forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3285 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3285 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements extra semantic analysis beyond what is enforced
 | |
| //  by the C type system.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/Sema.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Analysis/Analyses/FormatString.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/StmtObjC.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "clang/Basic/TargetBuiltins.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Basic/ConvertUTF.h"
 | |
| #include <limits>
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
 | |
|                                                     unsigned ByteNo) const {
 | |
|   return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
 | |
|                                PP.getLangOptions(), PP.getTargetInfo());
 | |
| }
 | |
|   
 | |
| 
 | |
| /// CheckablePrintfAttr - does a function call have a "printf" attribute
 | |
| /// and arguments that merit checking?
 | |
| bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
 | |
|   if (Format->getType() == "printf") return true;
 | |
|   if (Format->getType() == "printf0") {
 | |
|     // printf0 allows null "format" string; if so don't check format/args
 | |
|     unsigned format_idx = Format->getFormatIdx() - 1;
 | |
|     // Does the index refer to the implicit object argument?
 | |
|     if (isa<CXXMemberCallExpr>(TheCall)) {
 | |
|       if (format_idx == 0)
 | |
|         return false;
 | |
|       --format_idx;
 | |
|     }
 | |
|     if (format_idx < TheCall->getNumArgs()) {
 | |
|       Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
 | |
|       if (!Format->isNullPointerConstant(Context,
 | |
|                                          Expr::NPC_ValueDependentIsNull))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks that a call expression's argument count is the desired number.
 | |
| /// This is useful when doing custom type-checking.  Returns true on error.
 | |
| static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
 | |
|   unsigned argCount = call->getNumArgs();
 | |
|   if (argCount == desiredArgCount) return false;
 | |
| 
 | |
|   if (argCount < desiredArgCount)
 | |
|     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|         << 0 /*function call*/ << desiredArgCount << argCount
 | |
|         << call->getSourceRange();
 | |
| 
 | |
|   // Highlight all the excess arguments.
 | |
|   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
 | |
|                     call->getArg(argCount - 1)->getLocEnd());
 | |
|     
 | |
|   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
 | |
|     << 0 /*function call*/ << desiredArgCount << argCount
 | |
|     << call->getArg(1)->getSourceRange();
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   ExprResult TheCallResult(Owned(TheCall));
 | |
| 
 | |
|   // Find out if any arguments are required to be integer constant expressions.
 | |
|   unsigned ICEArguments = 0;
 | |
|   ASTContext::GetBuiltinTypeError Error;
 | |
|   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
 | |
|   if (Error != ASTContext::GE_None)
 | |
|     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
 | |
|   
 | |
|   // If any arguments are required to be ICE's, check and diagnose.
 | |
|   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
 | |
|     // Skip arguments not required to be ICE's.
 | |
|     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
 | |
|     
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
 | |
|       return true;
 | |
|     ICEArguments &= ~(1 << ArgNo);
 | |
|   }
 | |
|   
 | |
|   switch (BuiltinID) {
 | |
|   case Builtin::BI__builtin___CFStringMakeConstantString:
 | |
|     assert(TheCall->getNumArgs() == 1 &&
 | |
|            "Wrong # arguments to builtin CFStringMakeConstantString");
 | |
|     if (CheckObjCString(TheCall->getArg(0)))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_stdarg_start:
 | |
|   case Builtin::BI__builtin_va_start:
 | |
|     if (SemaBuiltinVAStart(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_isgreater:
 | |
|   case Builtin::BI__builtin_isgreaterequal:
 | |
|   case Builtin::BI__builtin_isless:
 | |
|   case Builtin::BI__builtin_islessequal:
 | |
|   case Builtin::BI__builtin_islessgreater:
 | |
|   case Builtin::BI__builtin_isunordered:
 | |
|     if (SemaBuiltinUnorderedCompare(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_fpclassify:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 6))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_isfinite:
 | |
|   case Builtin::BI__builtin_isinf:
 | |
|   case Builtin::BI__builtin_isinf_sign:
 | |
|   case Builtin::BI__builtin_isnan:
 | |
|   case Builtin::BI__builtin_isnormal:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 1))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_shufflevector:
 | |
|     return SemaBuiltinShuffleVector(TheCall);
 | |
|     // TheCall will be freed by the smart pointer here, but that's fine, since
 | |
|     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
 | |
|   case Builtin::BI__builtin_prefetch:
 | |
|     if (SemaBuiltinPrefetch(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_object_size:
 | |
|     if (SemaBuiltinObjectSize(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_longjmp:
 | |
|     if (SemaBuiltinLongjmp(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__builtin_classify_type:
 | |
|     if (checkArgCount(*this, TheCall, 1)) return true;
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     break;
 | |
|   case Builtin::BI__builtin_constant_p:
 | |
|     if (checkArgCount(*this, TheCall, 1)) return true;
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     break;
 | |
|   case Builtin::BI__sync_fetch_and_add:
 | |
|   case Builtin::BI__sync_fetch_and_sub:
 | |
|   case Builtin::BI__sync_fetch_and_or:
 | |
|   case Builtin::BI__sync_fetch_and_and:
 | |
|   case Builtin::BI__sync_fetch_and_xor:
 | |
|   case Builtin::BI__sync_add_and_fetch:
 | |
|   case Builtin::BI__sync_sub_and_fetch:
 | |
|   case Builtin::BI__sync_and_and_fetch:
 | |
|   case Builtin::BI__sync_or_and_fetch:
 | |
|   case Builtin::BI__sync_xor_and_fetch:
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|   case Builtin::BI__sync_lock_test_and_set:
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|   case Builtin::BI__sync_swap:
 | |
|     return SemaBuiltinAtomicOverloaded(move(TheCallResult));
 | |
|   }
 | |
|   
 | |
|   // Since the target specific builtins for each arch overlap, only check those
 | |
|   // of the arch we are compiling for.
 | |
|   if (BuiltinID >= Builtin::FirstTSBuiltin) {
 | |
|     switch (Context.Target.getTriple().getArch()) {
 | |
|       case llvm::Triple::arm:
 | |
|       case llvm::Triple::thumb:
 | |
|         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return move(TheCallResult);
 | |
| }
 | |
| 
 | |
| // Get the valid immediate range for the specified NEON type code.
 | |
| static unsigned RFT(unsigned t, bool shift = false) {
 | |
|   bool quad = t & 0x10;
 | |
|   
 | |
|   switch (t & 0x7) {
 | |
|     case 0: // i8
 | |
|       return shift ? 7 : (8 << (int)quad) - 1;
 | |
|     case 1: // i16
 | |
|       return shift ? 15 : (4 << (int)quad) - 1;
 | |
|     case 2: // i32
 | |
|       return shift ? 31 : (2 << (int)quad) - 1;
 | |
|     case 3: // i64
 | |
|       return shift ? 63 : (1 << (int)quad) - 1;
 | |
|     case 4: // f32
 | |
|       assert(!shift && "cannot shift float types!");
 | |
|       return (2 << (int)quad) - 1;
 | |
|     case 5: // poly8
 | |
|       return shift ? 7 : (8 << (int)quad) - 1;
 | |
|     case 6: // poly16
 | |
|       return shift ? 15 : (4 << (int)quad) - 1;
 | |
|     case 7: // float16
 | |
|       assert(!shift && "cannot shift float types!");
 | |
|       return (4 << (int)quad) - 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   unsigned mask = 0;
 | |
|   unsigned TV = 0;
 | |
|   switch (BuiltinID) {
 | |
| #define GET_NEON_OVERLOAD_CHECK
 | |
| #include "clang/Basic/arm_neon.inc"
 | |
| #undef GET_NEON_OVERLOAD_CHECK
 | |
|   }
 | |
|   
 | |
|   // For NEON intrinsics which are overloaded on vector element type, validate
 | |
|   // the immediate which specifies which variant to emit.
 | |
|   if (mask) {
 | |
|     unsigned ArgNo = TheCall->getNumArgs()-1;
 | |
|     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
 | |
|       return true;
 | |
|     
 | |
|     TV = Result.getLimitedValue(32);
 | |
|     if ((TV > 31) || (mask & (1 << TV)) == 0)
 | |
|       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
 | |
|         << TheCall->getArg(ArgNo)->getSourceRange();
 | |
|   }
 | |
|   
 | |
|   // For NEON intrinsics which take an immediate value as part of the 
 | |
|   // instruction, range check them here.
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
 | |
|   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
 | |
|   case ARM::BI__builtin_arm_vcvtr_f:
 | |
|   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
 | |
| #define GET_NEON_IMMEDIATE_CHECK
 | |
| #include "clang/Basic/arm_neon.inc"
 | |
| #undef GET_NEON_IMMEDIATE_CHECK
 | |
|   };
 | |
| 
 | |
|   // Check that the immediate argument is actually a constant.
 | |
|   if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Range check against the upper/lower values for this isntruction.
 | |
|   unsigned Val = Result.getZExtValue();
 | |
|   if (Val < l || Val > (u + l))
 | |
|     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|       << l << u+l << TheCall->getArg(i)->getSourceRange();
 | |
| 
 | |
|   // FIXME: VFP Intrinsics should error if VFP not present.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckFunctionCall - Check a direct function call for various correctness
 | |
| /// and safety properties not strictly enforced by the C type system.
 | |
| bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
 | |
|   // Get the IdentifierInfo* for the called function.
 | |
|   IdentifierInfo *FnInfo = FDecl->getIdentifier();
 | |
| 
 | |
|   // None of the checks below are needed for functions that don't have
 | |
|   // simple names (e.g., C++ conversion functions).
 | |
|   if (!FnInfo)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: This mechanism should be abstracted to be less fragile and
 | |
|   // more efficient. For example, just map function ids to custom
 | |
|   // handlers.
 | |
| 
 | |
|   // Printf and scanf checking.
 | |
|   for (specific_attr_iterator<FormatAttr>
 | |
|          i = FDecl->specific_attr_begin<FormatAttr>(),
 | |
|          e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
 | |
| 
 | |
|     const FormatAttr *Format = *i;
 | |
|     const bool b = Format->getType() == "scanf";
 | |
|     if (b || CheckablePrintfAttr(Format, TheCall)) {
 | |
|       bool HasVAListArg = Format->getFirstArg() == 0;
 | |
|       CheckPrintfScanfArguments(TheCall, HasVAListArg,
 | |
|                                 Format->getFormatIdx() - 1,
 | |
|                                 HasVAListArg ? 0 : Format->getFirstArg() - 1,
 | |
|                                 !b);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (specific_attr_iterator<NonNullAttr>
 | |
|          i = FDecl->specific_attr_begin<NonNullAttr>(),
 | |
|          e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
 | |
|     CheckNonNullArguments(*i, TheCall->getArgs(),
 | |
|                           TheCall->getCallee()->getLocStart());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
 | |
|   // Printf checking.
 | |
|   const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
 | |
|   if (!Format)
 | |
|     return false;
 | |
| 
 | |
|   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
 | |
|   if (!V)
 | |
|     return false;
 | |
| 
 | |
|   QualType Ty = V->getType();
 | |
|   if (!Ty->isBlockPointerType())
 | |
|     return false;
 | |
| 
 | |
|   const bool b = Format->getType() == "scanf";
 | |
|   if (!b && !CheckablePrintfAttr(Format, TheCall))
 | |
|     return false;
 | |
| 
 | |
|   bool HasVAListArg = Format->getFirstArg() == 0;
 | |
|   CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
 | |
|                             HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinAtomicOverloaded - We have a call to a function like
 | |
| /// __sync_fetch_and_add, which is an overloaded function based on the pointer
 | |
| /// type of its first argument.  The main ActOnCallExpr routines have already
 | |
| /// promoted the types of arguments because all of these calls are prototyped as
 | |
| /// void(...).
 | |
| ///
 | |
| /// This function goes through and does final semantic checking for these
 | |
| /// builtins,
 | |
| ExprResult
 | |
| Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
 | |
|   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
| 
 | |
|   // Ensure that we have at least one argument to do type inference from.
 | |
|   if (TheCall->getNumArgs() < 1) {
 | |
|     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 << 1 << TheCall->getNumArgs()
 | |
|       << TheCall->getCallee()->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Inspect the first argument of the atomic builtin.  This should always be
 | |
|   // a pointer type, whose element is an integral scalar or pointer type.
 | |
|   // Because it is a pointer type, we don't have to worry about any implicit
 | |
|   // casts here.
 | |
|   // FIXME: We don't allow floating point scalars as input.
 | |
|   Expr *FirstArg = TheCall->getArg(0);
 | |
|   if (!FirstArg->getType()->isPointerType()) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
 | |
|       << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   QualType ValType =
 | |
|     FirstArg->getType()->getAs<PointerType>()->getPointeeType();
 | |
|   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | |
|       !ValType->isBlockPointerType()) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
 | |
|       << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // The majority of builtins return a value, but a few have special return
 | |
|   // types, so allow them to override appropriately below.
 | |
|   QualType ResultType = ValType;
 | |
| 
 | |
|   // We need to figure out which concrete builtin this maps onto.  For example,
 | |
|   // __sync_fetch_and_add with a 2 byte object turns into
 | |
|   // __sync_fetch_and_add_2.
 | |
| #define BUILTIN_ROW(x) \
 | |
|   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
 | |
|     Builtin::BI##x##_8, Builtin::BI##x##_16 }
 | |
| 
 | |
|   static const unsigned BuiltinIndices[][5] = {
 | |
|     BUILTIN_ROW(__sync_fetch_and_add),
 | |
|     BUILTIN_ROW(__sync_fetch_and_sub),
 | |
|     BUILTIN_ROW(__sync_fetch_and_or),
 | |
|     BUILTIN_ROW(__sync_fetch_and_and),
 | |
|     BUILTIN_ROW(__sync_fetch_and_xor),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_add_and_fetch),
 | |
|     BUILTIN_ROW(__sync_sub_and_fetch),
 | |
|     BUILTIN_ROW(__sync_and_and_fetch),
 | |
|     BUILTIN_ROW(__sync_or_and_fetch),
 | |
|     BUILTIN_ROW(__sync_xor_and_fetch),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_val_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_bool_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_lock_test_and_set),
 | |
|     BUILTIN_ROW(__sync_lock_release),
 | |
|     BUILTIN_ROW(__sync_swap)
 | |
|   };
 | |
| #undef BUILTIN_ROW
 | |
| 
 | |
|   // Determine the index of the size.
 | |
|   unsigned SizeIndex;
 | |
|   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
 | |
|   case 1: SizeIndex = 0; break;
 | |
|   case 2: SizeIndex = 1; break;
 | |
|   case 4: SizeIndex = 2; break;
 | |
|   case 8: SizeIndex = 3; break;
 | |
|   case 16: SizeIndex = 4; break;
 | |
|   default:
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
 | |
|       << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Each of these builtins has one pointer argument, followed by some number of
 | |
|   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
 | |
|   // that we ignore.  Find out which row of BuiltinIndices to read from as well
 | |
|   // as the number of fixed args.
 | |
|   unsigned BuiltinID = FDecl->getBuiltinID();
 | |
|   unsigned BuiltinIndex, NumFixed = 1;
 | |
|   switch (BuiltinID) {
 | |
|   default: assert(0 && "Unknown overloaded atomic builtin!");
 | |
|   case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
 | |
|   case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
 | |
|   case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
 | |
|   case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
 | |
|   case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
 | |
| 
 | |
|   case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
 | |
|   case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
 | |
|   case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
 | |
|   case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
 | |
|   case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
 | |
| 
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|     BuiltinIndex = 10;
 | |
|     NumFixed = 2;
 | |
|     break;
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|     BuiltinIndex = 11;
 | |
|     NumFixed = 2;
 | |
|     ResultType = Context.BoolTy;
 | |
|     break;
 | |
|   case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|     BuiltinIndex = 13;
 | |
|     NumFixed = 0;
 | |
|     ResultType = Context.VoidTy;
 | |
|     break;
 | |
|   case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many fixed arguments we expect, first check that we
 | |
|   // have at least that many.
 | |
|   if (TheCall->getNumArgs() < 1+NumFixed) {
 | |
|     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 << 1+NumFixed << TheCall->getNumArgs()
 | |
|       << TheCall->getCallee()->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Get the decl for the concrete builtin from this, we can tell what the
 | |
|   // concrete integer type we should convert to is.
 | |
|   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
 | |
|   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
 | |
|   IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
 | |
|   FunctionDecl *NewBuiltinDecl =
 | |
|     cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
 | |
|                                            TUScope, false, DRE->getLocStart()));
 | |
| 
 | |
|   // The first argument --- the pointer --- has a fixed type; we
 | |
|   // deduce the types of the rest of the arguments accordingly.  Walk
 | |
|   // the remaining arguments, converting them to the deduced value type.
 | |
|   for (unsigned i = 0; i != NumFixed; ++i) {
 | |
|     ExprResult Arg = TheCall->getArg(i+1);
 | |
| 
 | |
|     // If the argument is an implicit cast, then there was a promotion due to
 | |
|     // "...", just remove it now.
 | |
|     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
 | |
|       Arg = ICE->getSubExpr();
 | |
|       ICE->setSubExpr(0);
 | |
|       TheCall->setArg(i+1, Arg.get());
 | |
|     }
 | |
| 
 | |
|     // GCC does an implicit conversion to the pointer or integer ValType.  This
 | |
|     // can fail in some cases (1i -> int**), check for this error case now.
 | |
|     CastKind Kind = CK_Invalid;
 | |
|     ExprValueKind VK = VK_RValue;
 | |
|     CXXCastPath BasePath;
 | |
|     Arg = CheckCastTypes(Arg.get()->getSourceRange(), ValType, Arg.take(), Kind, VK, BasePath);
 | |
|     if (Arg.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Okay, we have something that *can* be converted to the right type.  Check
 | |
|     // to see if there is a potentially weird extension going on here.  This can
 | |
|     // happen when you do an atomic operation on something like an char* and
 | |
|     // pass in 42.  The 42 gets converted to char.  This is even more strange
 | |
|     // for things like 45.123 -> char, etc.
 | |
|     // FIXME: Do this check.
 | |
|     Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
 | |
|     TheCall->setArg(i+1, Arg.get());
 | |
|   }
 | |
| 
 | |
|   // Switch the DeclRefExpr to refer to the new decl.
 | |
|   DRE->setDecl(NewBuiltinDecl);
 | |
|   DRE->setType(NewBuiltinDecl->getType());
 | |
| 
 | |
|   // Set the callee in the CallExpr.
 | |
|   // FIXME: This leaks the original parens and implicit casts.
 | |
|   ExprResult PromotedCall = UsualUnaryConversions(DRE);
 | |
|   if (PromotedCall.isInvalid())
 | |
|     return ExprError();
 | |
|   TheCall->setCallee(PromotedCall.take());
 | |
| 
 | |
|   // Change the result type of the call to match the original value type. This
 | |
|   // is arbitrary, but the codegen for these builtins ins design to handle it
 | |
|   // gracefully.
 | |
|   TheCall->setType(ResultType);
 | |
| 
 | |
|   return move(TheCallResult);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CheckObjCString - Checks that the argument to the builtin
 | |
| /// CFString constructor is correct
 | |
| /// Note: It might also make sense to do the UTF-16 conversion here (would
 | |
| /// simplify the backend).
 | |
| bool Sema::CheckObjCString(Expr *Arg) {
 | |
|   Arg = Arg->IgnoreParenCasts();
 | |
|   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
 | |
| 
 | |
|   if (!Literal || Literal->isWide()) {
 | |
|     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
 | |
|       << Arg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Literal->containsNonAsciiOrNull()) {
 | |
|     llvm::StringRef String = Literal->getString();
 | |
|     unsigned NumBytes = String.size();
 | |
|     llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
 | |
|     const UTF8 *FromPtr = (UTF8 *)String.data();
 | |
|     UTF16 *ToPtr = &ToBuf[0];
 | |
|     
 | |
|     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
 | |
|                                                  &ToPtr, ToPtr + NumBytes,
 | |
|                                                  strictConversion);
 | |
|     // Check for conversion failure.
 | |
|     if (Result != conversionOK)
 | |
|       Diag(Arg->getLocStart(),
 | |
|            diag::warn_cfstring_truncated) << Arg->getSourceRange();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
 | |
| /// Emit an error and return true on failure, return false on success.
 | |
| bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
 | |
|   Expr *Fn = TheCall->getCallee();
 | |
|   if (TheCall->getNumArgs() > 2) {
 | |
|     Diag(TheCall->getArg(2)->getLocStart(),
 | |
|          diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|       << Fn->getSourceRange()
 | |
|       << SourceRange(TheCall->getArg(2)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (TheCall->getNumArgs() < 2) {
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|       diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
 | |
|   }
 | |
| 
 | |
|   // Determine whether the current function is variadic or not.
 | |
|   BlockScopeInfo *CurBlock = getCurBlock();
 | |
|   bool isVariadic;
 | |
|   if (CurBlock)
 | |
|     isVariadic = CurBlock->TheDecl->isVariadic();
 | |
|   else if (FunctionDecl *FD = getCurFunctionDecl())
 | |
|     isVariadic = FD->isVariadic();
 | |
|   else
 | |
|     isVariadic = getCurMethodDecl()->isVariadic();
 | |
| 
 | |
|   if (!isVariadic) {
 | |
|     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Verify that the second argument to the builtin is the last argument of the
 | |
|   // current function or method.
 | |
|   bool SecondArgIsLastNamedArgument = false;
 | |
|   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
 | |
| 
 | |
|   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
 | |
|     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
 | |
|       // FIXME: This isn't correct for methods (results in bogus warning).
 | |
|       // Get the last formal in the current function.
 | |
|       const ParmVarDecl *LastArg;
 | |
|       if (CurBlock)
 | |
|         LastArg = *(CurBlock->TheDecl->param_end()-1);
 | |
|       else if (FunctionDecl *FD = getCurFunctionDecl())
 | |
|         LastArg = *(FD->param_end()-1);
 | |
|       else
 | |
|         LastArg = *(getCurMethodDecl()->param_end()-1);
 | |
|       SecondArgIsLastNamedArgument = PV == LastArg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!SecondArgIsLastNamedArgument)
 | |
|     Diag(TheCall->getArg(1)->getLocStart(),
 | |
|          diag::warn_second_parameter_of_va_start_not_last_named_argument);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
 | |
| /// friends.  This is declared to take (...), so we have to check everything.
 | |
| bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 2)
 | |
|     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
 | |
|   if (TheCall->getNumArgs() > 2)
 | |
|     return Diag(TheCall->getArg(2)->getLocStart(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|       << SourceRange(TheCall->getArg(2)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
| 
 | |
|   ExprResult OrigArg0 = TheCall->getArg(0);
 | |
|   ExprResult OrigArg1 = TheCall->getArg(1);
 | |
| 
 | |
|   // Do standard promotions between the two arguments, returning their common
 | |
|   // type.
 | |
|   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
 | |
|   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // Make sure any conversions are pushed back into the call; this is
 | |
|   // type safe since unordered compare builtins are declared as "_Bool
 | |
|   // foo(...)".
 | |
|   TheCall->setArg(0, OrigArg0.get());
 | |
|   TheCall->setArg(1, OrigArg1.get());
 | |
| 
 | |
|   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // If the common type isn't a real floating type, then the arguments were
 | |
|   // invalid for this operation.
 | |
|   if (!Res->isRealFloatingType())
 | |
|     return Diag(OrigArg0.get()->getLocStart(),
 | |
|                 diag::err_typecheck_call_invalid_ordered_compare)
 | |
|       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
 | |
|       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
 | |
| /// __builtin_isnan and friends.  This is declared to take (...), so we have
 | |
| /// to check everything. We expect the last argument to be a floating point
 | |
| /// value.
 | |
| bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
 | |
|   if (TheCall->getNumArgs() < NumArgs)
 | |
|     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
 | |
|   if (TheCall->getNumArgs() > NumArgs)
 | |
|     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
 | |
|       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
| 
 | |
|   Expr *OrigArg = TheCall->getArg(NumArgs-1);
 | |
| 
 | |
|   if (OrigArg->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // This operation requires a non-_Complex floating-point number.
 | |
|   if (!OrigArg->getType()->isRealFloatingType())
 | |
|     return Diag(OrigArg->getLocStart(),
 | |
|                 diag::err_typecheck_call_invalid_unary_fp)
 | |
|       << OrigArg->getType() << OrigArg->getSourceRange();
 | |
| 
 | |
|   // If this is an implicit conversion from float -> double, remove it.
 | |
|   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
 | |
|     Expr *CastArg = Cast->getSubExpr();
 | |
|     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
 | |
|       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
 | |
|              "promotion from float to double is the only expected cast here");
 | |
|       Cast->setSubExpr(0);
 | |
|       TheCall->setArg(NumArgs-1, CastArg);
 | |
|       OrigArg = CastArg;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
 | |
| // This is declared to take (...), so we have to check everything.
 | |
| ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 2)
 | |
|     return ExprError(Diag(TheCall->getLocEnd(),
 | |
|                           diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|       << TheCall->getSourceRange());
 | |
| 
 | |
|   // Determine which of the following types of shufflevector we're checking:
 | |
|   // 1) unary, vector mask: (lhs, mask)
 | |
|   // 2) binary, vector mask: (lhs, rhs, mask)
 | |
|   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
 | |
|   QualType resType = TheCall->getArg(0)->getType();
 | |
|   unsigned numElements = 0;
 | |
|   
 | |
|   if (!TheCall->getArg(0)->isTypeDependent() &&
 | |
|       !TheCall->getArg(1)->isTypeDependent()) {
 | |
|     QualType LHSType = TheCall->getArg(0)->getType();
 | |
|     QualType RHSType = TheCall->getArg(1)->getType();
 | |
|     
 | |
|     if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
 | |
|       Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
 | |
|         << SourceRange(TheCall->getArg(0)->getLocStart(),
 | |
|                        TheCall->getArg(1)->getLocEnd());
 | |
|       return ExprError();
 | |
|     }
 | |
|     
 | |
|     numElements = LHSType->getAs<VectorType>()->getNumElements();
 | |
|     unsigned numResElements = TheCall->getNumArgs() - 2;
 | |
| 
 | |
|     // Check to see if we have a call with 2 vector arguments, the unary shuffle
 | |
|     // with mask.  If so, verify that RHS is an integer vector type with the
 | |
|     // same number of elts as lhs.
 | |
|     if (TheCall->getNumArgs() == 2) {
 | |
|       if (!RHSType->hasIntegerRepresentation() || 
 | |
|           RHSType->getAs<VectorType>()->getNumElements() != numElements)
 | |
|         Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
 | |
|           << SourceRange(TheCall->getArg(1)->getLocStart(),
 | |
|                          TheCall->getArg(1)->getLocEnd());
 | |
|       numResElements = numElements;
 | |
|     }
 | |
|     else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
 | |
|       Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
 | |
|         << SourceRange(TheCall->getArg(0)->getLocStart(),
 | |
|                        TheCall->getArg(1)->getLocEnd());
 | |
|       return ExprError();
 | |
|     } else if (numElements != numResElements) {
 | |
|       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
 | |
|       resType = Context.getVectorType(eltType, numResElements,
 | |
|                                       VectorType::GenericVector);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
 | |
|     if (TheCall->getArg(i)->isTypeDependent() ||
 | |
|         TheCall->getArg(i)->isValueDependent())
 | |
|       continue;
 | |
| 
 | |
|     llvm::APSInt Result(32);
 | |
|     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
 | |
|       return ExprError(Diag(TheCall->getLocStart(),
 | |
|                   diag::err_shufflevector_nonconstant_argument)
 | |
|                 << TheCall->getArg(i)->getSourceRange());
 | |
| 
 | |
|     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
 | |
|       return ExprError(Diag(TheCall->getLocStart(),
 | |
|                   diag::err_shufflevector_argument_too_large)
 | |
|                << TheCall->getArg(i)->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   llvm::SmallVector<Expr*, 32> exprs;
 | |
| 
 | |
|   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
 | |
|     exprs.push_back(TheCall->getArg(i));
 | |
|     TheCall->setArg(i, 0);
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
 | |
|                                             exprs.size(), resType,
 | |
|                                             TheCall->getCallee()->getLocStart(),
 | |
|                                             TheCall->getRParenLoc()));
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
 | |
| // This is declared to take (const void*, ...) and can take two
 | |
| // optional constant int args.
 | |
| bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   if (NumArgs > 3)
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|              diag::err_typecheck_call_too_many_args_at_most)
 | |
|              << 0 /*function call*/ << 3 << NumArgs
 | |
|              << TheCall->getSourceRange();
 | |
| 
 | |
|   // Argument 0 is checked for us and the remaining arguments must be
 | |
|   // constant integers.
 | |
|   for (unsigned i = 1; i != NumArgs; ++i) {
 | |
|     Expr *Arg = TheCall->getArg(i);
 | |
|     
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|       return true;
 | |
| 
 | |
|     // FIXME: gcc issues a warning and rewrites these to 0. These
 | |
|     // seems especially odd for the third argument since the default
 | |
|     // is 3.
 | |
|     if (i == 1) {
 | |
|       if (Result.getLimitedValue() > 1)
 | |
|         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|              << "0" << "1" << Arg->getSourceRange();
 | |
|     } else {
 | |
|       if (Result.getLimitedValue() > 3)
 | |
|         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|             << "0" << "3" << Arg->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
 | |
| /// TheCall is a constant expression.
 | |
| bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
 | |
|                                   llvm::APSInt &Result) {
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
|   
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
 | |
|   
 | |
|   if (!Arg->isIntegerConstantExpr(Result, Context))
 | |
|     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
 | |
|                 << FDecl->getDeclName() <<  Arg->getSourceRange();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
 | |
| /// int type). This simply type checks that type is one of the defined
 | |
| /// constants (0-3).
 | |
| // For compatibility check 0-3, llvm only handles 0 and 2.
 | |
| bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
 | |
|   llvm::APSInt Result;
 | |
|   
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|     return true;
 | |
| 
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
|   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
 | |
|     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
 | |
| /// This checks that val is a constant 1.
 | |
| bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // TODO: This is less than ideal. Overload this to take a value.
 | |
|   if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|     return true;
 | |
|   
 | |
|   if (Result != 1)
 | |
|     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
 | |
|              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Handle i > 1 ? "x" : "y", recursively.
 | |
| bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
 | |
|                                   bool HasVAListArg,
 | |
|                                   unsigned format_idx, unsigned firstDataArg,
 | |
|                                   bool isPrintf) {
 | |
|  tryAgain:
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::BinaryConditionalOperatorClass:
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
 | |
|     return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
 | |
|                                   format_idx, firstDataArg, isPrintf)
 | |
|         && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
 | |
|                                   format_idx, firstDataArg, isPrintf);
 | |
|   }
 | |
| 
 | |
|   case Stmt::IntegerLiteralClass:
 | |
|     // Technically -Wformat-nonliteral does not warn about this case.
 | |
|     // The behavior of printf and friends in this case is implementation
 | |
|     // dependent.  Ideally if the format string cannot be null then
 | |
|     // it should have a 'nonnull' attribute in the function prototype.
 | |
|     return true;
 | |
| 
 | |
|   case Stmt::ImplicitCastExprClass: {
 | |
|     E = cast<ImplicitCastExpr>(E)->getSubExpr();
 | |
|     goto tryAgain;
 | |
|   }
 | |
| 
 | |
|   case Stmt::OpaqueValueExprClass:
 | |
|     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
 | |
|       E = src;
 | |
|       goto tryAgain;
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
|   case Stmt::PredefinedExprClass:
 | |
|     // While __func__, etc., are technically not string literals, they
 | |
|     // cannot contain format specifiers and thus are not a security
 | |
|     // liability.
 | |
|     return true;
 | |
|       
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     // As an exception, do not flag errors for variables binding to
 | |
|     // const string literals.
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
 | |
|       bool isConstant = false;
 | |
|       QualType T = DR->getType();
 | |
| 
 | |
|       if (const ArrayType *AT = Context.getAsArrayType(T)) {
 | |
|         isConstant = AT->getElementType().isConstant(Context);
 | |
|       } else if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|         isConstant = T.isConstant(Context) &&
 | |
|                      PT->getPointeeType().isConstant(Context);
 | |
|       }
 | |
| 
 | |
|       if (isConstant) {
 | |
|         if (const Expr *Init = VD->getAnyInitializer())
 | |
|           return SemaCheckStringLiteral(Init, TheCall,
 | |
|                                         HasVAListArg, format_idx, firstDataArg,
 | |
|                                         isPrintf);
 | |
|       }
 | |
| 
 | |
|       // For vprintf* functions (i.e., HasVAListArg==true), we add a
 | |
|       // special check to see if the format string is a function parameter
 | |
|       // of the function calling the printf function.  If the function
 | |
|       // has an attribute indicating it is a printf-like function, then we
 | |
|       // should suppress warnings concerning non-literals being used in a call
 | |
|       // to a vprintf function.  For example:
 | |
|       //
 | |
|       // void
 | |
|       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
 | |
|       //      va_list ap;
 | |
|       //      va_start(ap, fmt);
 | |
|       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
 | |
|       //      ...
 | |
|       //
 | |
|       //
 | |
|       //  FIXME: We don't have full attribute support yet, so just check to see
 | |
|       //    if the argument is a DeclRefExpr that references a parameter.  We'll
 | |
|       //    add proper support for checking the attribute later.
 | |
|       if (HasVAListArg)
 | |
|         if (isa<ParmVarDecl>(VD))
 | |
|           return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case Stmt::CallExprClass: {
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
|     if (const ImplicitCastExpr *ICE
 | |
|           = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
 | |
|       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
 | |
|         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
 | |
|           if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
 | |
|             unsigned ArgIndex = FA->getFormatIdx();
 | |
|             const Expr *Arg = CE->getArg(ArgIndex - 1);
 | |
| 
 | |
|             return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
 | |
|                                           format_idx, firstDataArg, isPrintf);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
|   case Stmt::ObjCStringLiteralClass:
 | |
|   case Stmt::StringLiteralClass: {
 | |
|     const StringLiteral *StrE = NULL;
 | |
| 
 | |
|     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
 | |
|       StrE = ObjCFExpr->getString();
 | |
|     else
 | |
|       StrE = cast<StringLiteral>(E);
 | |
| 
 | |
|     if (StrE) {
 | |
|       CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
 | |
|                         firstDataArg, isPrintf);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
 | |
|                             const Expr * const *ExprArgs,
 | |
|                             SourceLocation CallSiteLoc) {
 | |
|   for (NonNullAttr::args_iterator i = NonNull->args_begin(),
 | |
|                                   e = NonNull->args_end();
 | |
|        i != e; ++i) {
 | |
|     const Expr *ArgExpr = ExprArgs[*i];
 | |
|     if (ArgExpr->isNullPointerConstant(Context,
 | |
|                                        Expr::NPC_ValueDependentIsNotNull))
 | |
|       Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
 | |
| /// functions) for correct use of format strings.
 | |
| void
 | |
| Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
 | |
|                                 unsigned format_idx, unsigned firstDataArg,
 | |
|                                 bool isPrintf) {
 | |
| 
 | |
|   const Expr *Fn = TheCall->getCallee();
 | |
| 
 | |
|   // The way the format attribute works in GCC, the implicit this argument
 | |
|   // of member functions is counted. However, it doesn't appear in our own
 | |
|   // lists, so decrement format_idx in that case.
 | |
|   if (isa<CXXMemberCallExpr>(TheCall)) {
 | |
|     const CXXMethodDecl *method_decl =
 | |
|       dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
 | |
|     if (method_decl && method_decl->isInstance()) {
 | |
|       // Catch a format attribute mistakenly referring to the object argument.
 | |
|       if (format_idx == 0)
 | |
|         return;
 | |
|       --format_idx;
 | |
|       if(firstDataArg != 0)
 | |
|         --firstDataArg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // CHECK: printf/scanf-like function is called with no format string.
 | |
|   if (format_idx >= TheCall->getNumArgs()) {
 | |
|     Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
 | |
|       << Fn->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
 | |
| 
 | |
|   // CHECK: format string is not a string literal.
 | |
|   //
 | |
|   // Dynamically generated format strings are difficult to
 | |
|   // automatically vet at compile time.  Requiring that format strings
 | |
|   // are string literals: (1) permits the checking of format strings by
 | |
|   // the compiler and thereby (2) can practically remove the source of
 | |
|   // many format string exploits.
 | |
| 
 | |
|   // Format string can be either ObjC string (e.g. @"%d") or
 | |
|   // C string (e.g. "%d")
 | |
|   // ObjC string uses the same format specifiers as C string, so we can use
 | |
|   // the same format string checking logic for both ObjC and C strings.
 | |
|   if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
 | |
|                              firstDataArg, isPrintf))
 | |
|     return;  // Literal format string found, check done!
 | |
| 
 | |
|   // If there are no arguments specified, warn with -Wformat-security, otherwise
 | |
|   // warn only with -Wformat-nonliteral.
 | |
|   if (TheCall->getNumArgs() == format_idx+1)
 | |
|     Diag(TheCall->getArg(format_idx)->getLocStart(),
 | |
|          diag::warn_format_nonliteral_noargs)
 | |
|       << OrigFormatExpr->getSourceRange();
 | |
|   else
 | |
|     Diag(TheCall->getArg(format_idx)->getLocStart(),
 | |
|          diag::warn_format_nonliteral)
 | |
|            << OrigFormatExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
 | |
| protected:
 | |
|   Sema &S;
 | |
|   const StringLiteral *FExpr;
 | |
|   const Expr *OrigFormatExpr;
 | |
|   const unsigned FirstDataArg;
 | |
|   const unsigned NumDataArgs;
 | |
|   const bool IsObjCLiteral;
 | |
|   const char *Beg; // Start of format string.
 | |
|   const bool HasVAListArg;
 | |
|   const CallExpr *TheCall;
 | |
|   unsigned FormatIdx;
 | |
|   llvm::BitVector CoveredArgs;
 | |
|   bool usesPositionalArgs;
 | |
|   bool atFirstArg;
 | |
| public:
 | |
|   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
 | |
|                      const Expr *origFormatExpr, unsigned firstDataArg,
 | |
|                      unsigned numDataArgs, bool isObjCLiteral,
 | |
|                      const char *beg, bool hasVAListArg,
 | |
|                      const CallExpr *theCall, unsigned formatIdx)
 | |
|     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
 | |
|       FirstDataArg(firstDataArg),
 | |
|       NumDataArgs(numDataArgs),
 | |
|       IsObjCLiteral(isObjCLiteral), Beg(beg),
 | |
|       HasVAListArg(hasVAListArg),
 | |
|       TheCall(theCall), FormatIdx(formatIdx),
 | |
|       usesPositionalArgs(false), atFirstArg(true) {
 | |
|         CoveredArgs.resize(numDataArgs);
 | |
|         CoveredArgs.reset();
 | |
|       }
 | |
| 
 | |
|   void DoneProcessing();
 | |
| 
 | |
|   void HandleIncompleteSpecifier(const char *startSpecifier,
 | |
|                                  unsigned specifierLen);
 | |
|     
 | |
|   virtual void HandleInvalidPosition(const char *startSpecifier,
 | |
|                                      unsigned specifierLen,
 | |
|                                      analyze_format_string::PositionContext p);
 | |
| 
 | |
|   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
 | |
| 
 | |
|   void HandleNullChar(const char *nullCharacter);
 | |
| 
 | |
| protected:
 | |
|   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
 | |
|                                         const char *startSpec,
 | |
|                                         unsigned specifierLen,
 | |
|                                         const char *csStart, unsigned csLen);
 | |
|   
 | |
|   SourceRange getFormatStringRange();
 | |
|   CharSourceRange getSpecifierRange(const char *startSpecifier,
 | |
|                                     unsigned specifierLen);
 | |
|   SourceLocation getLocationOfByte(const char *x);
 | |
| 
 | |
|   const Expr *getDataArg(unsigned i) const;
 | |
|   
 | |
|   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
 | |
|                     const analyze_format_string::ConversionSpecifier &CS,
 | |
|                     const char *startSpecifier, unsigned specifierLen,
 | |
|                     unsigned argIndex);
 | |
| };
 | |
| }
 | |
| 
 | |
| SourceRange CheckFormatHandler::getFormatStringRange() {
 | |
|   return OrigFormatExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| CharSourceRange CheckFormatHandler::
 | |
| getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
 | |
|   SourceLocation Start = getLocationOfByte(startSpecifier);
 | |
|   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
 | |
| 
 | |
|   // Advance the end SourceLocation by one due to half-open ranges.
 | |
|   End = End.getFileLocWithOffset(1);
 | |
| 
 | |
|   return CharSourceRange::getCharRange(Start, End);
 | |
| }
 | |
| 
 | |
| SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
 | |
|   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
 | |
|                                                    unsigned specifierLen){
 | |
|   SourceLocation Loc = getLocationOfByte(startSpecifier);
 | |
|   S.Diag(Loc, diag::warn_printf_incomplete_specifier)
 | |
|     << getSpecifierRange(startSpecifier, specifierLen);
 | |
| }
 | |
| 
 | |
| void
 | |
| CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
 | |
|                                      analyze_format_string::PositionContext p) {
 | |
|   SourceLocation Loc = getLocationOfByte(startPos);
 | |
|   S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
 | |
|     << (unsigned) p << getSpecifierRange(startPos, posLen);
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleZeroPosition(const char *startPos,
 | |
|                                             unsigned posLen) {
 | |
|   SourceLocation Loc = getLocationOfByte(startPos);
 | |
|   S.Diag(Loc, diag::warn_format_zero_positional_specifier)
 | |
|     << getSpecifierRange(startPos, posLen);
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
 | |
|   if (!IsObjCLiteral) {
 | |
|     // The presence of a null character is likely an error.
 | |
|     S.Diag(getLocationOfByte(nullCharacter),
 | |
|            diag::warn_printf_format_string_contains_null_char)
 | |
|       << getFormatStringRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
 | |
|   return TheCall->getArg(FirstDataArg + i);
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::DoneProcessing() {
 | |
|     // Does the number of data arguments exceed the number of
 | |
|     // format conversions in the format string?
 | |
|   if (!HasVAListArg) {
 | |
|       // Find any arguments that weren't covered.
 | |
|     CoveredArgs.flip();
 | |
|     signed notCoveredArg = CoveredArgs.find_first();
 | |
|     if (notCoveredArg >= 0) {
 | |
|       assert((unsigned)notCoveredArg < NumDataArgs);
 | |
|       S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
 | |
|              diag::warn_printf_data_arg_not_used)
 | |
|       << getFormatStringRange();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
 | |
|                                                      SourceLocation Loc,
 | |
|                                                      const char *startSpec,
 | |
|                                                      unsigned specifierLen,
 | |
|                                                      const char *csStart,
 | |
|                                                      unsigned csLen) {
 | |
|   
 | |
|   bool keepGoing = true;
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // Consider the argument coverered, even though the specifier doesn't
 | |
|     // make sense.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
|   else {
 | |
|     // If argIndex exceeds the number of data arguments we
 | |
|     // don't issue a warning because that is just a cascade of warnings (and
 | |
|     // they may have intended '%%' anyway). We don't want to continue processing
 | |
|     // the format string after this point, however, as we will like just get
 | |
|     // gibberish when trying to match arguments.
 | |
|     keepGoing = false;
 | |
|   }
 | |
|   
 | |
|   S.Diag(Loc, diag::warn_format_invalid_conversion)
 | |
|     << llvm::StringRef(csStart, csLen)
 | |
|     << getSpecifierRange(startSpec, specifierLen);
 | |
|   
 | |
|   return keepGoing;
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckFormatHandler::CheckNumArgs(
 | |
|   const analyze_format_string::FormatSpecifier &FS,
 | |
|   const analyze_format_string::ConversionSpecifier &CS,
 | |
|   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
 | |
| 
 | |
|   if (argIndex >= NumDataArgs) {
 | |
|     if (FS.usesPositionalArg())  {
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_printf_positional_arg_exceeds_data_args)
 | |
|       << (argIndex+1) << NumDataArgs
 | |
|       << getSpecifierRange(startSpecifier, specifierLen);
 | |
|     }
 | |
|     else {
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_printf_insufficient_data_args)
 | |
|       << getSpecifierRange(startSpecifier, specifierLen);
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Printf format string checking ------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class CheckPrintfHandler : public CheckFormatHandler {
 | |
| public:
 | |
|   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
 | |
|                      const Expr *origFormatExpr, unsigned firstDataArg,
 | |
|                      unsigned numDataArgs, bool isObjCLiteral,
 | |
|                      const char *beg, bool hasVAListArg,
 | |
|                      const CallExpr *theCall, unsigned formatIdx)
 | |
|   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
 | |
|                        numDataArgs, isObjCLiteral, beg, hasVAListArg,
 | |
|                        theCall, formatIdx) {}
 | |
|   
 | |
|   
 | |
|   bool HandleInvalidPrintfConversionSpecifier(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen);
 | |
|   
 | |
|   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
 | |
|                              const char *startSpecifier,
 | |
|                              unsigned specifierLen);
 | |
|   
 | |
|   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
 | |
|                     const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
 | |
|                            const analyze_printf::OptionalAmount &Amt,
 | |
|                            unsigned type,
 | |
|                            const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                   const analyze_printf::OptionalFlag &flag,
 | |
|                   const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                          const analyze_printf::OptionalFlag &ignoredFlag,
 | |
|                          const analyze_printf::OptionalFlag &flag,
 | |
|                          const char *startSpecifier, unsigned specifierLen);
 | |
| };  
 | |
| }
 | |
| 
 | |
| bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen) {
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
|   
 | |
|   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | |
|                                           getLocationOfByte(CS.getStart()),
 | |
|                                           startSpecifier, specifierLen,
 | |
|                                           CS.getStart(), CS.getLength());
 | |
| }
 | |
| 
 | |
| bool CheckPrintfHandler::HandleAmount(
 | |
|                                const analyze_format_string::OptionalAmount &Amt,
 | |
|                                unsigned k, const char *startSpecifier,
 | |
|                                unsigned specifierLen) {
 | |
| 
 | |
|   if (Amt.hasDataArgument()) {
 | |
|     if (!HasVAListArg) {
 | |
|       unsigned argIndex = Amt.getArgIndex();
 | |
|       if (argIndex >= NumDataArgs) {
 | |
|         S.Diag(getLocationOfByte(Amt.getStart()),
 | |
|                diag::warn_printf_asterisk_missing_arg)
 | |
|           << k << getSpecifierRange(startSpecifier, specifierLen);
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Type check the data argument.  It should be an 'int'.
 | |
|       // Although not in conformance with C99, we also allow the argument to be
 | |
|       // an 'unsigned int' as that is a reasonably safe case.  GCC also
 | |
|       // doesn't emit a warning for that case.
 | |
|       CoveredArgs.set(argIndex);
 | |
|       const Expr *Arg = getDataArg(argIndex);
 | |
|       QualType T = Arg->getType();
 | |
| 
 | |
|       const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
 | |
|       assert(ATR.isValid());
 | |
| 
 | |
|       if (!ATR.matchesType(S.Context, T)) {
 | |
|         S.Diag(getLocationOfByte(Amt.getStart()),
 | |
|                diag::warn_printf_asterisk_wrong_type)
 | |
|           << k
 | |
|           << ATR.getRepresentativeType(S.Context) << T
 | |
|           << getSpecifierRange(startSpecifier, specifierLen)
 | |
|           << Arg->getSourceRange();
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleInvalidAmount(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const analyze_printf::OptionalAmount &Amt,
 | |
|                                       unsigned type,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen) {
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
|   switch (Amt.getHowSpecified()) {
 | |
|   case analyze_printf::OptionalAmount::Constant:
 | |
|     S.Diag(getLocationOfByte(Amt.getStart()),
 | |
|         diag::warn_printf_nonsensical_optional_amount)
 | |
|       << type
 | |
|       << CS.toString()
 | |
|       << getSpecifierRange(startSpecifier, specifierLen)
 | |
|       << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
 | |
|           Amt.getConstantLength()));
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     S.Diag(getLocationOfByte(Amt.getStart()),
 | |
|         diag::warn_printf_nonsensical_optional_amount)
 | |
|       << type
 | |
|       << CS.toString()
 | |
|       << getSpecifierRange(startSpecifier, specifierLen);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                                     const analyze_printf::OptionalFlag &flag,
 | |
|                                     const char *startSpecifier,
 | |
|                                     unsigned specifierLen) {
 | |
|   // Warn about pointless flag with a fixit removal.
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
|   S.Diag(getLocationOfByte(flag.getPosition()),
 | |
|       diag::warn_printf_nonsensical_flag)
 | |
|     << flag.toString() << CS.toString()
 | |
|     << getSpecifierRange(startSpecifier, specifierLen)
 | |
|     << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleIgnoredFlag(
 | |
|                                 const analyze_printf::PrintfSpecifier &FS,
 | |
|                                 const analyze_printf::OptionalFlag &ignoredFlag,
 | |
|                                 const analyze_printf::OptionalFlag &flag,
 | |
|                                 const char *startSpecifier,
 | |
|                                 unsigned specifierLen) {
 | |
|   // Warn about ignored flag with a fixit removal.
 | |
|   S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
 | |
|       diag::warn_printf_ignored_flag)
 | |
|     << ignoredFlag.toString() << flag.toString()
 | |
|     << getSpecifierRange(startSpecifier, specifierLen)
 | |
|     << FixItHint::CreateRemoval(getSpecifierRange(
 | |
|         ignoredFlag.getPosition(), 1));
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
 | |
|                                             &FS,
 | |
|                                           const char *startSpecifier,
 | |
|                                           unsigned specifierLen) {
 | |
| 
 | |
|   using namespace analyze_format_string;
 | |
|   using namespace analyze_printf;  
 | |
|   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
| 
 | |
|   if (FS.consumesDataArgument()) {
 | |
|     if (atFirstArg) {
 | |
|         atFirstArg = false;
 | |
|         usesPositionalArgs = FS.usesPositionalArg();
 | |
|     }
 | |
|     else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | |
|       // Cannot mix-and-match positional and non-positional arguments.
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_format_mix_positional_nonpositional_args)
 | |
|         << getSpecifierRange(startSpecifier, specifierLen);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First check if the field width, precision, and conversion specifier
 | |
|   // have matching data arguments.
 | |
|   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!CS.consumesDataArgument()) {
 | |
|     // FIXME: Technically specifying a precision or field width here
 | |
|     // makes no sense.  Worth issuing a warning at some point.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Consume the argument.
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // The check to see if the argIndex is valid will come later.
 | |
|     // We set the bit here because we may exit early from this
 | |
|     // function if we encounter some other error.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
| 
 | |
|   // Check for using an Objective-C specific conversion specifier
 | |
|   // in a non-ObjC literal.
 | |
|   if (!IsObjCLiteral && CS.isObjCArg()) {
 | |
|     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | |
|                                                   specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check for invalid use of field width
 | |
|   if (!FS.hasValidFieldWidth()) {
 | |
|     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
 | |
|         startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check for invalid use of precision
 | |
|   if (!FS.hasValidPrecision()) {
 | |
|     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
 | |
|         startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check each flag does not conflict with any other component.
 | |
|   if (!FS.hasValidThousandsGroupingPrefix())
 | |
|     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidLeadingZeros())
 | |
|     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidPlusPrefix())
 | |
|     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidSpacePrefix())
 | |
|     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidAlternativeForm())
 | |
|     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidLeftJustified())
 | |
|     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
 | |
| 
 | |
|   // Check that flags are not ignored by another flag
 | |
|   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
 | |
|     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
 | |
|         startSpecifier, specifierLen);
 | |
|   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
 | |
|     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
 | |
|             startSpecifier, specifierLen);
 | |
| 
 | |
|   // Check the length modifier is valid with the given conversion specifier.
 | |
|   const LengthModifier &LM = FS.getLengthModifier();
 | |
|   if (!FS.hasValidLengthModifier())
 | |
|     S.Diag(getLocationOfByte(LM.getStart()),
 | |
|         diag::warn_format_nonsensical_length)
 | |
|       << LM.toString() << CS.toString()
 | |
|       << getSpecifierRange(startSpecifier, specifierLen)
 | |
|       << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
 | |
|           LM.getLength()));
 | |
| 
 | |
|   // Are we using '%n'?
 | |
|   if (CS.getKind() == ConversionSpecifier::nArg) {
 | |
|     // Issue a warning about this being a possible security issue.
 | |
|     S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
 | |
|       << getSpecifierRange(startSpecifier, specifierLen);
 | |
|     // Continue checking the other format specifiers.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The remaining checks depend on the data arguments.
 | |
|   if (HasVAListArg)
 | |
|     return true;
 | |
| 
 | |
|   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | |
|     return false;
 | |
| 
 | |
|   // Now type check the data expression that matches the
 | |
|   // format specifier.
 | |
|   const Expr *Ex = getDataArg(argIndex);
 | |
|   const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
 | |
|   if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
 | |
|     // Check if we didn't match because of an implicit cast from a 'char'
 | |
|     // or 'short' to an 'int'.  This is done because printf is a varargs
 | |
|     // function.
 | |
|     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
 | |
|       if (ICE->getType() == S.Context.IntTy) {
 | |
|         // All further checking is done on the subexpression.
 | |
|         Ex = ICE->getSubExpr();
 | |
|         if (ATR.matchesType(S.Context, Ex->getType()))
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|     // We may be able to offer a FixItHint if it is a supported type.
 | |
|     PrintfSpecifier fixedFS = FS;
 | |
|     bool success = fixedFS.fixType(Ex->getType());
 | |
| 
 | |
|     if (success) {
 | |
|       // Get the fix string from the fixed format specifier
 | |
|       llvm::SmallString<128> buf;
 | |
|       llvm::raw_svector_ostream os(buf);
 | |
|       fixedFS.toString(os);
 | |
| 
 | |
|       // FIXME: getRepresentativeType() perhaps should return a string
 | |
|       // instead of a QualType to better handle when the representative
 | |
|       // type is 'wint_t' (which is defined in the system headers).
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|           diag::warn_printf_conversion_argument_type_mismatch)
 | |
|         << ATR.getRepresentativeType(S.Context) << Ex->getType()
 | |
|         << getSpecifierRange(startSpecifier, specifierLen)
 | |
|         << Ex->getSourceRange()
 | |
|         << FixItHint::CreateReplacement(
 | |
|             getSpecifierRange(startSpecifier, specifierLen),
 | |
|             os.str());
 | |
|     }
 | |
|     else {
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_printf_conversion_argument_type_mismatch)
 | |
|         << ATR.getRepresentativeType(S.Context) << Ex->getType()
 | |
|         << getSpecifierRange(startSpecifier, specifierLen)
 | |
|         << Ex->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Scanf format string checking ------------------------------===//
 | |
| 
 | |
| namespace {  
 | |
| class CheckScanfHandler : public CheckFormatHandler {
 | |
| public:
 | |
|   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
 | |
|                     const Expr *origFormatExpr, unsigned firstDataArg,
 | |
|                     unsigned numDataArgs, bool isObjCLiteral,
 | |
|                     const char *beg, bool hasVAListArg,
 | |
|                     const CallExpr *theCall, unsigned formatIdx)
 | |
|   : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
 | |
|                        numDataArgs, isObjCLiteral, beg, hasVAListArg,
 | |
|                        theCall, formatIdx) {}
 | |
|   
 | |
|   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
 | |
|                             const char *startSpecifier,
 | |
|                             unsigned specifierLen);
 | |
|   
 | |
|   bool HandleInvalidScanfConversionSpecifier(
 | |
|           const analyze_scanf::ScanfSpecifier &FS,
 | |
|           const char *startSpecifier,
 | |
|           unsigned specifierLen);
 | |
| 
 | |
|   void HandleIncompleteScanList(const char *start, const char *end);
 | |
| };
 | |
| }
 | |
| 
 | |
| void CheckScanfHandler::HandleIncompleteScanList(const char *start,
 | |
|                                                  const char *end) {
 | |
|   S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
 | |
|     << getSpecifierRange(start, end - start);
 | |
| }
 | |
| 
 | |
| bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
 | |
|                                         const analyze_scanf::ScanfSpecifier &FS,
 | |
|                                         const char *startSpecifier,
 | |
|                                         unsigned specifierLen) {
 | |
| 
 | |
|   const analyze_scanf::ScanfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
| 
 | |
|   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | |
|                                           getLocationOfByte(CS.getStart()),
 | |
|                                           startSpecifier, specifierLen,
 | |
|                                           CS.getStart(), CS.getLength());
 | |
| }
 | |
| 
 | |
| bool CheckScanfHandler::HandleScanfSpecifier(
 | |
|                                        const analyze_scanf::ScanfSpecifier &FS,
 | |
|                                        const char *startSpecifier,
 | |
|                                        unsigned specifierLen) {
 | |
|   
 | |
|   using namespace analyze_scanf;
 | |
|   using namespace analyze_format_string;  
 | |
| 
 | |
|   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
| 
 | |
|   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
 | |
|   // be used to decide if we are using positional arguments consistently.
 | |
|   if (FS.consumesDataArgument()) {
 | |
|     if (atFirstArg) {
 | |
|       atFirstArg = false;
 | |
|       usesPositionalArgs = FS.usesPositionalArg();
 | |
|     }
 | |
|     else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | |
|       // Cannot mix-and-match positional and non-positional arguments.
 | |
|       S.Diag(getLocationOfByte(CS.getStart()),
 | |
|              diag::warn_format_mix_positional_nonpositional_args)
 | |
|         << getSpecifierRange(startSpecifier, specifierLen);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Check if the field with is non-zero.
 | |
|   const OptionalAmount &Amt = FS.getFieldWidth();
 | |
|   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
 | |
|     if (Amt.getConstantAmount() == 0) {
 | |
|       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
 | |
|                                                    Amt.getConstantLength());
 | |
|       S.Diag(getLocationOfByte(Amt.getStart()),
 | |
|              diag::warn_scanf_nonzero_width)
 | |
|         << R << FixItHint::CreateRemoval(R);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!FS.consumesDataArgument()) {
 | |
|     // FIXME: Technically specifying a precision or field width here
 | |
|     // makes no sense.  Worth issuing a warning at some point.
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Consume the argument.
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   if (argIndex < NumDataArgs) {
 | |
|       // The check to see if the argIndex is valid will come later.
 | |
|       // We set the bit here because we may exit early from this
 | |
|       // function if we encounter some other error.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
|   
 | |
|   // Check the length modifier is valid with the given conversion specifier.
 | |
|   const LengthModifier &LM = FS.getLengthModifier();
 | |
|   if (!FS.hasValidLengthModifier()) {
 | |
|     S.Diag(getLocationOfByte(LM.getStart()),
 | |
|            diag::warn_format_nonsensical_length)
 | |
|       << LM.toString() << CS.toString()
 | |
|       << getSpecifierRange(startSpecifier, specifierLen)
 | |
|       << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
 | |
|                                                     LM.getLength()));
 | |
|   }
 | |
| 
 | |
|   // The remaining checks depend on the data arguments.
 | |
|   if (HasVAListArg)
 | |
|     return true;
 | |
|   
 | |
|   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | |
|     return false;
 | |
|   
 | |
|   // FIXME: Check that the argument type matches the format specifier.
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::CheckFormatString(const StringLiteral *FExpr,
 | |
|                              const Expr *OrigFormatExpr,
 | |
|                              const CallExpr *TheCall, bool HasVAListArg,
 | |
|                              unsigned format_idx, unsigned firstDataArg,
 | |
|                              bool isPrintf) {
 | |
|   
 | |
|   // CHECK: is the format string a wide literal?
 | |
|   if (FExpr->isWide()) {
 | |
|     Diag(FExpr->getLocStart(),
 | |
|          diag::warn_format_string_is_wide_literal)
 | |
|     << OrigFormatExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Str - The format string.  NOTE: this is NOT null-terminated!
 | |
|   llvm::StringRef StrRef = FExpr->getString();
 | |
|   const char *Str = StrRef.data();
 | |
|   unsigned StrLen = StrRef.size();
 | |
|   
 | |
|   // CHECK: empty format string?
 | |
|   if (StrLen == 0) {
 | |
|     Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
 | |
|     << OrigFormatExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isPrintf) {
 | |
|     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
 | |
|                          TheCall->getNumArgs() - firstDataArg,
 | |
|                          isa<ObjCStringLiteral>(OrigFormatExpr), Str,
 | |
|                          HasVAListArg, TheCall, format_idx);
 | |
|   
 | |
|     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
 | |
|       H.DoneProcessing();
 | |
|   }
 | |
|   else {
 | |
|     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
 | |
|                         TheCall->getNumArgs() - firstDataArg,
 | |
|                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
 | |
|                         HasVAListArg, TheCall, format_idx);
 | |
|     
 | |
|     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
 | |
|       H.DoneProcessing();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Return Address of Stack Variable --------------------------===//
 | |
| 
 | |
| static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
 | |
| static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
 | |
| 
 | |
| /// CheckReturnStackAddr - Check if a return statement returns the address
 | |
| ///   of a stack variable.
 | |
| void
 | |
| Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
 | |
|                            SourceLocation ReturnLoc) {
 | |
| 
 | |
|   Expr *stackE = 0;
 | |
|   llvm::SmallVector<DeclRefExpr *, 8> refVars;
 | |
| 
 | |
|   // Perform checking for returned stack addresses, local blocks,
 | |
|   // label addresses or references to temporaries.
 | |
|   if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
 | |
|     stackE = EvalAddr(RetValExp, refVars);
 | |
|   } else if (lhsType->isReferenceType()) {
 | |
|     stackE = EvalVal(RetValExp, refVars);
 | |
|   }
 | |
| 
 | |
|   if (stackE == 0)
 | |
|     return; // Nothing suspicious was found.
 | |
| 
 | |
|   SourceLocation diagLoc;
 | |
|   SourceRange diagRange;
 | |
|   if (refVars.empty()) {
 | |
|     diagLoc = stackE->getLocStart();
 | |
|     diagRange = stackE->getSourceRange();
 | |
|   } else {
 | |
|     // We followed through a reference variable. 'stackE' contains the
 | |
|     // problematic expression but we will warn at the return statement pointing
 | |
|     // at the reference variable. We will later display the "trail" of
 | |
|     // reference variables using notes.
 | |
|     diagLoc = refVars[0]->getLocStart();
 | |
|     diagRange = refVars[0]->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
 | |
|     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
 | |
|                                              : diag::warn_ret_stack_addr)
 | |
|      << DR->getDecl()->getDeclName() << diagRange;
 | |
|   } else if (isa<BlockExpr>(stackE)) { // local block.
 | |
|     Diag(diagLoc, diag::err_ret_local_block) << diagRange;
 | |
|   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
 | |
|     Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
 | |
|   } else { // local temporary.
 | |
|     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
 | |
|                                              : diag::warn_ret_local_temp_addr)
 | |
|      << diagRange;
 | |
|   }
 | |
| 
 | |
|   // Display the "trail" of reference variables that we followed until we
 | |
|   // found the problematic expression using notes.
 | |
|   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
 | |
|     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
 | |
|     // If this var binds to another reference var, show the range of the next
 | |
|     // var, otherwise the var binds to the problematic expression, in which case
 | |
|     // show the range of the expression.
 | |
|     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
 | |
|                                   : stackE->getSourceRange();
 | |
|     Diag(VD->getLocation(), diag::note_ref_var_local_bind)
 | |
|       << VD->getDeclName() << range;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
 | |
| ///  check if the expression in a return statement evaluates to an address
 | |
| ///  to a location on the stack, a local block, an address of a label, or a
 | |
| ///  reference to local temporary. The recursion is used to traverse the
 | |
| ///  AST of the return expression, with recursion backtracking when we
 | |
| ///  encounter a subexpression that (1) clearly does not lead to one of the
 | |
| ///  above problematic expressions (2) is something we cannot determine leads to
 | |
| ///  a problematic expression based on such local checking.
 | |
| ///
 | |
| ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
 | |
| ///  the expression that they point to. Such variables are added to the
 | |
| ///  'refVars' vector so that we know what the reference variable "trail" was.
 | |
| ///
 | |
| ///  EvalAddr processes expressions that are pointers that are used as
 | |
| ///  references (and not L-values).  EvalVal handles all other values.
 | |
| ///  At the base case of the recursion is a check for the above problematic
 | |
| ///  expressions.
 | |
| ///
 | |
| ///  This implementation handles:
 | |
| ///
 | |
| ///   * pointer-to-pointer casts
 | |
| ///   * implicit conversions from array references to pointers
 | |
| ///   * taking the address of fields
 | |
| ///   * arbitrary interplay between "&" and "*" operators
 | |
| ///   * pointer arithmetic from an address of a stack variable
 | |
| ///   * taking the address of an array element where the array is on the stack
 | |
| static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
 | |
|   if (E->isTypeDependent())
 | |
|       return NULL;
 | |
| 
 | |
|   // We should only be called for evaluating pointer expressions.
 | |
|   assert((E->getType()->isAnyPointerType() ||
 | |
|           E->getType()->isBlockPointerType() ||
 | |
|           E->getType()->isObjCQualifiedIdType()) &&
 | |
|          "EvalAddr only works on pointers");
 | |
| 
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Our "symbolic interpreter" is just a dispatch off the currently
 | |
|   // viewed AST node.  We then recursively traverse the AST by calling
 | |
|   // EvalAddr and EvalVal appropriately.
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
 | |
|       // If this is a reference variable, follow through to the expression that
 | |
|       // it points to.
 | |
|       if (V->hasLocalStorage() &&
 | |
|           V->getType()->isReferenceType() && V->hasInit()) {
 | |
|         // Add the reference variable to the "trail".
 | |
|         refVars.push_back(DR);
 | |
|         return EvalAddr(V->getInit(), refVars);
 | |
|       }
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     // The only unary operator that make sense to handle here
 | |
|     // is AddrOf.  All others don't make sense as pointers.
 | |
|     UnaryOperator *U = cast<UnaryOperator>(E);
 | |
| 
 | |
|     if (U->getOpcode() == UO_AddrOf)
 | |
|       return EvalVal(U->getSubExpr(), refVars);
 | |
|     else
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::BinaryOperatorClass: {
 | |
|     // Handle pointer arithmetic.  All other binary operators are not valid
 | |
|     // in this context.
 | |
|     BinaryOperator *B = cast<BinaryOperator>(E);
 | |
|     BinaryOperatorKind op = B->getOpcode();
 | |
| 
 | |
|     if (op != BO_Add && op != BO_Sub)
 | |
|       return NULL;
 | |
| 
 | |
|     Expr *Base = B->getLHS();
 | |
| 
 | |
|     // Determine which argument is the real pointer base.  It could be
 | |
|     // the RHS argument instead of the LHS.
 | |
|     if (!Base->getType()->isPointerType()) Base = B->getRHS();
 | |
| 
 | |
|     assert (Base->getType()->isPointerType());
 | |
|     return EvalAddr(Base, refVars);
 | |
|   }
 | |
| 
 | |
|   // For conditional operators we need to see if either the LHS or RHS are
 | |
|   // valid DeclRefExpr*s.  If one of them is valid, we return it.
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     ConditionalOperator *C = cast<ConditionalOperator>(E);
 | |
| 
 | |
|     // Handle the GNU extension for missing LHS.
 | |
|     if (Expr *lhsExpr = C->getLHS()) {
 | |
|     // In C++, we can have a throw-expression, which has 'void' type.
 | |
|       if (!lhsExpr->getType()->isVoidType())
 | |
|         if (Expr* LHS = EvalAddr(lhsExpr, refVars))
 | |
|           return LHS;
 | |
|     }
 | |
| 
 | |
|     // In C++, we can have a throw-expression, which has 'void' type.
 | |
|     if (C->getRHS()->getType()->isVoidType())
 | |
|       return NULL;
 | |
| 
 | |
|     return EvalAddr(C->getRHS(), refVars);
 | |
|   }
 | |
|   
 | |
|   case Stmt::BlockExprClass:
 | |
|     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
 | |
|       return E; // local block.
 | |
|     return NULL;
 | |
| 
 | |
|   case Stmt::AddrLabelExprClass:
 | |
|     return E; // address of label.
 | |
| 
 | |
|   // For casts, we need to handle conversions from arrays to
 | |
|   // pointer values, and pointer-to-pointer conversions.
 | |
|   case Stmt::ImplicitCastExprClass:
 | |
|   case Stmt::CStyleCastExprClass:
 | |
|   case Stmt::CXXFunctionalCastExprClass: {
 | |
|     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
 | |
|     QualType T = SubExpr->getType();
 | |
| 
 | |
|     if (SubExpr->getType()->isPointerType() ||
 | |
|         SubExpr->getType()->isBlockPointerType() ||
 | |
|         SubExpr->getType()->isObjCQualifiedIdType())
 | |
|       return EvalAddr(SubExpr, refVars);
 | |
|     else if (T->isArrayType())
 | |
|       return EvalVal(SubExpr, refVars);
 | |
|     else
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ casts.  For dynamic casts, static casts, and const casts, we
 | |
|   // are always converting from a pointer-to-pointer, so we just blow
 | |
|   // through the cast.  In the case the dynamic cast doesn't fail (and
 | |
|   // return NULL), we take the conservative route and report cases
 | |
|   // where we return the address of a stack variable.  For Reinterpre
 | |
|   // FIXME: The comment about is wrong; we're not always converting
 | |
|   // from pointer to pointer. I'm guessing that this code should also
 | |
|   // handle references to objects.
 | |
|   case Stmt::CXXStaticCastExprClass:
 | |
|   case Stmt::CXXDynamicCastExprClass:
 | |
|   case Stmt::CXXConstCastExprClass:
 | |
|   case Stmt::CXXReinterpretCastExprClass: {
 | |
|       Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
 | |
|       if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
 | |
|         return EvalAddr(S, refVars);
 | |
|       else
 | |
|         return NULL;
 | |
|   }
 | |
| 
 | |
|   // Everything else: we simply don't reason about them.
 | |
|   default:
 | |
|     return NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
 | |
| ///   See the comments for EvalAddr for more details.
 | |
| static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
 | |
| do {
 | |
|   // We should only be called for evaluating non-pointer expressions, or
 | |
|   // expressions with a pointer type that are not used as references but instead
 | |
|   // are l-values (e.g., DeclRefExpr with a pointer type).
 | |
| 
 | |
|   // Our "symbolic interpreter" is just a dispatch off the currently
 | |
|   // viewed AST node.  We then recursively traverse the AST by calling
 | |
|   // EvalAddr and EvalVal appropriately.
 | |
| 
 | |
|   E = E->IgnoreParens();
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::ImplicitCastExprClass: {
 | |
|     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
 | |
|     if (IE->getValueKind() == VK_LValue) {
 | |
|       E = IE->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     // When we hit a DeclRefExpr we are looking at code that refers to a
 | |
|     // variable's name. If it's not a reference variable we check if it has
 | |
|     // local storage within the function, and if so, return the expression.
 | |
|     DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
 | |
|       if (V->hasLocalStorage()) {
 | |
|         if (!V->getType()->isReferenceType())
 | |
|           return DR;
 | |
| 
 | |
|         // Reference variable, follow through to the expression that
 | |
|         // it points to.
 | |
|         if (V->hasInit()) {
 | |
|           // Add the reference variable to the "trail".
 | |
|           refVars.push_back(DR);
 | |
|           return EvalVal(V->getInit(), refVars);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     // The only unary operator that make sense to handle here
 | |
|     // is Deref.  All others don't resolve to a "name."  This includes
 | |
|     // handling all sorts of rvalues passed to a unary operator.
 | |
|     UnaryOperator *U = cast<UnaryOperator>(E);
 | |
| 
 | |
|     if (U->getOpcode() == UO_Deref)
 | |
|       return EvalAddr(U->getSubExpr(), refVars);
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ArraySubscriptExprClass: {
 | |
|     // Array subscripts are potential references to data on the stack.  We
 | |
|     // retrieve the DeclRefExpr* for the array variable if it indeed
 | |
|     // has local storage.
 | |
|     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
 | |
|   }
 | |
| 
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     // For conditional operators we need to see if either the LHS or RHS are
 | |
|     // non-NULL Expr's.  If one is non-NULL, we return it.
 | |
|     ConditionalOperator *C = cast<ConditionalOperator>(E);
 | |
| 
 | |
|     // Handle the GNU extension for missing LHS.
 | |
|     if (Expr *lhsExpr = C->getLHS())
 | |
|       if (Expr *LHS = EvalVal(lhsExpr, refVars))
 | |
|         return LHS;
 | |
| 
 | |
|     return EvalVal(C->getRHS(), refVars);
 | |
|   }
 | |
| 
 | |
|   // Accesses to members are potential references to data on the stack.
 | |
|   case Stmt::MemberExprClass: {
 | |
|     MemberExpr *M = cast<MemberExpr>(E);
 | |
| 
 | |
|     // Check for indirect access.  We only want direct field accesses.
 | |
|     if (M->isArrow())
 | |
|       return NULL;
 | |
| 
 | |
|     // Check whether the member type is itself a reference, in which case
 | |
|     // we're not going to refer to the member, but to what the member refers to.
 | |
|     if (M->getMemberDecl()->getType()->isReferenceType())
 | |
|       return NULL;
 | |
| 
 | |
|     return EvalVal(M->getBase(), refVars);
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     // Check that we don't return or take the address of a reference to a
 | |
|     // temporary. This is only useful in C++.
 | |
|     if (!E->isTypeDependent() && E->isRValue())
 | |
|       return E;
 | |
| 
 | |
|     // Everything else: we simply don't reason about them.
 | |
|     return NULL;
 | |
|   }
 | |
| } while (true);
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
 | |
| 
 | |
| /// Check for comparisons of floating point operands using != and ==.
 | |
| /// Issue a warning if these are no self-comparisons, as they are not likely
 | |
| /// to do what the programmer intended.
 | |
| void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
 | |
|   bool EmitWarning = true;
 | |
| 
 | |
|   Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
 | |
|   Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Special case: check for x == x (which is OK).
 | |
|   // Do not emit warnings for such cases.
 | |
|   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
 | |
|     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
 | |
|       if (DRL->getDecl() == DRR->getDecl())
 | |
|         EmitWarning = false;
 | |
| 
 | |
| 
 | |
|   // Special case: check for comparisons against literals that can be exactly
 | |
|   //  represented by APFloat.  In such cases, do not emit a warning.  This
 | |
|   //  is a heuristic: often comparison against such literals are used to
 | |
|   //  detect if a value in a variable has not changed.  This clearly can
 | |
|   //  lead to false negatives.
 | |
|   if (EmitWarning) {
 | |
|     if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
 | |
|       if (FLL->isExact())
 | |
|         EmitWarning = false;
 | |
|     } else
 | |
|       if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
 | |
|         if (FLR->isExact())
 | |
|           EmitWarning = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for comparisons with builtin types.
 | |
|   if (EmitWarning)
 | |
|     if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
 | |
|       if (CL->isBuiltinCall(Context))
 | |
|         EmitWarning = false;
 | |
| 
 | |
|   if (EmitWarning)
 | |
|     if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
 | |
|       if (CR->isBuiltinCall(Context))
 | |
|         EmitWarning = false;
 | |
| 
 | |
|   // Emit the diagnostic.
 | |
|   if (EmitWarning)
 | |
|     Diag(loc, diag::warn_floatingpoint_eq)
 | |
|       << lex->getSourceRange() << rex->getSourceRange();
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
 | |
| //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Structure recording the 'active' range of an integer-valued
 | |
| /// expression.
 | |
| struct IntRange {
 | |
|   /// The number of bits active in the int.
 | |
|   unsigned Width;
 | |
| 
 | |
|   /// True if the int is known not to have negative values.
 | |
|   bool NonNegative;
 | |
| 
 | |
|   IntRange(unsigned Width, bool NonNegative)
 | |
|     : Width(Width), NonNegative(NonNegative)
 | |
|   {}
 | |
| 
 | |
|   /// Returns the range of the bool type.
 | |
|   static IntRange forBoolType() {
 | |
|     return IntRange(1, true);
 | |
|   }
 | |
| 
 | |
|   /// Returns the range of an opaque value of the given integral type.
 | |
|   static IntRange forValueOfType(ASTContext &C, QualType T) {
 | |
|     return forValueOfCanonicalType(C,
 | |
|                           T->getCanonicalTypeInternal().getTypePtr());
 | |
|   }
 | |
| 
 | |
|   /// Returns the range of an opaque value of a canonical integral type.
 | |
|   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
 | |
|     assert(T->isCanonicalUnqualified());
 | |
| 
 | |
|     if (const VectorType *VT = dyn_cast<VectorType>(T))
 | |
|       T = VT->getElementType().getTypePtr();
 | |
|     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | |
|       T = CT->getElementType().getTypePtr();
 | |
| 
 | |
|     // For enum types, use the known bit width of the enumerators.
 | |
|     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
 | |
|       EnumDecl *Enum = ET->getDecl();
 | |
|       if (!Enum->isDefinition())
 | |
|         return IntRange(C.getIntWidth(QualType(T, 0)), false);
 | |
| 
 | |
|       unsigned NumPositive = Enum->getNumPositiveBits();
 | |
|       unsigned NumNegative = Enum->getNumNegativeBits();
 | |
| 
 | |
|       return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
 | |
|     }
 | |
| 
 | |
|     const BuiltinType *BT = cast<BuiltinType>(T);
 | |
|     assert(BT->isInteger());
 | |
| 
 | |
|     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | |
|   }
 | |
| 
 | |
|   /// Returns the "target" range of a canonical integral type, i.e.
 | |
|   /// the range of values expressible in the type.
 | |
|   ///
 | |
|   /// This matches forValueOfCanonicalType except that enums have the
 | |
|   /// full range of their type, not the range of their enumerators.
 | |
|   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
 | |
|     assert(T->isCanonicalUnqualified());
 | |
| 
 | |
|     if (const VectorType *VT = dyn_cast<VectorType>(T))
 | |
|       T = VT->getElementType().getTypePtr();
 | |
|     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | |
|       T = CT->getElementType().getTypePtr();
 | |
|     if (const EnumType *ET = dyn_cast<EnumType>(T))
 | |
|       T = ET->getDecl()->getIntegerType().getTypePtr();
 | |
| 
 | |
|     const BuiltinType *BT = cast<BuiltinType>(T);
 | |
|     assert(BT->isInteger());
 | |
| 
 | |
|     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | |
|   }
 | |
| 
 | |
|   /// Returns the supremum of two ranges: i.e. their conservative merge.
 | |
|   static IntRange join(IntRange L, IntRange R) {
 | |
|     return IntRange(std::max(L.Width, R.Width),
 | |
|                     L.NonNegative && R.NonNegative);
 | |
|   }
 | |
| 
 | |
|   /// Returns the infinum of two ranges: i.e. their aggressive merge.
 | |
|   static IntRange meet(IntRange L, IntRange R) {
 | |
|     return IntRange(std::min(L.Width, R.Width),
 | |
|                     L.NonNegative || R.NonNegative);
 | |
|   }
 | |
| };
 | |
| 
 | |
| IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
 | |
|   if (value.isSigned() && value.isNegative())
 | |
|     return IntRange(value.getMinSignedBits(), false);
 | |
| 
 | |
|   if (value.getBitWidth() > MaxWidth)
 | |
|     value = value.trunc(MaxWidth);
 | |
| 
 | |
|   // isNonNegative() just checks the sign bit without considering
 | |
|   // signedness.
 | |
|   return IntRange(value.getActiveBits(), true);
 | |
| }
 | |
| 
 | |
| IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
 | |
|                        unsigned MaxWidth) {
 | |
|   if (result.isInt())
 | |
|     return GetValueRange(C, result.getInt(), MaxWidth);
 | |
| 
 | |
|   if (result.isVector()) {
 | |
|     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
 | |
|     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
 | |
|       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
 | |
|       R = IntRange::join(R, El);
 | |
|     }
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   if (result.isComplexInt()) {
 | |
|     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
 | |
|     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
 | |
|     return IntRange::join(R, I);
 | |
|   }
 | |
| 
 | |
|   // This can happen with lossless casts to intptr_t of "based" lvalues.
 | |
|   // Assume it might use arbitrary bits.
 | |
|   // FIXME: The only reason we need to pass the type in here is to get
 | |
|   // the sign right on this one case.  It would be nice if APValue
 | |
|   // preserved this.
 | |
|   assert(result.isLValue());
 | |
|   return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
 | |
| }
 | |
| 
 | |
| /// Pseudo-evaluate the given integer expression, estimating the
 | |
| /// range of values it might take.
 | |
| ///
 | |
| /// \param MaxWidth - the width to which the value will be truncated
 | |
| IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Try a full evaluation first.
 | |
|   Expr::EvalResult result;
 | |
|   if (E->Evaluate(result, C))
 | |
|     return GetValueRange(C, result.Val, E->getType(), MaxWidth);
 | |
| 
 | |
|   // I think we only want to look through implicit casts here; if the
 | |
|   // user has an explicit widening cast, we should treat the value as
 | |
|   // being of the new, wider type.
 | |
|   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (CE->getCastKind() == CK_NoOp)
 | |
|       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
 | |
| 
 | |
|     IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
 | |
| 
 | |
|     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
 | |
| 
 | |
|     // Assume that non-integer casts can span the full range of the type.
 | |
|     if (!isIntegerCast)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     IntRange SubRange
 | |
|       = GetExprRange(C, CE->getSubExpr(),
 | |
|                      std::min(MaxWidth, OutputTypeRange.Width));
 | |
| 
 | |
|     // Bail out if the subexpr's range is as wide as the cast type.
 | |
|     if (SubRange.Width >= OutputTypeRange.Width)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     // Otherwise, we take the smaller width, and we're non-negative if
 | |
|     // either the output type or the subexpr is.
 | |
|     return IntRange(SubRange.Width,
 | |
|                     SubRange.NonNegative || OutputTypeRange.NonNegative);
 | |
|   }
 | |
| 
 | |
|   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|     // If we can fold the condition, just take that operand.
 | |
|     bool CondResult;
 | |
|     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
 | |
|       return GetExprRange(C, CondResult ? CO->getTrueExpr()
 | |
|                                         : CO->getFalseExpr(),
 | |
|                           MaxWidth);
 | |
| 
 | |
|     // Otherwise, conservatively merge.
 | |
|     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
 | |
|     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     switch (BO->getOpcode()) {
 | |
| 
 | |
|     // Boolean-valued operations are single-bit and positive.
 | |
|     case BO_LAnd:
 | |
|     case BO_LOr:
 | |
|     case BO_LT:
 | |
|     case BO_GT:
 | |
|     case BO_LE:
 | |
|     case BO_GE:
 | |
|     case BO_EQ:
 | |
|     case BO_NE:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // The type of these compound assignments is the type of the LHS,
 | |
|     // so the RHS is not necessarily an integer.
 | |
|     case BO_MulAssign:
 | |
|     case BO_DivAssign:
 | |
|     case BO_RemAssign:
 | |
|     case BO_AddAssign:
 | |
|     case BO_SubAssign:
 | |
|       return IntRange::forValueOfType(C, E->getType());
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case BO_PtrMemD:
 | |
|     case BO_PtrMemI:
 | |
|       return IntRange::forValueOfType(C, E->getType());
 | |
| 
 | |
|     // Bitwise-and uses the *infinum* of the two source ranges.
 | |
|     case BO_And:
 | |
|     case BO_AndAssign:
 | |
|       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
 | |
|                             GetExprRange(C, BO->getRHS(), MaxWidth));
 | |
| 
 | |
|     // Left shift gets black-listed based on a judgement call.
 | |
|     case BO_Shl:
 | |
|       // ...except that we want to treat '1 << (blah)' as logically
 | |
|       // positive.  It's an important idiom.
 | |
|       if (IntegerLiteral *I
 | |
|             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
 | |
|         if (I->getValue() == 1) {
 | |
|           IntRange R = IntRange::forValueOfType(C, E->getType());
 | |
|           return IntRange(R.Width, /*NonNegative*/ true);
 | |
|         }
 | |
|       }
 | |
|       // fallthrough
 | |
| 
 | |
|     case BO_ShlAssign:
 | |
|       return IntRange::forValueOfType(C, E->getType());
 | |
| 
 | |
|     // Right shift by a constant can narrow its left argument.
 | |
|     case BO_Shr:
 | |
|     case BO_ShrAssign: {
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
 | |
| 
 | |
|       // If the shift amount is a positive constant, drop the width by
 | |
|       // that much.
 | |
|       llvm::APSInt shift;
 | |
|       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
 | |
|           shift.isNonNegative()) {
 | |
|         unsigned zext = shift.getZExtValue();
 | |
|         if (zext >= L.Width)
 | |
|           L.Width = (L.NonNegative ? 0 : 1);
 | |
|         else
 | |
|           L.Width -= zext;
 | |
|       }
 | |
| 
 | |
|       return L;
 | |
|     }
 | |
| 
 | |
|     // Comma acts as its right operand.
 | |
|     case BO_Comma:
 | |
|       return GetExprRange(C, BO->getRHS(), MaxWidth);
 | |
| 
 | |
|     // Black-list pointer subtractions.
 | |
|     case BO_Sub:
 | |
|       if (BO->getLHS()->getType()->isPointerType())
 | |
|         return IntRange::forValueOfType(C, E->getType());
 | |
|       // fallthrough
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Treat every other operator as if it were closed on the
 | |
|     // narrowest type that encompasses both operands.
 | |
|     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
 | |
|     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     switch (UO->getOpcode()) {
 | |
|     // Boolean-valued operations are white-listed.
 | |
|     case UO_LNot:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case UO_Deref:
 | |
|     case UO_AddrOf: // should be impossible
 | |
|       return IntRange::forValueOfType(C, E->getType());
 | |
| 
 | |
|     default:
 | |
|       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (dyn_cast<OffsetOfExpr>(E)) {
 | |
|     IntRange::forValueOfType(C, E->getType());
 | |
|   }
 | |
| 
 | |
|   FieldDecl *BitField = E->getBitField();
 | |
|   if (BitField) {
 | |
|     llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
 | |
|     unsigned BitWidth = BitWidthAP.getZExtValue();
 | |
| 
 | |
|     return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
 | |
|   }
 | |
| 
 | |
|   return IntRange::forValueOfType(C, E->getType());
 | |
| }
 | |
| 
 | |
| IntRange GetExprRange(ASTContext &C, Expr *E) {
 | |
|   return GetExprRange(C, E, C.getIntWidth(E->getType()));
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| bool IsSameFloatAfterCast(const llvm::APFloat &value,
 | |
|                           const llvm::fltSemantics &Src,
 | |
|                           const llvm::fltSemantics &Tgt) {
 | |
|   llvm::APFloat truncated = value;
 | |
| 
 | |
|   bool ignored;
 | |
|   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
|   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
| 
 | |
|   return truncated.bitwiseIsEqual(value);
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| ///
 | |
| /// The value might be a vector of floats (or a complex number).
 | |
| bool IsSameFloatAfterCast(const APValue &value,
 | |
|                           const llvm::fltSemantics &Src,
 | |
|                           const llvm::fltSemantics &Tgt) {
 | |
|   if (value.isFloat())
 | |
|     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
 | |
| 
 | |
|   if (value.isVector()) {
 | |
|     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
 | |
|       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(value.isComplexFloat());
 | |
|   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
 | |
|           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
 | |
| }
 | |
| 
 | |
| void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
 | |
| 
 | |
| static bool IsZero(Sema &S, Expr *E) {
 | |
|   // Suppress cases where we are comparing against an enum constant.
 | |
|   if (const DeclRefExpr *DR =
 | |
|       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
 | |
|     if (isa<EnumConstantDecl>(DR->getDecl()))
 | |
|       return false;
 | |
| 
 | |
|   // Suppress cases where the '0' value is expanded from a macro.
 | |
|   if (E->getLocStart().isMacroID())
 | |
|     return false;
 | |
| 
 | |
|   llvm::APSInt Value;
 | |
|   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
 | |
| }
 | |
| 
 | |
| static bool HasEnumType(Expr *E) {
 | |
|   // Strip off implicit integral promotions.
 | |
|   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() != CK_IntegralCast &&
 | |
|         ICE->getCastKind() != CK_NoOp)
 | |
|       break;
 | |
|     E = ICE->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   return E->getType()->isEnumeralType();
 | |
| }
 | |
| 
 | |
| void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
 | |
|   BinaryOperatorKind op = E->getOpcode();
 | |
|   if (E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   if (op == BO_LT && IsZero(S, E->getRHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
 | |
|       << "< 0" << "false" << HasEnumType(E->getLHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
 | |
|       << ">= 0" << "true" << HasEnumType(E->getLHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
 | |
|       << "0 >" << "false" << HasEnumType(E->getRHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
 | |
|       << "0 <=" << "true" << HasEnumType(E->getRHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Analyze the operands of the given comparison.  Implements the
 | |
| /// fallback case from AnalyzeComparison.
 | |
| void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
 | |
|   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | |
|   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | |
| }
 | |
| 
 | |
| /// \brief Implements -Wsign-compare.
 | |
| ///
 | |
| /// \param lex the left-hand expression
 | |
| /// \param rex the right-hand expression
 | |
| /// \param OpLoc the location of the joining operator
 | |
| /// \param BinOpc binary opcode or 0
 | |
| void AnalyzeComparison(Sema &S, BinaryOperator *E) {
 | |
|   // The type the comparison is being performed in.
 | |
|   QualType T = E->getLHS()->getType();
 | |
|   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
 | |
|          && "comparison with mismatched types");
 | |
| 
 | |
|   // We don't do anything special if this isn't an unsigned integral
 | |
|   // comparison:  we're only interested in integral comparisons, and
 | |
|   // signed comparisons only happen in cases we don't care to warn about.
 | |
|   //
 | |
|   // We also don't care about value-dependent expressions or expressions
 | |
|   // whose result is a constant.
 | |
|   if (!T->hasUnsignedIntegerRepresentation()
 | |
|       || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
| 
 | |
|   Expr *lex = E->getLHS()->IgnoreParenImpCasts();
 | |
|   Expr *rex = E->getRHS()->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Check to see if one of the (unmodified) operands is of different
 | |
|   // signedness.
 | |
|   Expr *signedOperand, *unsignedOperand;
 | |
|   if (lex->getType()->hasSignedIntegerRepresentation()) {
 | |
|     assert(!rex->getType()->hasSignedIntegerRepresentation() &&
 | |
|            "unsigned comparison between two signed integer expressions?");
 | |
|     signedOperand = lex;
 | |
|     unsignedOperand = rex;
 | |
|   } else if (rex->getType()->hasSignedIntegerRepresentation()) {
 | |
|     signedOperand = rex;
 | |
|     unsignedOperand = lex;
 | |
|   } else {
 | |
|     CheckTrivialUnsignedComparison(S, E);
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, calculate the effective range of the signed operand.
 | |
|   IntRange signedRange = GetExprRange(S.Context, signedOperand);
 | |
| 
 | |
|   // Go ahead and analyze implicit conversions in the operands.  Note
 | |
|   // that we skip the implicit conversions on both sides.
 | |
|   AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
 | |
|   AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
 | |
| 
 | |
|   // If the signed range is non-negative, -Wsign-compare won't fire,
 | |
|   // but we should still check for comparisons which are always true
 | |
|   // or false.
 | |
|   if (signedRange.NonNegative)
 | |
|     return CheckTrivialUnsignedComparison(S, E);
 | |
| 
 | |
|   // For (in)equality comparisons, if the unsigned operand is a
 | |
|   // constant which cannot collide with a overflowed signed operand,
 | |
|   // then reinterpreting the signed operand as unsigned will not
 | |
|   // change the result of the comparison.
 | |
|   if (E->isEqualityOp()) {
 | |
|     unsigned comparisonWidth = S.Context.getIntWidth(T);
 | |
|     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
 | |
| 
 | |
|     // We should never be unable to prove that the unsigned operand is
 | |
|     // non-negative.
 | |
|     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
 | |
| 
 | |
|     if (unsignedRange.Width < comparisonWidth)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
 | |
|     << lex->getType() << rex->getType()
 | |
|     << lex->getSourceRange() << rex->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// Analyzes an attempt to assign the given value to a bitfield.
 | |
| ///
 | |
| /// Returns true if there was something fishy about the attempt.
 | |
| bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
 | |
|                                SourceLocation InitLoc) {
 | |
|   assert(Bitfield->isBitField());
 | |
|   if (Bitfield->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // White-list bool bitfields.
 | |
|   if (Bitfield->getType()->isBooleanType())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore value- or type-dependent expressions.
 | |
|   if (Bitfield->getBitWidth()->isValueDependent() ||
 | |
|       Bitfield->getBitWidth()->isTypeDependent() ||
 | |
|       Init->isValueDependent() ||
 | |
|       Init->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   Expr *OriginalInit = Init->IgnoreParenImpCasts();
 | |
| 
 | |
|   llvm::APSInt Width(32);
 | |
|   Expr::EvalResult InitValue;
 | |
|   if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
 | |
|       !OriginalInit->Evaluate(InitValue, S.Context) ||
 | |
|       !InitValue.Val.isInt())
 | |
|     return false;
 | |
| 
 | |
|   const llvm::APSInt &Value = InitValue.Val.getInt();
 | |
|   unsigned OriginalWidth = Value.getBitWidth();
 | |
|   unsigned FieldWidth = Width.getZExtValue();
 | |
| 
 | |
|   if (OriginalWidth <= FieldWidth)
 | |
|     return false;
 | |
| 
 | |
|   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
 | |
| 
 | |
|   // It's fairly common to write values into signed bitfields
 | |
|   // that, if sign-extended, would end up becoming a different
 | |
|   // value.  We don't want to warn about that.
 | |
|   if (Value.isSigned() && Value.isNegative())
 | |
|     TruncatedValue = TruncatedValue.sext(OriginalWidth);
 | |
|   else
 | |
|     TruncatedValue = TruncatedValue.zext(OriginalWidth);
 | |
| 
 | |
|   if (Value == TruncatedValue)
 | |
|     return false;
 | |
| 
 | |
|   std::string PrettyValue = Value.toString(10);
 | |
|   std::string PrettyTrunc = TruncatedValue.toString(10);
 | |
| 
 | |
|   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
 | |
|     << PrettyValue << PrettyTrunc << OriginalInit->getType()
 | |
|     << Init->getSourceRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Analyze the given simple or compound assignment for warning-worthy
 | |
| /// operations.
 | |
| void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
 | |
|   // Just recurse on the LHS.
 | |
|   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | |
| 
 | |
|   // We want to recurse on the RHS as normal unless we're assigning to
 | |
|   // a bitfield.
 | |
|   if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
 | |
|     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
 | |
|                                   E->getOperatorLoc())) {
 | |
|       // Recurse, ignoring any implicit conversions on the RHS.
 | |
|       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
 | |
|                                         E->getOperatorLoc());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | |
| void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 
 | |
|                      SourceLocation CContext, unsigned diag) {
 | |
|   S.Diag(E->getExprLoc(), diag)
 | |
|     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | |
| void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
 | |
|                      unsigned diag) {
 | |
|   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast from a literal expression. Also attemps to supply
 | |
| /// fixit hints when the cast wouldn't lose information to simply write the
 | |
| /// expression with the expected type.
 | |
| void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
 | |
|                                     SourceLocation CContext) {
 | |
|   // Emit the primary warning first, then try to emit a fixit hint note if
 | |
|   // reasonable.
 | |
|   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
 | |
|     << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
 | |
| 
 | |
|   const llvm::APFloat &Value = FL->getValue();
 | |
| 
 | |
|   // Don't attempt to fix PPC double double literals.
 | |
|   if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
 | |
|     return;
 | |
| 
 | |
|   // Try to convert this exactly to an 64-bit integer. FIXME: It would be
 | |
|   // nice to support arbitrarily large integers here.
 | |
|   bool isExact = false;
 | |
|   uint64_t IntegerPart;
 | |
|   if (Value.convertToInteger(&IntegerPart, 64, /*isSigned=*/true,
 | |
|                              llvm::APFloat::rmTowardZero, &isExact)
 | |
|       != llvm::APFloat::opOK || !isExact)
 | |
|     return;
 | |
| 
 | |
|   llvm::APInt IntegerValue(64, IntegerPart, /*isSigned=*/true);
 | |
| 
 | |
|   std::string LiteralValue = IntegerValue.toString(10, /*isSigned=*/true);
 | |
|   S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
 | |
|     << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
 | |
| }
 | |
| 
 | |
| std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
 | |
|   if (!Range.Width) return "0";
 | |
| 
 | |
|   llvm::APSInt ValueInRange = Value;
 | |
|   ValueInRange.setIsSigned(!Range.NonNegative);
 | |
|   ValueInRange = ValueInRange.trunc(Range.Width);
 | |
|   return ValueInRange.toString(10);
 | |
| }
 | |
| 
 | |
| static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
 | |
|   SourceManager &smgr = S.Context.getSourceManager();
 | |
|   return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
 | |
| }
 | |
| 
 | |
| void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
 | |
|                              SourceLocation CC, bool *ICContext = 0) {
 | |
|   if (E->isTypeDependent() || E->isValueDependent()) return;
 | |
| 
 | |
|   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
 | |
|   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
 | |
|   if (Source == Target) return;
 | |
|   if (Target->isDependentType()) return;
 | |
| 
 | |
|   // If the conversion context location is invalid don't complain.
 | |
|   // We also don't want to emit a warning if the issue occurs from the
 | |
|   // instantiation of a system macro.  The problem is that 'getSpellingLoc()'
 | |
|   // is slow, so we delay this check as long as possible.  Once we detect
 | |
|   // we are in that scenario, we just return.
 | |
|   if (CC.isInvalid())
 | |
|     return;
 | |
| 
 | |
|   // Never diagnose implicit casts to bool.
 | |
|   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
 | |
|     return;
 | |
| 
 | |
|   // Strip vector types.
 | |
|   if (isa<VectorType>(Source)) {
 | |
|     if (!isa<VectorType>(Target)) {
 | |
|       if (isFromSystemMacro(S, CC))
 | |
|         return;
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
 | |
|     }
 | |
| 
 | |
|     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
| 
 | |
|   // Strip complex types.
 | |
|   if (isa<ComplexType>(Source)) {
 | |
|     if (!isa<ComplexType>(Target)) {
 | |
|       if (isFromSystemMacro(S, CC))
 | |
|         return;
 | |
| 
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
 | |
|     }
 | |
| 
 | |
|     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
| 
 | |
|   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
 | |
|   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
 | |
| 
 | |
|   // If the source is floating point...
 | |
|   if (SourceBT && SourceBT->isFloatingPoint()) {
 | |
|     // ...and the target is floating point...
 | |
|     if (TargetBT && TargetBT->isFloatingPoint()) {
 | |
|       // ...then warn if we're dropping FP rank.
 | |
| 
 | |
|       // Builtin FP kinds are ordered by increasing FP rank.
 | |
|       if (SourceBT->getKind() > TargetBT->getKind()) {
 | |
|         // Don't warn about float constants that are precisely
 | |
|         // representable in the target type.
 | |
|         Expr::EvalResult result;
 | |
|         if (E->Evaluate(result, S.Context)) {
 | |
|           // Value might be a float, a float vector, or a float complex.
 | |
|           if (IsSameFloatAfterCast(result.Val,
 | |
|                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
 | |
|                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (isFromSystemMacro(S, CC))
 | |
|           return;
 | |
| 
 | |
|         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the target is integral, always warn.    
 | |
|     if ((TargetBT && TargetBT->isInteger())) {
 | |
|       if (isFromSystemMacro(S, CC))
 | |
|         return;
 | |
|       
 | |
|       Expr *InnerE = E->IgnoreParenImpCasts();
 | |
|       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
 | |
|         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
 | |
|       } else {
 | |
|         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!Source->isIntegerType() || !Target->isIntegerType())
 | |
|     return;
 | |
| 
 | |
|   IntRange SourceRange = GetExprRange(S.Context, E);
 | |
|   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
 | |
| 
 | |
|   if (SourceRange.Width > TargetRange.Width) {
 | |
|     // If the source is a constant, use a default-on diagnostic.
 | |
|     // TODO: this should happen for bitfield stores, too.
 | |
|     llvm::APSInt Value(32);
 | |
|     if (E->isIntegerConstantExpr(Value, S.Context)) {
 | |
|       if (isFromSystemMacro(S, CC))
 | |
|         return;
 | |
| 
 | |
|       std::string PrettySourceValue = Value.toString(10);
 | |
|       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
 | |
| 
 | |
|       S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
 | |
|         << PrettySourceValue << PrettyTargetValue
 | |
|         << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // People want to build with -Wshorten-64-to-32 and not -Wconversion
 | |
|     // and by god we'll let them.
 | |
|     
 | |
|     if (isFromSystemMacro(S, CC))
 | |
|       return;
 | |
|     
 | |
|     if (SourceRange.Width == 64 && TargetRange.Width == 32)
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
 | |
|     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
 | |
|   }
 | |
| 
 | |
|   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
 | |
|       (!TargetRange.NonNegative && SourceRange.NonNegative &&
 | |
|        SourceRange.Width == TargetRange.Width)) {
 | |
|         
 | |
|     if (isFromSystemMacro(S, CC))
 | |
|       return;
 | |
| 
 | |
|     unsigned DiagID = diag::warn_impcast_integer_sign;
 | |
| 
 | |
|     // Traditionally, gcc has warned about this under -Wsign-compare.
 | |
|     // We also want to warn about it in -Wconversion.
 | |
|     // So if -Wconversion is off, use a completely identical diagnostic
 | |
|     // in the sign-compare group.
 | |
|     // The conditional-checking code will 
 | |
|     if (ICContext) {
 | |
|       DiagID = diag::warn_impcast_integer_sign_conditional;
 | |
|       *ICContext = true;
 | |
|     }
 | |
| 
 | |
|     return DiagnoseImpCast(S, E, T, CC, DiagID);
 | |
|   }
 | |
| 
 | |
|   // Diagnose conversions between different enumeration types.
 | |
|   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
 | |
|   // type, to give us better diagnostics.
 | |
|   QualType SourceType = E->getType();
 | |
|   if (!S.getLangOptions().CPlusPlus) {
 | |
|     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
 | |
|         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
 | |
|         SourceType = S.Context.getTypeDeclType(Enum);
 | |
|         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
 | |
|     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
 | |
|       if ((SourceEnum->getDecl()->getIdentifier() || 
 | |
|            SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
 | |
|           (TargetEnum->getDecl()->getIdentifier() ||
 | |
|            TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
 | |
|           SourceEnum != TargetEnum) {
 | |
|         if (isFromSystemMacro(S, CC))
 | |
|           return;
 | |
| 
 | |
|         return DiagnoseImpCast(S, E, SourceType, T, CC, 
 | |
|                                diag::warn_impcast_different_enum_types);
 | |
|       }
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
 | |
| 
 | |
| void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
 | |
|                              SourceLocation CC, bool &ICContext) {
 | |
|   E = E->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (isa<ConditionalOperator>(E))
 | |
|     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E, CC);
 | |
|   if (E->getType() != T)
 | |
|     return CheckImplicitConversion(S, E, T, CC, &ICContext);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
 | |
|   SourceLocation CC = E->getQuestionLoc();
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E->getCond(), CC);
 | |
| 
 | |
|   bool Suspicious = false;
 | |
|   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
 | |
|   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
 | |
| 
 | |
|   // If -Wconversion would have warned about either of the candidates
 | |
|   // for a signedness conversion to the context type...
 | |
|   if (!Suspicious) return;
 | |
| 
 | |
|   // ...but it's currently ignored...
 | |
|   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
 | |
|                                  CC))
 | |
|     return;
 | |
| 
 | |
|   // ...and -Wsign-compare isn't...
 | |
|   if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC))
 | |
|     return;
 | |
| 
 | |
|   // ...then check whether it would have warned about either of the
 | |
|   // candidates for a signedness conversion to the condition type.
 | |
|   if (E->getType() != T) {
 | |
|     Suspicious = false;
 | |
|     CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
 | |
|                             E->getType(), CC, &Suspicious);
 | |
|     if (!Suspicious)
 | |
|       CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
 | |
|                               E->getType(), CC, &Suspicious);
 | |
|     if (!Suspicious)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // If so, emit a diagnostic under -Wsign-compare.
 | |
|   Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
 | |
|   Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
 | |
|   S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
 | |
|     << lex->getType() << rex->getType()
 | |
|     << lex->getSourceRange() << rex->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// AnalyzeImplicitConversions - Find and report any interesting
 | |
| /// implicit conversions in the given expression.  There are a couple
 | |
| /// of competing diagnostics here, -Wconversion and -Wsign-compare.
 | |
| void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
 | |
|   QualType T = OrigE->getType();
 | |
|   Expr *E = OrigE->IgnoreParenImpCasts();
 | |
| 
 | |
|   // For conditional operators, we analyze the arguments as if they
 | |
|   // were being fed directly into the output.
 | |
|   if (isa<ConditionalOperator>(E)) {
 | |
|     ConditionalOperator *CO = cast<ConditionalOperator>(E);
 | |
|     CheckConditionalOperator(S, CO, T);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Go ahead and check any implicit conversions we might have skipped.
 | |
|   // The non-canonical typecheck is just an optimization;
 | |
|   // CheckImplicitConversion will filter out dead implicit conversions.
 | |
|   if (E->getType() != T)
 | |
|     CheckImplicitConversion(S, E, T, CC);
 | |
| 
 | |
|   // Now continue drilling into this expression.
 | |
| 
 | |
|   // Skip past explicit casts.
 | |
|   if (isa<ExplicitCastExpr>(E)) {
 | |
|     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
 | |
|     return AnalyzeImplicitConversions(S, E, CC);
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     // Do a somewhat different check with comparison operators.
 | |
|     if (BO->isComparisonOp())
 | |
|       return AnalyzeComparison(S, BO);
 | |
| 
 | |
|     // And with assignments and compound assignments.
 | |
|     if (BO->isAssignmentOp())
 | |
|       return AnalyzeAssignment(S, BO);
 | |
|   }
 | |
| 
 | |
|   // These break the otherwise-useful invariant below.  Fortunately,
 | |
|   // we don't really need to recurse into them, because any internal
 | |
|   // expressions should have been analyzed already when they were
 | |
|   // built into statements.
 | |
|   if (isa<StmtExpr>(E)) return;
 | |
| 
 | |
|   // Don't descend into unevaluated contexts.
 | |
|   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
 | |
| 
 | |
|   // Now just recurse over the expression's children.
 | |
|   CC = E->getExprLoc();
 | |
|   for (Stmt::child_range I = E->children(); I; ++I)
 | |
|     AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Diagnoses "dangerous" implicit conversions within the given
 | |
| /// expression (which is a full expression).  Implements -Wconversion
 | |
| /// and -Wsign-compare.
 | |
| ///
 | |
| /// \param CC the "context" location of the implicit conversion, i.e.
 | |
| ///   the most location of the syntactic entity requiring the implicit
 | |
| ///   conversion
 | |
| void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
 | |
|   // Don't diagnose in unevaluated contexts.
 | |
|   if (ExprEvalContexts.back().Context == Sema::Unevaluated)
 | |
|     return;
 | |
| 
 | |
|   // Don't diagnose for value- or type-dependent expressions.
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   // This is not the right CC for (e.g.) a variable initialization.
 | |
|   AnalyzeImplicitConversions(*this, E, CC);
 | |
| }
 | |
| 
 | |
| void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
 | |
|                                        FieldDecl *BitField,
 | |
|                                        Expr *Init) {
 | |
|   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
 | |
| }
 | |
| 
 | |
| /// CheckParmsForFunctionDef - Check that the parameters of the given
 | |
| /// function are appropriate for the definition of a function. This
 | |
| /// takes care of any checks that cannot be performed on the
 | |
| /// declaration itself, e.g., that the types of each of the function
 | |
| /// parameters are complete.
 | |
| bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
 | |
|                                     bool CheckParameterNames) {
 | |
|   bool HasInvalidParm = false;
 | |
|   for (; P != PEnd; ++P) {
 | |
|     ParmVarDecl *Param = *P;
 | |
|     
 | |
|     // C99 6.7.5.3p4: the parameters in a parameter type list in a
 | |
|     // function declarator that is part of a function definition of
 | |
|     // that function shall not have incomplete type.
 | |
|     //
 | |
|     // This is also C++ [dcl.fct]p6.
 | |
|     if (!Param->isInvalidDecl() &&
 | |
|         RequireCompleteType(Param->getLocation(), Param->getType(),
 | |
|                                diag::err_typecheck_decl_incomplete_type)) {
 | |
|       Param->setInvalidDecl();
 | |
|       HasInvalidParm = true;
 | |
|     }
 | |
| 
 | |
|     // C99 6.9.1p5: If the declarator includes a parameter type list, the
 | |
|     // declaration of each parameter shall include an identifier.
 | |
|     if (CheckParameterNames &&
 | |
|         Param->getIdentifier() == 0 &&
 | |
|         !Param->isImplicit() &&
 | |
|         !getLangOptions().CPlusPlus)
 | |
|       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
 | |
| 
 | |
|     // C99 6.7.5.3p12:
 | |
|     //   If the function declarator is not part of a definition of that
 | |
|     //   function, parameters may have incomplete type and may use the [*]
 | |
|     //   notation in their sequences of declarator specifiers to specify
 | |
|     //   variable length array types.
 | |
|     QualType PType = Param->getOriginalType();
 | |
|     if (const ArrayType *AT = Context.getAsArrayType(PType)) {
 | |
|       if (AT->getSizeModifier() == ArrayType::Star) {
 | |
|         // FIXME: This diagnosic should point the the '[*]' if source-location
 | |
|         // information is added for it.
 | |
|         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return HasInvalidParm;
 | |
| }
 | |
| 
 | |
| /// CheckCastAlign - Implements -Wcast-align, which warns when a
 | |
| /// pointer cast increases the alignment requirements.
 | |
| void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
 | |
|   // This is actually a lot of work to potentially be doing on every
 | |
|   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
 | |
|   if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
 | |
|                                           TRange.getBegin())
 | |
|         == Diagnostic::Ignored)
 | |
|     return;
 | |
| 
 | |
|   // Ignore dependent types.
 | |
|   if (T->isDependentType() || Op->getType()->isDependentType())
 | |
|     return;
 | |
| 
 | |
|   // Require that the destination be a pointer type.
 | |
|   const PointerType *DestPtr = T->getAs<PointerType>();
 | |
|   if (!DestPtr) return;
 | |
| 
 | |
|   // If the destination has alignment 1, we're done.
 | |
|   QualType DestPointee = DestPtr->getPointeeType();
 | |
|   if (DestPointee->isIncompleteType()) return;
 | |
|   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
 | |
|   if (DestAlign.isOne()) return;
 | |
| 
 | |
|   // Require that the source be a pointer type.
 | |
|   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
 | |
|   if (!SrcPtr) return;
 | |
|   QualType SrcPointee = SrcPtr->getPointeeType();
 | |
| 
 | |
|   // Whitelist casts from cv void*.  We already implicitly
 | |
|   // whitelisted casts to cv void*, since they have alignment 1.
 | |
|   // Also whitelist casts involving incomplete types, which implicitly
 | |
|   // includes 'void'.
 | |
|   if (SrcPointee->isIncompleteType()) return;
 | |
| 
 | |
|   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
 | |
|   if (SrcAlign >= DestAlign) return;
 | |
| 
 | |
|   Diag(TRange.getBegin(), diag::warn_cast_align)
 | |
|     << Op->getType() << T
 | |
|     << static_cast<unsigned>(SrcAlign.getQuantity())
 | |
|     << static_cast<unsigned>(DestAlign.getQuantity())
 | |
|     << TRange << Op->getSourceRange();
 | |
| }
 | |
| 
 | |
| static void CheckArrayAccess_Check(Sema &S,
 | |
|                                    const clang::ArraySubscriptExpr *E) {
 | |
|   const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts();
 | |
|   const ConstantArrayType *ArrayTy =
 | |
|     S.Context.getAsConstantArrayType(BaseExpr->getType());
 | |
|   if (!ArrayTy)
 | |
|     return;
 | |
| 
 | |
|   const Expr *IndexExpr = E->getIdx();
 | |
|   if (IndexExpr->isValueDependent())
 | |
|     return;
 | |
|   llvm::APSInt index;
 | |
|   if (!IndexExpr->isIntegerConstantExpr(index, S.Context))
 | |
|     return;
 | |
| 
 | |
|   if (index.isUnsigned() || !index.isNegative()) {
 | |
|     llvm::APInt size = ArrayTy->getSize();
 | |
|     if (!size.isStrictlyPositive())
 | |
|       return;
 | |
|     if (size.getBitWidth() > index.getBitWidth())
 | |
|       index = index.sext(size.getBitWidth());
 | |
|     else if (size.getBitWidth() < index.getBitWidth())
 | |
|       size = size.sext(index.getBitWidth());
 | |
| 
 | |
|     if (index.slt(size))
 | |
|       return;
 | |
| 
 | |
|     S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
 | |
|                           S.PDiag(diag::warn_array_index_exceeds_bounds)
 | |
|                             << index.toString(10, true)
 | |
|                             << size.toString(10, true)
 | |
|                             << IndexExpr->getSourceRange());
 | |
|   } else {
 | |
|     S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
 | |
|                           S.PDiag(diag::warn_array_index_precedes_bounds)
 | |
|                             << index.toString(10, true)
 | |
|                             << IndexExpr->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   const NamedDecl *ND = NULL;
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
 | |
|     ND = dyn_cast<NamedDecl>(DRE->getDecl());
 | |
|   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
 | |
|     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
 | |
|   if (ND)
 | |
|     S.DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
 | |
|                           S.PDiag(diag::note_array_index_out_of_bounds)
 | |
|                             << ND->getDeclName());
 | |
| }
 | |
| 
 | |
| void Sema::CheckArrayAccess(const Expr *expr) {
 | |
|   while (true) {
 | |
|     expr = expr->IgnoreParens();
 | |
|     switch (expr->getStmtClass()) {
 | |
|       case Stmt::ArraySubscriptExprClass:
 | |
|         CheckArrayAccess_Check(*this, cast<ArraySubscriptExpr>(expr));
 | |
|         return;
 | |
|       case Stmt::ConditionalOperatorClass: {
 | |
|         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
 | |
|         if (const Expr *lhs = cond->getLHS())
 | |
|           CheckArrayAccess(lhs);
 | |
|         if (const Expr *rhs = cond->getRHS())
 | |
|           CheckArrayAccess(rhs);
 | |
|         return;
 | |
|       }
 | |
|       default:
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| }
 |