forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1070 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the NumericLiteralParser, CharLiteralParser, and
 | |
| // StringLiteralParser interfaces.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Lex/LiteralSupport.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Lex/LexDiagnostic.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| using namespace clang;
 | |
| 
 | |
| /// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
 | |
| /// not valid.
 | |
| static int HexDigitValue(char C) {
 | |
|   if (C >= '0' && C <= '9') return C-'0';
 | |
|   if (C >= 'a' && C <= 'f') return C-'a'+10;
 | |
|   if (C >= 'A' && C <= 'F') return C-'A'+10;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
 | |
| /// either a character or a string literal.
 | |
| static unsigned ProcessCharEscape(const char *&ThisTokBuf,
 | |
|                                   const char *ThisTokEnd, bool &HadError,
 | |
|                                   FullSourceLoc Loc, bool IsWide,
 | |
|                                   Diagnostic *Diags, const TargetInfo &Target) {
 | |
|   // Skip the '\' char.
 | |
|   ++ThisTokBuf;
 | |
| 
 | |
|   // We know that this character can't be off the end of the buffer, because
 | |
|   // that would have been \", which would not have been the end of string.
 | |
|   unsigned ResultChar = *ThisTokBuf++;
 | |
|   switch (ResultChar) {
 | |
|   // These map to themselves.
 | |
|   case '\\': case '\'': case '"': case '?': break;
 | |
| 
 | |
|     // These have fixed mappings.
 | |
|   case 'a':
 | |
|     // TODO: K&R: the meaning of '\\a' is different in traditional C
 | |
|     ResultChar = 7;
 | |
|     break;
 | |
|   case 'b':
 | |
|     ResultChar = 8;
 | |
|     break;
 | |
|   case 'e':
 | |
|     if (Diags)
 | |
|       Diags->Report(Loc, diag::ext_nonstandard_escape) << "e";
 | |
|     ResultChar = 27;
 | |
|     break;
 | |
|   case 'E':
 | |
|     if (Diags)
 | |
|       Diags->Report(Loc, diag::ext_nonstandard_escape) << "E";
 | |
|     ResultChar = 27;
 | |
|     break;
 | |
|   case 'f':
 | |
|     ResultChar = 12;
 | |
|     break;
 | |
|   case 'n':
 | |
|     ResultChar = 10;
 | |
|     break;
 | |
|   case 'r':
 | |
|     ResultChar = 13;
 | |
|     break;
 | |
|   case 't':
 | |
|     ResultChar = 9;
 | |
|     break;
 | |
|   case 'v':
 | |
|     ResultChar = 11;
 | |
|     break;
 | |
|   case 'x': { // Hex escape.
 | |
|     ResultChar = 0;
 | |
|     if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
 | |
|       if (Diags)
 | |
|         Diags->Report(Loc, diag::err_hex_escape_no_digits);
 | |
|       HadError = 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Hex escapes are a maximal series of hex digits.
 | |
|     bool Overflow = false;
 | |
|     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
 | |
|       int CharVal = HexDigitValue(ThisTokBuf[0]);
 | |
|       if (CharVal == -1) break;
 | |
|       // About to shift out a digit?
 | |
|       Overflow |= (ResultChar & 0xF0000000) ? true : false;
 | |
|       ResultChar <<= 4;
 | |
|       ResultChar |= CharVal;
 | |
|     }
 | |
| 
 | |
|     // See if any bits will be truncated when evaluated as a character.
 | |
|     unsigned CharWidth =
 | |
|       IsWide ? Target.getWCharWidth() : Target.getCharWidth();
 | |
| 
 | |
|     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | |
|       Overflow = true;
 | |
|       ResultChar &= ~0U >> (32-CharWidth);
 | |
|     }
 | |
| 
 | |
|     // Check for overflow.
 | |
|     if (Overflow && Diags)   // Too many digits to fit in
 | |
|       Diags->Report(Loc, diag::warn_hex_escape_too_large);
 | |
|     break;
 | |
|   }
 | |
|   case '0': case '1': case '2': case '3':
 | |
|   case '4': case '5': case '6': case '7': {
 | |
|     // Octal escapes.
 | |
|     --ThisTokBuf;
 | |
|     ResultChar = 0;
 | |
| 
 | |
|     // Octal escapes are a series of octal digits with maximum length 3.
 | |
|     // "\0123" is a two digit sequence equal to "\012" "3".
 | |
|     unsigned NumDigits = 0;
 | |
|     do {
 | |
|       ResultChar <<= 3;
 | |
|       ResultChar |= *ThisTokBuf++ - '0';
 | |
|       ++NumDigits;
 | |
|     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
 | |
|              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
 | |
| 
 | |
|     // Check for overflow.  Reject '\777', but not L'\777'.
 | |
|     unsigned CharWidth =
 | |
|       IsWide ? Target.getWCharWidth() : Target.getCharWidth();
 | |
| 
 | |
|     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | |
|       if (Diags)
 | |
|         Diags->Report(Loc, diag::warn_octal_escape_too_large);
 | |
|       ResultChar &= ~0U >> (32-CharWidth);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|     // Otherwise, these are not valid escapes.
 | |
|   case '(': case '{': case '[': case '%':
 | |
|     // GCC accepts these as extensions.  We warn about them as such though.
 | |
|     if (Diags)
 | |
|       Diags->Report(Loc, diag::ext_nonstandard_escape)
 | |
|         << std::string()+(char)ResultChar;
 | |
|     break;
 | |
|   default:
 | |
|     if (Diags == 0)
 | |
|       break;
 | |
|       
 | |
|     if (isgraph(ResultChar))
 | |
|       Diags->Report(Loc, diag::ext_unknown_escape)
 | |
|         << std::string()+(char)ResultChar;
 | |
|     else
 | |
|       Diags->Report(Loc, diag::ext_unknown_escape)
 | |
|         << "x"+llvm::utohexstr(ResultChar);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ResultChar;
 | |
| }
 | |
| 
 | |
| /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
 | |
| /// return the UTF32.
 | |
| static bool ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
 | |
|                              uint32_t &UcnVal, unsigned short &UcnLen,
 | |
|                              FullSourceLoc Loc, Diagnostic *Diags, 
 | |
|                              const LangOptions &Features) {
 | |
|   if (!Features.CPlusPlus && !Features.C99 && Diags)
 | |
|     Diags->Report(Loc, diag::warn_ucn_not_valid_in_c89);
 | |
| 
 | |
|   // Save the beginning of the string (for error diagnostics).
 | |
|   const char *ThisTokBegin = ThisTokBuf;
 | |
| 
 | |
|   // Skip the '\u' char's.
 | |
|   ThisTokBuf += 2;
 | |
| 
 | |
|   if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
 | |
|     if (Diags)
 | |
|       Diags->Report(Loc, diag::err_ucn_escape_no_digits);
 | |
|     return false;
 | |
|   }
 | |
|   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
 | |
|   unsigned short UcnLenSave = UcnLen;
 | |
|   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
 | |
|     int CharVal = HexDigitValue(ThisTokBuf[0]);
 | |
|     if (CharVal == -1) break;
 | |
|     UcnVal <<= 4;
 | |
|     UcnVal |= CharVal;
 | |
|   }
 | |
|   // If we didn't consume the proper number of digits, there is a problem.
 | |
|   if (UcnLenSave) {
 | |
|     if (Diags) {
 | |
|       SourceLocation L =
 | |
|         Lexer::AdvanceToTokenCharacter(Loc, ThisTokBuf-ThisTokBegin,
 | |
|                                        Loc.getManager(), Features);
 | |
|       Diags->Report(FullSourceLoc(L, Loc.getManager()),
 | |
|                     diag::err_ucn_escape_incomplete);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   // Check UCN constraints (C99 6.4.3p2).
 | |
|   if ((UcnVal < 0xa0 &&
 | |
|       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
 | |
|       || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
 | |
|       || (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
 | |
|     if (Diags)
 | |
|       Diags->Report(Loc, diag::err_ucn_escape_invalid);
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
 | |
| /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
 | |
| /// StringLiteralParser. When we decide to implement UCN's for identifiers,
 | |
| /// we will likely rework our support for UCN's.
 | |
| static void EncodeUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
 | |
|                             char *&ResultBuf, bool &HadError,
 | |
|                             FullSourceLoc Loc, bool wide, Diagnostic *Diags, 
 | |
|                             const LangOptions &Features) {
 | |
|   typedef uint32_t UTF32;
 | |
|   UTF32 UcnVal = 0;
 | |
|   unsigned short UcnLen = 0;
 | |
|   if (!ProcessUCNEscape(ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, Loc, Diags,
 | |
|                         Features)) {
 | |
|     HadError = 1;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (wide) {
 | |
|     (void)UcnLen;
 | |
|     assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
 | |
| 
 | |
|     if (!Features.ShortWChar) {
 | |
|       // Note: our internal rep of wide char tokens is always little-endian.
 | |
|       *ResultBuf++ = (UcnVal & 0x000000FF);
 | |
|       *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
 | |
|       *ResultBuf++ = (UcnVal & 0x00FF0000) >> 16;
 | |
|       *ResultBuf++ = (UcnVal & 0xFF000000) >> 24;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Convert to UTF16.
 | |
|     if (UcnVal < (UTF32)0xFFFF) {
 | |
|       *ResultBuf++ = (UcnVal & 0x000000FF);
 | |
|       *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
 | |
|       return;
 | |
|     }
 | |
|     if (Diags) Diags->Report(Loc, diag::warn_ucn_escape_too_large);
 | |
| 
 | |
|     typedef uint16_t UTF16;
 | |
|     UcnVal -= 0x10000;
 | |
|     UTF16 surrogate1 = 0xD800 + (UcnVal >> 10);
 | |
|     UTF16 surrogate2 = 0xDC00 + (UcnVal & 0x3FF);
 | |
|     *ResultBuf++ = (surrogate1 & 0x000000FF);
 | |
|     *ResultBuf++ = (surrogate1 & 0x0000FF00) >> 8;
 | |
|     *ResultBuf++ = (surrogate2 & 0x000000FF);
 | |
|     *ResultBuf++ = (surrogate2 & 0x0000FF00) >> 8;
 | |
|     return;
 | |
|   }
 | |
|   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
 | |
|   // The conversion below was inspired by:
 | |
|   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
 | |
|   // First, we determine how many bytes the result will require.
 | |
|   typedef uint8_t UTF8;
 | |
| 
 | |
|   unsigned short bytesToWrite = 0;
 | |
|   if (UcnVal < (UTF32)0x80)
 | |
|     bytesToWrite = 1;
 | |
|   else if (UcnVal < (UTF32)0x800)
 | |
|     bytesToWrite = 2;
 | |
|   else if (UcnVal < (UTF32)0x10000)
 | |
|     bytesToWrite = 3;
 | |
|   else
 | |
|     bytesToWrite = 4;
 | |
| 
 | |
|   const unsigned byteMask = 0xBF;
 | |
|   const unsigned byteMark = 0x80;
 | |
| 
 | |
|   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
 | |
|   // into the first byte, depending on how many bytes follow.
 | |
|   static const UTF8 firstByteMark[5] = {
 | |
|     0x00, 0x00, 0xC0, 0xE0, 0xF0
 | |
|   };
 | |
|   // Finally, we write the bytes into ResultBuf.
 | |
|   ResultBuf += bytesToWrite;
 | |
|   switch (bytesToWrite) { // note: everything falls through.
 | |
|     case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | |
|     case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | |
|     case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | |
|     case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
 | |
|   }
 | |
|   // Update the buffer.
 | |
|   ResultBuf += bytesToWrite;
 | |
| }
 | |
| 
 | |
| 
 | |
| ///       integer-constant: [C99 6.4.4.1]
 | |
| ///         decimal-constant integer-suffix
 | |
| ///         octal-constant integer-suffix
 | |
| ///         hexadecimal-constant integer-suffix
 | |
| ///       decimal-constant:
 | |
| ///         nonzero-digit
 | |
| ///         decimal-constant digit
 | |
| ///       octal-constant:
 | |
| ///         0
 | |
| ///         octal-constant octal-digit
 | |
| ///       hexadecimal-constant:
 | |
| ///         hexadecimal-prefix hexadecimal-digit
 | |
| ///         hexadecimal-constant hexadecimal-digit
 | |
| ///       hexadecimal-prefix: one of
 | |
| ///         0x 0X
 | |
| ///       integer-suffix:
 | |
| ///         unsigned-suffix [long-suffix]
 | |
| ///         unsigned-suffix [long-long-suffix]
 | |
| ///         long-suffix [unsigned-suffix]
 | |
| ///         long-long-suffix [unsigned-sufix]
 | |
| ///       nonzero-digit:
 | |
| ///         1 2 3 4 5 6 7 8 9
 | |
| ///       octal-digit:
 | |
| ///         0 1 2 3 4 5 6 7
 | |
| ///       hexadecimal-digit:
 | |
| ///         0 1 2 3 4 5 6 7 8 9
 | |
| ///         a b c d e f
 | |
| ///         A B C D E F
 | |
| ///       unsigned-suffix: one of
 | |
| ///         u U
 | |
| ///       long-suffix: one of
 | |
| ///         l L
 | |
| ///       long-long-suffix: one of
 | |
| ///         ll LL
 | |
| ///
 | |
| ///       floating-constant: [C99 6.4.4.2]
 | |
| ///         TODO: add rules...
 | |
| ///
 | |
| NumericLiteralParser::
 | |
| NumericLiteralParser(const char *begin, const char *end,
 | |
|                      SourceLocation TokLoc, Preprocessor &pp)
 | |
|   : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
 | |
| 
 | |
|   // This routine assumes that the range begin/end matches the regex for integer
 | |
|   // and FP constants (specifically, the 'pp-number' regex), and assumes that
 | |
|   // the byte at "*end" is both valid and not part of the regex.  Because of
 | |
|   // this, it doesn't have to check for 'overscan' in various places.
 | |
|   assert(!isalnum(*end) && *end != '.' && *end != '_' &&
 | |
|          "Lexer didn't maximally munch?");
 | |
| 
 | |
|   s = DigitsBegin = begin;
 | |
|   saw_exponent = false;
 | |
|   saw_period = false;
 | |
|   isLong = false;
 | |
|   isUnsigned = false;
 | |
|   isLongLong = false;
 | |
|   isFloat = false;
 | |
|   isImaginary = false;
 | |
|   isMicrosoftInteger = false;
 | |
|   hadError = false;
 | |
| 
 | |
|   if (*s == '0') { // parse radix
 | |
|     ParseNumberStartingWithZero(TokLoc);
 | |
|     if (hadError)
 | |
|       return;
 | |
|   } else { // the first digit is non-zero
 | |
|     radix = 10;
 | |
|     s = SkipDigits(s);
 | |
|     if (s == ThisTokEnd) {
 | |
|       // Done.
 | |
|     } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
 | |
|               diag::err_invalid_decimal_digit) << llvm::StringRef(s, 1);
 | |
|       hadError = true;
 | |
|       return;
 | |
|     } else if (*s == '.') {
 | |
|       s++;
 | |
|       saw_period = true;
 | |
|       s = SkipDigits(s);
 | |
|     }
 | |
|     if ((*s == 'e' || *s == 'E')) { // exponent
 | |
|       const char *Exponent = s;
 | |
|       s++;
 | |
|       saw_exponent = true;
 | |
|       if (*s == '+' || *s == '-')  s++; // sign
 | |
|       const char *first_non_digit = SkipDigits(s);
 | |
|       if (first_non_digit != s) {
 | |
|         s = first_non_digit;
 | |
|       } else {
 | |
|         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
 | |
|                 diag::err_exponent_has_no_digits);
 | |
|         hadError = true;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SuffixBegin = s;
 | |
| 
 | |
|   // Parse the suffix.  At this point we can classify whether we have an FP or
 | |
|   // integer constant.
 | |
|   bool isFPConstant = isFloatingLiteral();
 | |
| 
 | |
|   // Loop over all of the characters of the suffix.  If we see something bad,
 | |
|   // we break out of the loop.
 | |
|   for (; s != ThisTokEnd; ++s) {
 | |
|     switch (*s) {
 | |
|     case 'f':      // FP Suffix for "float"
 | |
|     case 'F':
 | |
|       if (!isFPConstant) break;  // Error for integer constant.
 | |
|       if (isFloat || isLong) break; // FF, LF invalid.
 | |
|       isFloat = true;
 | |
|       continue;  // Success.
 | |
|     case 'u':
 | |
|     case 'U':
 | |
|       if (isFPConstant) break;  // Error for floating constant.
 | |
|       if (isUnsigned) break;    // Cannot be repeated.
 | |
|       isUnsigned = true;
 | |
|       continue;  // Success.
 | |
|     case 'l':
 | |
|     case 'L':
 | |
|       if (isLong || isLongLong) break;  // Cannot be repeated.
 | |
|       if (isFloat) break;               // LF invalid.
 | |
| 
 | |
|       // Check for long long.  The L's need to be adjacent and the same case.
 | |
|       if (s+1 != ThisTokEnd && s[1] == s[0]) {
 | |
|         if (isFPConstant) break;        // long long invalid for floats.
 | |
|         isLongLong = true;
 | |
|         ++s;  // Eat both of them.
 | |
|       } else {
 | |
|         isLong = true;
 | |
|       }
 | |
|       continue;  // Success.
 | |
|     case 'i':
 | |
|     case 'I':
 | |
|       if (PP.getLangOptions().Microsoft) {
 | |
|         if (isFPConstant || isLong || isLongLong) break;
 | |
| 
 | |
|         // Allow i8, i16, i32, i64, and i128.
 | |
|         if (s + 1 != ThisTokEnd) {
 | |
|           switch (s[1]) {
 | |
|             case '8':
 | |
|               s += 2; // i8 suffix
 | |
|               isMicrosoftInteger = true;
 | |
|               break;
 | |
|             case '1':
 | |
|               if (s + 2 == ThisTokEnd) break;
 | |
|               if (s[2] == '6') {
 | |
|                 s += 3; // i16 suffix
 | |
|                 isMicrosoftInteger = true;
 | |
|               }
 | |
|               else if (s[2] == '2') {
 | |
|                 if (s + 3 == ThisTokEnd) break;
 | |
|                 if (s[3] == '8') {
 | |
|                   s += 4; // i128 suffix
 | |
|                   isMicrosoftInteger = true;
 | |
|                 }
 | |
|               }
 | |
|               break;
 | |
|             case '3':
 | |
|               if (s + 2 == ThisTokEnd) break;
 | |
|               if (s[2] == '2') {
 | |
|                 s += 3; // i32 suffix
 | |
|                 isLong = true;
 | |
|                 isMicrosoftInteger = true;
 | |
|               }
 | |
|               break;
 | |
|             case '6':
 | |
|               if (s + 2 == ThisTokEnd) break;
 | |
|               if (s[2] == '4') {
 | |
|                 s += 3; // i64 suffix
 | |
|                 isLongLong = true;
 | |
|                 isMicrosoftInteger = true;
 | |
|               }
 | |
|               break;
 | |
|             default:
 | |
|               break;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // fall through.
 | |
|     case 'j':
 | |
|     case 'J':
 | |
|       if (isImaginary) break;   // Cannot be repeated.
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
 | |
|               diag::ext_imaginary_constant);
 | |
|       isImaginary = true;
 | |
|       continue;  // Success.
 | |
|     }
 | |
|     // If we reached here, there was an error.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Report an error if there are any.
 | |
|   if (s != ThisTokEnd) {
 | |
|     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
 | |
|             isFPConstant ? diag::err_invalid_suffix_float_constant :
 | |
|                            diag::err_invalid_suffix_integer_constant)
 | |
|       << llvm::StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
 | |
|     hadError = true;
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ParseNumberStartingWithZero - This method is called when the first character
 | |
| /// of the number is found to be a zero.  This means it is either an octal
 | |
| /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
 | |
| /// a floating point number (01239.123e4).  Eat the prefix, determining the
 | |
| /// radix etc.
 | |
| void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
 | |
|   assert(s[0] == '0' && "Invalid method call");
 | |
|   s++;
 | |
| 
 | |
|   // Handle a hex number like 0x1234.
 | |
|   if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
 | |
|     s++;
 | |
|     radix = 16;
 | |
|     DigitsBegin = s;
 | |
|     s = SkipHexDigits(s);
 | |
|     if (s == ThisTokEnd) {
 | |
|       // Done.
 | |
|     } else if (*s == '.') {
 | |
|       s++;
 | |
|       saw_period = true;
 | |
|       s = SkipHexDigits(s);
 | |
|     }
 | |
|     // A binary exponent can appear with or with a '.'. If dotted, the
 | |
|     // binary exponent is required.
 | |
|     if ((*s == 'p' || *s == 'P') && !PP.getLangOptions().CPlusPlus0x) {
 | |
|       const char *Exponent = s;
 | |
|       s++;
 | |
|       saw_exponent = true;
 | |
|       if (*s == '+' || *s == '-')  s++; // sign
 | |
|       const char *first_non_digit = SkipDigits(s);
 | |
|       if (first_non_digit == s) {
 | |
|         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | |
|                 diag::err_exponent_has_no_digits);
 | |
|         hadError = true;
 | |
|         return;
 | |
|       }
 | |
|       s = first_non_digit;
 | |
| 
 | |
|       // In C++0x, we cannot support hexadecmial floating literals because
 | |
|       // they conflict with user-defined literals, so we warn in previous
 | |
|       // versions of C++ by default.
 | |
|       if (PP.getLangOptions().CPlusPlus)
 | |
|         PP.Diag(TokLoc, diag::ext_hexconstant_cplusplus);
 | |
|       else if (!PP.getLangOptions().HexFloats)
 | |
|         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
 | |
|     } else if (saw_period) {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | |
|               diag::err_hexconstant_requires_exponent);
 | |
|       hadError = true;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle simple binary numbers 0b01010
 | |
|   if (*s == 'b' || *s == 'B') {
 | |
|     // 0b101010 is a GCC extension.
 | |
|     PP.Diag(TokLoc, diag::ext_binary_literal);
 | |
|     ++s;
 | |
|     radix = 2;
 | |
|     DigitsBegin = s;
 | |
|     s = SkipBinaryDigits(s);
 | |
|     if (s == ThisTokEnd) {
 | |
|       // Done.
 | |
|     } else if (isxdigit(*s)) {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | |
|               diag::err_invalid_binary_digit) << llvm::StringRef(s, 1);
 | |
|       hadError = true;
 | |
|     }
 | |
|     // Other suffixes will be diagnosed by the caller.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For now, the radix is set to 8. If we discover that we have a
 | |
|   // floating point constant, the radix will change to 10. Octal floating
 | |
|   // point constants are not permitted (only decimal and hexadecimal).
 | |
|   radix = 8;
 | |
|   DigitsBegin = s;
 | |
|   s = SkipOctalDigits(s);
 | |
|   if (s == ThisTokEnd)
 | |
|     return; // Done, simple octal number like 01234
 | |
| 
 | |
|   // If we have some other non-octal digit that *is* a decimal digit, see if
 | |
|   // this is part of a floating point number like 094.123 or 09e1.
 | |
|   if (isdigit(*s)) {
 | |
|     const char *EndDecimal = SkipDigits(s);
 | |
|     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
 | |
|       s = EndDecimal;
 | |
|       radix = 10;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
 | |
|   // the code is using an incorrect base.
 | |
|   if (isxdigit(*s) && *s != 'e' && *s != 'E') {
 | |
|     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | |
|             diag::err_invalid_octal_digit) << llvm::StringRef(s, 1);
 | |
|     hadError = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (*s == '.') {
 | |
|     s++;
 | |
|     radix = 10;
 | |
|     saw_period = true;
 | |
|     s = SkipDigits(s); // Skip suffix.
 | |
|   }
 | |
|   if (*s == 'e' || *s == 'E') { // exponent
 | |
|     const char *Exponent = s;
 | |
|     s++;
 | |
|     radix = 10;
 | |
|     saw_exponent = true;
 | |
|     if (*s == '+' || *s == '-')  s++; // sign
 | |
|     const char *first_non_digit = SkipDigits(s);
 | |
|     if (first_non_digit != s) {
 | |
|       s = first_non_digit;
 | |
|     } else {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | |
|               diag::err_exponent_has_no_digits);
 | |
|       hadError = true;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetIntegerValue - Convert this numeric literal value to an APInt that
 | |
| /// matches Val's input width.  If there is an overflow, set Val to the low bits
 | |
| /// of the result and return true.  Otherwise, return false.
 | |
| bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
 | |
|   // Fast path: Compute a conservative bound on the maximum number of
 | |
|   // bits per digit in this radix. If we can't possibly overflow a
 | |
|   // uint64 based on that bound then do the simple conversion to
 | |
|   // integer. This avoids the expensive overflow checking below, and
 | |
|   // handles the common cases that matter (small decimal integers and
 | |
|   // hex/octal values which don't overflow).
 | |
|   unsigned MaxBitsPerDigit = 1;
 | |
|   while ((1U << MaxBitsPerDigit) < radix)
 | |
|     MaxBitsPerDigit += 1;
 | |
|   if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
 | |
|     uint64_t N = 0;
 | |
|     for (s = DigitsBegin; s != SuffixBegin; ++s)
 | |
|       N = N*radix + HexDigitValue(*s);
 | |
| 
 | |
|     // This will truncate the value to Val's input width. Simply check
 | |
|     // for overflow by comparing.
 | |
|     Val = N;
 | |
|     return Val.getZExtValue() != N;
 | |
|   }
 | |
| 
 | |
|   Val = 0;
 | |
|   s = DigitsBegin;
 | |
| 
 | |
|   llvm::APInt RadixVal(Val.getBitWidth(), radix);
 | |
|   llvm::APInt CharVal(Val.getBitWidth(), 0);
 | |
|   llvm::APInt OldVal = Val;
 | |
| 
 | |
|   bool OverflowOccurred = false;
 | |
|   while (s < SuffixBegin) {
 | |
|     unsigned C = HexDigitValue(*s++);
 | |
| 
 | |
|     // If this letter is out of bound for this radix, reject it.
 | |
|     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
 | |
| 
 | |
|     CharVal = C;
 | |
| 
 | |
|     // Add the digit to the value in the appropriate radix.  If adding in digits
 | |
|     // made the value smaller, then this overflowed.
 | |
|     OldVal = Val;
 | |
| 
 | |
|     // Multiply by radix, did overflow occur on the multiply?
 | |
|     Val *= RadixVal;
 | |
|     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
 | |
| 
 | |
|     // Add value, did overflow occur on the value?
 | |
|     //   (a + b) ult b  <=> overflow
 | |
|     Val += CharVal;
 | |
|     OverflowOccurred |= Val.ult(CharVal);
 | |
|   }
 | |
|   return OverflowOccurred;
 | |
| }
 | |
| 
 | |
| llvm::APFloat::opStatus
 | |
| NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
 | |
|   using llvm::APFloat;
 | |
|   using llvm::StringRef;
 | |
| 
 | |
|   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
 | |
|   return Result.convertFromString(StringRef(ThisTokBegin, n),
 | |
|                                   APFloat::rmNearestTiesToEven);
 | |
| }
 | |
| 
 | |
| 
 | |
| CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
 | |
|                                      SourceLocation Loc, Preprocessor &PP) {
 | |
|   // At this point we know that the character matches the regex "L?'.*'".
 | |
|   HadError = false;
 | |
| 
 | |
|   // Determine if this is a wide character.
 | |
|   IsWide = begin[0] == 'L';
 | |
|   if (IsWide) ++begin;
 | |
| 
 | |
|   // Skip over the entry quote.
 | |
|   assert(begin[0] == '\'' && "Invalid token lexed");
 | |
|   ++begin;
 | |
| 
 | |
|   // FIXME: The "Value" is an uint64_t so we can handle char literals of
 | |
|   // up to 64-bits.
 | |
|   // FIXME: This extensively assumes that 'char' is 8-bits.
 | |
|   assert(PP.getTargetInfo().getCharWidth() == 8 &&
 | |
|          "Assumes char is 8 bits");
 | |
|   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
 | |
|          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
 | |
|          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
 | |
|   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
 | |
|          "Assumes sizeof(wchar) on target is <= 64");
 | |
| 
 | |
|   // This is what we will use for overflow detection
 | |
|   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
 | |
| 
 | |
|   unsigned NumCharsSoFar = 0;
 | |
|   bool Warned = false;
 | |
|   while (begin[0] != '\'') {
 | |
|     uint64_t ResultChar;
 | |
| 
 | |
|       // Is this a Universal Character Name escape?
 | |
|     if (begin[0] != '\\')     // If this is a normal character, consume it.
 | |
|       ResultChar = *begin++;
 | |
|     else {                    // Otherwise, this is an escape character.
 | |
|       // Check for UCN.
 | |
|       if (begin[1] == 'u' || begin[1] == 'U') {
 | |
|         uint32_t utf32 = 0;
 | |
|         unsigned short UcnLen = 0;
 | |
|         if (!ProcessUCNEscape(begin, end, utf32, UcnLen,
 | |
|                               FullSourceLoc(Loc, PP.getSourceManager()),
 | |
|                               &PP.getDiagnostics(), PP.getLangOptions())) {
 | |
|           HadError = 1;
 | |
|         }
 | |
|         ResultChar = utf32;
 | |
|       } else {
 | |
|         // Otherwise, this is a non-UCN escape character.  Process it.
 | |
|         ResultChar = ProcessCharEscape(begin, end, HadError,
 | |
|                                        FullSourceLoc(Loc,PP.getSourceManager()),
 | |
|                                        IsWide,
 | |
|                                        &PP.getDiagnostics(), PP.getTargetInfo());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
 | |
|     // implementation defined (C99 6.4.4.4p10).
 | |
|     if (NumCharsSoFar) {
 | |
|       if (IsWide) {
 | |
|         // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
 | |
|         LitVal = 0;
 | |
|       } else {
 | |
|         // Narrow character literals act as though their value is concatenated
 | |
|         // in this implementation, but warn on overflow.
 | |
|         if (LitVal.countLeadingZeros() < 8 && !Warned) {
 | |
|           PP.Diag(Loc, diag::warn_char_constant_too_large);
 | |
|           Warned = true;
 | |
|         }
 | |
|         LitVal <<= 8;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     LitVal = LitVal + ResultChar;
 | |
|     ++NumCharsSoFar;
 | |
|   }
 | |
| 
 | |
|   // If this is the second character being processed, do special handling.
 | |
|   if (NumCharsSoFar > 1) {
 | |
|     // Warn about discarding the top bits for multi-char wide-character
 | |
|     // constants (L'abcd').
 | |
|     if (IsWide)
 | |
|       PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
 | |
|     else if (NumCharsSoFar != 4)
 | |
|       PP.Diag(Loc, diag::ext_multichar_character_literal);
 | |
|     else
 | |
|       PP.Diag(Loc, diag::ext_four_char_character_literal);
 | |
|     IsMultiChar = true;
 | |
|   } else
 | |
|     IsMultiChar = false;
 | |
| 
 | |
|   // Transfer the value from APInt to uint64_t
 | |
|   Value = LitVal.getZExtValue();
 | |
| 
 | |
|   if (IsWide && PP.getLangOptions().ShortWChar && Value > 0xFFFF)
 | |
|     PP.Diag(Loc, diag::warn_ucn_escape_too_large);
 | |
| 
 | |
|   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
 | |
|   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
 | |
|   // character constants are not sign extended in the this implementation:
 | |
|   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
 | |
|   if (!IsWide && NumCharsSoFar == 1 && (Value & 128) &&
 | |
|       PP.getLangOptions().CharIsSigned)
 | |
|     Value = (signed char)Value;
 | |
| }
 | |
| 
 | |
| 
 | |
| ///       string-literal: [C99 6.4.5]
 | |
| ///          " [s-char-sequence] "
 | |
| ///         L" [s-char-sequence] "
 | |
| ///       s-char-sequence:
 | |
| ///         s-char
 | |
| ///         s-char-sequence s-char
 | |
| ///       s-char:
 | |
| ///         any source character except the double quote ",
 | |
| ///           backslash \, or newline character
 | |
| ///         escape-character
 | |
| ///         universal-character-name
 | |
| ///       escape-character: [C99 6.4.4.4]
 | |
| ///         \ escape-code
 | |
| ///         universal-character-name
 | |
| ///       escape-code:
 | |
| ///         character-escape-code
 | |
| ///         octal-escape-code
 | |
| ///         hex-escape-code
 | |
| ///       character-escape-code: one of
 | |
| ///         n t b r f v a
 | |
| ///         \ ' " ?
 | |
| ///       octal-escape-code:
 | |
| ///         octal-digit
 | |
| ///         octal-digit octal-digit
 | |
| ///         octal-digit octal-digit octal-digit
 | |
| ///       hex-escape-code:
 | |
| ///         x hex-digit
 | |
| ///         hex-escape-code hex-digit
 | |
| ///       universal-character-name:
 | |
| ///         \u hex-quad
 | |
| ///         \U hex-quad hex-quad
 | |
| ///       hex-quad:
 | |
| ///         hex-digit hex-digit hex-digit hex-digit
 | |
| ///
 | |
| StringLiteralParser::
 | |
| StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
 | |
|                     Preprocessor &PP, bool Complain)
 | |
|   : SM(PP.getSourceManager()), Features(PP.getLangOptions()),
 | |
|     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0) {
 | |
|   init(StringToks, NumStringToks);
 | |
| }
 | |
| 
 | |
| void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
 | |
|   // Scan all of the string portions, remember the max individual token length,
 | |
|   // computing a bound on the concatenated string length, and see whether any
 | |
|   // piece is a wide-string.  If any of the string portions is a wide-string
 | |
|   // literal, the result is a wide-string literal [C99 6.4.5p4].
 | |
|   MaxTokenLength = StringToks[0].getLength();
 | |
|   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
 | |
|   AnyWide = StringToks[0].is(tok::wide_string_literal);
 | |
| 
 | |
|   hadError = false;
 | |
| 
 | |
|   // Implement Translation Phase #6: concatenation of string literals
 | |
|   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
 | |
|   for (unsigned i = 1; i != NumStringToks; ++i) {
 | |
|     // The string could be shorter than this if it needs cleaning, but this is a
 | |
|     // reasonable bound, which is all we need.
 | |
|     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
 | |
| 
 | |
|     // Remember maximum string piece length.
 | |
|     if (StringToks[i].getLength() > MaxTokenLength)
 | |
|       MaxTokenLength = StringToks[i].getLength();
 | |
| 
 | |
|     // Remember if we see any wide strings.
 | |
|     AnyWide |= StringToks[i].is(tok::wide_string_literal);
 | |
|   }
 | |
| 
 | |
|   // Include space for the null terminator.
 | |
|   ++SizeBound;
 | |
| 
 | |
|   // TODO: K&R warning: "traditional C rejects string constant concatenation"
 | |
| 
 | |
|   // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
 | |
|   // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
 | |
|   wchar_tByteWidth = ~0U;
 | |
|   if (AnyWide) {
 | |
|     wchar_tByteWidth = Target.getWCharWidth();
 | |
|     assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
 | |
|     wchar_tByteWidth /= 8;
 | |
|   }
 | |
| 
 | |
|   // The output buffer size needs to be large enough to hold wide characters.
 | |
|   // This is a worst-case assumption which basically corresponds to L"" "long".
 | |
|   if (AnyWide)
 | |
|     SizeBound *= wchar_tByteWidth;
 | |
| 
 | |
|   // Size the temporary buffer to hold the result string data.
 | |
|   ResultBuf.resize(SizeBound);
 | |
| 
 | |
|   // Likewise, but for each string piece.
 | |
|   llvm::SmallString<512> TokenBuf;
 | |
|   TokenBuf.resize(MaxTokenLength);
 | |
| 
 | |
|   // Loop over all the strings, getting their spelling, and expanding them to
 | |
|   // wide strings as appropriate.
 | |
|   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
 | |
| 
 | |
|   Pascal = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
 | |
|     const char *ThisTokBuf = &TokenBuf[0];
 | |
|     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
 | |
|     // that ThisTokBuf points to a buffer that is big enough for the whole token
 | |
|     // and 'spelled' tokens can only shrink.
 | |
|     bool StringInvalid = false;
 | |
|     unsigned ThisTokLen = 
 | |
|       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
 | |
|                          &StringInvalid);
 | |
|     if (StringInvalid) {
 | |
|       hadError = 1;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
 | |
|     bool wide = false;
 | |
|     // TODO: Input character set mapping support.
 | |
| 
 | |
|     // Skip L marker for wide strings.
 | |
|     if (ThisTokBuf[0] == 'L') {
 | |
|       wide = true;
 | |
|       ++ThisTokBuf;
 | |
|     }
 | |
| 
 | |
|     assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
 | |
|     ++ThisTokBuf;
 | |
| 
 | |
|     // Check if this is a pascal string
 | |
|     if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
 | |
|         ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
 | |
| 
 | |
|       // If the \p sequence is found in the first token, we have a pascal string
 | |
|       // Otherwise, if we already have a pascal string, ignore the first \p
 | |
|       if (i == 0) {
 | |
|         ++ThisTokBuf;
 | |
|         Pascal = true;
 | |
|       } else if (Pascal)
 | |
|         ThisTokBuf += 2;
 | |
|     }
 | |
| 
 | |
|     while (ThisTokBuf != ThisTokEnd) {
 | |
|       // Is this a span of non-escape characters?
 | |
|       if (ThisTokBuf[0] != '\\') {
 | |
|         const char *InStart = ThisTokBuf;
 | |
|         do {
 | |
|           ++ThisTokBuf;
 | |
|         } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
 | |
| 
 | |
|         // Copy the character span over.
 | |
|         unsigned Len = ThisTokBuf-InStart;
 | |
|         if (!AnyWide) {
 | |
|           memcpy(ResultPtr, InStart, Len);
 | |
|           ResultPtr += Len;
 | |
|         } else {
 | |
|           // Note: our internal rep of wide char tokens is always little-endian.
 | |
|           for (; Len; --Len, ++InStart) {
 | |
|             *ResultPtr++ = InStart[0];
 | |
|             // Add zeros at the end.
 | |
|             for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
 | |
|               *ResultPtr++ = 0;
 | |
|           }
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       // Is this a Universal Character Name escape?
 | |
|       if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
 | |
|         EncodeUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
 | |
|                         hadError, FullSourceLoc(StringToks[i].getLocation(),SM),
 | |
|                         wide, Diags, Features);
 | |
|         continue;
 | |
|       }
 | |
|       // Otherwise, this is a non-UCN escape character.  Process it.
 | |
|       unsigned ResultChar =
 | |
|         ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
 | |
|                           FullSourceLoc(StringToks[i].getLocation(), SM),
 | |
|                           AnyWide, Diags, Target);
 | |
| 
 | |
|       // Note: our internal rep of wide char tokens is always little-endian.
 | |
|       *ResultPtr++ = ResultChar & 0xFF;
 | |
| 
 | |
|       if (AnyWide) {
 | |
|         for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
 | |
|           *ResultPtr++ = ResultChar >> i*8;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Pascal) {
 | |
|     ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
 | |
|     if (AnyWide)
 | |
|       ResultBuf[0] /= wchar_tByteWidth;
 | |
| 
 | |
|     // Verify that pascal strings aren't too large.
 | |
|     if (GetStringLength() > 256) {
 | |
|       if (Diags) 
 | |
|         Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
 | |
|                       diag::err_pascal_string_too_long)
 | |
|           << SourceRange(StringToks[0].getLocation(),
 | |
|                          StringToks[NumStringToks-1].getLocation());
 | |
|       hadError = 1;
 | |
|       return;
 | |
|     }
 | |
|   } else if (Diags) {
 | |
|     // Complain if this string literal has too many characters.
 | |
|     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
 | |
|     
 | |
|     if (GetNumStringChars() > MaxChars)
 | |
|       Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
 | |
|                     diag::ext_string_too_long)
 | |
|         << GetNumStringChars() << MaxChars
 | |
|         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
 | |
|         << SourceRange(StringToks[0].getLocation(),
 | |
|                        StringToks[NumStringToks-1].getLocation());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getOffsetOfStringByte - This function returns the offset of the
 | |
| /// specified byte of the string data represented by Token.  This handles
 | |
| /// advancing over escape sequences in the string.
 | |
| unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
 | |
|                                                     unsigned ByteNo) const {
 | |
|   // Get the spelling of the token.
 | |
|   llvm::SmallString<32> SpellingBuffer;
 | |
|   SpellingBuffer.resize(Tok.getLength());
 | |
| 
 | |
|   bool StringInvalid = false;
 | |
|   const char *SpellingPtr = &SpellingBuffer[0];
 | |
|   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
 | |
|                                        &StringInvalid);
 | |
|   if (StringInvalid)
 | |
|     return 0;
 | |
| 
 | |
|   assert(SpellingPtr[0] != 'L' && "Doesn't handle wide strings yet");
 | |
| 
 | |
| 
 | |
|   const char *SpellingStart = SpellingPtr;
 | |
|   const char *SpellingEnd = SpellingPtr+TokLen;
 | |
| 
 | |
|   // Skip over the leading quote.
 | |
|   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
 | |
|   ++SpellingPtr;
 | |
| 
 | |
|   // Skip over bytes until we find the offset we're looking for.
 | |
|   while (ByteNo) {
 | |
|     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
 | |
| 
 | |
|     // Step over non-escapes simply.
 | |
|     if (*SpellingPtr != '\\') {
 | |
|       ++SpellingPtr;
 | |
|       --ByteNo;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, this is an escape character.  Advance over it.
 | |
|     bool HadError = false;
 | |
|     ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
 | |
|                       FullSourceLoc(Tok.getLocation(), SM),
 | |
|                       false, Diags, Target);
 | |
|     assert(!HadError && "This method isn't valid on erroneous strings");
 | |
|     --ByteNo;
 | |
|   }
 | |
| 
 | |
|   return SpellingPtr-SpellingStart;
 | |
| }
 |