 | |
|     // If this function returns a reference, take the address of the expression
 | |
|     // rather than the value.
 | |
|     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
 | |
|     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
 | |
|   } else if (!hasAggregateLLVMType(RV->getType())) {
 | |
|     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
 | |
|   } else if (RV->getType()->isAnyComplexType()) {
 | |
|     EmitComplexExprIntoAddr(RV, ReturnValue, false);
 | |
|   } else {
 | |
|     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, false, true));
 | |
|   }
 | |
| 
 | |
|   EmitBranchThroughCleanup(ReturnBlock);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
 | |
|   // As long as debug info is modeled with instructions, we have to ensure we
 | |
|   // have a place to insert here and write the stop point here.
 | |
|   if (getDebugInfo()) {
 | |
|     EnsureInsertPoint();
 | |
|     EmitStopPoint(&S);
 | |
|   }
 | |
| 
 | |
|   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
 | |
|        I != E; ++I)
 | |
|     EmitDecl(**I);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
 | |
|   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
 | |
| 
 | |
|   // If this code is reachable then emit a stop point (if generating
 | |
|   // debug info). We have to do this ourselves because we are on the
 | |
|   // "simple" statement path.
 | |
|   if (HaveInsertPoint())
 | |
|     EmitStopPoint(&S);
 | |
| 
 | |
|   JumpDest Block = BreakContinueStack.back().BreakBlock;
 | |
|   EmitBranchThroughCleanup(Block);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
 | |
|   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
 | |
| 
 | |
|   // If this code is reachable then emit a stop point (if generating
 | |
|   // debug info). We have to do this ourselves because we are on the
 | |
|   // "simple" statement path.
 | |
|   if (HaveInsertPoint())
 | |
|     EmitStopPoint(&S);
 | |
| 
 | |
|   JumpDest Block = BreakContinueStack.back().ContinueBlock;
 | |
|   EmitBranchThroughCleanup(Block);
 | |
| }
 | |
| 
 | |
| /// EmitCaseStmtRange - If case statement range is not too big then
 | |
| /// add multiple cases to switch instruction, one for each value within
 | |
| /// the range. If range is too big then emit "if" condition check.
 | |
| void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
 | |
|   assert(S.getRHS() && "Expected RHS value in CaseStmt");
 | |
| 
 | |
|   llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
 | |
|   llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
 | |
| 
 | |
|   // Emit the code for this case. We do this first to make sure it is
 | |
|   // properly chained from our predecessor before generating the
 | |
|   // switch machinery to enter this block.
 | |
|   EmitBlock(createBasicBlock("sw.bb"));
 | |
|   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
 | |
|   EmitStmt(S.getSubStmt());
 | |
| 
 | |
|   // If range is empty, do nothing.
 | |
|   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
 | |
|     return;
 | |
| 
 | |
|   llvm::APInt Range = RHS - LHS;
 | |
|   // FIXME: parameters such as this should not be hardcoded.
 | |
|   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
 | |
|     // Range is small enough to add multiple switch instruction cases.
 | |
|     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
 | |
|       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
 | |
|       LHS++;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The range is too big. Emit "if" condition into a new block,
 | |
|   // making sure to save and restore the current insertion point.
 | |
|   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Push this test onto the chain of range checks (which terminates
 | |
|   // in the default basic block). The switch's default will be changed
 | |
|   // to the top of this chain after switch emission is complete.
 | |
|   llvm::BasicBlock *FalseDest = CaseRangeBlock;
 | |
|   CaseRangeBlock = createBasicBlock("sw.caserange");
 | |
| 
 | |
|   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
 | |
|   Builder.SetInsertPoint(CaseRangeBlock);
 | |
| 
 | |
|   // Emit range check.
 | |
|   llvm::Value *Diff =
 | |
|     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS),  "tmp");
 | |
|   llvm::Value *Cond =
 | |
|     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
 | |
|   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
 | |
| 
 | |
|   // Restore the appropriate insertion point.
 | |
|   if (RestoreBB)
 | |
|     Builder.SetInsertPoint(RestoreBB);
 | |
|   else
 | |
|     Builder.ClearInsertionPoint();
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
 | |
|   // Handle case ranges.
 | |
|   if (S.getRHS()) {
 | |
|     EmitCaseStmtRange(S);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm::ConstantInt *CaseVal =
 | |
|     Builder.getInt(S.getLHS()->EvaluateAsInt(getContext()));
 | |
| 
 | |
|   // If the body of the case is just a 'break', and if there was no fallthrough,
 | |
|   // try to not emit an empty block.
 | |
|   if (isa<BreakStmt>(S.getSubStmt())) {
 | |
|     JumpDest Block = BreakContinueStack.back().BreakBlock;
 | |
|     
 | |
|     // Only do this optimization if there are no cleanups that need emitting.
 | |
|     if (isObviouslyBranchWithoutCleanups(Block)) {
 | |
|       SwitchInsn->addCase(CaseVal, Block.getBlock());
 | |
| 
 | |
|       // If there was a fallthrough into this case, make sure to redirect it to
 | |
|       // the end of the switch as well.
 | |
|       if (Builder.GetInsertBlock()) {
 | |
|         Builder.CreateBr(Block.getBlock());
 | |
|         Builder.ClearInsertionPoint();
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   EmitBlock(createBasicBlock("sw.bb"));
 | |
|   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
 | |
|   SwitchInsn->addCase(CaseVal, CaseDest);
 | |
| 
 | |
|   // Recursively emitting the statement is acceptable, but is not wonderful for
 | |
|   // code where we have many case statements nested together, i.e.:
 | |
|   //  case 1:
 | |
|   //    case 2:
 | |
|   //      case 3: etc.
 | |
|   // Handling this recursively will create a new block for each case statement
 | |
|   // that falls through to the next case which is IR intensive.  It also causes
 | |
|   // deep recursion which can run into stack depth limitations.  Handle
 | |
|   // sequential non-range case statements specially.
 | |
|   const CaseStmt *CurCase = &S;
 | |
|   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
 | |
| 
 | |
|   // Otherwise, iteratively add consecutive cases to this switch stmt.
 | |
|   while (NextCase && NextCase->getRHS() == 0) {
 | |
|     CurCase = NextCase;
 | |
|     llvm::ConstantInt *CaseVal = 
 | |
|       Builder.getInt(CurCase->getLHS()->EvaluateAsInt(getContext()));
 | |
|     SwitchInsn->addCase(CaseVal, CaseDest);
 | |
|     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
 | |
|   }
 | |
| 
 | |
|   // Normal default recursion for non-cases.
 | |
|   EmitStmt(CurCase->getSubStmt());
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
 | |
|   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
 | |
|   assert(DefaultBlock->empty() &&
 | |
|          "EmitDefaultStmt: Default block already defined?");
 | |
|   EmitBlock(DefaultBlock);
 | |
|   EmitStmt(S.getSubStmt());
 | |
| }
 | |
| 
 | |
| /// CollectStatementsForCase - Given the body of a 'switch' statement and a
 | |
| /// constant value that is being switched on, see if we can dead code eliminate
 | |
| /// the body of the switch to a simple series of statements to emit.  Basically,
 | |
| /// on a switch (5) we want to find these statements:
 | |
| ///    case 5:
 | |
| ///      printf(...);    <--
 | |
| ///      ++i;            <--
 | |
| ///      break;
 | |
| ///
 | |
| /// and add them to the ResultStmts vector.  If it is unsafe to do this
 | |
| /// transformation (for example, one of the elided statements contains a label
 | |
| /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
 | |
| /// should include statements after it (e.g. the printf() line is a substmt of
 | |
| /// the case) then return CSFC_FallThrough.  If we handled it and found a break
 | |
| /// statement, then return CSFC_Success.
 | |
| ///
 | |
| /// If Case is non-null, then we are looking for the specified case, checking
 | |
| /// that nothing we jump over contains labels.  If Case is null, then we found
 | |
| /// the case and are looking for the break.
 | |
| ///
 | |
| /// If the recursive walk actually finds our Case, then we set FoundCase to
 | |
| /// true.
 | |
| ///
 | |
| enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
 | |
| static CSFC_Result CollectStatementsForCase(const Stmt *S,
 | |
|                                             const SwitchCase *Case,
 | |
|                                             bool &FoundCase,
 | |
|                               llvm::SmallVectorImpl<const Stmt*> &ResultStmts) {
 | |
|   // If this is a null statement, just succeed.
 | |
|   if (S == 0)
 | |
|     return Case ? CSFC_Success : CSFC_FallThrough;
 | |
|     
 | |
|   // If this is the switchcase (case 4: or default) that we're looking for, then
 | |
|   // we're in business.  Just add the substatement.
 | |
|   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
 | |
|     if (S == Case) {
 | |
|       FoundCase = true;
 | |
|       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
 | |
|                                       ResultStmts);
 | |
|     }
 | |
|     
 | |
|     // Otherwise, this is some other case or default statement, just ignore it.
 | |
|     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
 | |
|                                     ResultStmts);
 | |
|   }
 | |
| 
 | |
|   // If we are in the live part of the code and we found our break statement,
 | |
|   // return a success!
 | |
|   if (Case == 0 && isa<BreakStmt>(S))
 | |
|     return CSFC_Success;
 | |
|   
 | |
|   // If this is a switch statement, then it might contain the SwitchCase, the
 | |
|   // break, or neither.
 | |
|   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
 | |
|     // Handle this as two cases: we might be looking for the SwitchCase (if so
 | |
|     // the skipped statements must be skippable) or we might already have it.
 | |
|     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
 | |
|     if (Case) {
 | |
|       // Keep track of whether we see a skipped declaration.  The code could be
 | |
|       // using the declaration even if it is skipped, so we can't optimize out
 | |
|       // the decl if the kept statements might refer to it.
 | |
|       bool HadSkippedDecl = false;
 | |
|       
 | |
|       // If we're looking for the case, just see if we can skip each of the
 | |
|       // substatements.
 | |
|       for (; Case && I != E; ++I) {
 | |
|         HadSkippedDecl |= isa<DeclStmt>(I);
 | |
|         
 | |
|         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
 | |
|         case CSFC_Failure: return CSFC_Failure;
 | |
|         case CSFC_Success:
 | |
|           // A successful result means that either 1) that the statement doesn't
 | |
|           // have the case and is skippable, or 2) does contain the case value
 | |
|           // and also contains the break to exit the switch.  In the later case,
 | |
|           // we just verify the rest of the statements are elidable.
 | |
|           if (FoundCase) {
 | |
|             // If we found the case and skipped declarations, we can't do the
 | |
|             // optimization.
 | |
|             if (HadSkippedDecl)
 | |
|               return CSFC_Failure;
 | |
|             
 | |
|             for (++I; I != E; ++I)
 | |
|               if (CodeGenFunction::ContainsLabel(*I, true))
 | |
|                 return CSFC_Failure;
 | |
|             return CSFC_Success;
 | |
|           }
 | |
|           break;
 | |
|         case CSFC_FallThrough:
 | |
|           // If we have a fallthrough condition, then we must have found the
 | |
|           // case started to include statements.  Consider the rest of the
 | |
|           // statements in the compound statement as candidates for inclusion.
 | |
|           assert(FoundCase && "Didn't find case but returned fallthrough?");
 | |
|           // We recursively found Case, so we're not looking for it anymore.
 | |
|           Case = 0;
 | |
|             
 | |
|           // If we found the case and skipped declarations, we can't do the
 | |
|           // optimization.
 | |
|           if (HadSkippedDecl)
 | |
|             return CSFC_Failure;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we have statements in our range, then we know that the statements are
 | |
|     // live and need to be added to the set of statements we're tracking.
 | |
|     for (; I != E; ++I) {
 | |
|       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
 | |
|       case CSFC_Failure: return CSFC_Failure;
 | |
|       case CSFC_FallThrough:
 | |
|         // A fallthrough result means that the statement was simple and just
 | |
|         // included in ResultStmt, keep adding them afterwards.
 | |
|         break;
 | |
|       case CSFC_Success:
 | |
|         // A successful result means that we found the break statement and
 | |
|         // stopped statement inclusion.  We just ensure that any leftover stmts
 | |
|         // are skippable and return success ourselves.
 | |
|         for (++I; I != E; ++I)
 | |
|           if (CodeGenFunction::ContainsLabel(*I, true))
 | |
|             return CSFC_Failure;
 | |
|         return CSFC_Success;
 | |
|       }      
 | |
|     }
 | |
|     
 | |
|     return Case ? CSFC_Success : CSFC_FallThrough;
 | |
|   }
 | |
| 
 | |
|   // Okay, this is some other statement that we don't handle explicitly, like a
 | |
|   // for statement or increment etc.  If we are skipping over this statement,
 | |
|   // just verify it doesn't have labels, which would make it invalid to elide.
 | |
|   if (Case) {
 | |
|     if (CodeGenFunction::ContainsLabel(S, true))
 | |
|       return CSFC_Failure;
 | |
|     return CSFC_Success;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we want to include this statement.  Everything is cool with that
 | |
|   // so long as it doesn't contain a break out of the switch we're in.
 | |
|   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
 | |
|   
 | |
|   // Otherwise, everything is great.  Include the statement and tell the caller
 | |
|   // that we fall through and include the next statement as well.
 | |
|   ResultStmts.push_back(S);
 | |
|   return CSFC_FallThrough;
 | |
| }
 | |
| 
 | |
| /// FindCaseStatementsForValue - Find the case statement being jumped to and
 | |
| /// then invoke CollectStatementsForCase to find the list of statements to emit
 | |
| /// for a switch on constant.  See the comment above CollectStatementsForCase
 | |
| /// for more details.
 | |
| static bool FindCaseStatementsForValue(const SwitchStmt &S,
 | |
|                                        const llvm::APInt &ConstantCondValue,
 | |
|                                 llvm::SmallVectorImpl<const Stmt*> &ResultStmts,
 | |
|                                        ASTContext &C) {
 | |
|   // First step, find the switch case that is being branched to.  We can do this
 | |
|   // efficiently by scanning the SwitchCase list.
 | |
|   const SwitchCase *Case = S.getSwitchCaseList();
 | |
|   const DefaultStmt *DefaultCase = 0;
 | |
|   
 | |
|   for (; Case; Case = Case->getNextSwitchCase()) {
 | |
|     // It's either a default or case.  Just remember the default statement in
 | |
|     // case we're not jumping to any numbered cases.
 | |
|     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
 | |
|       DefaultCase = DS;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Check to see if this case is the one we're looking for.
 | |
|     const CaseStmt *CS = cast<CaseStmt>(Case);
 | |
|     // Don't handle case ranges yet.
 | |
|     if (CS->getRHS()) return false;
 | |
|     
 | |
|     // If we found our case, remember it as 'case'.
 | |
|     if (CS->getLHS()->EvaluateAsInt(C) == ConstantCondValue)
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   // If we didn't find a matching case, we use a default if it exists, or we
 | |
|   // elide the whole switch body!
 | |
|   if (Case == 0) {
 | |
|     // It is safe to elide the body of the switch if it doesn't contain labels
 | |
|     // etc.  If it is safe, return successfully with an empty ResultStmts list.
 | |
|     if (DefaultCase == 0)
 | |
|       return !CodeGenFunction::ContainsLabel(&S);
 | |
|     Case = DefaultCase;
 | |
|   }
 | |
| 
 | |
|   // Ok, we know which case is being jumped to, try to collect all the
 | |
|   // statements that follow it.  This can fail for a variety of reasons.  Also,
 | |
|   // check to see that the recursive walk actually found our case statement.
 | |
|   // Insane cases like this can fail to find it in the recursive walk since we
 | |
|   // don't handle every stmt kind:
 | |
|   // switch (4) {
 | |
|   //   while (1) {
 | |
|   //     case 4: ...
 | |
|   bool FoundCase = false;
 | |
|   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
 | |
|                                   ResultStmts) != CSFC_Failure &&
 | |
|          FoundCase;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
 | |
|   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
 | |
| 
 | |
|   RunCleanupsScope ConditionScope(*this);
 | |
| 
 | |
|   if (S.getConditionVariable())
 | |
|     EmitAutoVarDecl(*S.getConditionVariable());
 | |
| 
 | |
|   // See if we can constant fold the condition of the switch and therefore only
 | |
|   // emit the live case statement (if any) of the switch.
 | |
|   llvm::APInt ConstantCondValue;
 | |
|   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
 | |
|     llvm::SmallVector<const Stmt*, 4> CaseStmts;
 | |
|     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
 | |
|                                    getContext())) {
 | |
|       RunCleanupsScope ExecutedScope(*this);
 | |
| 
 | |
|       // Okay, we can dead code eliminate everything except this case.  Emit the
 | |
|       // specified series of statements and we're good.
 | |
|       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
 | |
|         EmitStmt(CaseStmts[i]);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   llvm::Value *CondV = EmitScalarExpr(S.getCond());
 | |
| 
 | |
|   // Handle nested switch statements.
 | |
|   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
 | |
|   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
 | |
| 
 | |
|   // Create basic block to hold stuff that comes after switch
 | |
|   // statement. We also need to create a default block now so that
 | |
|   // explicit case ranges tests can have a place to jump to on
 | |
|   // failure.
 | |
|   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
 | |
|   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
 | |
|   CaseRangeBlock = DefaultBlock;
 | |
| 
 | |
|   // Clear the insertion point to indicate we are in unreachable code.
 | |
|   Builder.ClearInsertionPoint();
 | |
| 
 | |
|   // All break statements jump to NextBlock. If BreakContinueStack is non empty
 | |
|   // then reuse last ContinueBlock.
 | |
|   JumpDest OuterContinue;
 | |
|   if (!BreakContinueStack.empty())
 | |
|     OuterContinue = BreakContinueStack.back().ContinueBlock;
 | |
| 
 | |
|   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
 | |
| 
 | |
|   // Emit switch body.
 | |
|   EmitStmt(S.getBody());
 | |
| 
 | |
|   BreakContinueStack.pop_back();
 | |
| 
 | |
|   // Update the default block in case explicit case range tests have
 | |
|   // been chained on top.
 | |
|   SwitchInsn->setSuccessor(0, CaseRangeBlock);
 | |
| 
 | |
|   // If a default was never emitted:
 | |
|   if (!DefaultBlock->getParent()) {
 | |
|     // If we have cleanups, emit the default block so that there's a
 | |
|     // place to jump through the cleanups from.
 | |
|     if (ConditionScope.requiresCleanups()) {
 | |
|       EmitBlock(DefaultBlock);
 | |
| 
 | |
|     // Otherwise, just forward the default block to the switch end.
 | |
|     } else {
 | |
|       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
 | |
|       delete DefaultBlock;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConditionScope.ForceCleanup();
 | |
| 
 | |
|   // Emit continuation.
 | |
|   EmitBlock(SwitchExit.getBlock(), true);
 | |
| 
 | |
|   SwitchInsn = SavedSwitchInsn;
 | |
|   CaseRangeBlock = SavedCRBlock;
 | |
| }
 | |
| 
 | |
| static std::string
 | |
| SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
 | |
|                  llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
 | |
|   std::string Result;
 | |
| 
 | |
|   while (*Constraint) {
 | |
|     switch (*Constraint) {
 | |
|     default:
 | |
|       Result += Target.convertConstraint(*Constraint);
 | |
|       break;
 | |
|     // Ignore these
 | |
|     case '*':
 | |
|     case '?':
 | |
|     case '!':
 | |
|     case '=': // Will see this and the following in mult-alt constraints.
 | |
|     case '+':
 | |
|       break;
 | |
|     case ',':
 | |
|       Result += "|";
 | |
|       break;
 | |
|     case 'g':
 | |
|       Result += "imr";
 | |
|       break;
 | |
|     case '[': {
 | |
|       assert(OutCons &&
 | |
|              "Must pass output names to constraints with a symbolic name");
 | |
|       unsigned Index;
 | |
|       bool result = Target.resolveSymbolicName(Constraint,
 | |
|                                                &(*OutCons)[0],
 | |
|                                                OutCons->size(), Index);
 | |
|       assert(result && "Could not resolve symbolic name"); (void)result;
 | |
|       Result += llvm::utostr(Index);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     Constraint++;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
 | |
| /// as using a particular register add that as a constraint that will be used
 | |
| /// in this asm stmt.
 | |
| static std::string
 | |
| AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
 | |
|                        const TargetInfo &Target, CodeGenModule &CGM,
 | |
|                        const AsmStmt &Stmt) {
 | |
|   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
 | |
|   if (!AsmDeclRef)
 | |
|     return Constraint;
 | |
|   const ValueDecl &Value = *AsmDeclRef->getDecl();
 | |
|   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
 | |
|   if (!Variable)
 | |
|     return Constraint;
 | |
|   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
 | |
|   if (!Attr)
 | |
|     return Constraint;
 | |
|   llvm::StringRef Register = Attr->getLabel();
 | |
|   assert(Target.isValidGCCRegisterName(Register));
 | |
|   // FIXME: We should check which registers are compatible with "r" or "x".
 | |
|   if (Constraint != "r" && Constraint != "x") {
 | |
|     CGM.ErrorUnsupported(&Stmt, "__asm__");
 | |
|     return Constraint;
 | |
|   }
 | |
|   return "{" + Register.str() + "}";
 | |
| }
 | |
| 
 | |
| llvm::Value*
 | |
| CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
 | |
|                                     const TargetInfo::ConstraintInfo &Info,
 | |
|                                     LValue InputValue, QualType InputType,
 | |
|                                     std::string &ConstraintStr) {
 | |
|   llvm::Value *Arg;
 | |
|   if (Info.allowsRegister() || !Info.allowsMemory()) {
 | |
|     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
 | |
|       Arg = EmitLoadOfLValue(InputValue, InputType).getScalarVal();
 | |
|     } else {
 | |
|       const llvm::Type *Ty = ConvertType(InputType);
 | |
|       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
 | |
|       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
 | |
|         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
 | |
|         Ty = llvm::PointerType::getUnqual(Ty);
 | |
| 
 | |
|         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
 | |
|                                                        Ty));
 | |
|       } else {
 | |
|         Arg = InputValue.getAddress();
 | |
|         ConstraintStr += '*';
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     Arg = InputValue.getAddress();
 | |
|     ConstraintStr += '*';
 | |
|   }
 | |
| 
 | |
|   return Arg;
 | |
| }
 | |
| 
 | |
| llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
 | |
|                                          const TargetInfo::ConstraintInfo &Info,
 | |
|                                            const Expr *InputExpr,
 | |
|                                            std::string &ConstraintStr) {
 | |
|   if (Info.allowsRegister() || !Info.allowsMemory())
 | |
|     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
 | |
|       return EmitScalarExpr(InputExpr);
 | |
| 
 | |
|   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
 | |
|   LValue Dest = EmitLValue(InputExpr);
 | |
|   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
 | |
| }
 | |
| 
 | |
| /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
 | |
| /// asm call instruction.  The !srcloc MDNode contains a list of constant
 | |
| /// integers which are the source locations of the start of each line in the
 | |
| /// asm.
 | |
| static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
 | |
|                                       CodeGenFunction &CGF) {
 | |
|   llvm::SmallVector<llvm::Value *, 8> Locs;
 | |
|   // Add the location of the first line to the MDNode.
 | |
|   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
 | |
|                                         Str->getLocStart().getRawEncoding()));
 | |
|   llvm::StringRef StrVal = Str->getString();
 | |
|   if (!StrVal.empty()) {
 | |
|     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
 | |
|     const LangOptions &LangOpts = CGF.CGM.getLangOptions();
 | |
|     
 | |
|     // Add the location of the start of each subsequent line of the asm to the
 | |
|     // MDNode.
 | |
|     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
 | |
|       if (StrVal[i] != '\n') continue;
 | |
|       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
 | |
|                                                       CGF.Target);
 | |
|       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
 | |
|                                             LineLoc.getRawEncoding()));
 | |
|     }
 | |
|   }    
 | |
|   
 | |
|   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
 | |
|   // Analyze the asm string to decompose it into its pieces.  We know that Sema
 | |
|   // has already done this, so it is guaranteed to be successful.
 | |
|   llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
 | |
|   unsigned DiagOffs;
 | |
|   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
 | |
| 
 | |
|   // Assemble the pieces into the final asm string.
 | |
|   std::string AsmString;
 | |
|   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
 | |
|     if (Pieces[i].isString())
 | |
|       AsmString += Pieces[i].getString();
 | |
|     else if (Pieces[i].getModifier() == '\0')
 | |
|       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
 | |
|     else
 | |
|       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
 | |
|                    Pieces[i].getModifier() + '}';
 | |
|   }
 | |
| 
 | |
|   // Get all the output and input constraints together.
 | |
|   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | |
|   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
 | |
|     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
 | |
|                                     S.getOutputName(i));
 | |
|     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
 | |
|     assert(IsValid && "Failed to parse output constraint"); 
 | |
|     OutputConstraintInfos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
 | |
|     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
 | |
|                                     S.getInputName(i));
 | |
|     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
 | |
|                                                   S.getNumOutputs(), Info);
 | |
|     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
 | |
|     InputConstraintInfos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   std::string Constraints;
 | |
| 
 | |
|   std::vector<LValue> ResultRegDests;
 | |
|   std::vector<QualType> ResultRegQualTys;
 | |
|   std::vector<const llvm::Type *> ResultRegTypes;
 | |
|   std::vector<const llvm::Type *> ResultTruncRegTypes;
 | |
|   std::vector<const llvm::Type*> ArgTypes;
 | |
|   std::vector<llvm::Value*> Args;
 | |
| 
 | |
|   // Keep track of inout constraints.
 | |
|   std::string InOutConstraints;
 | |
|   std::vector<llvm::Value*> InOutArgs;
 | |
|   std::vector<const llvm::Type*> InOutArgTypes;
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
 | |
|     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
 | |
| 
 | |
|     // Simplify the output constraint.
 | |
|     std::string OutputConstraint(S.getOutputConstraint(i));
 | |
|     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
 | |
| 
 | |
|     const Expr *OutExpr = S.getOutputExpr(i);
 | |
|     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
 | |
| 
 | |
|     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, Target,
 | |
|                                              CGM, S);
 | |
| 
 | |
|     LValue Dest = EmitLValue(OutExpr);
 | |
|     if (!Constraints.empty())
 | |
|       Constraints += ',';
 | |
| 
 | |
|     // If this is a register output, then make the inline asm return it
 | |
|     // by-value.  If this is a memory result, return the value by-reference.
 | |
|     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
 | |
|       Constraints += "=" + OutputConstraint;
 | |
|       ResultRegQualTys.push_back(OutExpr->getType());
 | |
|       ResultRegDests.push_back(Dest);
 | |
|       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
 | |
|       ResultTruncRegTypes.push_back(ResultRegTypes.back());
 | |
| 
 | |
|       // If this output is tied to an input, and if the input is larger, then
 | |
|       // we need to set the actual result type of the inline asm node to be the
 | |
|       // same as the input type.
 | |
|       if (Info.hasMatchingInput()) {
 | |
|         unsigned InputNo;
 | |
|         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
 | |
|           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
 | |
|           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
 | |
|             break;
 | |
|         }
 | |
|         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
 | |
| 
 | |
|         QualType InputTy = S.getInputExpr(InputNo)->getType();
 | |
|         QualType OutputType = OutExpr->getType();
 | |
| 
 | |
|         uint64_t InputSize = getContext().getTypeSize(InputTy);
 | |
|         if (getContext().getTypeSize(OutputType) < InputSize) {
 | |
|           // Form the asm to return the value as a larger integer or fp type.
 | |
|           ResultRegTypes.back() = ConvertType(InputTy);
 | |
|         }
 | |
|       }
 | |
|       if (const llvm::Type* AdjTy = 
 | |
|             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
 | |
|                                                  ResultRegTypes.back()))
 | |
|         ResultRegTypes.back() = AdjTy;
 | |
|     } else {
 | |
|       ArgTypes.push_back(Dest.getAddress()->getType());
 | |
|       Args.push_back(Dest.getAddress());
 | |
|       Constraints += "=*";
 | |
|       Constraints += OutputConstraint;
 | |
|     }
 | |
| 
 | |
|     if (Info.isReadWrite()) {
 | |
|       InOutConstraints += ',';
 | |
| 
 | |
|       const Expr *InputExpr = S.getOutputExpr(i);
 | |
|       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
 | |
|                                             InOutConstraints);
 | |
| 
 | |
|       if (Info.allowsRegister())
 | |
|         InOutConstraints += llvm::utostr(i);
 | |
|       else
 | |
|         InOutConstraints += OutputConstraint;
 | |
| 
 | |
|       InOutArgTypes.push_back(Arg->getType());
 | |
|       InOutArgs.push_back(Arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
 | |
| 
 | |
|   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
 | |
|     const Expr *InputExpr = S.getInputExpr(i);
 | |
| 
 | |
|     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | |
| 
 | |
|     if (!Constraints.empty())
 | |
|       Constraints += ',';
 | |
| 
 | |
|     // Simplify the input constraint.
 | |
|     std::string InputConstraint(S.getInputConstraint(i));
 | |
|     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
 | |
|                                          &OutputConstraintInfos);
 | |
| 
 | |
|     InputConstraint =
 | |
|       AddVariableConstraints(InputConstraint,
 | |
|                             *InputExpr->IgnoreParenNoopCasts(getContext()),
 | |
|                             Target, CGM, S);
 | |
| 
 | |
|     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
 | |
| 
 | |
|     // If this input argument is tied to a larger output result, extend the
 | |
|     // input to be the same size as the output.  The LLVM backend wants to see
 | |
|     // the input and output of a matching constraint be the same size.  Note
 | |
|     // that GCC does not define what the top bits are here.  We use zext because
 | |
|     // that is usually cheaper, but LLVM IR should really get an anyext someday.
 | |
|     if (Info.hasTiedOperand()) {
 | |
|       unsigned Output = Info.getTiedOperand();
 | |
|       QualType OutputType = S.getOutputExpr(Output)->getType();
 | |
|       QualType InputTy = InputExpr->getType();
 | |
| 
 | |
|       if (getContext().getTypeSize(OutputType) >
 | |
|           getContext().getTypeSize(InputTy)) {
 | |
|         // Use ptrtoint as appropriate so that we can do our extension.
 | |
|         if (isa<llvm::PointerType>(Arg->getType()))
 | |
|           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
 | |
|         const llvm::Type *OutputTy = ConvertType(OutputType);
 | |
|         if (isa<llvm::IntegerType>(OutputTy))
 | |
|           Arg = Builder.CreateZExt(Arg, OutputTy);
 | |
|         else
 | |
|           Arg = Builder.CreateFPExt(Arg, OutputTy);
 | |
|       }
 | |
|     }
 | |
|     if (const llvm::Type* AdjTy = 
 | |
|               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
 | |
|                                                    Arg->getType()))
 | |
|       Arg = Builder.CreateBitCast(Arg, AdjTy);
 | |
| 
 | |
|     ArgTypes.push_back(Arg->getType());
 | |
|     Args.push_back(Arg);
 | |
|     Constraints += InputConstraint;
 | |
|   }
 | |
| 
 | |
|   // Append the "input" part of inout constraints last.
 | |
|   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
 | |
|     ArgTypes.push_back(InOutArgTypes[i]);
 | |
|     Args.push_back(InOutArgs[i]);
 | |
|   }
 | |
|   Constraints += InOutConstraints;
 | |
| 
 | |
|   // Clobbers
 | |
|   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
 | |
|     llvm::StringRef Clobber = S.getClobber(i)->getString();
 | |
| 
 | |
|     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
 | |
| 
 | |
|     if (i != 0 || NumConstraints != 0)
 | |
|       Constraints += ',';
 | |
| 
 | |
|     Constraints += "~{";
 | |
|     Constraints += Clobber;
 | |
|     Constraints += '}';
 | |
|   }
 | |
| 
 | |
|   // Add machine specific clobbers
 | |
|   std::string MachineClobbers = Target.getClobbers();
 | |
|   if (!MachineClobbers.empty()) {
 | |
|     if (!Constraints.empty())
 | |
|       Constraints += ',';
 | |
|     Constraints += MachineClobbers;
 | |
|   }
 | |
| 
 | |
|   const llvm::Type *ResultType;
 | |
|   if (ResultRegTypes.empty())
 | |
|     ResultType = llvm::Type::getVoidTy(getLLVMContext());
 | |
|   else if (ResultRegTypes.size() == 1)
 | |
|     ResultType = ResultRegTypes[0];
 | |
|   else
 | |
|     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
 | |
| 
 | |
|   const llvm::FunctionType *FTy =
 | |
|     llvm::FunctionType::get(ResultType, ArgTypes, false);
 | |
| 
 | |
|   llvm::InlineAsm *IA =
 | |
|     llvm::InlineAsm::get(FTy, AsmString, Constraints,
 | |
|                          S.isVolatile() || S.getNumOutputs() == 0);
 | |
|   llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
 | |
|   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
 | |
| 
 | |
|   // Slap the source location of the inline asm into a !srcloc metadata on the
 | |
|   // call.
 | |
|   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
 | |
| 
 | |
|   // Extract all of the register value results from the asm.
 | |
|   std::vector<llvm::Value*> RegResults;
 | |
|   if (ResultRegTypes.size() == 1) {
 | |
|     RegResults.push_back(Result);
 | |
|   } else {
 | |
|     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
 | |
|       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
 | |
|       RegResults.push_back(Tmp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
 | |
|     llvm::Value *Tmp = RegResults[i];
 | |
| 
 | |
|     // If the result type of the LLVM IR asm doesn't match the result type of
 | |
|     // the expression, do the conversion.
 | |
|     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
 | |
|       const llvm::Type *TruncTy = ResultTruncRegTypes[i];
 | |
|       
 | |
|       // Truncate the integer result to the right size, note that TruncTy can be
 | |
|       // a pointer.
 | |
|       if (TruncTy->isFloatingPointTy())
 | |
|         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
 | |
|       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
 | |
|         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
 | |
|         Tmp = Builder.CreateTrunc(Tmp,
 | |
|                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
 | |
|         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
 | |
|       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
 | |
|         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
 | |
|         Tmp = Builder.CreatePtrToInt(Tmp,
 | |
|                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
 | |
|         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
 | |
|       } else if (TruncTy->isIntegerTy()) {
 | |
|         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
 | |
|       } else if (TruncTy->isVectorTy()) {
 | |
|         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
 | |
|                            ResultRegQualTys[i]);
 | |
|   }
 | |
| }
 |