forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2303 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2303 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This coordinates the per-module state used while generating code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenModule.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CodeGenTBAA.h"
 | |
| #include "CGCall.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/Frontend/CodeGenOptions.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Mangle.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/Diagnostic.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Basic/ConvertUTF.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Target/Mangler.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
 | |
|   switch (CGM.getContext().Target.getCXXABI()) {
 | |
|   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
 | |
|   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
 | |
|   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("invalid C++ ABI kind");
 | |
|   return *CreateItaniumCXXABI(CGM);
 | |
| }
 | |
| 
 | |
| 
 | |
| CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
 | |
|                              llvm::Module &M, const llvm::TargetData &TD,
 | |
|                              Diagnostic &diags)
 | |
|   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
 | |
|     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
 | |
|     ABI(createCXXABI(*this)), 
 | |
|     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
 | |
|     TBAA(0),
 | |
|     VTables(*this), Runtime(0), DebugInfo(0),
 | |
|     CFConstantStringClassRef(0), ConstantStringClassRef(0),
 | |
|     VMContext(M.getContext()),
 | |
|     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
 | |
|     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
 | |
|     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
 | |
|     BlockObjectAssign(0), BlockObjectDispose(0),
 | |
|     BlockDescriptorType(0), GenericBlockLiteralType(0) {
 | |
|   if (Features.ObjC1)
 | |
|      createObjCRuntime();
 | |
| 
 | |
|   // Enable TBAA unless it's suppressed.
 | |
|   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
 | |
|     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
 | |
|                            ABI.getMangleContext());
 | |
| 
 | |
|   // If debug info or coverage generation is enabled, create the CGDebugInfo
 | |
|   // object.
 | |
|   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
 | |
|       CodeGenOpts.EmitGcovNotes)
 | |
|     DebugInfo = new CGDebugInfo(*this);
 | |
| 
 | |
|   Block.GlobalUniqueCount = 0;
 | |
| 
 | |
|   // Initialize the type cache.
 | |
|   llvm::LLVMContext &LLVMContext = M.getContext();
 | |
|   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
 | |
|   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
 | |
|   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
 | |
|   PointerWidthInBits = C.Target.getPointerWidth(0);
 | |
|   PointerAlignInBytes =
 | |
|     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
 | |
|   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
 | |
|   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
 | |
|   Int8PtrTy = Int8Ty->getPointerTo(0);
 | |
|   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
 | |
| }
 | |
| 
 | |
| CodeGenModule::~CodeGenModule() {
 | |
|   delete Runtime;
 | |
|   delete &ABI;
 | |
|   delete TBAA;
 | |
|   delete DebugInfo;
 | |
| }
 | |
| 
 | |
| void CodeGenModule::createObjCRuntime() {
 | |
|   if (!Features.NeXTRuntime)
 | |
|     Runtime = CreateGNUObjCRuntime(*this);
 | |
|   else
 | |
|     Runtime = CreateMacObjCRuntime(*this);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::Release() {
 | |
|   EmitDeferred();
 | |
|   EmitCXXGlobalInitFunc();
 | |
|   EmitCXXGlobalDtorFunc();
 | |
|   if (Runtime)
 | |
|     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
 | |
|       AddGlobalCtor(ObjCInitFunction);
 | |
|   EmitCtorList(GlobalCtors, "llvm.global_ctors");
 | |
|   EmitCtorList(GlobalDtors, "llvm.global_dtors");
 | |
|   EmitAnnotations();
 | |
|   EmitLLVMUsed();
 | |
| 
 | |
|   SimplifyPersonality();
 | |
| 
 | |
|   if (getCodeGenOpts().EmitDeclMetadata)
 | |
|     EmitDeclMetadata();
 | |
| }
 | |
| 
 | |
| void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
 | |
|   // Make sure that this type is translated.
 | |
|   Types.UpdateCompletedType(TD);
 | |
|   if (DebugInfo)
 | |
|     DebugInfo->UpdateCompletedType(TD);
 | |
| }
 | |
| 
 | |
| llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
 | |
|   if (!TBAA)
 | |
|     return 0;
 | |
|   return TBAA->getTBAAInfo(QTy);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
 | |
|                                         llvm::MDNode *TBAAInfo) {
 | |
|   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::isTargetDarwin() const {
 | |
|   return getContext().Target.getTriple().isOSDarwin();
 | |
| }
 | |
| 
 | |
| void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
 | |
|   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
 | |
|   getDiags().Report(Context.getFullLoc(loc), diagID);
 | |
| }
 | |
| 
 | |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the
 | |
| /// specified stmt yet.
 | |
| void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
 | |
|                                      bool OmitOnError) {
 | |
|   if (OmitOnError && getDiags().hasErrorOccurred())
 | |
|     return;
 | |
|   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
 | |
|                                                "cannot compile this %0 yet");
 | |
|   std::string Msg = Type;
 | |
|   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
 | |
|     << Msg << S->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the
 | |
| /// specified decl yet.
 | |
| void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
 | |
|                                      bool OmitOnError) {
 | |
|   if (OmitOnError && getDiags().hasErrorOccurred())
 | |
|     return;
 | |
|   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
 | |
|                                                "cannot compile this %0 yet");
 | |
|   std::string Msg = Type;
 | |
|   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
 | |
| }
 | |
| 
 | |
| void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
 | |
|                                         const NamedDecl *D) const {
 | |
|   // Internal definitions always have default visibility.
 | |
|   if (GV->hasLocalLinkage()) {
 | |
|     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Set visibility for definitions.
 | |
|   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
 | |
|   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
 | |
|     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
 | |
| }
 | |
| 
 | |
| /// Set the symbol visibility of type information (vtable and RTTI)
 | |
| /// associated with the given type.
 | |
| void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
 | |
|                                       const CXXRecordDecl *RD,
 | |
|                                       TypeVisibilityKind TVK) const {
 | |
|   setGlobalVisibility(GV, RD);
 | |
| 
 | |
|   if (!CodeGenOpts.HiddenWeakVTables)
 | |
|     return;
 | |
| 
 | |
|   // We never want to drop the visibility for RTTI names.
 | |
|   if (TVK == TVK_ForRTTIName)
 | |
|     return;
 | |
| 
 | |
|   // We want to drop the visibility to hidden for weak type symbols.
 | |
|   // This isn't possible if there might be unresolved references
 | |
|   // elsewhere that rely on this symbol being visible.
 | |
| 
 | |
|   // This should be kept roughly in sync with setThunkVisibility
 | |
|   // in CGVTables.cpp.
 | |
| 
 | |
|   // Preconditions.
 | |
|   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
 | |
|       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
 | |
|     return;
 | |
| 
 | |
|   // Don't override an explicit visibility attribute.
 | |
|   if (RD->getExplicitVisibility())
 | |
|     return;
 | |
| 
 | |
|   switch (RD->getTemplateSpecializationKind()) {
 | |
|   // We have to disable the optimization if this is an EI definition
 | |
|   // because there might be EI declarations in other shared objects.
 | |
|   case TSK_ExplicitInstantiationDefinition:
 | |
|   case TSK_ExplicitInstantiationDeclaration:
 | |
|     return;
 | |
| 
 | |
|   // Every use of a non-template class's type information has to emit it.
 | |
|   case TSK_Undeclared:
 | |
|     break;
 | |
| 
 | |
|   // In theory, implicit instantiations can ignore the possibility of
 | |
|   // an explicit instantiation declaration because there necessarily
 | |
|   // must be an EI definition somewhere with default visibility.  In
 | |
|   // practice, it's possible to have an explicit instantiation for
 | |
|   // an arbitrary template class, and linkers aren't necessarily able
 | |
|   // to deal with mixed-visibility symbols.
 | |
|   case TSK_ExplicitSpecialization:
 | |
|   case TSK_ImplicitInstantiation:
 | |
|     if (!CodeGenOpts.HiddenWeakTemplateVTables)
 | |
|       return;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If there's a key function, there may be translation units
 | |
|   // that don't have the key function's definition.  But ignore
 | |
|   // this if we're emitting RTTI under -fno-rtti.
 | |
|   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
 | |
|     if (Context.getKeyFunction(RD))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, drop the visibility to hidden.
 | |
|   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
 | |
|   GV->setUnnamedAddr(true);
 | |
| }
 | |
| 
 | |
| llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
 | |
|   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
 | |
| 
 | |
|   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
 | |
|   if (!Str.empty())
 | |
|     return Str;
 | |
| 
 | |
|   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
 | |
|     IdentifierInfo *II = ND->getIdentifier();
 | |
|     assert(II && "Attempt to mangle unnamed decl.");
 | |
| 
 | |
|     Str = II->getName();
 | |
|     return Str;
 | |
|   }
 | |
|   
 | |
|   llvm::SmallString<256> Buffer;
 | |
|   llvm::raw_svector_ostream Out(Buffer);
 | |
|   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
 | |
|     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
 | |
|   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
 | |
|     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
 | |
|   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
 | |
|     getCXXABI().getMangleContext().mangleBlock(BD, Out);
 | |
|   else
 | |
|     getCXXABI().getMangleContext().mangleName(ND, Out);
 | |
| 
 | |
|   // Allocate space for the mangled name.
 | |
|   Out.flush();
 | |
|   size_t Length = Buffer.size();
 | |
|   char *Name = MangledNamesAllocator.Allocate<char>(Length);
 | |
|   std::copy(Buffer.begin(), Buffer.end(), Name);
 | |
|   
 | |
|   Str = llvm::StringRef(Name, Length);
 | |
|   
 | |
|   return Str;
 | |
| }
 | |
| 
 | |
| void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
 | |
|                                         const BlockDecl *BD) {
 | |
|   MangleContext &MangleCtx = getCXXABI().getMangleContext();
 | |
|   const Decl *D = GD.getDecl();
 | |
|   llvm::raw_svector_ostream Out(Buffer.getBuffer());
 | |
|   if (D == 0)
 | |
|     MangleCtx.mangleGlobalBlock(BD, Out);
 | |
|   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
 | |
|     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
 | |
|   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
 | |
|     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
 | |
|   else
 | |
|     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
 | |
| }
 | |
| 
 | |
| llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
 | |
|   return getModule().getNamedValue(Name);
 | |
| }
 | |
| 
 | |
| /// AddGlobalCtor - Add a function to the list that will be called before
 | |
| /// main() runs.
 | |
| void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
 | |
|   // FIXME: Type coercion of void()* types.
 | |
|   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
 | |
| }
 | |
| 
 | |
| /// AddGlobalDtor - Add a function to the list that will be called
 | |
| /// when the module is unloaded.
 | |
| void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
 | |
|   // FIXME: Type coercion of void()* types.
 | |
|   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
 | |
|   // Ctor function type is void()*.
 | |
|   llvm::FunctionType* CtorFTy =
 | |
|     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
 | |
|   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
 | |
| 
 | |
|   // Get the type of a ctor entry, { i32, void ()* }.
 | |
|   llvm::StructType* CtorStructTy =
 | |
|     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
 | |
|                           llvm::PointerType::getUnqual(CtorFTy), NULL);
 | |
| 
 | |
|   // Construct the constructor and destructor arrays.
 | |
|   std::vector<llvm::Constant*> Ctors;
 | |
|   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
 | |
|     std::vector<llvm::Constant*> S;
 | |
|     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
 | |
|                 I->second, false));
 | |
|     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
 | |
|     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
 | |
|   }
 | |
| 
 | |
|   if (!Ctors.empty()) {
 | |
|     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
 | |
|     new llvm::GlobalVariable(TheModule, AT, false,
 | |
|                              llvm::GlobalValue::AppendingLinkage,
 | |
|                              llvm::ConstantArray::get(AT, Ctors),
 | |
|                              GlobalName);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitAnnotations() {
 | |
|   if (Annotations.empty())
 | |
|     return;
 | |
| 
 | |
|   // Create a new global variable for the ConstantStruct in the Module.
 | |
|   llvm::Constant *Array =
 | |
|   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
 | |
|                                                 Annotations.size()),
 | |
|                            Annotations);
 | |
|   llvm::GlobalValue *gv =
 | |
|   new llvm::GlobalVariable(TheModule, Array->getType(), false,
 | |
|                            llvm::GlobalValue::AppendingLinkage, Array,
 | |
|                            "llvm.global.annotations");
 | |
|   gv->setSection("llvm.metadata");
 | |
| }
 | |
| 
 | |
| llvm::GlobalValue::LinkageTypes
 | |
| CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
 | |
|   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
 | |
| 
 | |
|   if (Linkage == GVA_Internal)
 | |
|     return llvm::Function::InternalLinkage;
 | |
|   
 | |
|   if (D->hasAttr<DLLExportAttr>())
 | |
|     return llvm::Function::DLLExportLinkage;
 | |
|   
 | |
|   if (D->hasAttr<WeakAttr>())
 | |
|     return llvm::Function::WeakAnyLinkage;
 | |
|   
 | |
|   // In C99 mode, 'inline' functions are guaranteed to have a strong
 | |
|   // definition somewhere else, so we can use available_externally linkage.
 | |
|   if (Linkage == GVA_C99Inline)
 | |
|     return llvm::Function::AvailableExternallyLinkage;
 | |
|   
 | |
|   // In C++, the compiler has to emit a definition in every translation unit
 | |
|   // that references the function.  We should use linkonce_odr because
 | |
|   // a) if all references in this translation unit are optimized away, we
 | |
|   // don't need to codegen it.  b) if the function persists, it needs to be
 | |
|   // merged with other definitions. c) C++ has the ODR, so we know the
 | |
|   // definition is dependable.
 | |
|   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
 | |
|     return !Context.getLangOptions().AppleKext 
 | |
|              ? llvm::Function::LinkOnceODRLinkage 
 | |
|              : llvm::Function::InternalLinkage;
 | |
|   
 | |
|   // An explicit instantiation of a template has weak linkage, since
 | |
|   // explicit instantiations can occur in multiple translation units
 | |
|   // and must all be equivalent. However, we are not allowed to
 | |
|   // throw away these explicit instantiations.
 | |
|   if (Linkage == GVA_ExplicitTemplateInstantiation)
 | |
|     return !Context.getLangOptions().AppleKext
 | |
|              ? llvm::Function::WeakODRLinkage
 | |
|              : llvm::Function::InternalLinkage;
 | |
|   
 | |
|   // Otherwise, we have strong external linkage.
 | |
|   assert(Linkage == GVA_StrongExternal);
 | |
|   return llvm::Function::ExternalLinkage;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SetFunctionDefinitionAttributes - Set attributes for a global.
 | |
| ///
 | |
| /// FIXME: This is currently only done for aliases and functions, but not for
 | |
| /// variables (these details are set in EmitGlobalVarDefinition for variables).
 | |
| void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
 | |
|                                                     llvm::GlobalValue *GV) {
 | |
|   SetCommonAttributes(D, GV);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
 | |
|                                               const CGFunctionInfo &Info,
 | |
|                                               llvm::Function *F) {
 | |
|   unsigned CallingConv;
 | |
|   AttributeListType AttributeList;
 | |
|   ConstructAttributeList(Info, D, AttributeList, CallingConv);
 | |
|   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
 | |
|                                           AttributeList.size()));
 | |
|   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
 | |
| }
 | |
| 
 | |
| void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
 | |
|                                                            llvm::Function *F) {
 | |
|   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
 | |
|     F->addFnAttr(llvm::Attribute::NoUnwind);
 | |
| 
 | |
|   if (D->hasAttr<AlwaysInlineAttr>())
 | |
|     F->addFnAttr(llvm::Attribute::AlwaysInline);
 | |
| 
 | |
|   if (D->hasAttr<NakedAttr>())
 | |
|     F->addFnAttr(llvm::Attribute::Naked);
 | |
| 
 | |
|   if (D->hasAttr<NoInlineAttr>())
 | |
|     F->addFnAttr(llvm::Attribute::NoInline);
 | |
| 
 | |
|   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
 | |
|     F->setUnnamedAddr(true);
 | |
| 
 | |
|   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
 | |
|     F->addFnAttr(llvm::Attribute::StackProtect);
 | |
|   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
 | |
|     F->addFnAttr(llvm::Attribute::StackProtectReq);
 | |
|   
 | |
|   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
 | |
|   if (alignment)
 | |
|     F->setAlignment(alignment);
 | |
| 
 | |
|   // C++ ABI requires 2-byte alignment for member functions.
 | |
|   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
 | |
|     F->setAlignment(2);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::SetCommonAttributes(const Decl *D,
 | |
|                                         llvm::GlobalValue *GV) {
 | |
|   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
 | |
|     setGlobalVisibility(GV, ND);
 | |
|   else
 | |
|     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
 | |
| 
 | |
|   if (D->hasAttr<UsedAttr>())
 | |
|     AddUsedGlobal(GV);
 | |
| 
 | |
|   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
 | |
|     GV->setSection(SA->getName());
 | |
| 
 | |
|   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
 | |
|                                                   llvm::Function *F,
 | |
|                                                   const CGFunctionInfo &FI) {
 | |
|   SetLLVMFunctionAttributes(D, FI, F);
 | |
|   SetLLVMFunctionAttributesForDefinition(D, F);
 | |
| 
 | |
|   F->setLinkage(llvm::Function::InternalLinkage);
 | |
| 
 | |
|   SetCommonAttributes(D, F);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
 | |
|                                           llvm::Function *F,
 | |
|                                           bool IsIncompleteFunction) {
 | |
|   if (unsigned IID = F->getIntrinsicID()) {
 | |
|     // If this is an intrinsic function, set the function's attributes
 | |
|     // to the intrinsic's attributes.
 | |
|     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
 | |
| 
 | |
|   if (!IsIncompleteFunction)
 | |
|     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
 | |
| 
 | |
|   // Only a few attributes are set on declarations; these may later be
 | |
|   // overridden by a definition.
 | |
| 
 | |
|   if (FD->hasAttr<DLLImportAttr>()) {
 | |
|     F->setLinkage(llvm::Function::DLLImportLinkage);
 | |
|   } else if (FD->hasAttr<WeakAttr>() ||
 | |
|              FD->isWeakImported()) {
 | |
|     // "extern_weak" is overloaded in LLVM; we probably should have
 | |
|     // separate linkage types for this.
 | |
|     F->setLinkage(llvm::Function::ExternalWeakLinkage);
 | |
|   } else {
 | |
|     F->setLinkage(llvm::Function::ExternalLinkage);
 | |
| 
 | |
|     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
 | |
|     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
 | |
|       F->setVisibility(GetLLVMVisibility(LV.visibility()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
 | |
|     F->setSection(SA->getName());
 | |
| }
 | |
| 
 | |
| void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
 | |
|   assert(!GV->isDeclaration() &&
 | |
|          "Only globals with definition can force usage.");
 | |
|   LLVMUsed.push_back(GV);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitLLVMUsed() {
 | |
|   // Don't create llvm.used if there is no need.
 | |
|   if (LLVMUsed.empty())
 | |
|     return;
 | |
| 
 | |
|   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
 | |
| 
 | |
|   // Convert LLVMUsed to what ConstantArray needs.
 | |
|   std::vector<llvm::Constant*> UsedArray;
 | |
|   UsedArray.resize(LLVMUsed.size());
 | |
|   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
 | |
|     UsedArray[i] =
 | |
|      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
 | |
|                                       i8PTy);
 | |
|   }
 | |
| 
 | |
|   if (UsedArray.empty())
 | |
|     return;
 | |
|   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
 | |
| 
 | |
|   llvm::GlobalVariable *GV =
 | |
|     new llvm::GlobalVariable(getModule(), ATy, false,
 | |
|                              llvm::GlobalValue::AppendingLinkage,
 | |
|                              llvm::ConstantArray::get(ATy, UsedArray),
 | |
|                              "llvm.used");
 | |
| 
 | |
|   GV->setSection("llvm.metadata");
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitDeferred() {
 | |
|   // Emit code for any potentially referenced deferred decls.  Since a
 | |
|   // previously unused static decl may become used during the generation of code
 | |
|   // for a static function, iterate until no  changes are made.
 | |
| 
 | |
|   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
 | |
|     if (!DeferredVTables.empty()) {
 | |
|       const CXXRecordDecl *RD = DeferredVTables.back();
 | |
|       DeferredVTables.pop_back();
 | |
|       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     GlobalDecl D = DeferredDeclsToEmit.back();
 | |
|     DeferredDeclsToEmit.pop_back();
 | |
| 
 | |
|     // Check to see if we've already emitted this.  This is necessary
 | |
|     // for a couple of reasons: first, decls can end up in the
 | |
|     // deferred-decls queue multiple times, and second, decls can end
 | |
|     // up with definitions in unusual ways (e.g. by an extern inline
 | |
|     // function acquiring a strong function redefinition).  Just
 | |
|     // ignore these cases.
 | |
|     //
 | |
|     // TODO: That said, looking this up multiple times is very wasteful.
 | |
|     llvm::StringRef Name = getMangledName(D);
 | |
|     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
 | |
|     assert(CGRef && "Deferred decl wasn't referenced?");
 | |
| 
 | |
|     if (!CGRef->isDeclaration())
 | |
|       continue;
 | |
| 
 | |
|     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
 | |
|     // purposes an alias counts as a definition.
 | |
|     if (isa<llvm::GlobalAlias>(CGRef))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, emit the definition and move on to the next one.
 | |
|     EmitGlobalDefinition(D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
 | |
| /// annotation information for a given GlobalValue.  The annotation struct is
 | |
| /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
 | |
| /// GlobalValue being annotated.  The second field is the constant string
 | |
| /// created from the AnnotateAttr's annotation.  The third field is a constant
 | |
| /// string containing the name of the translation unit.  The fourth field is
 | |
| /// the line number in the file of the annotated value declaration.
 | |
| ///
 | |
| /// FIXME: this does not unique the annotation string constants, as llvm-gcc
 | |
| ///        appears to.
 | |
| ///
 | |
| llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
 | |
|                                                 const AnnotateAttr *AA,
 | |
|                                                 unsigned LineNo) {
 | |
|   llvm::Module *M = &getModule();
 | |
| 
 | |
|   // get [N x i8] constants for the annotation string, and the filename string
 | |
|   // which are the 2nd and 3rd elements of the global annotation structure.
 | |
|   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
 | |
|   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
 | |
|                                                   AA->getAnnotation(), true);
 | |
|   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
 | |
|                                                   M->getModuleIdentifier(),
 | |
|                                                   true);
 | |
| 
 | |
|   // Get the two global values corresponding to the ConstantArrays we just
 | |
|   // created to hold the bytes of the strings.
 | |
|   llvm::GlobalValue *annoGV =
 | |
|     new llvm::GlobalVariable(*M, anno->getType(), false,
 | |
|                              llvm::GlobalValue::PrivateLinkage, anno,
 | |
|                              GV->getName());
 | |
|   // translation unit name string, emitted into the llvm.metadata section.
 | |
|   llvm::GlobalValue *unitGV =
 | |
|     new llvm::GlobalVariable(*M, unit->getType(), false,
 | |
|                              llvm::GlobalValue::PrivateLinkage, unit,
 | |
|                              ".str");
 | |
|   unitGV->setUnnamedAddr(true);
 | |
| 
 | |
|   // Create the ConstantStruct for the global annotation.
 | |
|   llvm::Constant *Fields[4] = {
 | |
|     llvm::ConstantExpr::getBitCast(GV, SBP),
 | |
|     llvm::ConstantExpr::getBitCast(annoGV, SBP),
 | |
|     llvm::ConstantExpr::getBitCast(unitGV, SBP),
 | |
|     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
 | |
|   };
 | |
|   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
 | |
| }
 | |
| 
 | |
| bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
 | |
|   // Never defer when EmitAllDecls is specified.
 | |
|   if (Features.EmitAllDecls)
 | |
|     return false;
 | |
| 
 | |
|   return !getContext().DeclMustBeEmitted(Global);
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
 | |
|   const AliasAttr *AA = VD->getAttr<AliasAttr>();
 | |
|   assert(AA && "No alias?");
 | |
| 
 | |
|   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
 | |
| 
 | |
|   // See if there is already something with the target's name in the module.
 | |
|   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
 | |
| 
 | |
|   llvm::Constant *Aliasee;
 | |
|   if (isa<llvm::FunctionType>(DeclTy))
 | |
|     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
 | |
|                                       /*ForVTable=*/false);
 | |
|   else
 | |
|     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
 | |
|                                     llvm::PointerType::getUnqual(DeclTy), 0);
 | |
|   if (!Entry) {
 | |
|     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
 | |
|     F->setLinkage(llvm::Function::ExternalWeakLinkage);    
 | |
|     WeakRefReferences.insert(F);
 | |
|   }
 | |
| 
 | |
|   return Aliasee;
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitGlobal(GlobalDecl GD) {
 | |
|   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
 | |
| 
 | |
|   // Weak references don't produce any output by themselves.
 | |
|   if (Global->hasAttr<WeakRefAttr>())
 | |
|     return;
 | |
| 
 | |
|   // If this is an alias definition (which otherwise looks like a declaration)
 | |
|   // emit it now.
 | |
|   if (Global->hasAttr<AliasAttr>())
 | |
|     return EmitAliasDefinition(GD);
 | |
| 
 | |
|   // Ignore declarations, they will be emitted on their first use.
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
 | |
|     if (FD->getIdentifier()) {
 | |
|       llvm::StringRef Name = FD->getName();
 | |
|       if (Name == "_Block_object_assign") {
 | |
|         BlockObjectAssignDecl = FD;
 | |
|       } else if (Name == "_Block_object_dispose") {
 | |
|         BlockObjectDisposeDecl = FD;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Forward declarations are emitted lazily on first use.
 | |
|     if (!FD->isThisDeclarationADefinition())
 | |
|       return;
 | |
|   } else {
 | |
|     const VarDecl *VD = cast<VarDecl>(Global);
 | |
|     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
 | |
| 
 | |
|     if (VD->getIdentifier()) {
 | |
|       llvm::StringRef Name = VD->getName();
 | |
|       if (Name == "_NSConcreteGlobalBlock") {
 | |
|         NSConcreteGlobalBlockDecl = VD;
 | |
|       } else if (Name == "_NSConcreteStackBlock") {
 | |
|         NSConcreteStackBlockDecl = VD;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Defer code generation when possible if this is a static definition, inline
 | |
|   // function etc.  These we only want to emit if they are used.
 | |
|   if (!MayDeferGeneration(Global)) {
 | |
|     // Emit the definition if it can't be deferred.
 | |
|     EmitGlobalDefinition(GD);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we're deferring emission of a C++ variable with an
 | |
|   // initializer, remember the order in which it appeared in the file.
 | |
|   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
 | |
|       cast<VarDecl>(Global)->hasInit()) {
 | |
|     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
 | |
|     CXXGlobalInits.push_back(0);
 | |
|   }
 | |
|   
 | |
|   // If the value has already been used, add it directly to the
 | |
|   // DeferredDeclsToEmit list.
 | |
|   llvm::StringRef MangledName = getMangledName(GD);
 | |
|   if (GetGlobalValue(MangledName))
 | |
|     DeferredDeclsToEmit.push_back(GD);
 | |
|   else {
 | |
|     // Otherwise, remember that we saw a deferred decl with this name.  The
 | |
|     // first use of the mangled name will cause it to move into
 | |
|     // DeferredDeclsToEmit.
 | |
|     DeferredDecls[MangledName] = GD;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
 | |
|   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
 | |
| 
 | |
|   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 
 | |
|                                  Context.getSourceManager(),
 | |
|                                  "Generating code for declaration");
 | |
|   
 | |
|   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
 | |
|     // At -O0, don't generate IR for functions with available_externally 
 | |
|     // linkage.
 | |
|     if (CodeGenOpts.OptimizationLevel == 0 && 
 | |
|         !Function->hasAttr<AlwaysInlineAttr>() &&
 | |
|         getFunctionLinkage(Function) 
 | |
|                                   == llvm::Function::AvailableExternallyLinkage)
 | |
|       return;
 | |
| 
 | |
|     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|       if (Method->isVirtual())
 | |
|         getVTables().EmitThunks(GD);
 | |
| 
 | |
|       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
 | |
|         return EmitCXXConstructor(CD, GD.getCtorType());
 | |
|   
 | |
|       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
 | |
|         return EmitCXXDestructor(DD, GD.getDtorType());
 | |
|     }
 | |
| 
 | |
|     return EmitGlobalFunctionDefinition(GD);
 | |
|   }
 | |
|   
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|     return EmitGlobalVarDefinition(VD);
 | |
|   
 | |
|   assert(0 && "Invalid argument to EmitGlobalDefinition()");
 | |
| }
 | |
| 
 | |
| /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
 | |
| /// module, create and return an llvm Function with the specified type. If there
 | |
| /// is something in the module with the specified name, return it potentially
 | |
| /// bitcasted to the right type.
 | |
| ///
 | |
| /// If D is non-null, it specifies a decl that correspond to this.  This is used
 | |
| /// to set the attributes on the function when it is first created.
 | |
| llvm::Constant *
 | |
| CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
 | |
|                                        const llvm::Type *Ty,
 | |
|                                        GlobalDecl D, bool ForVTable) {
 | |
|   // Lookup the entry, lazily creating it if necessary.
 | |
|   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | |
|   if (Entry) {
 | |
|     if (WeakRefReferences.count(Entry)) {
 | |
|       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
 | |
|       if (FD && !FD->hasAttr<WeakAttr>())
 | |
|         Entry->setLinkage(llvm::Function::ExternalLinkage);
 | |
| 
 | |
|       WeakRefReferences.erase(Entry);
 | |
|     }
 | |
| 
 | |
|     if (Entry->getType()->getElementType() == Ty)
 | |
|       return Entry;
 | |
| 
 | |
|     // Make sure the result is of the correct type.
 | |
|     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
 | |
|     return llvm::ConstantExpr::getBitCast(Entry, PTy);
 | |
|   }
 | |
| 
 | |
|   // This function doesn't have a complete type (for example, the return
 | |
|   // type is an incomplete struct). Use a fake type instead, and make
 | |
|   // sure not to try to set attributes.
 | |
|   bool IsIncompleteFunction = false;
 | |
| 
 | |
|   const llvm::FunctionType *FTy;
 | |
|   if (isa<llvm::FunctionType>(Ty)) {
 | |
|     FTy = cast<llvm::FunctionType>(Ty);
 | |
|   } else {
 | |
|     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
 | |
|     IsIncompleteFunction = true;
 | |
|   }
 | |
|   
 | |
|   llvm::Function *F = llvm::Function::Create(FTy,
 | |
|                                              llvm::Function::ExternalLinkage,
 | |
|                                              MangledName, &getModule());
 | |
|   assert(F->getName() == MangledName && "name was uniqued!");
 | |
|   if (D.getDecl())
 | |
|     SetFunctionAttributes(D, F, IsIncompleteFunction);
 | |
| 
 | |
|   // This is the first use or definition of a mangled name.  If there is a
 | |
|   // deferred decl with this name, remember that we need to emit it at the end
 | |
|   // of the file.
 | |
|   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
 | |
|   if (DDI != DeferredDecls.end()) {
 | |
|     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
 | |
|     // list, and remove it from DeferredDecls (since we don't need it anymore).
 | |
|     DeferredDeclsToEmit.push_back(DDI->second);
 | |
|     DeferredDecls.erase(DDI);
 | |
| 
 | |
|   // Otherwise, there are cases we have to worry about where we're
 | |
|   // using a declaration for which we must emit a definition but where
 | |
|   // we might not find a top-level definition:
 | |
|   //   - member functions defined inline in their classes
 | |
|   //   - friend functions defined inline in some class
 | |
|   //   - special member functions with implicit definitions
 | |
|   // If we ever change our AST traversal to walk into class methods,
 | |
|   // this will be unnecessary.
 | |
|   //
 | |
|   // We also don't emit a definition for a function if it's going to be an entry
 | |
|   // in a vtable, unless it's already marked as used.
 | |
|   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
 | |
|     // Look for a declaration that's lexically in a record.
 | |
|     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
 | |
|     do {
 | |
|       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
 | |
|         if (FD->isImplicit() && !ForVTable) {
 | |
|           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
 | |
|           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
 | |
|           break;
 | |
|         } else if (FD->isThisDeclarationADefinition()) {
 | |
|           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       FD = FD->getPreviousDeclaration();
 | |
|     } while (FD);
 | |
|   }
 | |
| 
 | |
|   // Make sure the result is of the requested type.
 | |
|   if (!IsIncompleteFunction) {
 | |
|     assert(F->getType()->getElementType() == Ty);
 | |
|     return F;
 | |
|   }
 | |
| 
 | |
|   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
 | |
|   return llvm::ConstantExpr::getBitCast(F, PTy);
 | |
| }
 | |
| 
 | |
| /// GetAddrOfFunction - Return the address of the given function.  If Ty is
 | |
| /// non-null, then this function will use the specified type if it has to
 | |
| /// create it (this occurs when we see a definition of the function).
 | |
| llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
 | |
|                                                  const llvm::Type *Ty,
 | |
|                                                  bool ForVTable) {
 | |
|   // If there was no specific requested type, just convert it now.
 | |
|   if (!Ty)
 | |
|     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
 | |
|   
 | |
|   llvm::StringRef MangledName = getMangledName(GD);
 | |
|   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
 | |
| }
 | |
| 
 | |
| /// CreateRuntimeFunction - Create a new runtime function with the specified
 | |
| /// type and name.
 | |
| llvm::Constant *
 | |
| CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
 | |
|                                      llvm::StringRef Name) {
 | |
|   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
 | |
| }
 | |
| 
 | |
| static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
 | |
|   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
 | |
|     return false;
 | |
|   if (Context.getLangOptions().CPlusPlus &&
 | |
|       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
 | |
|     // FIXME: We should do something fancier here!
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
 | |
| /// create and return an llvm GlobalVariable with the specified type.  If there
 | |
| /// is something in the module with the specified name, return it potentially
 | |
| /// bitcasted to the right type.
 | |
| ///
 | |
| /// If D is non-null, it specifies a decl that correspond to this.  This is used
 | |
| /// to set the attributes on the global when it is first created.
 | |
| llvm::Constant *
 | |
| CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
 | |
|                                      const llvm::PointerType *Ty,
 | |
|                                      const VarDecl *D,
 | |
|                                      bool UnnamedAddr) {
 | |
|   // Lookup the entry, lazily creating it if necessary.
 | |
|   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | |
|   if (Entry) {
 | |
|     if (WeakRefReferences.count(Entry)) {
 | |
|       if (D && !D->hasAttr<WeakAttr>())
 | |
|         Entry->setLinkage(llvm::Function::ExternalLinkage);
 | |
| 
 | |
|       WeakRefReferences.erase(Entry);
 | |
|     }
 | |
| 
 | |
|     if (UnnamedAddr)
 | |
|       Entry->setUnnamedAddr(true);
 | |
| 
 | |
|     if (Entry->getType() == Ty)
 | |
|       return Entry;
 | |
| 
 | |
|     // Make sure the result is of the correct type.
 | |
|     return llvm::ConstantExpr::getBitCast(Entry, Ty);
 | |
|   }
 | |
| 
 | |
|   // This is the first use or definition of a mangled name.  If there is a
 | |
|   // deferred decl with this name, remember that we need to emit it at the end
 | |
|   // of the file.
 | |
|   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
 | |
|   if (DDI != DeferredDecls.end()) {
 | |
|     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
 | |
|     // list, and remove it from DeferredDecls (since we don't need it anymore).
 | |
|     DeferredDeclsToEmit.push_back(DDI->second);
 | |
|     DeferredDecls.erase(DDI);
 | |
|   }
 | |
| 
 | |
|   llvm::GlobalVariable *GV =
 | |
|     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
 | |
|                              llvm::GlobalValue::ExternalLinkage,
 | |
|                              0, MangledName, 0,
 | |
|                              false, Ty->getAddressSpace());
 | |
| 
 | |
|   // Handle things which are present even on external declarations.
 | |
|   if (D) {
 | |
|     // FIXME: This code is overly simple and should be merged with other global
 | |
|     // handling.
 | |
|     GV->setConstant(DeclIsConstantGlobal(Context, D));
 | |
| 
 | |
|     // Set linkage and visibility in case we never see a definition.
 | |
|     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
 | |
|     if (LV.linkage() != ExternalLinkage) {
 | |
|       // Don't set internal linkage on declarations.
 | |
|     } else {
 | |
|       if (D->hasAttr<DLLImportAttr>())
 | |
|         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
 | |
|       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
 | |
|         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
 | |
| 
 | |
|       // Set visibility on a declaration only if it's explicit.
 | |
|       if (LV.visibilityExplicit())
 | |
|         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
 | |
|     }
 | |
| 
 | |
|     GV->setThreadLocal(D->isThreadSpecified());
 | |
|   }
 | |
| 
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| 
 | |
| llvm::GlobalVariable *
 | |
| CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 
 | |
|                                       const llvm::Type *Ty,
 | |
|                                       llvm::GlobalValue::LinkageTypes Linkage) {
 | |
|   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
 | |
|   llvm::GlobalVariable *OldGV = 0;
 | |
| 
 | |
|   
 | |
|   if (GV) {
 | |
|     // Check if the variable has the right type.
 | |
|     if (GV->getType()->getElementType() == Ty)
 | |
|       return GV;
 | |
| 
 | |
|     // Because C++ name mangling, the only way we can end up with an already
 | |
|     // existing global with the same name is if it has been declared extern "C".
 | |
|       assert(GV->isDeclaration() && "Declaration has wrong type!");
 | |
|     OldGV = GV;
 | |
|   }
 | |
|   
 | |
|   // Create a new variable.
 | |
|   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
 | |
|                                 Linkage, 0, Name);
 | |
|   
 | |
|   if (OldGV) {
 | |
|     // Replace occurrences of the old variable if needed.
 | |
|     GV->takeName(OldGV);
 | |
|     
 | |
|     if (!OldGV->use_empty()) {
 | |
|       llvm::Constant *NewPtrForOldDecl =
 | |
|       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
 | |
|       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
 | |
|     }
 | |
|     
 | |
|     OldGV->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
 | |
| /// given global variable.  If Ty is non-null and if the global doesn't exist,
 | |
| /// then it will be greated with the specified type instead of whatever the
 | |
| /// normal requested type would be.
 | |
| llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
 | |
|                                                   const llvm::Type *Ty) {
 | |
|   assert(D->hasGlobalStorage() && "Not a global variable");
 | |
|   QualType ASTTy = D->getType();
 | |
|   if (Ty == 0)
 | |
|     Ty = getTypes().ConvertTypeForMem(ASTTy);
 | |
| 
 | |
|   const llvm::PointerType *PTy =
 | |
|     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
 | |
| 
 | |
|   llvm::StringRef MangledName = getMangledName(D);
 | |
|   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
 | |
| }
 | |
| 
 | |
| /// CreateRuntimeVariable - Create a new runtime global variable with the
 | |
| /// specified type and name.
 | |
| llvm::Constant *
 | |
| CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
 | |
|                                      llvm::StringRef Name) {
 | |
|   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
 | |
|                                true);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
 | |
|   assert(!D->getInit() && "Cannot emit definite definitions here!");
 | |
| 
 | |
|   if (MayDeferGeneration(D)) {
 | |
|     // If we have not seen a reference to this variable yet, place it
 | |
|     // into the deferred declarations table to be emitted if needed
 | |
|     // later.
 | |
|     llvm::StringRef MangledName = getMangledName(D);
 | |
|     if (!GetGlobalValue(MangledName)) {
 | |
|       DeferredDecls[MangledName] = D;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The tentative definition is the only definition.
 | |
|   EmitGlobalVarDefinition(D);
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
 | |
|   if (DefinitionRequired)
 | |
|     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
 | |
| }
 | |
| 
 | |
| llvm::GlobalVariable::LinkageTypes 
 | |
| CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
 | |
|   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
 | |
|     return llvm::GlobalVariable::InternalLinkage;
 | |
| 
 | |
|   if (const CXXMethodDecl *KeyFunction
 | |
|                                     = RD->getASTContext().getKeyFunction(RD)) {
 | |
|     // If this class has a key function, use that to determine the linkage of
 | |
|     // the vtable.
 | |
|     const FunctionDecl *Def = 0;
 | |
|     if (KeyFunction->hasBody(Def))
 | |
|       KeyFunction = cast<CXXMethodDecl>(Def);
 | |
|     
 | |
|     switch (KeyFunction->getTemplateSpecializationKind()) {
 | |
|       case TSK_Undeclared:
 | |
|       case TSK_ExplicitSpecialization:
 | |
|         // When compiling with optimizations turned on, we emit all vtables,
 | |
|         // even if the key function is not defined in the current translation
 | |
|         // unit. If this is the case, use available_externally linkage.
 | |
|         if (!Def && CodeGenOpts.OptimizationLevel)
 | |
|           return llvm::GlobalVariable::AvailableExternallyLinkage;
 | |
| 
 | |
|         if (KeyFunction->isInlined())
 | |
|           return !Context.getLangOptions().AppleKext ?
 | |
|                    llvm::GlobalVariable::LinkOnceODRLinkage :
 | |
|                    llvm::Function::InternalLinkage;
 | |
|         
 | |
|         return llvm::GlobalVariable::ExternalLinkage;
 | |
|         
 | |
|       case TSK_ImplicitInstantiation:
 | |
|         return !Context.getLangOptions().AppleKext ?
 | |
|                  llvm::GlobalVariable::LinkOnceODRLinkage :
 | |
|                  llvm::Function::InternalLinkage;
 | |
| 
 | |
|       case TSK_ExplicitInstantiationDefinition:
 | |
|         return !Context.getLangOptions().AppleKext ?
 | |
|                  llvm::GlobalVariable::WeakODRLinkage :
 | |
|                  llvm::Function::InternalLinkage;
 | |
|   
 | |
|       case TSK_ExplicitInstantiationDeclaration:
 | |
|         // FIXME: Use available_externally linkage. However, this currently
 | |
|         // breaks LLVM's build due to undefined symbols.
 | |
|         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
 | |
|         return !Context.getLangOptions().AppleKext ?
 | |
|                  llvm::GlobalVariable::LinkOnceODRLinkage :
 | |
|                  llvm::Function::InternalLinkage;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Context.getLangOptions().AppleKext)
 | |
|     return llvm::Function::InternalLinkage;
 | |
|   
 | |
|   switch (RD->getTemplateSpecializationKind()) {
 | |
|   case TSK_Undeclared:
 | |
|   case TSK_ExplicitSpecialization:
 | |
|   case TSK_ImplicitInstantiation:
 | |
|     // FIXME: Use available_externally linkage. However, this currently
 | |
|     // breaks LLVM's build due to undefined symbols.
 | |
|     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
 | |
|   case TSK_ExplicitInstantiationDeclaration:
 | |
|     return llvm::GlobalVariable::LinkOnceODRLinkage;
 | |
| 
 | |
|   case TSK_ExplicitInstantiationDefinition:
 | |
|       return llvm::GlobalVariable::WeakODRLinkage;
 | |
|   }
 | |
|   
 | |
|   // Silence GCC warning.
 | |
|   return llvm::GlobalVariable::LinkOnceODRLinkage;
 | |
| }
 | |
| 
 | |
| CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
 | |
|     return Context.toCharUnitsFromBits(
 | |
|       TheTargetData.getTypeStoreSizeInBits(Ty));
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
 | |
|   llvm::Constant *Init = 0;
 | |
|   QualType ASTTy = D->getType();
 | |
|   bool NonConstInit = false;
 | |
| 
 | |
|   const Expr *InitExpr = D->getAnyInitializer();
 | |
|   
 | |
|   if (!InitExpr) {
 | |
|     // This is a tentative definition; tentative definitions are
 | |
|     // implicitly initialized with { 0 }.
 | |
|     //
 | |
|     // Note that tentative definitions are only emitted at the end of
 | |
|     // a translation unit, so they should never have incomplete
 | |
|     // type. In addition, EmitTentativeDefinition makes sure that we
 | |
|     // never attempt to emit a tentative definition if a real one
 | |
|     // exists. A use may still exists, however, so we still may need
 | |
|     // to do a RAUW.
 | |
|     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
 | |
|     Init = EmitNullConstant(D->getType());
 | |
|   } else {
 | |
|     Init = EmitConstantExpr(InitExpr, D->getType());       
 | |
|     if (!Init) {
 | |
|       QualType T = InitExpr->getType();
 | |
|       if (D->getType()->isReferenceType())
 | |
|         T = D->getType();
 | |
|       
 | |
|       if (getLangOptions().CPlusPlus) {
 | |
|         Init = EmitNullConstant(T);
 | |
|         NonConstInit = true;
 | |
|       } else {
 | |
|         ErrorUnsupported(D, "static initializer");
 | |
|         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
 | |
|       }
 | |
|     } else {
 | |
|       // We don't need an initializer, so remove the entry for the delayed
 | |
|       // initializer position (just in case this entry was delayed).
 | |
|       if (getLangOptions().CPlusPlus)
 | |
|         DelayedCXXInitPosition.erase(D);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const llvm::Type* InitType = Init->getType();
 | |
|   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
 | |
| 
 | |
|   // Strip off a bitcast if we got one back.
 | |
|   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
 | |
|     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
 | |
|            // all zero index gep.
 | |
|            CE->getOpcode() == llvm::Instruction::GetElementPtr);
 | |
|     Entry = CE->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // Entry is now either a Function or GlobalVariable.
 | |
|   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
 | |
| 
 | |
|   // We have a definition after a declaration with the wrong type.
 | |
|   // We must make a new GlobalVariable* and update everything that used OldGV
 | |
|   // (a declaration or tentative definition) with the new GlobalVariable*
 | |
|   // (which will be a definition).
 | |
|   //
 | |
|   // This happens if there is a prototype for a global (e.g.
 | |
|   // "extern int x[];") and then a definition of a different type (e.g.
 | |
|   // "int x[10];"). This also happens when an initializer has a different type
 | |
|   // from the type of the global (this happens with unions).
 | |
|   if (GV == 0 ||
 | |
|       GV->getType()->getElementType() != InitType ||
 | |
|       GV->getType()->getAddressSpace() !=
 | |
|         getContext().getTargetAddressSpace(ASTTy)) {
 | |
| 
 | |
|     // Move the old entry aside so that we'll create a new one.
 | |
|     Entry->setName(llvm::StringRef());
 | |
| 
 | |
|     // Make a new global with the correct type, this is now guaranteed to work.
 | |
|     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
 | |
| 
 | |
|     // Replace all uses of the old global with the new global
 | |
|     llvm::Constant *NewPtrForOldDecl =
 | |
|         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
 | |
|     Entry->replaceAllUsesWith(NewPtrForOldDecl);
 | |
| 
 | |
|     // Erase the old global, since it is no longer used.
 | |
|     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
 | |
|     SourceManager &SM = Context.getSourceManager();
 | |
|     AddAnnotation(EmitAnnotateAttr(GV, AA,
 | |
|                               SM.getInstantiationLineNumber(D->getLocation())));
 | |
|   }
 | |
| 
 | |
|   GV->setInitializer(Init);
 | |
| 
 | |
|   // If it is safe to mark the global 'constant', do so now.
 | |
|   GV->setConstant(false);
 | |
|   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
 | |
|     GV->setConstant(true);
 | |
| 
 | |
|   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
 | |
|   
 | |
|   // Set the llvm linkage type as appropriate.
 | |
|   llvm::GlobalValue::LinkageTypes Linkage = 
 | |
|     GetLLVMLinkageVarDefinition(D, GV);
 | |
|   GV->setLinkage(Linkage);
 | |
|   if (Linkage == llvm::GlobalVariable::CommonLinkage)
 | |
|     // common vars aren't constant even if declared const.
 | |
|     GV->setConstant(false);
 | |
| 
 | |
|   SetCommonAttributes(D, GV);
 | |
| 
 | |
|   // Emit the initializer function if necessary.
 | |
|   if (NonConstInit)
 | |
|     EmitCXXGlobalVarDeclInitFunc(D, GV);
 | |
| 
 | |
|   // Emit global variable debug information.
 | |
|   if (CGDebugInfo *DI = getModuleDebugInfo()) {
 | |
|     DI->setLocation(D->getLocation());
 | |
|     DI->EmitGlobalVariable(GV, D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| llvm::GlobalValue::LinkageTypes
 | |
| CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
 | |
|                                            llvm::GlobalVariable *GV) {
 | |
|   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
 | |
|   if (Linkage == GVA_Internal)
 | |
|     return llvm::Function::InternalLinkage;
 | |
|   else if (D->hasAttr<DLLImportAttr>())
 | |
|     return llvm::Function::DLLImportLinkage;
 | |
|   else if (D->hasAttr<DLLExportAttr>())
 | |
|     return llvm::Function::DLLExportLinkage;
 | |
|   else if (D->hasAttr<WeakAttr>()) {
 | |
|     if (GV->isConstant())
 | |
|       return llvm::GlobalVariable::WeakODRLinkage;
 | |
|     else
 | |
|       return llvm::GlobalVariable::WeakAnyLinkage;
 | |
|   } else if (Linkage == GVA_TemplateInstantiation ||
 | |
|              Linkage == GVA_ExplicitTemplateInstantiation)
 | |
|     return llvm::GlobalVariable::WeakODRLinkage;
 | |
|   else if (!getLangOptions().CPlusPlus && 
 | |
|            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
 | |
|              D->getAttr<CommonAttr>()) &&
 | |
|            !D->hasExternalStorage() && !D->getInit() &&
 | |
|            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
 | |
|     // Thread local vars aren't considered common linkage.
 | |
|     return llvm::GlobalVariable::CommonLinkage;
 | |
|   }
 | |
|   return llvm::GlobalVariable::ExternalLinkage;
 | |
| }
 | |
| 
 | |
| /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
 | |
| /// implement a function with no prototype, e.g. "int foo() {}".  If there are
 | |
| /// existing call uses of the old function in the module, this adjusts them to
 | |
| /// call the new function directly.
 | |
| ///
 | |
| /// This is not just a cleanup: the always_inline pass requires direct calls to
 | |
| /// functions to be able to inline them.  If there is a bitcast in the way, it
 | |
| /// won't inline them.  Instcombine normally deletes these calls, but it isn't
 | |
| /// run at -O0.
 | |
| static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
 | |
|                                                       llvm::Function *NewFn) {
 | |
|   // If we're redefining a global as a function, don't transform it.
 | |
|   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
 | |
|   if (OldFn == 0) return;
 | |
| 
 | |
|   const llvm::Type *NewRetTy = NewFn->getReturnType();
 | |
|   llvm::SmallVector<llvm::Value*, 4> ArgList;
 | |
| 
 | |
|   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
 | |
|        UI != E; ) {
 | |
|     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
 | |
|     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
 | |
|     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
 | |
|     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
 | |
|     llvm::CallSite CS(CI);
 | |
|     if (!CI || !CS.isCallee(I)) continue;
 | |
| 
 | |
|     // If the return types don't match exactly, and if the call isn't dead, then
 | |
|     // we can't transform this call.
 | |
|     if (CI->getType() != NewRetTy && !CI->use_empty())
 | |
|       continue;
 | |
| 
 | |
|     // If the function was passed too few arguments, don't transform.  If extra
 | |
|     // arguments were passed, we silently drop them.  If any of the types
 | |
|     // mismatch, we don't transform.
 | |
|     unsigned ArgNo = 0;
 | |
|     bool DontTransform = false;
 | |
|     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
 | |
|          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
 | |
|       if (CS.arg_size() == ArgNo ||
 | |
|           CS.getArgument(ArgNo)->getType() != AI->getType()) {
 | |
|         DontTransform = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (DontTransform)
 | |
|       continue;
 | |
| 
 | |
|     // Okay, we can transform this.  Create the new call instruction and copy
 | |
|     // over the required information.
 | |
|     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
 | |
|     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
 | |
|                                                      ArgList.end(), "", CI);
 | |
|     ArgList.clear();
 | |
|     if (!NewCall->getType()->isVoidTy())
 | |
|       NewCall->takeName(CI);
 | |
|     NewCall->setAttributes(CI->getAttributes());
 | |
|     NewCall->setCallingConv(CI->getCallingConv());
 | |
| 
 | |
|     // Finally, remove the old call, replacing any uses with the new one.
 | |
|     if (!CI->use_empty())
 | |
|       CI->replaceAllUsesWith(NewCall);
 | |
| 
 | |
|     // Copy debug location attached to CI.
 | |
|     if (!CI->getDebugLoc().isUnknown())
 | |
|       NewCall->setDebugLoc(CI->getDebugLoc());
 | |
|     CI->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
 | |
|   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
 | |
| 
 | |
|   // Compute the function info and LLVM type.
 | |
|   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
 | |
|   bool variadic = false;
 | |
|   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
 | |
|     variadic = fpt->isVariadic();
 | |
|   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
 | |
| 
 | |
|   // Get or create the prototype for the function.
 | |
|   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
 | |
| 
 | |
|   // Strip off a bitcast if we got one back.
 | |
|   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
 | |
|     assert(CE->getOpcode() == llvm::Instruction::BitCast);
 | |
|     Entry = CE->getOperand(0);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
 | |
|     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
 | |
| 
 | |
|     // If the types mismatch then we have to rewrite the definition.
 | |
|     assert(OldFn->isDeclaration() &&
 | |
|            "Shouldn't replace non-declaration");
 | |
| 
 | |
|     // F is the Function* for the one with the wrong type, we must make a new
 | |
|     // Function* and update everything that used F (a declaration) with the new
 | |
|     // Function* (which will be a definition).
 | |
|     //
 | |
|     // This happens if there is a prototype for a function
 | |
|     // (e.g. "int f()") and then a definition of a different type
 | |
|     // (e.g. "int f(int x)").  Move the old function aside so that it
 | |
|     // doesn't interfere with GetAddrOfFunction.
 | |
|     OldFn->setName(llvm::StringRef());
 | |
|     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
 | |
| 
 | |
|     // If this is an implementation of a function without a prototype, try to
 | |
|     // replace any existing uses of the function (which may be calls) with uses
 | |
|     // of the new function
 | |
|     if (D->getType()->isFunctionNoProtoType()) {
 | |
|       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
 | |
|       OldFn->removeDeadConstantUsers();
 | |
|     }
 | |
| 
 | |
|     // Replace uses of F with the Function we will endow with a body.
 | |
|     if (!Entry->use_empty()) {
 | |
|       llvm::Constant *NewPtrForOldDecl =
 | |
|         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
 | |
|       Entry->replaceAllUsesWith(NewPtrForOldDecl);
 | |
|     }
 | |
| 
 | |
|     // Ok, delete the old function now, which is dead.
 | |
|     OldFn->eraseFromParent();
 | |
| 
 | |
|     Entry = NewFn;
 | |
|   }
 | |
| 
 | |
|   // We need to set linkage and visibility on the function before
 | |
|   // generating code for it because various parts of IR generation
 | |
|   // want to propagate this information down (e.g. to local static
 | |
|   // declarations).
 | |
|   llvm::Function *Fn = cast<llvm::Function>(Entry);
 | |
|   setFunctionLinkage(D, Fn);
 | |
| 
 | |
|   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
 | |
|   setGlobalVisibility(Fn, D);
 | |
| 
 | |
|   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
 | |
| 
 | |
|   SetFunctionDefinitionAttributes(D, Fn);
 | |
|   SetLLVMFunctionAttributesForDefinition(D, Fn);
 | |
| 
 | |
|   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
 | |
|     AddGlobalCtor(Fn, CA->getPriority());
 | |
|   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
 | |
|     AddGlobalDtor(Fn, DA->getPriority());
 | |
| }
 | |
| 
 | |
| void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
 | |
|   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
 | |
|   const AliasAttr *AA = D->getAttr<AliasAttr>();
 | |
|   assert(AA && "Not an alias?");
 | |
| 
 | |
|   llvm::StringRef MangledName = getMangledName(GD);
 | |
| 
 | |
|   // If there is a definition in the module, then it wins over the alias.
 | |
|   // This is dubious, but allow it to be safe.  Just ignore the alias.
 | |
|   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
 | |
|   if (Entry && !Entry->isDeclaration())
 | |
|     return;
 | |
| 
 | |
|   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
 | |
| 
 | |
|   // Create a reference to the named value.  This ensures that it is emitted
 | |
|   // if a deferred decl.
 | |
|   llvm::Constant *Aliasee;
 | |
|   if (isa<llvm::FunctionType>(DeclTy))
 | |
|     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
 | |
|                                       /*ForVTable=*/false);
 | |
|   else
 | |
|     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
 | |
|                                     llvm::PointerType::getUnqual(DeclTy), 0);
 | |
| 
 | |
|   // Create the new alias itself, but don't set a name yet.
 | |
|   llvm::GlobalValue *GA =
 | |
|     new llvm::GlobalAlias(Aliasee->getType(),
 | |
|                           llvm::Function::ExternalLinkage,
 | |
|                           "", Aliasee, &getModule());
 | |
| 
 | |
|   if (Entry) {
 | |
|     assert(Entry->isDeclaration());
 | |
| 
 | |
|     // If there is a declaration in the module, then we had an extern followed
 | |
|     // by the alias, as in:
 | |
|     //   extern int test6();
 | |
|     //   ...
 | |
|     //   int test6() __attribute__((alias("test7")));
 | |
|     //
 | |
|     // Remove it and replace uses of it with the alias.
 | |
|     GA->takeName(Entry);
 | |
| 
 | |
|     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
 | |
|                                                           Entry->getType()));
 | |
|     Entry->eraseFromParent();
 | |
|   } else {
 | |
|     GA->setName(MangledName);
 | |
|   }
 | |
| 
 | |
|   // Set attributes which are particular to an alias; this is a
 | |
|   // specialization of the attributes which may be set on a global
 | |
|   // variable/function.
 | |
|   if (D->hasAttr<DLLExportAttr>()) {
 | |
|     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|       // The dllexport attribute is ignored for undefined symbols.
 | |
|       if (FD->hasBody())
 | |
|         GA->setLinkage(llvm::Function::DLLExportLinkage);
 | |
|     } else {
 | |
|       GA->setLinkage(llvm::Function::DLLExportLinkage);
 | |
|     }
 | |
|   } else if (D->hasAttr<WeakAttr>() ||
 | |
|              D->hasAttr<WeakRefAttr>() ||
 | |
|              D->isWeakImported()) {
 | |
|     GA->setLinkage(llvm::Function::WeakAnyLinkage);
 | |
|   }
 | |
| 
 | |
|   SetCommonAttributes(D, GA);
 | |
| }
 | |
| 
 | |
| /// getBuiltinLibFunction - Given a builtin id for a function like
 | |
| /// "__builtin_fabsf", return a Function* for "fabsf".
 | |
| llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
 | |
|                                                   unsigned BuiltinID) {
 | |
|   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
 | |
|           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
 | |
|          "isn't a lib fn");
 | |
| 
 | |
|   // Get the name, skip over the __builtin_ prefix (if necessary).
 | |
|   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
 | |
|   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
 | |
|     Name += 10;
 | |
| 
 | |
|   const llvm::FunctionType *Ty =
 | |
|     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
 | |
| 
 | |
|   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
 | |
| }
 | |
| 
 | |
| llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
 | |
|                                             unsigned NumTys) {
 | |
|   return llvm::Intrinsic::getDeclaration(&getModule(),
 | |
|                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
 | |
| }
 | |
| 
 | |
| static llvm::StringMapEntry<llvm::Constant*> &
 | |
| GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
 | |
|                          const StringLiteral *Literal,
 | |
|                          bool TargetIsLSB,
 | |
|                          bool &IsUTF16,
 | |
|                          unsigned &StringLength) {
 | |
|   llvm::StringRef String = Literal->getString();
 | |
|   unsigned NumBytes = String.size();
 | |
| 
 | |
|   // Check for simple case.
 | |
|   if (!Literal->containsNonAsciiOrNull()) {
 | |
|     StringLength = NumBytes;
 | |
|     return Map.GetOrCreateValue(String);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, convert the UTF8 literals into a byte string.
 | |
|   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
 | |
|   const UTF8 *FromPtr = (UTF8 *)String.data();
 | |
|   UTF16 *ToPtr = &ToBuf[0];
 | |
| 
 | |
|   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
 | |
|                            &ToPtr, ToPtr + NumBytes,
 | |
|                            strictConversion);
 | |
| 
 | |
|   // ConvertUTF8toUTF16 returns the length in ToPtr.
 | |
|   StringLength = ToPtr - &ToBuf[0];
 | |
| 
 | |
|   // Render the UTF-16 string into a byte array and convert to the target byte
 | |
|   // order.
 | |
|   //
 | |
|   // FIXME: This isn't something we should need to do here.
 | |
|   llvm::SmallString<128> AsBytes;
 | |
|   AsBytes.reserve(StringLength * 2);
 | |
|   for (unsigned i = 0; i != StringLength; ++i) {
 | |
|     unsigned short Val = ToBuf[i];
 | |
|     if (TargetIsLSB) {
 | |
|       AsBytes.push_back(Val & 0xFF);
 | |
|       AsBytes.push_back(Val >> 8);
 | |
|     } else {
 | |
|       AsBytes.push_back(Val >> 8);
 | |
|       AsBytes.push_back(Val & 0xFF);
 | |
|     }
 | |
|   }
 | |
|   // Append one extra null character, the second is automatically added by our
 | |
|   // caller.
 | |
|   AsBytes.push_back(0);
 | |
| 
 | |
|   IsUTF16 = true;
 | |
|   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
 | |
|   unsigned StringLength = 0;
 | |
|   bool isUTF16 = false;
 | |
|   llvm::StringMapEntry<llvm::Constant*> &Entry =
 | |
|     GetConstantCFStringEntry(CFConstantStringMap, Literal,
 | |
|                              getTargetData().isLittleEndian(),
 | |
|                              isUTF16, StringLength);
 | |
| 
 | |
|   if (llvm::Constant *C = Entry.getValue())
 | |
|     return C;
 | |
| 
 | |
|   llvm::Constant *Zero =
 | |
|       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
 | |
|   llvm::Constant *Zeros[] = { Zero, Zero };
 | |
| 
 | |
|   // If we don't already have it, get __CFConstantStringClassReference.
 | |
|   if (!CFConstantStringClassRef) {
 | |
|     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
 | |
|     Ty = llvm::ArrayType::get(Ty, 0);
 | |
|     llvm::Constant *GV = CreateRuntimeVariable(Ty,
 | |
|                                            "__CFConstantStringClassReference");
 | |
|     // Decay array -> ptr
 | |
|     CFConstantStringClassRef =
 | |
|       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
 | |
|   }
 | |
| 
 | |
|   QualType CFTy = getContext().getCFConstantStringType();
 | |
| 
 | |
|   const llvm::StructType *STy =
 | |
|     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
 | |
| 
 | |
|   std::vector<llvm::Constant*> Fields(4);
 | |
| 
 | |
|   // Class pointer.
 | |
|   Fields[0] = CFConstantStringClassRef;
 | |
| 
 | |
|   // Flags.
 | |
|   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
 | |
|   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
 | |
|     llvm::ConstantInt::get(Ty, 0x07C8);
 | |
| 
 | |
|   // String pointer.
 | |
|   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
 | |
| 
 | |
|   llvm::GlobalValue::LinkageTypes Linkage;
 | |
|   bool isConstant;
 | |
|   if (isUTF16) {
 | |
|     // FIXME: why do utf strings get "_" labels instead of "L" labels?
 | |
|     Linkage = llvm::GlobalValue::InternalLinkage;
 | |
|     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
 | |
|     // does make plain ascii ones writable.
 | |
|     isConstant = true;
 | |
|   } else {
 | |
|     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
 | |
|     // when using private linkage. It is not clear if this is a bug in ld
 | |
|     // or a reasonable new restriction.
 | |
|     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
 | |
|     isConstant = !Features.WritableStrings;
 | |
|   }
 | |
|   
 | |
|   llvm::GlobalVariable *GV =
 | |
|     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
 | |
|                              ".str");
 | |
|   GV->setUnnamedAddr(true);
 | |
|   if (isUTF16) {
 | |
|     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
 | |
|     GV->setAlignment(Align.getQuantity());
 | |
|   } else {
 | |
|     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
 | |
|     GV->setAlignment(Align.getQuantity());
 | |
|   }
 | |
|   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
 | |
| 
 | |
|   // String length.
 | |
|   Ty = getTypes().ConvertType(getContext().LongTy);
 | |
|   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
 | |
| 
 | |
|   // The struct.
 | |
|   C = llvm::ConstantStruct::get(STy, Fields);
 | |
|   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
 | |
|                                 llvm::GlobalVariable::PrivateLinkage, C,
 | |
|                                 "_unnamed_cfstring_");
 | |
|   if (const char *Sect = getContext().Target.getCFStringSection())
 | |
|     GV->setSection(Sect);
 | |
|   Entry.setValue(GV);
 | |
| 
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| llvm::Constant *
 | |
| CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
 | |
|   unsigned StringLength = 0;
 | |
|   bool isUTF16 = false;
 | |
|   llvm::StringMapEntry<llvm::Constant*> &Entry =
 | |
|     GetConstantCFStringEntry(CFConstantStringMap, Literal,
 | |
|                              getTargetData().isLittleEndian(),
 | |
|                              isUTF16, StringLength);
 | |
|   
 | |
|   if (llvm::Constant *C = Entry.getValue())
 | |
|     return C;
 | |
|   
 | |
|   llvm::Constant *Zero =
 | |
|   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
 | |
|   llvm::Constant *Zeros[] = { Zero, Zero };
 | |
|   
 | |
|   // If we don't already have it, get _NSConstantStringClassReference.
 | |
|   if (!ConstantStringClassRef) {
 | |
|     std::string StringClass(getLangOptions().ObjCConstantStringClass);
 | |
|     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
 | |
|     Ty = llvm::ArrayType::get(Ty, 0);
 | |
|     llvm::Constant *GV;
 | |
|     if (StringClass.empty())
 | |
|       GV = CreateRuntimeVariable(Ty, 
 | |
|                                  Features.ObjCNonFragileABI ?
 | |
|                                  "OBJC_CLASS_$_NSConstantString" :
 | |
|                                  "_NSConstantStringClassReference");
 | |
|     else {
 | |
|       std::string str;
 | |
|       if (Features.ObjCNonFragileABI)
 | |
|         str = "OBJC_CLASS_$_" + StringClass;
 | |
|       else
 | |
|         str = "_" + StringClass + "ClassReference";
 | |
|       GV = CreateRuntimeVariable(Ty, str);
 | |
|     }
 | |
|     // Decay array -> ptr
 | |
|     ConstantStringClassRef = 
 | |
|     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
 | |
|   }
 | |
|   
 | |
|   QualType NSTy = getContext().getNSConstantStringType();
 | |
|   
 | |
|   const llvm::StructType *STy =
 | |
|   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
 | |
|   
 | |
|   std::vector<llvm::Constant*> Fields(3);
 | |
|   
 | |
|   // Class pointer.
 | |
|   Fields[0] = ConstantStringClassRef;
 | |
|   
 | |
|   // String pointer.
 | |
|   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
 | |
|   
 | |
|   llvm::GlobalValue::LinkageTypes Linkage;
 | |
|   bool isConstant;
 | |
|   if (isUTF16) {
 | |
|     // FIXME: why do utf strings get "_" labels instead of "L" labels?
 | |
|     Linkage = llvm::GlobalValue::InternalLinkage;
 | |
|     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
 | |
|     // does make plain ascii ones writable.
 | |
|     isConstant = true;
 | |
|   } else {
 | |
|     Linkage = llvm::GlobalValue::PrivateLinkage;
 | |
|     isConstant = !Features.WritableStrings;
 | |
|   }
 | |
|   
 | |
|   llvm::GlobalVariable *GV =
 | |
|   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
 | |
|                            ".str");
 | |
|   GV->setUnnamedAddr(true);
 | |
|   if (isUTF16) {
 | |
|     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
 | |
|     GV->setAlignment(Align.getQuantity());
 | |
|   } else {
 | |
|     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
 | |
|     GV->setAlignment(Align.getQuantity());
 | |
|   }
 | |
|   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
 | |
|   
 | |
|   // String length.
 | |
|   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
 | |
|   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
 | |
|   
 | |
|   // The struct.
 | |
|   C = llvm::ConstantStruct::get(STy, Fields);
 | |
|   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
 | |
|                                 llvm::GlobalVariable::PrivateLinkage, C,
 | |
|                                 "_unnamed_nsstring_");
 | |
|   // FIXME. Fix section.
 | |
|   if (const char *Sect = 
 | |
|         Features.ObjCNonFragileABI 
 | |
|           ? getContext().Target.getNSStringNonFragileABISection() 
 | |
|           : getContext().Target.getNSStringSection())
 | |
|     GV->setSection(Sect);
 | |
|   Entry.setValue(GV);
 | |
|   
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// GetStringForStringLiteral - Return the appropriate bytes for a
 | |
| /// string literal, properly padded to match the literal type.
 | |
| std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
 | |
|   const ASTContext &Context = getContext();
 | |
|   const ConstantArrayType *CAT =
 | |
|     Context.getAsConstantArrayType(E->getType());
 | |
|   assert(CAT && "String isn't pointer or array!");
 | |
| 
 | |
|   // Resize the string to the right size.
 | |
|   uint64_t RealLen = CAT->getSize().getZExtValue();
 | |
| 
 | |
|   if (E->isWide())
 | |
|     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
 | |
| 
 | |
|   std::string Str = E->getString().str();
 | |
|   Str.resize(RealLen, '\0');
 | |
| 
 | |
|   return Str;
 | |
| }
 | |
| 
 | |
| /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
 | |
| /// constant array for the given string literal.
 | |
| llvm::Constant *
 | |
| CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
 | |
|   // FIXME: This can be more efficient.
 | |
|   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
 | |
|   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
 | |
|   if (S->isWide()) {
 | |
|     llvm::Type *DestTy =
 | |
|         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
 | |
|     C = llvm::ConstantExpr::getBitCast(C, DestTy);
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
 | |
| /// array for the given ObjCEncodeExpr node.
 | |
| llvm::Constant *
 | |
| CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
 | |
|   std::string Str;
 | |
|   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
 | |
| 
 | |
|   return GetAddrOfConstantCString(Str);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GenerateWritableString -- Creates storage for a string literal.
 | |
| static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
 | |
|                                              bool constant,
 | |
|                                              CodeGenModule &CGM,
 | |
|                                              const char *GlobalName) {
 | |
|   // Create Constant for this string literal. Don't add a '\0'.
 | |
|   llvm::Constant *C =
 | |
|       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
 | |
| 
 | |
|   // Create a global variable for this string
 | |
|   llvm::GlobalVariable *GV =
 | |
|     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
 | |
|                              llvm::GlobalValue::PrivateLinkage,
 | |
|                              C, GlobalName);
 | |
|   GV->setUnnamedAddr(true);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// GetAddrOfConstantString - Returns a pointer to a character array
 | |
| /// containing the literal. This contents are exactly that of the
 | |
| /// given string, i.e. it will not be null terminated automatically;
 | |
| /// see GetAddrOfConstantCString. Note that whether the result is
 | |
| /// actually a pointer to an LLVM constant depends on
 | |
| /// Feature.WriteableStrings.
 | |
| ///
 | |
| /// The result has pointer to array type.
 | |
| llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
 | |
|                                                        const char *GlobalName) {
 | |
|   bool IsConstant = !Features.WritableStrings;
 | |
| 
 | |
|   // Get the default prefix if a name wasn't specified.
 | |
|   if (!GlobalName)
 | |
|     GlobalName = ".str";
 | |
| 
 | |
|   // Don't share any string literals if strings aren't constant.
 | |
|   if (!IsConstant)
 | |
|     return GenerateStringLiteral(Str, false, *this, GlobalName);
 | |
| 
 | |
|   llvm::StringMapEntry<llvm::Constant *> &Entry =
 | |
|     ConstantStringMap.GetOrCreateValue(Str);
 | |
| 
 | |
|   if (Entry.getValue())
 | |
|     return Entry.getValue();
 | |
| 
 | |
|   // Create a global variable for this.
 | |
|   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
 | |
|   Entry.setValue(C);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// GetAddrOfConstantCString - Returns a pointer to a character
 | |
| /// array containing the literal and a terminating '\0'
 | |
| /// character. The result has pointer to array type.
 | |
| llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
 | |
|                                                         const char *GlobalName){
 | |
|   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
 | |
|   return GetAddrOfConstantString(StrWithNull, GlobalName);
 | |
| }
 | |
| 
 | |
| /// EmitObjCPropertyImplementations - Emit information for synthesized
 | |
| /// properties for an implementation.
 | |
| void CodeGenModule::EmitObjCPropertyImplementations(const
 | |
|                                                     ObjCImplementationDecl *D) {
 | |
|   for (ObjCImplementationDecl::propimpl_iterator
 | |
|          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
 | |
|     ObjCPropertyImplDecl *PID = *i;
 | |
| 
 | |
|     // Dynamic is just for type-checking.
 | |
|     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
 | |
|       ObjCPropertyDecl *PD = PID->getPropertyDecl();
 | |
| 
 | |
|       // Determine which methods need to be implemented, some may have
 | |
|       // been overridden. Note that ::isSynthesized is not the method
 | |
|       // we want, that just indicates if the decl came from a
 | |
|       // property. What we want to know is if the method is defined in
 | |
|       // this implementation.
 | |
|       if (!D->getInstanceMethod(PD->getGetterName()))
 | |
|         CodeGenFunction(*this).GenerateObjCGetter(
 | |
|                                  const_cast<ObjCImplementationDecl *>(D), PID);
 | |
|       if (!PD->isReadOnly() &&
 | |
|           !D->getInstanceMethod(PD->getSetterName()))
 | |
|         CodeGenFunction(*this).GenerateObjCSetter(
 | |
|                                  const_cast<ObjCImplementationDecl *>(D), PID);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool needsDestructMethod(ObjCImplementationDecl *impl) {
 | |
|   ObjCInterfaceDecl *iface
 | |
|     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
 | |
|   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
 | |
|        ivar; ivar = ivar->getNextIvar())
 | |
|     if (ivar->getType().isDestructedType())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// EmitObjCIvarInitializations - Emit information for ivar initialization
 | |
| /// for an implementation.
 | |
| void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
 | |
|   // We might need a .cxx_destruct even if we don't have any ivar initializers.
 | |
|   if (needsDestructMethod(D)) {
 | |
|     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
 | |
|     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
 | |
|     ObjCMethodDecl *DTORMethod =
 | |
|       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
 | |
|                              cxxSelector, getContext().VoidTy, 0, D, true,
 | |
|                              false, true, false, ObjCMethodDecl::Required);
 | |
|     D->addInstanceMethod(DTORMethod);
 | |
|     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
 | |
|   }
 | |
| 
 | |
|   // If the implementation doesn't have any ivar initializers, we don't need
 | |
|   // a .cxx_construct.
 | |
|   if (D->getNumIvarInitializers() == 0)
 | |
|     return;
 | |
|   
 | |
|   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
 | |
|   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
 | |
|   // The constructor returns 'self'.
 | |
|   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 
 | |
|                                                 D->getLocation(),
 | |
|                                                 D->getLocation(), cxxSelector,
 | |
|                                                 getContext().getObjCIdType(), 0, 
 | |
|                                                 D, true, false, true, false,
 | |
|                                                 ObjCMethodDecl::Required);
 | |
|   D->addInstanceMethod(CTORMethod);
 | |
|   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
 | |
| }
 | |
| 
 | |
| /// EmitNamespace - Emit all declarations in a namespace.
 | |
| void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
 | |
|   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
 | |
|        I != E; ++I)
 | |
|     EmitTopLevelDecl(*I);
 | |
| }
 | |
| 
 | |
| // EmitLinkageSpec - Emit all declarations in a linkage spec.
 | |
| void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
 | |
|   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
 | |
|       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
 | |
|     ErrorUnsupported(LSD, "linkage spec");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
 | |
|        I != E; ++I)
 | |
|     EmitTopLevelDecl(*I);
 | |
| }
 | |
| 
 | |
| /// EmitTopLevelDecl - Emit code for a single top level declaration.
 | |
| void CodeGenModule::EmitTopLevelDecl(Decl *D) {
 | |
|   // If an error has occurred, stop code generation, but continue
 | |
|   // parsing and semantic analysis (to ensure all warnings and errors
 | |
|   // are emitted).
 | |
|   if (Diags.hasErrorOccurred())
 | |
|     return;
 | |
| 
 | |
|   // Ignore dependent declarations.
 | |
|   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   switch (D->getKind()) {
 | |
|   case Decl::CXXConversion:
 | |
|   case Decl::CXXMethod:
 | |
|   case Decl::Function:
 | |
|     // Skip function templates
 | |
|     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
 | |
|         cast<FunctionDecl>(D)->isLateTemplateParsed())
 | |
|       return;
 | |
| 
 | |
|     EmitGlobal(cast<FunctionDecl>(D));
 | |
|     break;
 | |
|       
 | |
|   case Decl::Var:
 | |
|     EmitGlobal(cast<VarDecl>(D));
 | |
|     break;
 | |
| 
 | |
|   // Indirect fields from global anonymous structs and unions can be
 | |
|   // ignored; only the actual variable requires IR gen support.
 | |
|   case Decl::IndirectField:
 | |
|     break;
 | |
| 
 | |
|   // C++ Decls
 | |
|   case Decl::Namespace:
 | |
|     EmitNamespace(cast<NamespaceDecl>(D));
 | |
|     break;
 | |
|     // No code generation needed.
 | |
|   case Decl::UsingShadow:
 | |
|   case Decl::Using:
 | |
|   case Decl::UsingDirective:
 | |
|   case Decl::ClassTemplate:
 | |
|   case Decl::FunctionTemplate:
 | |
|   case Decl::NamespaceAlias:
 | |
|     break;
 | |
|   case Decl::CXXConstructor:
 | |
|     // Skip function templates
 | |
|     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
 | |
|         cast<FunctionDecl>(D)->isLateTemplateParsed())
 | |
|       return;
 | |
|       
 | |
|     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
 | |
|     break;
 | |
|   case Decl::CXXDestructor:
 | |
|     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
 | |
|       return;
 | |
|     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
 | |
|     break;
 | |
| 
 | |
|   case Decl::StaticAssert:
 | |
|     // Nothing to do.
 | |
|     break;
 | |
| 
 | |
|   // Objective-C Decls
 | |
| 
 | |
|   // Forward declarations, no (immediate) code generation.
 | |
|   case Decl::ObjCClass:
 | |
|   case Decl::ObjCForwardProtocol:
 | |
|   case Decl::ObjCInterface:
 | |
|     break;
 | |
|   
 | |
|   case Decl::ObjCCategory: {
 | |
|     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
 | |
|     if (CD->IsClassExtension() && CD->hasSynthBitfield())
 | |
|       Context.ResetObjCLayout(CD->getClassInterface());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Decl::ObjCProtocol:
 | |
|     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
 | |
|     break;
 | |
| 
 | |
|   case Decl::ObjCCategoryImpl:
 | |
|     // Categories have properties but don't support synthesize so we
 | |
|     // can ignore them here.
 | |
|     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
 | |
|     break;
 | |
| 
 | |
|   case Decl::ObjCImplementation: {
 | |
|     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
 | |
|     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
 | |
|       Context.ResetObjCLayout(OMD->getClassInterface());
 | |
|     EmitObjCPropertyImplementations(OMD);
 | |
|     EmitObjCIvarInitializations(OMD);
 | |
|     Runtime->GenerateClass(OMD);
 | |
|     break;
 | |
|   }
 | |
|   case Decl::ObjCMethod: {
 | |
|     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
 | |
|     // If this is not a prototype, emit the body.
 | |
|     if (OMD->getBody())
 | |
|       CodeGenFunction(*this).GenerateObjCMethod(OMD);
 | |
|     break;
 | |
|   }
 | |
|   case Decl::ObjCCompatibleAlias:
 | |
|     // compatibility-alias is a directive and has no code gen.
 | |
|     break;
 | |
| 
 | |
|   case Decl::LinkageSpec:
 | |
|     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
 | |
|     break;
 | |
| 
 | |
|   case Decl::FileScopeAsm: {
 | |
|     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
 | |
|     llvm::StringRef AsmString = AD->getAsmString()->getString();
 | |
| 
 | |
|     const std::string &S = getModule().getModuleInlineAsm();
 | |
|     if (S.empty())
 | |
|       getModule().setModuleInlineAsm(AsmString);
 | |
|     else
 | |
|       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     // Make sure we handled everything we should, every other kind is a
 | |
|     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
 | |
|     // function. Need to recode Decl::Kind to do that easily.
 | |
|     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Turns the given pointer into a constant.
 | |
| static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
 | |
|                                           const void *Ptr) {
 | |
|   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
 | |
|   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
 | |
|   return llvm::ConstantInt::get(i64, PtrInt);
 | |
| }
 | |
| 
 | |
| static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
 | |
|                                    llvm::NamedMDNode *&GlobalMetadata,
 | |
|                                    GlobalDecl D,
 | |
|                                    llvm::GlobalValue *Addr) {
 | |
|   if (!GlobalMetadata)
 | |
|     GlobalMetadata =
 | |
|       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
 | |
| 
 | |
|   // TODO: should we report variant information for ctors/dtors?
 | |
|   llvm::Value *Ops[] = {
 | |
|     Addr,
 | |
|     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
 | |
|   };
 | |
|   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
 | |
| }
 | |
| 
 | |
| /// Emits metadata nodes associating all the global values in the
 | |
| /// current module with the Decls they came from.  This is useful for
 | |
| /// projects using IR gen as a subroutine.
 | |
| ///
 | |
| /// Since there's currently no way to associate an MDNode directly
 | |
| /// with an llvm::GlobalValue, we create a global named metadata
 | |
| /// with the name 'clang.global.decl.ptrs'.
 | |
| void CodeGenModule::EmitDeclMetadata() {
 | |
|   llvm::NamedMDNode *GlobalMetadata = 0;
 | |
| 
 | |
|   // StaticLocalDeclMap
 | |
|   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
 | |
|          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
 | |
|        I != E; ++I) {
 | |
|     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
 | |
|     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Emits metadata nodes for all the local variables in the current
 | |
| /// function.
 | |
| void CodeGenFunction::EmitDeclMetadata() {
 | |
|   if (LocalDeclMap.empty()) return;
 | |
| 
 | |
|   llvm::LLVMContext &Context = getLLVMContext();
 | |
| 
 | |
|   // Find the unique metadata ID for this name.
 | |
|   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
 | |
| 
 | |
|   llvm::NamedMDNode *GlobalMetadata = 0;
 | |
| 
 | |
|   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
 | |
|          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
 | |
|     const Decl *D = I->first;
 | |
|     llvm::Value *Addr = I->second;
 | |
| 
 | |
|     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
 | |
|       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
 | |
|       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
 | |
|     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
 | |
|       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
 | |
|       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ///@name Custom Runtime Function Interfaces
 | |
| ///@{
 | |
| //
 | |
| // FIXME: These can be eliminated once we can have clients just get the required
 | |
| // AST nodes from the builtin tables.
 | |
| 
 | |
| llvm::Constant *CodeGenModule::getBlockObjectDispose() {
 | |
|   if (BlockObjectDispose)
 | |
|     return BlockObjectDispose;
 | |
| 
 | |
|   // If we saw an explicit decl, use that.
 | |
|   if (BlockObjectDisposeDecl) {
 | |
|     return BlockObjectDispose = GetAddrOfFunction(
 | |
|       BlockObjectDisposeDecl,
 | |
|       getTypes().GetFunctionType(BlockObjectDisposeDecl));
 | |
|   }
 | |
| 
 | |
|   // Otherwise construct the function by hand.
 | |
|   const llvm::FunctionType *FTy;
 | |
|   std::vector<const llvm::Type*> ArgTys;
 | |
|   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
 | |
|   ArgTys.push_back(Int8PtrTy);
 | |
|   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
 | |
|   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
 | |
|   return BlockObjectDispose =
 | |
|     CreateRuntimeFunction(FTy, "_Block_object_dispose");
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenModule::getBlockObjectAssign() {
 | |
|   if (BlockObjectAssign)
 | |
|     return BlockObjectAssign;
 | |
| 
 | |
|   // If we saw an explicit decl, use that.
 | |
|   if (BlockObjectAssignDecl) {
 | |
|     return BlockObjectAssign = GetAddrOfFunction(
 | |
|       BlockObjectAssignDecl,
 | |
|       getTypes().GetFunctionType(BlockObjectAssignDecl));
 | |
|   }
 | |
| 
 | |
|   // Otherwise construct the function by hand.
 | |
|   const llvm::FunctionType *FTy;
 | |
|   std::vector<const llvm::Type*> ArgTys;
 | |
|   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
 | |
|   ArgTys.push_back(Int8PtrTy);
 | |
|   ArgTys.push_back(Int8PtrTy);
 | |
|   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
 | |
|   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
 | |
|   return BlockObjectAssign =
 | |
|     CreateRuntimeFunction(FTy, "_Block_object_assign");
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
 | |
|   if (NSConcreteGlobalBlock)
 | |
|     return NSConcreteGlobalBlock;
 | |
| 
 | |
|   // If we saw an explicit decl, use that.
 | |
|   if (NSConcreteGlobalBlockDecl) {
 | |
|     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
 | |
|       NSConcreteGlobalBlockDecl,
 | |
|       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
 | |
|   }
 | |
| 
 | |
|   // Otherwise construct the variable by hand.
 | |
|   return NSConcreteGlobalBlock =
 | |
|     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
 | |
| }
 | |
| 
 | |
| llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
 | |
|   if (NSConcreteStackBlock)
 | |
|     return NSConcreteStackBlock;
 | |
| 
 | |
|   // If we saw an explicit decl, use that.
 | |
|   if (NSConcreteStackBlockDecl) {
 | |
|     return NSConcreteStackBlock = GetAddrOfGlobalVar(
 | |
|       NSConcreteStackBlockDecl,
 | |
|       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
 | |
|   }
 | |
| 
 | |
|   // Otherwise construct the variable by hand.
 | |
|   return NSConcreteStackBlock =
 | |
|     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
 | |
| }
 | |
| 
 | |
| ///@}
 |