forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			8628 lines
		
	
	
		
			330 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			8628 lines
		
	
	
		
			330 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for declarations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/CXXFieldCollector.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "TypeLocBuilder.h"
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTConsumer.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Parse/ParseDiagnostic.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Lex/HeaderSearch.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include <algorithm>
 | |
| #include <cstring>
 | |
| #include <functional>
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
 | |
|   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
 | |
| }
 | |
| 
 | |
| /// \brief If the identifier refers to a type name within this scope,
 | |
| /// return the declaration of that type.
 | |
| ///
 | |
| /// This routine performs ordinary name lookup of the identifier II
 | |
| /// within the given scope, with optional C++ scope specifier SS, to
 | |
| /// determine whether the name refers to a type. If so, returns an
 | |
| /// opaque pointer (actually a QualType) corresponding to that
 | |
| /// type. Otherwise, returns NULL.
 | |
| ///
 | |
| /// If name lookup results in an ambiguity, this routine will complain
 | |
| /// and then return NULL.
 | |
| ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
 | |
|                              Scope *S, CXXScopeSpec *SS,
 | |
|                              bool isClassName, bool HasTrailingDot,
 | |
|                              ParsedType ObjectTypePtr,
 | |
|                              bool WantNontrivialTypeSourceInfo) {
 | |
|   // Determine where we will perform name lookup.
 | |
|   DeclContext *LookupCtx = 0;
 | |
|   if (ObjectTypePtr) {
 | |
|     QualType ObjectType = ObjectTypePtr.get();
 | |
|     if (ObjectType->isRecordType())
 | |
|       LookupCtx = computeDeclContext(ObjectType);
 | |
|   } else if (SS && SS->isNotEmpty()) {
 | |
|     LookupCtx = computeDeclContext(*SS, false);
 | |
| 
 | |
|     if (!LookupCtx) {
 | |
|       if (isDependentScopeSpecifier(*SS)) {
 | |
|         // C++ [temp.res]p3:
 | |
|         //   A qualified-id that refers to a type and in which the
 | |
|         //   nested-name-specifier depends on a template-parameter (14.6.2)
 | |
|         //   shall be prefixed by the keyword typename to indicate that the
 | |
|         //   qualified-id denotes a type, forming an
 | |
|         //   elaborated-type-specifier (7.1.5.3).
 | |
|         //
 | |
|         // We therefore do not perform any name lookup if the result would
 | |
|         // refer to a member of an unknown specialization.
 | |
|         if (!isClassName)
 | |
|           return ParsedType();
 | |
|         
 | |
|         // We know from the grammar that this name refers to a type,
 | |
|         // so build a dependent node to describe the type.
 | |
|         if (WantNontrivialTypeSourceInfo)
 | |
|           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
 | |
|         
 | |
|         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
 | |
|         QualType T =
 | |
|           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
 | |
|                             II, NameLoc);
 | |
|         
 | |
|           return ParsedType::make(T);
 | |
|       }
 | |
|       
 | |
|       return ParsedType();
 | |
|     }
 | |
|     
 | |
|     if (!LookupCtx->isDependentContext() &&
 | |
|         RequireCompleteDeclContext(*SS, LookupCtx))
 | |
|       return ParsedType();
 | |
|   }
 | |
| 
 | |
|   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
 | |
|   // lookup for class-names.
 | |
|   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
 | |
|                                       LookupOrdinaryName;
 | |
|   LookupResult Result(*this, &II, NameLoc, Kind);
 | |
|   if (LookupCtx) {
 | |
|     // Perform "qualified" name lookup into the declaration context we
 | |
|     // computed, which is either the type of the base of a member access
 | |
|     // expression or the declaration context associated with a prior
 | |
|     // nested-name-specifier.
 | |
|     LookupQualifiedName(Result, LookupCtx);
 | |
| 
 | |
|     if (ObjectTypePtr && Result.empty()) {
 | |
|       // C++ [basic.lookup.classref]p3:
 | |
|       //   If the unqualified-id is ~type-name, the type-name is looked up
 | |
|       //   in the context of the entire postfix-expression. If the type T of 
 | |
|       //   the object expression is of a class type C, the type-name is also
 | |
|       //   looked up in the scope of class C. At least one of the lookups shall
 | |
|       //   find a name that refers to (possibly cv-qualified) T.
 | |
|       LookupName(Result, S);
 | |
|     }
 | |
|   } else {
 | |
|     // Perform unqualified name lookup.
 | |
|     LookupName(Result, S);
 | |
|   }
 | |
|   
 | |
|   NamedDecl *IIDecl = 0;
 | |
|   switch (Result.getResultKind()) {
 | |
|   case LookupResult::NotFound:
 | |
|   case LookupResult::NotFoundInCurrentInstantiation:
 | |
|   case LookupResult::FoundOverloaded:
 | |
|   case LookupResult::FoundUnresolvedValue:
 | |
|     Result.suppressDiagnostics();
 | |
|     return ParsedType();
 | |
| 
 | |
|   case LookupResult::Ambiguous:
 | |
|     // Recover from type-hiding ambiguities by hiding the type.  We'll
 | |
|     // do the lookup again when looking for an object, and we can
 | |
|     // diagnose the error then.  If we don't do this, then the error
 | |
|     // about hiding the type will be immediately followed by an error
 | |
|     // that only makes sense if the identifier was treated like a type.
 | |
|     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
 | |
|       Result.suppressDiagnostics();
 | |
|       return ParsedType();
 | |
|     }
 | |
| 
 | |
|     // Look to see if we have a type anywhere in the list of results.
 | |
|     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
 | |
|          Res != ResEnd; ++Res) {
 | |
|       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
 | |
|         if (!IIDecl ||
 | |
|             (*Res)->getLocation().getRawEncoding() <
 | |
|               IIDecl->getLocation().getRawEncoding())
 | |
|           IIDecl = *Res;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!IIDecl) {
 | |
|       // None of the entities we found is a type, so there is no way
 | |
|       // to even assume that the result is a type. In this case, don't
 | |
|       // complain about the ambiguity. The parser will either try to
 | |
|       // perform this lookup again (e.g., as an object name), which
 | |
|       // will produce the ambiguity, or will complain that it expected
 | |
|       // a type name.
 | |
|       Result.suppressDiagnostics();
 | |
|       return ParsedType();
 | |
|     }
 | |
| 
 | |
|     // We found a type within the ambiguous lookup; diagnose the
 | |
|     // ambiguity and then return that type. This might be the right
 | |
|     // answer, or it might not be, but it suppresses any attempt to
 | |
|     // perform the name lookup again.
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::Found:
 | |
|     IIDecl = Result.getFoundDecl();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert(IIDecl && "Didn't find decl");
 | |
| 
 | |
|   QualType T;
 | |
|   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
 | |
|     DiagnoseUseOfDecl(IIDecl, NameLoc);
 | |
| 
 | |
|     if (T.isNull())
 | |
|       T = Context.getTypeDeclType(TD);
 | |
|     
 | |
|     if (SS && SS->isNotEmpty()) {
 | |
|       if (WantNontrivialTypeSourceInfo) {
 | |
|         // Construct a type with type-source information.
 | |
|         TypeLocBuilder Builder;
 | |
|         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
 | |
|         
 | |
|         T = getElaboratedType(ETK_None, *SS, T);
 | |
|         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
 | |
|         ElabTL.setKeywordLoc(SourceLocation());
 | |
|         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
 | |
|         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | |
|       } else {
 | |
|         T = getElaboratedType(ETK_None, *SS, T);
 | |
|       }
 | |
|     }
 | |
|   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
 | |
|     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
 | |
|     if (!HasTrailingDot)
 | |
|       T = Context.getObjCInterfaceType(IDecl);
 | |
|   }
 | |
| 
 | |
|   if (T.isNull()) {
 | |
|     // If it's not plausibly a type, suppress diagnostics.
 | |
|     Result.suppressDiagnostics();
 | |
|     return ParsedType();
 | |
|   }
 | |
|   return ParsedType::make(T);
 | |
| }
 | |
| 
 | |
| /// isTagName() - This method is called *for error recovery purposes only*
 | |
| /// to determine if the specified name is a valid tag name ("struct foo").  If
 | |
| /// so, this returns the TST for the tag corresponding to it (TST_enum,
 | |
| /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
 | |
| /// where the user forgot to specify the tag.
 | |
| DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
 | |
|   // Do a tag name lookup in this scope.
 | |
|   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
 | |
|   LookupName(R, S, false);
 | |
|   R.suppressDiagnostics();
 | |
|   if (R.getResultKind() == LookupResult::Found)
 | |
|     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
 | |
|       switch (TD->getTagKind()) {
 | |
|       default:         return DeclSpec::TST_unspecified;
 | |
|       case TTK_Struct: return DeclSpec::TST_struct;
 | |
|       case TTK_Union:  return DeclSpec::TST_union;
 | |
|       case TTK_Class:  return DeclSpec::TST_class;
 | |
|       case TTK_Enum:   return DeclSpec::TST_enum;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return DeclSpec::TST_unspecified;
 | |
| }
 | |
| 
 | |
| /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
 | |
| /// if a CXXScopeSpec's type is equal to the type of one of the base classes
 | |
| /// then downgrade the missing typename error to a warning.
 | |
| /// This is needed for MSVC compatibility; Example:
 | |
| /// @code
 | |
| /// template<class T> class A {
 | |
| /// public:
 | |
| ///   typedef int TYPE;
 | |
| /// };
 | |
| /// template<class T> class B : public A<T> {
 | |
| /// public:
 | |
| ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
 | |
| /// };
 | |
| /// @endcode
 | |
| bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
 | |
|   if (CurContext->isRecord()) {
 | |
|     const Type *Ty = SS->getScopeRep()->getAsType();
 | |
| 
 | |
|     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
 | |
|     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
 | |
|           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
 | |
|       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
 | |
|         return true;
 | |
|   } 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II, 
 | |
|                                    SourceLocation IILoc,
 | |
|                                    Scope *S,
 | |
|                                    CXXScopeSpec *SS,
 | |
|                                    ParsedType &SuggestedType) {
 | |
|   // We don't have anything to suggest (yet).
 | |
|   SuggestedType = ParsedType();
 | |
|   
 | |
|   // There may have been a typo in the name of the type. Look up typo
 | |
|   // results, in case we have something that we can suggest.
 | |
|   LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName, 
 | |
|                       NotForRedeclaration);
 | |
| 
 | |
|   if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
 | |
|     if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
 | |
|       if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
 | |
|           !Result->isInvalidDecl()) {
 | |
|         // We found a similarly-named type or interface; suggest that.
 | |
|         if (!SS || !SS->isSet())
 | |
|           Diag(IILoc, diag::err_unknown_typename_suggest)
 | |
|             << &II << Lookup.getLookupName()
 | |
|             << FixItHint::CreateReplacement(SourceRange(IILoc),
 | |
|                                             Result->getNameAsString());
 | |
|         else if (DeclContext *DC = computeDeclContext(*SS, false))
 | |
|           Diag(IILoc, diag::err_unknown_nested_typename_suggest) 
 | |
|             << &II << DC << Lookup.getLookupName() << SS->getRange()
 | |
|             << FixItHint::CreateReplacement(SourceRange(IILoc),
 | |
|                                             Result->getNameAsString());
 | |
|         else
 | |
|           llvm_unreachable("could not have corrected a typo here");
 | |
| 
 | |
|         Diag(Result->getLocation(), diag::note_previous_decl)
 | |
|           << Result->getDeclName();
 | |
|         
 | |
|         SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
 | |
|                                     false, false, ParsedType(),
 | |
|                                     /*NonTrivialTypeSourceInfo=*/true);
 | |
|         return true;
 | |
|       }
 | |
|     } else if (Lookup.empty()) {
 | |
|       // We corrected to a keyword.
 | |
|       // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
 | |
|       Diag(IILoc, diag::err_unknown_typename_suggest)
 | |
|         << &II << Corrected;
 | |
|       return true;      
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // See if II is a class template that the user forgot to pass arguments to.
 | |
|     UnqualifiedId Name;
 | |
|     Name.setIdentifier(&II, IILoc);
 | |
|     CXXScopeSpec EmptySS;
 | |
|     TemplateTy TemplateResult;
 | |
|     bool MemberOfUnknownSpecialization;
 | |
|     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
 | |
|                        Name, ParsedType(), true, TemplateResult,
 | |
|                        MemberOfUnknownSpecialization) == TNK_Type_template) {
 | |
|       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
 | |
|       Diag(IILoc, diag::err_template_missing_args) << TplName;
 | |
|       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
 | |
|         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
 | |
|           << TplDecl->getTemplateParameters()->getSourceRange();
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Should we move the logic that tries to recover from a missing tag
 | |
|   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
 | |
|   
 | |
|   if (!SS || (!SS->isSet() && !SS->isInvalid()))
 | |
|     Diag(IILoc, diag::err_unknown_typename) << &II;
 | |
|   else if (DeclContext *DC = computeDeclContext(*SS, false))
 | |
|     Diag(IILoc, diag::err_typename_nested_not_found) 
 | |
|       << &II << DC << SS->getRange();
 | |
|   else if (isDependentScopeSpecifier(*SS)) {
 | |
|     unsigned DiagID = diag::err_typename_missing;
 | |
|     if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
 | |
|       DiagID = diag::warn_typename_missing;
 | |
| 
 | |
|     Diag(SS->getRange().getBegin(), DiagID)
 | |
|       << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
 | |
|       << SourceRange(SS->getRange().getBegin(), IILoc)
 | |
|       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
 | |
|     SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
 | |
|   } else {
 | |
|     assert(SS && SS->isInvalid() && 
 | |
|            "Invalid scope specifier has already been diagnosed");
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given result set contains either a type name
 | |
| /// or 
 | |
| static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
 | |
|   bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
 | |
|                        NextToken.is(tok::less);
 | |
|   
 | |
|   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
 | |
|     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
 | |
|       return true;
 | |
|     
 | |
|     if (CheckTemplate && isa<TemplateDecl>(*I))
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Sema::NameClassification Sema::ClassifyName(Scope *S,
 | |
|                                             CXXScopeSpec &SS,
 | |
|                                             IdentifierInfo *&Name,
 | |
|                                             SourceLocation NameLoc,
 | |
|                                             const Token &NextToken) {
 | |
|   DeclarationNameInfo NameInfo(Name, NameLoc);
 | |
|   ObjCMethodDecl *CurMethod = getCurMethodDecl();
 | |
|   
 | |
|   if (NextToken.is(tok::coloncolon)) {
 | |
|     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
 | |
|                                 QualType(), false, SS, 0, false);
 | |
|     
 | |
|   }
 | |
|       
 | |
|   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
 | |
|   LookupParsedName(Result, S, &SS, !CurMethod);
 | |
|   
 | |
|   // Perform lookup for Objective-C instance variables (including automatically 
 | |
|   // synthesized instance variables), if we're in an Objective-C method.
 | |
|   // FIXME: This lookup really, really needs to be folded in to the normal
 | |
|   // unqualified lookup mechanism.
 | |
|   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
 | |
|     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
 | |
|     if (E.get() || E.isInvalid())
 | |
|       return E;
 | |
|     
 | |
|     // Synthesize ivars lazily.
 | |
|     if (getLangOptions().ObjCDefaultSynthProperties &&
 | |
|         getLangOptions().ObjCNonFragileABI2) {
 | |
|       if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
 | |
|         if (const ObjCPropertyDecl *Property = 
 | |
|                                           canSynthesizeProvisionalIvar(Name)) {
 | |
|           Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
 | |
|           Diag(Property->getLocation(), diag::note_property_declare);
 | |
|         }
 | |
| 
 | |
|         // FIXME: This is strange. Shouldn't we just take the ivar returned
 | |
|         // from SynthesizeProvisionalIvar and continue with that?
 | |
|         E = LookupInObjCMethod(Result, S, Name, true);   
 | |
|         if (E.get() || E.isInvalid())
 | |
|           return E;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   bool SecondTry = false;
 | |
|   bool IsFilteredTemplateName = false;
 | |
|   
 | |
| Corrected:
 | |
|   switch (Result.getResultKind()) {
 | |
|   case LookupResult::NotFound:
 | |
|     // If an unqualified-id is followed by a '(', then we have a function
 | |
|     // call.
 | |
|     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
 | |
|       // In C++, this is an ADL-only call.
 | |
|       // FIXME: Reference?
 | |
|       if (getLangOptions().CPlusPlus)
 | |
|         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
 | |
|       
 | |
|       // C90 6.3.2.2:
 | |
|       //   If the expression that precedes the parenthesized argument list in a 
 | |
|       //   function call consists solely of an identifier, and if no 
 | |
|       //   declaration is visible for this identifier, the identifier is 
 | |
|       //   implicitly declared exactly as if, in the innermost block containing
 | |
|       //   the function call, the declaration
 | |
|       //
 | |
|       //     extern int identifier (); 
 | |
|       //
 | |
|       //   appeared. 
 | |
|       // 
 | |
|       // We also allow this in C99 as an extension.
 | |
|       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
 | |
|         Result.addDecl(D);
 | |
|         Result.resolveKind();
 | |
|         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // In C, we first see whether there is a tag type by the same name, in 
 | |
|     // which case it's likely that the user just forget to write "enum", 
 | |
|     // "struct", or "union".
 | |
|     if (!getLangOptions().CPlusPlus && !SecondTry) {
 | |
|       Result.clear(LookupTagName);
 | |
|       LookupParsedName(Result, S, &SS);
 | |
|       if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
 | |
|         const char *TagName = 0;
 | |
|         const char *FixItTagName = 0;
 | |
|         switch (Tag->getTagKind()) {
 | |
|           case TTK_Class:
 | |
|             TagName = "class";
 | |
|             FixItTagName = "class ";
 | |
|             break;
 | |
| 
 | |
|           case TTK_Enum:
 | |
|             TagName = "enum";
 | |
|             FixItTagName = "enum ";
 | |
|             break;
 | |
|             
 | |
|           case TTK_Struct:
 | |
|             TagName = "struct";
 | |
|             FixItTagName = "struct ";
 | |
|             break;
 | |
|             
 | |
|           case TTK_Union:
 | |
|             TagName = "union";
 | |
|             FixItTagName = "union ";
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
 | |
|           << Name << TagName << getLangOptions().CPlusPlus
 | |
|           << FixItHint::CreateInsertion(NameLoc, FixItTagName);
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       Result.clear(LookupOrdinaryName);
 | |
|     }
 | |
| 
 | |
|     // Perform typo correction to determine if there is another name that is
 | |
|     // close to this name.
 | |
|     if (!SecondTry) {
 | |
|       if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
 | |
|         if (SS.isEmpty())
 | |
|           Diag(NameLoc, diag::err_undeclared_var_use_suggest)
 | |
|             << Name << Corrected
 | |
|             << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
 | |
|         else
 | |
|           Diag(NameLoc, diag::err_no_member_suggest)
 | |
|             << Name << computeDeclContext(SS, false) << Corrected
 | |
|             << SS.getRange()
 | |
|             << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
 | |
| 
 | |
|         // Update the name, so that the caller has the new name.
 | |
|         Name = Corrected.getAsIdentifierInfo();
 | |
|         
 | |
|         // Typo correction corrected to a keyword.
 | |
|         if (Result.empty())
 | |
|           return Corrected.getAsIdentifierInfo();
 | |
|         
 | |
|         NamedDecl *FirstDecl = *Result.begin();
 | |
|         Diag(FirstDecl->getLocation(), diag::note_previous_decl)
 | |
|           << FirstDecl->getDeclName();
 | |
| 
 | |
|         // If we found an Objective-C instance variable, let
 | |
|         // LookupInObjCMethod build the appropriate expression to
 | |
|         // reference the ivar.
 | |
|         // FIXME: This is a gross hack.
 | |
|         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
 | |
|           Result.clear();
 | |
|           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
 | |
|           return move(E);
 | |
|         }
 | |
|         
 | |
|         goto Corrected;
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     // We failed to correct; just fall through and let the parser deal with it.
 | |
|     Result.suppressDiagnostics();
 | |
|     return NameClassification::Unknown();
 | |
|       
 | |
|   case LookupResult::NotFoundInCurrentInstantiation:
 | |
|     // We performed name lookup into the current instantiation, and there were 
 | |
|     // dependent bases, so we treat this result the same way as any other
 | |
|     // dependent nested-name-specifier.
 | |
|       
 | |
|     // C++ [temp.res]p2:
 | |
|     //   A name used in a template declaration or definition and that is 
 | |
|     //   dependent on a template-parameter is assumed not to name a type 
 | |
|     //   unless the applicable name lookup finds a type name or the name is 
 | |
|     //   qualified by the keyword typename.
 | |
|     //
 | |
|     // FIXME: If the next token is '<', we might want to ask the parser to
 | |
|     // perform some heroics to see if we actually have a 
 | |
|     // template-argument-list, which would indicate a missing 'template'
 | |
|     // keyword here.
 | |
|     return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
 | |
| 
 | |
|   case LookupResult::Found:
 | |
|   case LookupResult::FoundOverloaded:
 | |
|   case LookupResult::FoundUnresolvedValue:
 | |
|     break;
 | |
|       
 | |
|   case LookupResult::Ambiguous:
 | |
|     if (getLangOptions().CPlusPlus && NextToken.is(tok::less)) {
 | |
|       // C++ [temp.local]p3:
 | |
|       //   A lookup that finds an injected-class-name (10.2) can result in an
 | |
|       //   ambiguity in certain cases (for example, if it is found in more than
 | |
|       //   one base class). If all of the injected-class-names that are found
 | |
|       //   refer to specializations of the same class template, and if the name
 | |
|       //   is followed by a template-argument-list, the reference refers to the
 | |
|       //   class template itself and not a specialization thereof, and is not
 | |
|       //   ambiguous.
 | |
|       //
 | |
|       // This filtering can make an ambiguous result into an unambiguous one,
 | |
|       // so try again after filtering out template names.
 | |
|       FilterAcceptableTemplateNames(Result);
 | |
|       if (!Result.isAmbiguous()) {
 | |
|         IsFilteredTemplateName = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     // Diagnose the ambiguity and return an error.
 | |
|     return NameClassification::Error();
 | |
|   }
 | |
|   
 | |
|   if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
 | |
|       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
 | |
|     // C++ [temp.names]p3:
 | |
|     //   After name lookup (3.4) finds that a name is a template-name or that
 | |
|     //   an operator-function-id or a literal- operator-id refers to a set of
 | |
|     //   overloaded functions any member of which is a function template if 
 | |
|     //   this is followed by a <, the < is always taken as the delimiter of a
 | |
|     //   template-argument-list and never as the less-than operator.
 | |
|     if (!IsFilteredTemplateName)
 | |
|       FilterAcceptableTemplateNames(Result);
 | |
|     
 | |
|     bool IsFunctionTemplate;
 | |
|     TemplateName Template;
 | |
|     if (Result.end() - Result.begin() > 1) {
 | |
|       IsFunctionTemplate = true;
 | |
|       Template = Context.getOverloadedTemplateName(Result.begin(), 
 | |
|                                                    Result.end());
 | |
|     } else {
 | |
|       TemplateDecl *TD = cast<TemplateDecl>(Result.getFoundDecl());
 | |
|       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
 | |
|       
 | |
|       if (SS.isSet() && !SS.isInvalid())
 | |
|         Template = Context.getQualifiedTemplateName(SS.getScopeRep(), 
 | |
|                                                     /*TemplateKeyword=*/false,
 | |
|                                                     TD);
 | |
|       else
 | |
|         Template = TemplateName(TD);
 | |
|     }
 | |
|     
 | |
|     if (IsFunctionTemplate) {
 | |
|       // Function templates always go through overload resolution, at which
 | |
|       // point we'll perform the various checks (e.g., accessibility) we need
 | |
|       // to based on which function we selected.
 | |
|       Result.suppressDiagnostics();
 | |
|       
 | |
|       return NameClassification::FunctionTemplate(Template);
 | |
|     }
 | |
|     
 | |
|     return NameClassification::TypeTemplate(Template);
 | |
|   }
 | |
|   
 | |
|   NamedDecl *FirstDecl = *Result.begin();
 | |
|   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
 | |
|     DiagnoseUseOfDecl(Type, NameLoc);
 | |
|     QualType T = Context.getTypeDeclType(Type);
 | |
|     return ParsedType::make(T);    
 | |
|   }
 | |
|   
 | |
|   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
 | |
|   if (!Class) {
 | |
|     // FIXME: It's unfortunate that we don't have a Type node for handling this.
 | |
|     if (ObjCCompatibleAliasDecl *Alias 
 | |
|                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
 | |
|       Class = Alias->getClassInterface();
 | |
|   }
 | |
|   
 | |
|   if (Class) {
 | |
|     DiagnoseUseOfDecl(Class, NameLoc);
 | |
|     
 | |
|     if (NextToken.is(tok::period)) {
 | |
|       // Interface. <something> is parsed as a property reference expression.
 | |
|       // Just return "unknown" as a fall-through for now.
 | |
|       Result.suppressDiagnostics();
 | |
|       return NameClassification::Unknown();
 | |
|     }
 | |
|     
 | |
|     QualType T = Context.getObjCInterfaceType(Class);
 | |
|     return ParsedType::make(T);
 | |
|   }
 | |
|   
 | |
|   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
 | |
|   return BuildDeclarationNameExpr(SS, Result, ADL);
 | |
| }
 | |
| 
 | |
| // Determines the context to return to after temporarily entering a
 | |
| // context.  This depends in an unnecessarily complicated way on the
 | |
| // exact ordering of callbacks from the parser.
 | |
| DeclContext *Sema::getContainingDC(DeclContext *DC) {
 | |
| 
 | |
|   // Functions defined inline within classes aren't parsed until we've
 | |
|   // finished parsing the top-level class, so the top-level class is
 | |
|   // the context we'll need to return to.
 | |
|   if (isa<FunctionDecl>(DC)) {
 | |
|     DC = DC->getLexicalParent();
 | |
| 
 | |
|     // A function not defined within a class will always return to its
 | |
|     // lexical context.
 | |
|     if (!isa<CXXRecordDecl>(DC))
 | |
|       return DC;
 | |
| 
 | |
|     // A C++ inline method/friend is parsed *after* the topmost class
 | |
|     // it was declared in is fully parsed ("complete");  the topmost
 | |
|     // class is the context we need to return to.
 | |
|     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
 | |
|       DC = RD;
 | |
| 
 | |
|     // Return the declaration context of the topmost class the inline method is
 | |
|     // declared in.
 | |
|     return DC;
 | |
|   }
 | |
| 
 | |
|   // ObjCMethodDecls are parsed (for some reason) outside the context
 | |
|   // of the class.
 | |
|   if (isa<ObjCMethodDecl>(DC))
 | |
|     return DC->getLexicalParent()->getLexicalParent();
 | |
| 
 | |
|   return DC->getLexicalParent();
 | |
| }
 | |
| 
 | |
| void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
 | |
|   assert(getContainingDC(DC) == CurContext &&
 | |
|       "The next DeclContext should be lexically contained in the current one.");
 | |
|   CurContext = DC;
 | |
|   S->setEntity(DC);
 | |
| }
 | |
| 
 | |
| void Sema::PopDeclContext() {
 | |
|   assert(CurContext && "DeclContext imbalance!");
 | |
| 
 | |
|   CurContext = getContainingDC(CurContext);
 | |
|   assert(CurContext && "Popped translation unit!");
 | |
| }
 | |
| 
 | |
| /// EnterDeclaratorContext - Used when we must lookup names in the context
 | |
| /// of a declarator's nested name specifier.
 | |
| ///
 | |
| void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
 | |
|   // C++0x [basic.lookup.unqual]p13:
 | |
|   //   A name used in the definition of a static data member of class
 | |
|   //   X (after the qualified-id of the static member) is looked up as
 | |
|   //   if the name was used in a member function of X.
 | |
|   // C++0x [basic.lookup.unqual]p14:
 | |
|   //   If a variable member of a namespace is defined outside of the
 | |
|   //   scope of its namespace then any name used in the definition of
 | |
|   //   the variable member (after the declarator-id) is looked up as
 | |
|   //   if the definition of the variable member occurred in its
 | |
|   //   namespace.
 | |
|   // Both of these imply that we should push a scope whose context
 | |
|   // is the semantic context of the declaration.  We can't use
 | |
|   // PushDeclContext here because that context is not necessarily
 | |
|   // lexically contained in the current context.  Fortunately,
 | |
|   // the containing scope should have the appropriate information.
 | |
| 
 | |
|   assert(!S->getEntity() && "scope already has entity");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   Scope *Ancestor = S->getParent();
 | |
|   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | |
|   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
 | |
| #endif
 | |
| 
 | |
|   CurContext = DC;
 | |
|   S->setEntity(DC);
 | |
| }
 | |
| 
 | |
| void Sema::ExitDeclaratorContext(Scope *S) {
 | |
|   assert(S->getEntity() == CurContext && "Context imbalance!");
 | |
| 
 | |
|   // Switch back to the lexical context.  The safety of this is
 | |
|   // enforced by an assert in EnterDeclaratorContext.
 | |
|   Scope *Ancestor = S->getParent();
 | |
|   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | |
|   CurContext = (DeclContext*) Ancestor->getEntity();
 | |
| 
 | |
|   // We don't need to do anything with the scope, which is going to
 | |
|   // disappear.
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether we allow overloading of the function
 | |
| /// PrevDecl with another declaration.
 | |
| ///
 | |
| /// This routine determines whether overloading is possible, not
 | |
| /// whether some new function is actually an overload. It will return
 | |
| /// true in C++ (where we can always provide overloads) or, as an
 | |
| /// extension, in C when the previous function is already an
 | |
| /// overloaded function declaration or has the "overloadable"
 | |
| /// attribute.
 | |
| static bool AllowOverloadingOfFunction(LookupResult &Previous,
 | |
|                                        ASTContext &Context) {
 | |
|   if (Context.getLangOptions().CPlusPlus)
 | |
|     return true;
 | |
| 
 | |
|   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
 | |
|     return true;
 | |
| 
 | |
|   return (Previous.getResultKind() == LookupResult::Found
 | |
|           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
 | |
| }
 | |
| 
 | |
| /// Add this decl to the scope shadowed decl chains.
 | |
| void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
 | |
|   // Move up the scope chain until we find the nearest enclosing
 | |
|   // non-transparent context. The declaration will be introduced into this
 | |
|   // scope.
 | |
|   while (S->getEntity() &&
 | |
|          ((DeclContext *)S->getEntity())->isTransparentContext())
 | |
|     S = S->getParent();
 | |
| 
 | |
|   // Add scoped declarations into their context, so that they can be
 | |
|   // found later. Declarations without a context won't be inserted
 | |
|   // into any context.
 | |
|   if (AddToContext)
 | |
|     CurContext->addDecl(D);
 | |
| 
 | |
|   // Out-of-line definitions shouldn't be pushed into scope in C++.
 | |
|   // Out-of-line variable and function definitions shouldn't even in C.
 | |
|   if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
 | |
|       D->isOutOfLine())
 | |
|     return;
 | |
| 
 | |
|   // Template instantiations should also not be pushed into scope.
 | |
|   if (isa<FunctionDecl>(D) &&
 | |
|       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
 | |
|     return;
 | |
| 
 | |
|   // If this replaces anything in the current scope, 
 | |
|   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
 | |
|                                IEnd = IdResolver.end();
 | |
|   for (; I != IEnd; ++I) {
 | |
|     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
 | |
|       S->RemoveDecl(*I);
 | |
|       IdResolver.RemoveDecl(*I);
 | |
| 
 | |
|       // Should only need to replace one decl.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S->AddDecl(D);
 | |
|   
 | |
|   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
 | |
|     // Implicitly-generated labels may end up getting generated in an order that
 | |
|     // isn't strictly lexical, which breaks name lookup. Be careful to insert
 | |
|     // the label at the appropriate place in the identifier chain.
 | |
|     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
 | |
|       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
 | |
|       if (IDC == CurContext) {
 | |
|         if (!S->isDeclScope(*I))
 | |
|           continue;
 | |
|       } else if (IDC->Encloses(CurContext))
 | |
|         break;
 | |
|     }
 | |
|     
 | |
|     IdResolver.InsertDeclAfter(I, D);
 | |
|   } else {
 | |
|     IdResolver.AddDecl(D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
 | |
|                          bool ExplicitInstantiationOrSpecialization) {
 | |
|   return IdResolver.isDeclInScope(D, Ctx, Context, S,
 | |
|                                   ExplicitInstantiationOrSpecialization);
 | |
| }
 | |
| 
 | |
| Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
 | |
|   DeclContext *TargetDC = DC->getPrimaryContext();
 | |
|   do {
 | |
|     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
 | |
|       if (ScopeDC->getPrimaryContext() == TargetDC)
 | |
|         return S;
 | |
|   } while ((S = S->getParent()));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static bool isOutOfScopePreviousDeclaration(NamedDecl *,
 | |
|                                             DeclContext*,
 | |
|                                             ASTContext&);
 | |
| 
 | |
| /// Filters out lookup results that don't fall within the given scope
 | |
| /// as determined by isDeclInScope.
 | |
| static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
 | |
|                                  DeclContext *Ctx, Scope *S,
 | |
|                                  bool ConsiderLinkage,
 | |
|                                  bool ExplicitInstantiationOrSpecialization) {
 | |
|   LookupResult::Filter F = R.makeFilter();
 | |
|   while (F.hasNext()) {
 | |
|     NamedDecl *D = F.next();
 | |
| 
 | |
|     if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
 | |
|       continue;
 | |
| 
 | |
|     if (ConsiderLinkage &&
 | |
|         isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
 | |
|       continue;
 | |
|     
 | |
|     F.erase();
 | |
|   }
 | |
| 
 | |
|   F.done();
 | |
| }
 | |
| 
 | |
| static bool isUsingDecl(NamedDecl *D) {
 | |
|   return isa<UsingShadowDecl>(D) ||
 | |
|          isa<UnresolvedUsingTypenameDecl>(D) ||
 | |
|          isa<UnresolvedUsingValueDecl>(D);
 | |
| }
 | |
| 
 | |
| /// Removes using shadow declarations from the lookup results.
 | |
| static void RemoveUsingDecls(LookupResult &R) {
 | |
|   LookupResult::Filter F = R.makeFilter();
 | |
|   while (F.hasNext())
 | |
|     if (isUsingDecl(F.next()))
 | |
|       F.erase();
 | |
| 
 | |
|   F.done();
 | |
| }
 | |
| 
 | |
| /// \brief Check for this common pattern:
 | |
| /// @code
 | |
| /// class S {
 | |
| ///   S(const S&); // DO NOT IMPLEMENT
 | |
| ///   void operator=(const S&); // DO NOT IMPLEMENT
 | |
| /// };
 | |
| /// @endcode
 | |
| static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
 | |
|   // FIXME: Should check for private access too but access is set after we get
 | |
|   // the decl here.
 | |
|   if (D->isThisDeclarationADefinition())
 | |
|     return false;
 | |
| 
 | |
|   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
 | |
|     return CD->isCopyConstructor();
 | |
|   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
 | |
|     return Method->isCopyAssignmentOperator();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
 | |
|   assert(D);
 | |
| 
 | |
|   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore class templates.
 | |
|   if (D->getDeclContext()->isDependentContext() ||
 | |
|       D->getLexicalDeclContext()->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return false;
 | |
| 
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
 | |
|         return false;
 | |
|     } else {
 | |
|       // 'static inline' functions are used in headers; don't warn.
 | |
|       if (FD->getStorageClass() == SC_Static &&
 | |
|           FD->isInlineSpecified())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (FD->isThisDeclarationADefinition() &&
 | |
|         Context.DeclMustBeEmitted(FD))
 | |
|       return false;
 | |
| 
 | |
|   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     if (!VD->isFileVarDecl() ||
 | |
|         VD->getType().isConstant(Context) ||
 | |
|         Context.DeclMustBeEmitted(VD))
 | |
|       return false;
 | |
| 
 | |
|     if (VD->isStaticDataMember() &&
 | |
|         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return false;
 | |
| 
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Only warn for unused decls internal to the translation unit.
 | |
|   if (D->getLinkage() == ExternalLinkage)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
 | |
|   if (!D)
 | |
|     return;
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     const FunctionDecl *First = FD->getFirstDeclaration();
 | |
|     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | |
|       return; // First should already be in the vector.
 | |
|   }
 | |
| 
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     const VarDecl *First = VD->getFirstDeclaration();
 | |
|     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | |
|       return; // First should already be in the vector.
 | |
|   }
 | |
| 
 | |
|    if (ShouldWarnIfUnusedFileScopedDecl(D))
 | |
|      UnusedFileScopedDecls.push_back(D);
 | |
|  }
 | |
| 
 | |
| static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
 | |
|   if (D->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   if (D->isUsed() || D->hasAttr<UnusedAttr>())
 | |
|     return false;
 | |
| 
 | |
|   if (isa<LabelDecl>(D))
 | |
|     return true;
 | |
|   
 | |
|   // White-list anything that isn't a local variable.
 | |
|   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
 | |
|       !D->getDeclContext()->isFunctionOrMethod())
 | |
|     return false;
 | |
| 
 | |
|   // Types of valid local variables should be complete, so this should succeed.
 | |
|   if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
 | |
| 
 | |
|     // White-list anything with an __attribute__((unused)) type.
 | |
|     QualType Ty = VD->getType();
 | |
| 
 | |
|     // Only look at the outermost level of typedef.
 | |
|     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
 | |
|       if (TT->getDecl()->hasAttr<UnusedAttr>())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If we failed to complete the type for some reason, or if the type is
 | |
|     // dependent, don't diagnose the variable. 
 | |
|     if (Ty->isIncompleteType() || Ty->isDependentType())
 | |
|       return false;
 | |
| 
 | |
|     if (const TagType *TT = Ty->getAs<TagType>()) {
 | |
|       const TagDecl *Tag = TT->getDecl();
 | |
|       if (Tag->hasAttr<UnusedAttr>())
 | |
|         return false;
 | |
| 
 | |
|       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
 | |
|         // FIXME: Checking for the presence of a user-declared constructor
 | |
|         // isn't completely accurate; we'd prefer to check that the initializer
 | |
|         // has no side effects.
 | |
|         if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO: __attribute__((unused)) templates?
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
 | |
| /// unless they are marked attr(unused).
 | |
| void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
 | |
|   if (!ShouldDiagnoseUnusedDecl(D))
 | |
|     return;
 | |
|   
 | |
|   unsigned DiagID;
 | |
|   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
 | |
|     DiagID = diag::warn_unused_exception_param;
 | |
|   else if (isa<LabelDecl>(D))
 | |
|     DiagID = diag::warn_unused_label;
 | |
|   else
 | |
|     DiagID = diag::warn_unused_variable;
 | |
| 
 | |
|   Diag(D->getLocation(), DiagID) << D->getDeclName();
 | |
| }
 | |
| 
 | |
| static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
 | |
|   // Verify that we have no forward references left.  If so, there was a goto
 | |
|   // or address of a label taken, but no definition of it.  Label fwd
 | |
|   // definitions are indicated with a null substmt.
 | |
|   if (L->getStmt() == 0)
 | |
|     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
 | |
| }
 | |
| 
 | |
| void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
 | |
|   if (S->decl_empty()) return;
 | |
|   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
 | |
|          "Scope shouldn't contain decls!");
 | |
| 
 | |
|   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
 | |
|        I != E; ++I) {
 | |
|     Decl *TmpD = (*I);
 | |
|     assert(TmpD && "This decl didn't get pushed??");
 | |
| 
 | |
|     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
 | |
|     NamedDecl *D = cast<NamedDecl>(TmpD);
 | |
| 
 | |
|     if (!D->getDeclName()) continue;
 | |
| 
 | |
|     // Diagnose unused variables in this scope.
 | |
|     if (!S->hasErrorOccurred())
 | |
|       DiagnoseUnusedDecl(D);
 | |
|     
 | |
|     // If this was a forward reference to a label, verify it was defined.
 | |
|     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
 | |
|       CheckPoppedLabel(LD, *this);
 | |
|     
 | |
|     // Remove this name from our lexical scope.
 | |
|     IdResolver.RemoveDecl(D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Look for an Objective-C class in the translation unit.
 | |
| ///
 | |
| /// \param Id The name of the Objective-C class we're looking for. If
 | |
| /// typo-correction fixes this name, the Id will be updated
 | |
| /// to the fixed name.
 | |
| ///
 | |
| /// \param IdLoc The location of the name in the translation unit.
 | |
| ///
 | |
| /// \param TypoCorrection If true, this routine will attempt typo correction
 | |
| /// if there is no class with the given name.
 | |
| ///
 | |
| /// \returns The declaration of the named Objective-C class, or NULL if the
 | |
| /// class could not be found.
 | |
| ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
 | |
|                                               SourceLocation IdLoc,
 | |
|                                               bool TypoCorrection) {
 | |
|   // The third "scope" argument is 0 since we aren't enabling lazy built-in
 | |
|   // creation from this context.
 | |
|   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
 | |
| 
 | |
|   if (!IDecl && TypoCorrection) {
 | |
|     // Perform typo correction at the given location, but only if we
 | |
|     // find an Objective-C class name.
 | |
|     LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
 | |
|     if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
 | |
|         (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
 | |
|       Diag(IdLoc, diag::err_undef_interface_suggest)
 | |
|         << Id << IDecl->getDeclName() 
 | |
|         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
 | |
|       Diag(IDecl->getLocation(), diag::note_previous_decl)
 | |
|         << IDecl->getDeclName();
 | |
|       
 | |
|       Id = IDecl->getIdentifier();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
 | |
| }
 | |
| 
 | |
| /// getNonFieldDeclScope - Retrieves the innermost scope, starting
 | |
| /// from S, where a non-field would be declared. This routine copes
 | |
| /// with the difference between C and C++ scoping rules in structs and
 | |
| /// unions. For example, the following code is well-formed in C but
 | |
| /// ill-formed in C++:
 | |
| /// @code
 | |
| /// struct S6 {
 | |
| ///   enum { BAR } e;
 | |
| /// };
 | |
| ///
 | |
| /// void test_S6() {
 | |
| ///   struct S6 a;
 | |
| ///   a.e = BAR;
 | |
| /// }
 | |
| /// @endcode
 | |
| /// For the declaration of BAR, this routine will return a different
 | |
| /// scope. The scope S will be the scope of the unnamed enumeration
 | |
| /// within S6. In C++, this routine will return the scope associated
 | |
| /// with S6, because the enumeration's scope is a transparent
 | |
| /// context but structures can contain non-field names. In C, this
 | |
| /// routine will return the translation unit scope, since the
 | |
| /// enumeration's scope is a transparent context and structures cannot
 | |
| /// contain non-field names.
 | |
| Scope *Sema::getNonFieldDeclScope(Scope *S) {
 | |
|   while (((S->getFlags() & Scope::DeclScope) == 0) ||
 | |
|          (S->getEntity() &&
 | |
|           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
 | |
|          (S->isClassScope() && !getLangOptions().CPlusPlus))
 | |
|     S = S->getParent();
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
 | |
| /// file scope.  lazily create a decl for it. ForRedeclaration is true
 | |
| /// if we're creating this built-in in anticipation of redeclaring the
 | |
| /// built-in.
 | |
| NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
 | |
|                                      Scope *S, bool ForRedeclaration,
 | |
|                                      SourceLocation Loc) {
 | |
|   Builtin::ID BID = (Builtin::ID)bid;
 | |
| 
 | |
|   ASTContext::GetBuiltinTypeError Error;
 | |
|   QualType R = Context.GetBuiltinType(BID, Error);
 | |
|   switch (Error) {
 | |
|   case ASTContext::GE_None:
 | |
|     // Okay
 | |
|     break;
 | |
| 
 | |
|   case ASTContext::GE_Missing_stdio:
 | |
|     if (ForRedeclaration)
 | |
|       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
 | |
|         << Context.BuiltinInfo.GetName(BID);
 | |
|     return 0;
 | |
| 
 | |
|   case ASTContext::GE_Missing_setjmp:
 | |
|     if (ForRedeclaration)
 | |
|       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
 | |
|         << Context.BuiltinInfo.GetName(BID);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
 | |
|     Diag(Loc, diag::ext_implicit_lib_function_decl)
 | |
|       << Context.BuiltinInfo.GetName(BID)
 | |
|       << R;
 | |
|     if (Context.BuiltinInfo.getHeaderName(BID) &&
 | |
|         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
 | |
|           != Diagnostic::Ignored)
 | |
|       Diag(Loc, diag::note_please_include_header)
 | |
|         << Context.BuiltinInfo.getHeaderName(BID)
 | |
|         << Context.BuiltinInfo.GetName(BID);
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *New = FunctionDecl::Create(Context,
 | |
|                                            Context.getTranslationUnitDecl(),
 | |
|                                            Loc, Loc, II, R, /*TInfo=*/0,
 | |
|                                            SC_Extern,
 | |
|                                            SC_None, false,
 | |
|                                            /*hasPrototype=*/true);
 | |
|   New->setImplicit();
 | |
| 
 | |
|   // Create Decl objects for each parameter, adding them to the
 | |
|   // FunctionDecl.
 | |
|   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
 | |
|     llvm::SmallVector<ParmVarDecl*, 16> Params;
 | |
|     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
 | |
|       Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
 | |
|                                            SourceLocation(), 0,
 | |
|                                            FT->getArgType(i), /*TInfo=*/0,
 | |
|                                            SC_None, SC_None, 0));
 | |
|     New->setParams(Params.data(), Params.size());
 | |
|   }
 | |
| 
 | |
|   AddKnownFunctionAttributes(New);
 | |
| 
 | |
|   // TUScope is the translation-unit scope to insert this function into.
 | |
|   // FIXME: This is hideous. We need to teach PushOnScopeChains to
 | |
|   // relate Scopes to DeclContexts, and probably eliminate CurContext
 | |
|   // entirely, but we're not there yet.
 | |
|   DeclContext *SavedContext = CurContext;
 | |
|   CurContext = Context.getTranslationUnitDecl();
 | |
|   PushOnScopeChains(New, TUScope);
 | |
|   CurContext = SavedContext;
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
 | |
| /// same name and scope as a previous declaration 'Old'.  Figure out
 | |
| /// how to resolve this situation, merging decls or emitting
 | |
| /// diagnostics as appropriate. If there was an error, set New to be invalid.
 | |
| ///
 | |
| void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
 | |
|   // If the new decl is known invalid already, don't bother doing any
 | |
|   // merging checks.
 | |
|   if (New->isInvalidDecl()) return;
 | |
| 
 | |
|   // Allow multiple definitions for ObjC built-in typedefs.
 | |
|   // FIXME: Verify the underlying types are equivalent!
 | |
|   if (getLangOptions().ObjC1) {
 | |
|     const IdentifierInfo *TypeID = New->getIdentifier();
 | |
|     switch (TypeID->getLength()) {
 | |
|     default: break;
 | |
|     case 2:
 | |
|       if (!TypeID->isStr("id"))
 | |
|         break;
 | |
|       Context.ObjCIdRedefinitionType = New->getUnderlyingType();
 | |
|       // Install the built-in type for 'id', ignoring the current definition.
 | |
|       New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
 | |
|       return;
 | |
|     case 5:
 | |
|       if (!TypeID->isStr("Class"))
 | |
|         break;
 | |
|       Context.ObjCClassRedefinitionType = New->getUnderlyingType();
 | |
|       // Install the built-in type for 'Class', ignoring the current definition.
 | |
|       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
 | |
|       return;
 | |
|     case 3:
 | |
|       if (!TypeID->isStr("SEL"))
 | |
|         break;
 | |
|       Context.ObjCSelRedefinitionType = New->getUnderlyingType();
 | |
|       // Install the built-in type for 'SEL', ignoring the current definition.
 | |
|       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
 | |
|       return;
 | |
|     case 8:
 | |
|       if (!TypeID->isStr("Protocol"))
 | |
|         break;
 | |
|       Context.setObjCProtoType(New->getUnderlyingType());
 | |
|       return;
 | |
|     }
 | |
|     // Fall through - the typedef name was not a builtin type.
 | |
|   }
 | |
| 
 | |
|   // Verify the old decl was also a type.
 | |
|   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
 | |
|   if (!Old) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | |
|       << New->getDeclName();
 | |
| 
 | |
|     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
 | |
|     if (OldD->getLocation().isValid())
 | |
|       Diag(OldD->getLocation(), diag::note_previous_definition);
 | |
| 
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // If the old declaration is invalid, just give up here.
 | |
|   if (Old->isInvalidDecl())
 | |
|     return New->setInvalidDecl();
 | |
| 
 | |
|   // Determine the "old" type we'll use for checking and diagnostics.
 | |
|   QualType OldType;
 | |
|   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
 | |
|     OldType = OldTypedef->getUnderlyingType();
 | |
|   else
 | |
|     OldType = Context.getTypeDeclType(Old);
 | |
| 
 | |
|   // If the typedef types are not identical, reject them in all languages and
 | |
|   // with any extensions enabled.
 | |
| 
 | |
|   if (OldType != New->getUnderlyingType() &&
 | |
|       Context.getCanonicalType(OldType) !=
 | |
|       Context.getCanonicalType(New->getUnderlyingType())) {
 | |
|     int Kind = 0;
 | |
|     if (isa<TypeAliasDecl>(Old))
 | |
|       Kind = 1;
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
 | |
|       << Kind << New->getUnderlyingType() << OldType;
 | |
|     if (Old->getLocation().isValid())
 | |
|       Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // The types match.  Link up the redeclaration chain if the old
 | |
|   // declaration was a typedef.
 | |
|   // FIXME: this is a potential source of wierdness if the type
 | |
|   // spellings don't match exactly.
 | |
|   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
 | |
|     New->setPreviousDeclaration(Typedef);
 | |
| 
 | |
|   if (getLangOptions().Microsoft)
 | |
|     return;
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // C++ [dcl.typedef]p2:
 | |
|     //   In a given non-class scope, a typedef specifier can be used to
 | |
|     //   redefine the name of any type declared in that scope to refer
 | |
|     //   to the type to which it already refers.
 | |
|     if (!isa<CXXRecordDecl>(CurContext))
 | |
|       return;
 | |
| 
 | |
|     // C++0x [dcl.typedef]p4:
 | |
|     //   In a given class scope, a typedef specifier can be used to redefine 
 | |
|     //   any class-name declared in that scope that is not also a typedef-name
 | |
|     //   to refer to the type to which it already refers.
 | |
|     //
 | |
|     // This wording came in via DR424, which was a correction to the
 | |
|     // wording in DR56, which accidentally banned code like:
 | |
|     //
 | |
|     //   struct S {
 | |
|     //     typedef struct A { } A;
 | |
|     //   };
 | |
|     //
 | |
|     // in the C++03 standard. We implement the C++0x semantics, which
 | |
|     // allow the above but disallow
 | |
|     //
 | |
|     //   struct S {
 | |
|     //     typedef int I;
 | |
|     //     typedef int I;
 | |
|     //   };
 | |
|     //
 | |
|     // since that was the intent of DR56.
 | |
|     if (!isa<TypedefNameDecl>(Old))
 | |
|       return;
 | |
| 
 | |
|     Diag(New->getLocation(), diag::err_redefinition)
 | |
|       << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // If we have a redefinition of a typedef in C, emit a warning.  This warning
 | |
|   // is normally mapped to an error, but can be controlled with
 | |
|   // -Wtypedef-redefinition.  If either the original or the redefinition is
 | |
|   // in a system header, don't emit this for compatibility with GCC.
 | |
|   if (getDiagnostics().getSuppressSystemWarnings() &&
 | |
|       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
 | |
|        Context.getSourceManager().isInSystemHeader(New->getLocation())))
 | |
|     return;
 | |
| 
 | |
|   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
 | |
|     << New->getDeclName();
 | |
|   Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// DeclhasAttr - returns true if decl Declaration already has the target
 | |
| /// attribute.
 | |
| static bool
 | |
| DeclHasAttr(const Decl *D, const Attr *A) {
 | |
|   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
 | |
|   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
 | |
|     if ((*i)->getKind() == A->getKind()) {
 | |
|       // FIXME: Don't hardcode this check
 | |
|       if (OA && isa<OwnershipAttr>(*i))
 | |
|         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
 | |
| static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
 | |
|                                 ASTContext &C) {
 | |
|   if (!oldDecl->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   bool foundAny = newDecl->hasAttrs();
 | |
| 
 | |
|   // Ensure that any moving of objects within the allocated map is done before
 | |
|   // we process them.
 | |
|   if (!foundAny) newDecl->setAttrs(AttrVec());
 | |
| 
 | |
|   for (specific_attr_iterator<InheritableAttr>
 | |
|        i = oldDecl->specific_attr_begin<InheritableAttr>(),
 | |
|        e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
 | |
|     if (!DeclHasAttr(newDecl, *i)) {
 | |
|       InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
 | |
|       newAttr->setInherited(true);
 | |
|       newDecl->addAttr(newAttr);
 | |
|       foundAny = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!foundAny) newDecl->dropAttrs();
 | |
| }
 | |
| 
 | |
| /// mergeParamDeclAttributes - Copy attributes from the old parameter
 | |
| /// to the new one.
 | |
| static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
 | |
|                                      const ParmVarDecl *oldDecl,
 | |
|                                      ASTContext &C) {
 | |
|   if (!oldDecl->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   bool foundAny = newDecl->hasAttrs();
 | |
| 
 | |
|   // Ensure that any moving of objects within the allocated map is
 | |
|   // done before we process them.
 | |
|   if (!foundAny) newDecl->setAttrs(AttrVec());
 | |
| 
 | |
|   for (specific_attr_iterator<InheritableParamAttr>
 | |
|        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
 | |
|        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
 | |
|     if (!DeclHasAttr(newDecl, *i)) {
 | |
|       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
 | |
|       newAttr->setInherited(true);
 | |
|       newDecl->addAttr(newAttr);
 | |
|       foundAny = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!foundAny) newDecl->dropAttrs();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Used in MergeFunctionDecl to keep track of function parameters in
 | |
| /// C.
 | |
| struct GNUCompatibleParamWarning {
 | |
|   ParmVarDecl *OldParm;
 | |
|   ParmVarDecl *NewParm;
 | |
|   QualType PromotedType;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// getSpecialMember - get the special member enum for a method.
 | |
| Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
 | |
|   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
 | |
|     if (Ctor->isCopyConstructor())
 | |
|       return Sema::CXXCopyConstructor;
 | |
|     
 | |
|     return Sema::CXXConstructor;
 | |
|   } 
 | |
|   
 | |
|   if (isa<CXXDestructorDecl>(MD))
 | |
|     return Sema::CXXDestructor;
 | |
|   
 | |
|   assert(MD->isCopyAssignmentOperator() && 
 | |
|          "Must have copy assignment operator");
 | |
|   return Sema::CXXCopyAssignment;
 | |
| }
 | |
| 
 | |
| /// canRedefineFunction - checks if a function can be redefined. Currently,
 | |
| /// only extern inline functions can be redefined, and even then only in
 | |
| /// GNU89 mode.
 | |
| static bool canRedefineFunction(const FunctionDecl *FD,
 | |
|                                 const LangOptions& LangOpts) {
 | |
|   return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
 | |
|           FD->isInlineSpecified() &&
 | |
|           FD->getStorageClass() == SC_Extern);
 | |
| }
 | |
| 
 | |
| /// MergeFunctionDecl - We just parsed a function 'New' from
 | |
| /// declarator D which has the same name and scope as a previous
 | |
| /// declaration 'Old'.  Figure out how to resolve this situation,
 | |
| /// merging decls or emitting diagnostics as appropriate.
 | |
| ///
 | |
| /// In C++, New and Old must be declarations that are not
 | |
| /// overloaded. Use IsOverload to determine whether New and Old are
 | |
| /// overloaded, and to select the Old declaration that New should be
 | |
| /// merged with.
 | |
| ///
 | |
| /// Returns true if there was an error, false otherwise.
 | |
| bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
 | |
|   // Verify the old decl was also a function.
 | |
|   FunctionDecl *Old = 0;
 | |
|   if (FunctionTemplateDecl *OldFunctionTemplate
 | |
|         = dyn_cast<FunctionTemplateDecl>(OldD))
 | |
|     Old = OldFunctionTemplate->getTemplatedDecl();
 | |
|   else
 | |
|     Old = dyn_cast<FunctionDecl>(OldD);
 | |
|   if (!Old) {
 | |
|     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
 | |
|       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
 | |
|       Diag(Shadow->getTargetDecl()->getLocation(),
 | |
|            diag::note_using_decl_target);
 | |
|       Diag(Shadow->getUsingDecl()->getLocation(),
 | |
|            diag::note_using_decl) << 0;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | |
|       << New->getDeclName();
 | |
|     Diag(OldD->getLocation(), diag::note_previous_definition);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Determine whether the previous declaration was a definition,
 | |
|   // implicit declaration, or a declaration.
 | |
|   diag::kind PrevDiag;
 | |
|   if (Old->isThisDeclarationADefinition())
 | |
|     PrevDiag = diag::note_previous_definition;
 | |
|   else if (Old->isImplicit())
 | |
|     PrevDiag = diag::note_previous_implicit_declaration;
 | |
|   else
 | |
|     PrevDiag = diag::note_previous_declaration;
 | |
| 
 | |
|   QualType OldQType = Context.getCanonicalType(Old->getType());
 | |
|   QualType NewQType = Context.getCanonicalType(New->getType());
 | |
| 
 | |
|   // Don't complain about this if we're in GNU89 mode and the old function
 | |
|   // is an extern inline function.
 | |
|   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
 | |
|       New->getStorageClass() == SC_Static &&
 | |
|       Old->getStorageClass() != SC_Static &&
 | |
|       !canRedefineFunction(Old, getLangOptions())) {
 | |
|     if (getLangOptions().Microsoft) {
 | |
|       Diag(New->getLocation(), diag::warn_static_non_static) << New;
 | |
|       Diag(Old->getLocation(), PrevDiag);
 | |
|     } else {
 | |
|       Diag(New->getLocation(), diag::err_static_non_static) << New;
 | |
|       Diag(Old->getLocation(), PrevDiag);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If a function is first declared with a calling convention, but is
 | |
|   // later declared or defined without one, the second decl assumes the
 | |
|   // calling convention of the first.
 | |
|   //
 | |
|   // For the new decl, we have to look at the NON-canonical type to tell the
 | |
|   // difference between a function that really doesn't have a calling
 | |
|   // convention and one that is declared cdecl. That's because in
 | |
|   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
 | |
|   // because it is the default calling convention.
 | |
|   //
 | |
|   // Note also that we DO NOT return at this point, because we still have
 | |
|   // other tests to run.
 | |
|   const FunctionType *OldType = cast<FunctionType>(OldQType);
 | |
|   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
 | |
|   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
 | |
|   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
 | |
|   bool RequiresAdjustment = false;
 | |
|   if (OldTypeInfo.getCC() != CC_Default &&
 | |
|       NewTypeInfo.getCC() == CC_Default) {
 | |
|     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
 | |
|     RequiresAdjustment = true;
 | |
|   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
 | |
|                                      NewTypeInfo.getCC())) {
 | |
|     // Calling conventions really aren't compatible, so complain.
 | |
|     Diag(New->getLocation(), diag::err_cconv_change)
 | |
|       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
 | |
|       << (OldTypeInfo.getCC() == CC_Default)
 | |
|       << (OldTypeInfo.getCC() == CC_Default ? "" :
 | |
|           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
 | |
|     Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: diagnose the other way around?
 | |
|   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
 | |
|     NewTypeInfo = NewTypeInfo.withNoReturn(true);
 | |
|     RequiresAdjustment = true;
 | |
|   }
 | |
| 
 | |
|   // Merge regparm attribute.
 | |
|   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
 | |
|       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
 | |
|     if (NewTypeInfo.getHasRegParm()) {
 | |
|       Diag(New->getLocation(), diag::err_regparm_mismatch)
 | |
|         << NewType->getRegParmType()
 | |
|         << OldType->getRegParmType();
 | |
|       Diag(Old->getLocation(), diag::note_previous_declaration);      
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
 | |
|     RequiresAdjustment = true;
 | |
|   }
 | |
| 
 | |
|   if (RequiresAdjustment) {
 | |
|     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
 | |
|     New->setType(QualType(NewType, 0));
 | |
|     NewQType = Context.getCanonicalType(New->getType());
 | |
|   }
 | |
|   
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // (C++98 13.1p2):
 | |
|     //   Certain function declarations cannot be overloaded:
 | |
|     //     -- Function declarations that differ only in the return type
 | |
|     //        cannot be overloaded.
 | |
|     QualType OldReturnType = OldType->getResultType();
 | |
|     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
 | |
|     QualType ResQT;
 | |
|     if (OldReturnType != NewReturnType) {
 | |
|       if (NewReturnType->isObjCObjectPointerType()
 | |
|           && OldReturnType->isObjCObjectPointerType())
 | |
|         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
 | |
|       if (ResQT.isNull()) {
 | |
|         if (New->isCXXClassMember() && New->isOutOfLine())
 | |
|           Diag(New->getLocation(),
 | |
|                diag::err_member_def_does_not_match_ret_type) << New;
 | |
|         else
 | |
|           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
 | |
|         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
|         return true;
 | |
|       }
 | |
|       else
 | |
|         NewQType = ResQT;
 | |
|     }
 | |
| 
 | |
|     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
 | |
|     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
 | |
|     if (OldMethod && NewMethod) {
 | |
|       // Preserve triviality.
 | |
|       NewMethod->setTrivial(OldMethod->isTrivial());
 | |
| 
 | |
|       bool isFriend = NewMethod->getFriendObjectKind();
 | |
| 
 | |
|       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
 | |
|         //    -- Member function declarations with the same name and the
 | |
|         //       same parameter types cannot be overloaded if any of them
 | |
|         //       is a static member function declaration.
 | |
|         if (OldMethod->isStatic() || NewMethod->isStatic()) {
 | |
|           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
 | |
|           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
|           return true;
 | |
|         }
 | |
|       
 | |
|         // C++ [class.mem]p1:
 | |
|         //   [...] A member shall not be declared twice in the
 | |
|         //   member-specification, except that a nested class or member
 | |
|         //   class template can be declared and then later defined.
 | |
|         unsigned NewDiag;
 | |
|         if (isa<CXXConstructorDecl>(OldMethod))
 | |
|           NewDiag = diag::err_constructor_redeclared;
 | |
|         else if (isa<CXXDestructorDecl>(NewMethod))
 | |
|           NewDiag = diag::err_destructor_redeclared;
 | |
|         else if (isa<CXXConversionDecl>(NewMethod))
 | |
|           NewDiag = diag::err_conv_function_redeclared;
 | |
|         else
 | |
|           NewDiag = diag::err_member_redeclared;
 | |
| 
 | |
|         Diag(New->getLocation(), NewDiag);
 | |
|         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
| 
 | |
|       // Complain if this is an explicit declaration of a special
 | |
|       // member that was initially declared implicitly.
 | |
|       //
 | |
|       // As an exception, it's okay to befriend such methods in order
 | |
|       // to permit the implicit constructor/destructor/operator calls.
 | |
|       } else if (OldMethod->isImplicit()) {
 | |
|         if (isFriend) {
 | |
|           NewMethod->setImplicit();
 | |
|         } else {
 | |
|           Diag(NewMethod->getLocation(),
 | |
|                diag::err_definition_of_implicitly_declared_member) 
 | |
|             << New << getSpecialMember(OldMethod);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (C++98 8.3.5p3):
 | |
|     //   All declarations for a function shall agree exactly in both the
 | |
|     //   return type and the parameter-type-list.
 | |
|     // We also want to respect all the extended bits except noreturn.
 | |
| 
 | |
|     // noreturn should now match unless the old type info didn't have it.
 | |
|     QualType OldQTypeForComparison = OldQType;
 | |
|     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
 | |
|       assert(OldQType == QualType(OldType, 0));
 | |
|       const FunctionType *OldTypeForComparison
 | |
|         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
 | |
|       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
 | |
|       assert(OldQTypeForComparison.isCanonical());
 | |
|     }
 | |
| 
 | |
|     if (OldQTypeForComparison == NewQType)
 | |
|       return MergeCompatibleFunctionDecls(New, Old);
 | |
| 
 | |
|     // Fall through for conflicting redeclarations and redefinitions.
 | |
|   }
 | |
| 
 | |
|   // C: Function types need to be compatible, not identical. This handles
 | |
|   // duplicate function decls like "void f(int); void f(enum X);" properly.
 | |
|   if (!getLangOptions().CPlusPlus &&
 | |
|       Context.typesAreCompatible(OldQType, NewQType)) {
 | |
|     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
 | |
|     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
 | |
|     const FunctionProtoType *OldProto = 0;
 | |
|     if (isa<FunctionNoProtoType>(NewFuncType) &&
 | |
|         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
 | |
|       // The old declaration provided a function prototype, but the
 | |
|       // new declaration does not. Merge in the prototype.
 | |
|       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
 | |
|       llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
 | |
|                                                  OldProto->arg_type_end());
 | |
|       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
 | |
|                                          ParamTypes.data(), ParamTypes.size(),
 | |
|                                          OldProto->getExtProtoInfo());
 | |
|       New->setType(NewQType);
 | |
|       New->setHasInheritedPrototype();
 | |
| 
 | |
|       // Synthesize a parameter for each argument type.
 | |
|       llvm::SmallVector<ParmVarDecl*, 16> Params;
 | |
|       for (FunctionProtoType::arg_type_iterator
 | |
|              ParamType = OldProto->arg_type_begin(),
 | |
|              ParamEnd = OldProto->arg_type_end();
 | |
|            ParamType != ParamEnd; ++ParamType) {
 | |
|         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
 | |
|                                                  SourceLocation(),
 | |
|                                                  SourceLocation(), 0,
 | |
|                                                  *ParamType, /*TInfo=*/0,
 | |
|                                                  SC_None, SC_None,
 | |
|                                                  0);
 | |
|         Param->setImplicit();
 | |
|         Params.push_back(Param);
 | |
|       }
 | |
| 
 | |
|       New->setParams(Params.data(), Params.size());
 | |
|     }
 | |
| 
 | |
|     return MergeCompatibleFunctionDecls(New, Old);
 | |
|   }
 | |
| 
 | |
|   // GNU C permits a K&R definition to follow a prototype declaration
 | |
|   // if the declared types of the parameters in the K&R definition
 | |
|   // match the types in the prototype declaration, even when the
 | |
|   // promoted types of the parameters from the K&R definition differ
 | |
|   // from the types in the prototype. GCC then keeps the types from
 | |
|   // the prototype.
 | |
|   //
 | |
|   // If a variadic prototype is followed by a non-variadic K&R definition,
 | |
|   // the K&R definition becomes variadic.  This is sort of an edge case, but
 | |
|   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
 | |
|   // C99 6.9.1p8.
 | |
|   if (!getLangOptions().CPlusPlus &&
 | |
|       Old->hasPrototype() && !New->hasPrototype() &&
 | |
|       New->getType()->getAs<FunctionProtoType>() &&
 | |
|       Old->getNumParams() == New->getNumParams()) {
 | |
|     llvm::SmallVector<QualType, 16> ArgTypes;
 | |
|     llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
 | |
|     const FunctionProtoType *OldProto
 | |
|       = Old->getType()->getAs<FunctionProtoType>();
 | |
|     const FunctionProtoType *NewProto
 | |
|       = New->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|     // Determine whether this is the GNU C extension.
 | |
|     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
 | |
|                                                NewProto->getResultType());
 | |
|     bool LooseCompatible = !MergedReturn.isNull();
 | |
|     for (unsigned Idx = 0, End = Old->getNumParams();
 | |
|          LooseCompatible && Idx != End; ++Idx) {
 | |
|       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
 | |
|       ParmVarDecl *NewParm = New->getParamDecl(Idx);
 | |
|       if (Context.typesAreCompatible(OldParm->getType(),
 | |
|                                      NewProto->getArgType(Idx))) {
 | |
|         ArgTypes.push_back(NewParm->getType());
 | |
|       } else if (Context.typesAreCompatible(OldParm->getType(),
 | |
|                                             NewParm->getType(),
 | |
|                                             /*CompareUnqualified=*/true)) {
 | |
|         GNUCompatibleParamWarning Warn
 | |
|           = { OldParm, NewParm, NewProto->getArgType(Idx) };
 | |
|         Warnings.push_back(Warn);
 | |
|         ArgTypes.push_back(NewParm->getType());
 | |
|       } else
 | |
|         LooseCompatible = false;
 | |
|     }
 | |
| 
 | |
|     if (LooseCompatible) {
 | |
|       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
 | |
|         Diag(Warnings[Warn].NewParm->getLocation(),
 | |
|              diag::ext_param_promoted_not_compatible_with_prototype)
 | |
|           << Warnings[Warn].PromotedType
 | |
|           << Warnings[Warn].OldParm->getType();
 | |
|         if (Warnings[Warn].OldParm->getLocation().isValid())
 | |
|           Diag(Warnings[Warn].OldParm->getLocation(),
 | |
|                diag::note_previous_declaration);
 | |
|       }
 | |
| 
 | |
|       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
 | |
|                                            ArgTypes.size(),
 | |
|                                            OldProto->getExtProtoInfo()));
 | |
|       return MergeCompatibleFunctionDecls(New, Old);
 | |
|     }
 | |
| 
 | |
|     // Fall through to diagnose conflicting types.
 | |
|   }
 | |
| 
 | |
|   // A function that has already been declared has been redeclared or defined
 | |
|   // with a different type- show appropriate diagnostic
 | |
|   if (unsigned BuiltinID = Old->getBuiltinID()) {
 | |
|     // The user has declared a builtin function with an incompatible
 | |
|     // signature.
 | |
|     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
 | |
|       // The function the user is redeclaring is a library-defined
 | |
|       // function like 'malloc' or 'printf'. Warn about the
 | |
|       // redeclaration, then pretend that we don't know about this
 | |
|       // library built-in.
 | |
|       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
 | |
|       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
 | |
|         << Old << Old->getType();
 | |
|       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
 | |
|       Old->setInvalidDecl();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     PrevDiag = diag::note_previous_builtin_declaration;
 | |
|   }
 | |
| 
 | |
|   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
 | |
|   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Completes the merge of two function declarations that are
 | |
| /// known to be compatible.
 | |
| ///
 | |
| /// This routine handles the merging of attributes and other
 | |
| /// properties of function declarations form the old declaration to
 | |
| /// the new declaration, once we know that New is in fact a
 | |
| /// redeclaration of Old.
 | |
| ///
 | |
| /// \returns false
 | |
| bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
 | |
|   // Merge the attributes
 | |
|   mergeDeclAttributes(New, Old, Context);
 | |
| 
 | |
|   // Merge the storage class.
 | |
|   if (Old->getStorageClass() != SC_Extern &&
 | |
|       Old->getStorageClass() != SC_None)
 | |
|     New->setStorageClass(Old->getStorageClass());
 | |
| 
 | |
|   // Merge "pure" flag.
 | |
|   if (Old->isPure())
 | |
|     New->setPure();
 | |
| 
 | |
|   // Merge the "deleted" flag.
 | |
|   if (Old->isDeleted())
 | |
|     New->setDeleted();
 | |
| 
 | |
|   // Merge attributes from the parameters.  These can mismatch with K&R
 | |
|   // declarations.
 | |
|   if (New->getNumParams() == Old->getNumParams())
 | |
|     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
 | |
|       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
 | |
|                                Context);
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus)
 | |
|     return MergeCXXFunctionDecl(New, Old);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
 | |
|                                 const ObjCMethodDecl *oldMethod) {
 | |
|   // Merge the attributes.
 | |
|   mergeDeclAttributes(newMethod, oldMethod, Context);
 | |
| 
 | |
|   // Merge attributes from the parameters.
 | |
|   for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
 | |
|          ni = newMethod->param_begin(), ne = newMethod->param_end();
 | |
|        ni != ne; ++ni, ++oi)
 | |
|     mergeParamDeclAttributes(*ni, *oi, Context);    
 | |
| }
 | |
| 
 | |
| /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
 | |
| /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
 | |
| /// emitting diagnostics as appropriate.
 | |
| ///
 | |
| /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
 | |
| /// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
 | |
| /// check them before the initializer is attached.
 | |
| ///
 | |
| void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
 | |
|   if (New->isInvalidDecl() || Old->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   QualType MergedT;
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     AutoType *AT = New->getType()->getContainedAutoType();
 | |
|     if (AT && !AT->isDeduced()) {
 | |
|       // We don't know what the new type is until the initializer is attached.
 | |
|       return;
 | |
|     } else if (Context.hasSameType(New->getType(), Old->getType())) {
 | |
|       // These could still be something that needs exception specs checked.
 | |
|       return MergeVarDeclExceptionSpecs(New, Old);
 | |
|     }
 | |
|     // C++ [basic.link]p10:
 | |
|     //   [...] the types specified by all declarations referring to a given
 | |
|     //   object or function shall be identical, except that declarations for an
 | |
|     //   array object can specify array types that differ by the presence or
 | |
|     //   absence of a major array bound (8.3.4).
 | |
|     else if (Old->getType()->isIncompleteArrayType() &&
 | |
|              New->getType()->isArrayType()) {
 | |
|       CanQual<ArrayType> OldArray
 | |
|         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
 | |
|       CanQual<ArrayType> NewArray
 | |
|         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
 | |
|       if (OldArray->getElementType() == NewArray->getElementType())
 | |
|         MergedT = New->getType();
 | |
|     } else if (Old->getType()->isArrayType() &&
 | |
|              New->getType()->isIncompleteArrayType()) {
 | |
|       CanQual<ArrayType> OldArray
 | |
|         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
 | |
|       CanQual<ArrayType> NewArray
 | |
|         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
 | |
|       if (OldArray->getElementType() == NewArray->getElementType())
 | |
|         MergedT = Old->getType();
 | |
|     } else if (New->getType()->isObjCObjectPointerType()
 | |
|                && Old->getType()->isObjCObjectPointerType()) {
 | |
|         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
 | |
|                                                         Old->getType());
 | |
|     }
 | |
|   } else {
 | |
|     MergedT = Context.mergeTypes(New->getType(), Old->getType());
 | |
|   }
 | |
|   if (MergedT.isNull()) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_type)
 | |
|       << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
|   New->setType(MergedT);
 | |
| }
 | |
| 
 | |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name
 | |
| /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
 | |
| /// situation, merging decls or emitting diagnostics as appropriate.
 | |
| ///
 | |
| /// Tentative definition rules (C99 6.9.2p2) are checked by
 | |
| /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
 | |
| /// definitions here, since the initializer hasn't been attached.
 | |
| ///
 | |
| void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
 | |
|   // If the new decl is already invalid, don't do any other checking.
 | |
|   if (New->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   // Verify the old decl was also a variable.
 | |
|   VarDecl *Old = 0;
 | |
|   if (!Previous.isSingleResult() ||
 | |
|       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | |
|       << New->getDeclName();
 | |
|     Diag(Previous.getRepresentativeDecl()->getLocation(),
 | |
|          diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // C++ [class.mem]p1:
 | |
|   //   A member shall not be declared twice in the member-specification [...]
 | |
|   // 
 | |
|   // Here, we need only consider static data members.
 | |
|   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
 | |
|     Diag(New->getLocation(), diag::err_duplicate_member) 
 | |
|       << New->getIdentifier();
 | |
|     Diag(Old->getLocation(), diag::note_previous_declaration);
 | |
|     New->setInvalidDecl();
 | |
|   }
 | |
|   
 | |
|   mergeDeclAttributes(New, Old, Context);
 | |
| 
 | |
|   // Merge the types.
 | |
|   MergeVarDeclTypes(New, Old);
 | |
|   if (New->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
 | |
|   if (New->getStorageClass() == SC_Static &&
 | |
|       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
 | |
|     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
|   // C99 6.2.2p4:
 | |
|   //   For an identifier declared with the storage-class specifier
 | |
|   //   extern in a scope in which a prior declaration of that
 | |
|   //   identifier is visible,23) if the prior declaration specifies
 | |
|   //   internal or external linkage, the linkage of the identifier at
 | |
|   //   the later declaration is the same as the linkage specified at
 | |
|   //   the prior declaration. If no prior declaration is visible, or
 | |
|   //   if the prior declaration specifies no linkage, then the
 | |
|   //   identifier has external linkage.
 | |
|   if (New->hasExternalStorage() && Old->hasLinkage())
 | |
|     /* Okay */;
 | |
|   else if (New->getStorageClass() != SC_Static &&
 | |
|            Old->getStorageClass() == SC_Static) {
 | |
|     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Check if extern is followed by non-extern and vice-versa.
 | |
|   if (New->hasExternalStorage() &&
 | |
|       !Old->hasLinkage() && Old->isLocalVarDecl()) {
 | |
|     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
|   if (Old->hasExternalStorage() &&
 | |
|       !New->hasLinkage() && New->isLocalVarDecl()) {
 | |
|     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
 | |
| 
 | |
|   // FIXME: The test for external storage here seems wrong? We still
 | |
|   // need to check for mismatches.
 | |
|   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
 | |
|       // Don't complain about out-of-line definitions of static members.
 | |
|       !(Old->getLexicalDeclContext()->isRecord() &&
 | |
|         !New->getLexicalDeclContext()->isRecord())) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|     return New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
 | |
|     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
 | |
|     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
 | |
|     Diag(Old->getLocation(), diag::note_previous_definition);
 | |
|   }
 | |
| 
 | |
|   // C++ doesn't have tentative definitions, so go right ahead and check here.
 | |
|   const VarDecl *Def;
 | |
|   if (getLangOptions().CPlusPlus &&
 | |
|       New->isThisDeclarationADefinition() == VarDecl::Definition &&
 | |
|       (Def = Old->getDefinition())) {
 | |
|     Diag(New->getLocation(), diag::err_redefinition)
 | |
|       << New->getDeclName();
 | |
|     Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     New->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   // c99 6.2.2 P4.
 | |
|   // For an identifier declared with the storage-class specifier extern in a
 | |
|   // scope in which a prior declaration of that identifier is visible, if 
 | |
|   // the prior declaration specifies internal or external linkage, the linkage 
 | |
|   // of the identifier at the later declaration is the same as the linkage 
 | |
|   // specified at the prior declaration.
 | |
|   // FIXME. revisit this code.
 | |
|   if (New->hasExternalStorage() &&
 | |
|       Old->getLinkage() == InternalLinkage &&
 | |
|       New->getDeclContext() == Old->getDeclContext())
 | |
|     New->setStorageClass(Old->getStorageClass());
 | |
| 
 | |
|   // Keep a chain of previous declarations.
 | |
|   New->setPreviousDeclaration(Old);
 | |
| 
 | |
|   // Inherit access appropriately.
 | |
|   New->setAccess(Old->getAccess());
 | |
| }
 | |
| 
 | |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
 | |
| /// no declarator (e.g. "struct foo;") is parsed.
 | |
| Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
 | |
|                                        DeclSpec &DS) {
 | |
|   Decl *TagD = 0;
 | |
|   TagDecl *Tag = 0;
 | |
|   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
 | |
|       DS.getTypeSpecType() == DeclSpec::TST_struct ||
 | |
|       DS.getTypeSpecType() == DeclSpec::TST_union ||
 | |
|       DS.getTypeSpecType() == DeclSpec::TST_enum) {
 | |
|     TagD = DS.getRepAsDecl();
 | |
| 
 | |
|     if (!TagD) // We probably had an error
 | |
|       return 0;
 | |
| 
 | |
|     // Note that the above type specs guarantee that the
 | |
|     // type rep is a Decl, whereas in many of the others
 | |
|     // it's a Type.
 | |
|     Tag = dyn_cast<TagDecl>(TagD);
 | |
|   }
 | |
| 
 | |
|   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
 | |
|     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
 | |
|     // or incomplete types shall not be restrict-qualified."
 | |
|     if (TypeQuals & DeclSpec::TQ_restrict)
 | |
|       Diag(DS.getRestrictSpecLoc(),
 | |
|            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
 | |
|            << DS.getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (DS.isFriendSpecified()) {
 | |
|     // If we're dealing with a decl but not a TagDecl, assume that
 | |
|     // whatever routines created it handled the friendship aspect.
 | |
|     if (TagD && !Tag)
 | |
|       return 0;
 | |
|     return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
 | |
|   }
 | |
| 
 | |
|   // Track whether we warned about the fact that there aren't any
 | |
|   // declarators.
 | |
|   bool emittedWarning = false;
 | |
|          
 | |
|   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
 | |
|     ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
 | |
|     
 | |
|     if (!Record->getDeclName() && Record->isDefinition() &&
 | |
|         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
 | |
|       if (getLangOptions().CPlusPlus ||
 | |
|           Record->getDeclContext()->isRecord())
 | |
|         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
 | |
| 
 | |
|       Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
 | |
|         << DS.getSourceRange();
 | |
|       emittedWarning = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for Microsoft C extension: anonymous struct.
 | |
|   if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
 | |
|       CurContext->isRecord() &&
 | |
|       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
 | |
|     // Handle 2 kinds of anonymous struct:
 | |
|     //   struct STRUCT;
 | |
|     // and
 | |
|     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
 | |
|     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
 | |
|     if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
 | |
|         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
 | |
|          DS.getRepAsType().get()->isStructureType())) {
 | |
|       Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
 | |
|         << DS.getSourceRange();
 | |
|       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (getLangOptions().CPlusPlus && 
 | |
|       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
 | |
|     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
 | |
|       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
 | |
|           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
 | |
|         Diag(Enum->getLocation(), diag::ext_no_declarators)
 | |
|           << DS.getSourceRange();
 | |
|         emittedWarning = true;
 | |
|       }
 | |
| 
 | |
|   // Skip all the checks below if we have a type error.
 | |
|   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
 | |
|       
 | |
|   if (!DS.isMissingDeclaratorOk()) {
 | |
|     // Warn about typedefs of enums without names, since this is an
 | |
|     // extension in both Microsoft and GNU.
 | |
|     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
 | |
|         Tag && isa<EnumDecl>(Tag)) {
 | |
|       Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
 | |
|         << DS.getSourceRange();
 | |
|       return Tag;
 | |
|     }
 | |
| 
 | |
|     Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
 | |
|       << DS.getSourceRange();
 | |
|     emittedWarning = true;
 | |
|   }
 | |
| 
 | |
|   // We're going to complain about a bunch of spurious specifiers;
 | |
|   // only do this if we're declaring a tag, because otherwise we
 | |
|   // should be getting diag::ext_no_declarators.
 | |
|   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
 | |
|     return TagD;
 | |
| 
 | |
|   // Note that a linkage-specification sets a storage class, but
 | |
|   // 'extern "C" struct foo;' is actually valid and not theoretically
 | |
|   // useless.
 | |
|   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
 | |
|     if (!DS.isExternInLinkageSpec())
 | |
|       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
 | |
|         << DeclSpec::getSpecifierName(scs);
 | |
| 
 | |
|   if (DS.isThreadSpecified())
 | |
|     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
 | |
|   if (DS.getTypeQualifiers()) {
 | |
|     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
 | |
|       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
 | |
|     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
 | |
|       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
 | |
|     // Restrict is covered above.
 | |
|   }
 | |
|   if (DS.isInlineSpecified())
 | |
|     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
 | |
|   if (DS.isVirtualSpecified())
 | |
|     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
 | |
|   if (DS.isExplicitSpecified())
 | |
|     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
 | |
| 
 | |
|   // FIXME: Warn on useless attributes
 | |
| 
 | |
|   return TagD;
 | |
| }
 | |
| 
 | |
| /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
 | |
| /// builds a statement for it and returns it so it is evaluated.
 | |
| StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
 | |
|   StmtResult R;
 | |
|   if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
 | |
|     Expr *Exp = DS.getRepAsExpr();
 | |
|     QualType Ty = Exp->getType();
 | |
|     if (Ty->isPointerType()) {
 | |
|       do
 | |
|         Ty = Ty->getAs<PointerType>()->getPointeeType();
 | |
|       while (Ty->isPointerType());
 | |
|     }
 | |
|     if (Ty->isVariableArrayType()) {
 | |
|       R = ActOnExprStmt(MakeFullExpr(Exp));
 | |
|     }
 | |
|   }
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| /// We are trying to inject an anonymous member into the given scope;
 | |
| /// check if there's an existing declaration that can't be overloaded.
 | |
| ///
 | |
| /// \return true if this is a forbidden redeclaration
 | |
| static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
 | |
|                                          Scope *S,
 | |
|                                          DeclContext *Owner,
 | |
|                                          DeclarationName Name,
 | |
|                                          SourceLocation NameLoc,
 | |
|                                          unsigned diagnostic) {
 | |
|   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
 | |
|                  Sema::ForRedeclaration);
 | |
|   if (!SemaRef.LookupName(R, S)) return false;
 | |
| 
 | |
|   if (R.getAsSingle<TagDecl>())
 | |
|     return false;
 | |
| 
 | |
|   // Pick a representative declaration.
 | |
|   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
 | |
|   assert(PrevDecl && "Expected a non-null Decl");
 | |
| 
 | |
|   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
 | |
|     return false;
 | |
| 
 | |
|   SemaRef.Diag(NameLoc, diagnostic) << Name;
 | |
|   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InjectAnonymousStructOrUnionMembers - Inject the members of the
 | |
| /// anonymous struct or union AnonRecord into the owning context Owner
 | |
| /// and scope S. This routine will be invoked just after we realize
 | |
| /// that an unnamed union or struct is actually an anonymous union or
 | |
| /// struct, e.g.,
 | |
| ///
 | |
| /// @code
 | |
| /// union {
 | |
| ///   int i;
 | |
| ///   float f;
 | |
| /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
 | |
| ///    // f into the surrounding scope.x
 | |
| /// @endcode
 | |
| ///
 | |
| /// This routine is recursive, injecting the names of nested anonymous
 | |
| /// structs/unions into the owning context and scope as well.
 | |
| static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
 | |
|                                                 DeclContext *Owner,
 | |
|                                                 RecordDecl *AnonRecord,
 | |
|                                                 AccessSpecifier AS,
 | |
|                               llvm::SmallVector<NamedDecl*, 2> &Chaining,
 | |
|                                                       bool MSAnonStruct) {
 | |
|   unsigned diagKind
 | |
|     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
 | |
|                             : diag::err_anonymous_struct_member_redecl;
 | |
| 
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // Look every FieldDecl and IndirectFieldDecl with a name.
 | |
|   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
 | |
|                                DEnd = AnonRecord->decls_end();
 | |
|        D != DEnd; ++D) {
 | |
|     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
 | |
|         cast<NamedDecl>(*D)->getDeclName()) {
 | |
|       ValueDecl *VD = cast<ValueDecl>(*D);
 | |
|       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
 | |
|                                        VD->getLocation(), diagKind)) {
 | |
|         // C++ [class.union]p2:
 | |
|         //   The names of the members of an anonymous union shall be
 | |
|         //   distinct from the names of any other entity in the
 | |
|         //   scope in which the anonymous union is declared.
 | |
|         Invalid = true;
 | |
|       } else {
 | |
|         // C++ [class.union]p2:
 | |
|         //   For the purpose of name lookup, after the anonymous union
 | |
|         //   definition, the members of the anonymous union are
 | |
|         //   considered to have been defined in the scope in which the
 | |
|         //   anonymous union is declared.
 | |
|         unsigned OldChainingSize = Chaining.size();
 | |
|         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
 | |
|           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
 | |
|                PE = IF->chain_end(); PI != PE; ++PI)
 | |
|             Chaining.push_back(*PI);
 | |
|         else
 | |
|           Chaining.push_back(VD);
 | |
| 
 | |
|         assert(Chaining.size() >= 2);
 | |
|         NamedDecl **NamedChain =
 | |
|           new (SemaRef.Context)NamedDecl*[Chaining.size()];
 | |
|         for (unsigned i = 0; i < Chaining.size(); i++)
 | |
|           NamedChain[i] = Chaining[i];
 | |
| 
 | |
|         IndirectFieldDecl* IndirectField =
 | |
|           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
 | |
|                                     VD->getIdentifier(), VD->getType(),
 | |
|                                     NamedChain, Chaining.size());
 | |
| 
 | |
|         IndirectField->setAccess(AS);
 | |
|         IndirectField->setImplicit();
 | |
|         SemaRef.PushOnScopeChains(IndirectField, S);
 | |
| 
 | |
|         // That includes picking up the appropriate access specifier.
 | |
|         if (AS != AS_none) IndirectField->setAccess(AS);
 | |
| 
 | |
|         Chaining.resize(OldChainingSize);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
 | |
| /// a VarDecl::StorageClass. Any error reporting is up to the caller:
 | |
| /// illegal input values are mapped to SC_None.
 | |
| static StorageClass
 | |
| StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
 | |
|   switch (StorageClassSpec) {
 | |
|   case DeclSpec::SCS_unspecified:    return SC_None;
 | |
|   case DeclSpec::SCS_extern:         return SC_Extern;
 | |
|   case DeclSpec::SCS_static:         return SC_Static;
 | |
|   case DeclSpec::SCS_auto:           return SC_Auto;
 | |
|   case DeclSpec::SCS_register:       return SC_Register;
 | |
|   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | |
|     // Illegal SCSs map to None: error reporting is up to the caller.
 | |
|   case DeclSpec::SCS_mutable:        // Fall through.
 | |
|   case DeclSpec::SCS_typedef:        return SC_None;
 | |
|   }
 | |
|   llvm_unreachable("unknown storage class specifier");
 | |
| }
 | |
| 
 | |
| /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
 | |
| /// a StorageClass. Any error reporting is up to the caller:
 | |
| /// illegal input values are mapped to SC_None.
 | |
| static StorageClass
 | |
| StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
 | |
|   switch (StorageClassSpec) {
 | |
|   case DeclSpec::SCS_unspecified:    return SC_None;
 | |
|   case DeclSpec::SCS_extern:         return SC_Extern;
 | |
|   case DeclSpec::SCS_static:         return SC_Static;
 | |
|   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | |
|     // Illegal SCSs map to None: error reporting is up to the caller.
 | |
|   case DeclSpec::SCS_auto:           // Fall through.
 | |
|   case DeclSpec::SCS_mutable:        // Fall through.
 | |
|   case DeclSpec::SCS_register:       // Fall through.
 | |
|   case DeclSpec::SCS_typedef:        return SC_None;
 | |
|   }
 | |
|   llvm_unreachable("unknown storage class specifier");
 | |
| }
 | |
| 
 | |
| /// BuildAnonymousStructOrUnion - Handle the declaration of an
 | |
| /// anonymous structure or union. Anonymous unions are a C++ feature
 | |
| /// (C++ [class.union]) and a GNU C extension; anonymous structures
 | |
| /// are a GNU C and GNU C++ extension.
 | |
| Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
 | |
|                                              AccessSpecifier AS,
 | |
|                                              RecordDecl *Record) {
 | |
|   DeclContext *Owner = Record->getDeclContext();
 | |
| 
 | |
|   // Diagnose whether this anonymous struct/union is an extension.
 | |
|   if (Record->isUnion() && !getLangOptions().CPlusPlus)
 | |
|     Diag(Record->getLocation(), diag::ext_anonymous_union);
 | |
|   else if (!Record->isUnion())
 | |
|     Diag(Record->getLocation(), diag::ext_anonymous_struct);
 | |
| 
 | |
|   // C and C++ require different kinds of checks for anonymous
 | |
|   // structs/unions.
 | |
|   bool Invalid = false;
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     const char* PrevSpec = 0;
 | |
|     unsigned DiagID;
 | |
|     // C++ [class.union]p3:
 | |
|     //   Anonymous unions declared in a named namespace or in the
 | |
|     //   global namespace shall be declared static.
 | |
|     if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
 | |
|         (isa<TranslationUnitDecl>(Owner) ||
 | |
|          (isa<NamespaceDecl>(Owner) &&
 | |
|           cast<NamespaceDecl>(Owner)->getDeclName()))) {
 | |
|       Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
 | |
|       Invalid = true;
 | |
| 
 | |
|       // Recover by adding 'static'.
 | |
|       DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
 | |
|                              PrevSpec, DiagID, getLangOptions());
 | |
|     }
 | |
|     // C++ [class.union]p3:
 | |
|     //   A storage class is not allowed in a declaration of an
 | |
|     //   anonymous union in a class scope.
 | |
|     else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
 | |
|              isa<RecordDecl>(Owner)) {
 | |
|       Diag(DS.getStorageClassSpecLoc(),
 | |
|            diag::err_anonymous_union_with_storage_spec);
 | |
|       Invalid = true;
 | |
| 
 | |
|       // Recover by removing the storage specifier.
 | |
|       DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
 | |
|                              PrevSpec, DiagID, getLangOptions());
 | |
|     }
 | |
| 
 | |
|     // C++ [class.union]p2:
 | |
|     //   The member-specification of an anonymous union shall only
 | |
|     //   define non-static data members. [Note: nested types and
 | |
|     //   functions cannot be declared within an anonymous union. ]
 | |
|     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
 | |
|                                  MemEnd = Record->decls_end();
 | |
|          Mem != MemEnd; ++Mem) {
 | |
|       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
 | |
|         // C++ [class.union]p3:
 | |
|         //   An anonymous union shall not have private or protected
 | |
|         //   members (clause 11).
 | |
|         assert(FD->getAccess() != AS_none);
 | |
|         if (FD->getAccess() != AS_public) {
 | |
|           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
 | |
|             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
 | |
|           Invalid = true;
 | |
|         }
 | |
| 
 | |
|         if (CheckNontrivialField(FD))
 | |
|           Invalid = true;
 | |
|       } else if ((*Mem)->isImplicit()) {
 | |
|         // Any implicit members are fine.
 | |
|       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
 | |
|         // This is a type that showed up in an
 | |
|         // elaborated-type-specifier inside the anonymous struct or
 | |
|         // union, but which actually declares a type outside of the
 | |
|         // anonymous struct or union. It's okay.
 | |
|       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
 | |
|         if (!MemRecord->isAnonymousStructOrUnion() &&
 | |
|             MemRecord->getDeclName()) {
 | |
|           // Visual C++ allows type definition in anonymous struct or union.
 | |
|           if (getLangOptions().Microsoft)
 | |
|             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
 | |
|               << (int)Record->isUnion();
 | |
|           else {
 | |
|             // This is a nested type declaration.
 | |
|             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
 | |
|               << (int)Record->isUnion();
 | |
|             Invalid = true;
 | |
|           }
 | |
|         }
 | |
|       } else if (isa<AccessSpecDecl>(*Mem)) {
 | |
|         // Any access specifier is fine.
 | |
|       } else {
 | |
|         // We have something that isn't a non-static data
 | |
|         // member. Complain about it.
 | |
|         unsigned DK = diag::err_anonymous_record_bad_member;
 | |
|         if (isa<TypeDecl>(*Mem))
 | |
|           DK = diag::err_anonymous_record_with_type;
 | |
|         else if (isa<FunctionDecl>(*Mem))
 | |
|           DK = diag::err_anonymous_record_with_function;
 | |
|         else if (isa<VarDecl>(*Mem))
 | |
|           DK = diag::err_anonymous_record_with_static;
 | |
|         
 | |
|         // Visual C++ allows type definition in anonymous struct or union.
 | |
|         if (getLangOptions().Microsoft &&
 | |
|             DK == diag::err_anonymous_record_with_type)
 | |
|           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
 | |
|             << (int)Record->isUnion();
 | |
|         else {
 | |
|           Diag((*Mem)->getLocation(), DK)
 | |
|               << (int)Record->isUnion();
 | |
|           Invalid = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Record->isUnion() && !Owner->isRecord()) {
 | |
|     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
 | |
|       << (int)getLangOptions().CPlusPlus;
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   // Mock up a declarator.
 | |
|   Declarator Dc(DS, Declarator::TypeNameContext);
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | |
|   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
 | |
| 
 | |
|   // Create a declaration for this anonymous struct/union.
 | |
|   NamedDecl *Anon = 0;
 | |
|   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
 | |
|     Anon = FieldDecl::Create(Context, OwningClass,
 | |
|                              DS.getSourceRange().getBegin(),
 | |
|                              Record->getLocation(),
 | |
|                              /*IdentifierInfo=*/0,
 | |
|                              Context.getTypeDeclType(Record),
 | |
|                              TInfo,
 | |
|                              /*BitWidth=*/0, /*Mutable=*/false);
 | |
|     Anon->setAccess(AS);
 | |
|     if (getLangOptions().CPlusPlus)
 | |
|       FieldCollector->Add(cast<FieldDecl>(Anon));
 | |
|   } else {
 | |
|     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
 | |
|     assert(SCSpec != DeclSpec::SCS_typedef &&
 | |
|            "Parser allowed 'typedef' as storage class VarDecl.");
 | |
|     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | |
|     if (SCSpec == DeclSpec::SCS_mutable) {
 | |
|       // mutable can only appear on non-static class members, so it's always
 | |
|       // an error here
 | |
|       Diag(Record->getLocation(), diag::err_mutable_nonmember);
 | |
|       Invalid = true;
 | |
|       SC = SC_None;
 | |
|     }
 | |
|     SCSpec = DS.getStorageClassSpecAsWritten();
 | |
|     VarDecl::StorageClass SCAsWritten
 | |
|       = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | |
| 
 | |
|     Anon = VarDecl::Create(Context, Owner,
 | |
|                            DS.getSourceRange().getBegin(),
 | |
|                            Record->getLocation(), /*IdentifierInfo=*/0,
 | |
|                            Context.getTypeDeclType(Record),
 | |
|                            TInfo, SC, SCAsWritten);
 | |
|   }
 | |
|   Anon->setImplicit();
 | |
| 
 | |
|   // Add the anonymous struct/union object to the current
 | |
|   // context. We'll be referencing this object when we refer to one of
 | |
|   // its members.
 | |
|   Owner->addDecl(Anon);
 | |
|   
 | |
|   // Inject the members of the anonymous struct/union into the owning
 | |
|   // context and into the identifier resolver chain for name lookup
 | |
|   // purposes.
 | |
|   llvm::SmallVector<NamedDecl*, 2> Chain;
 | |
|   Chain.push_back(Anon);
 | |
| 
 | |
|   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
 | |
|                                           Chain, false))
 | |
|     Invalid = true;
 | |
| 
 | |
|   // Mark this as an anonymous struct/union type. Note that we do not
 | |
|   // do this until after we have already checked and injected the
 | |
|   // members of this anonymous struct/union type, because otherwise
 | |
|   // the members could be injected twice: once by DeclContext when it
 | |
|   // builds its lookup table, and once by
 | |
|   // InjectAnonymousStructOrUnionMembers.
 | |
|   Record->setAnonymousStructOrUnion(true);
 | |
| 
 | |
|   if (Invalid)
 | |
|     Anon->setInvalidDecl();
 | |
| 
 | |
|   return Anon;
 | |
| }
 | |
| 
 | |
| /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
 | |
| /// Microsoft C anonymous structure.
 | |
| /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
 | |
| /// Example:
 | |
| ///
 | |
| /// struct A { int a; };
 | |
| /// struct B { struct A; int b; };
 | |
| ///
 | |
| /// void foo() {
 | |
| ///   B var;
 | |
| ///   var.a = 3; 
 | |
| /// }
 | |
| ///
 | |
| Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
 | |
|                                            RecordDecl *Record) {
 | |
|   
 | |
|   // If there is no Record, get the record via the typedef.
 | |
|   if (!Record)
 | |
|     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
 | |
| 
 | |
|   // Mock up a declarator.
 | |
|   Declarator Dc(DS, Declarator::TypeNameContext);
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | |
|   assert(TInfo && "couldn't build declarator info for anonymous struct");
 | |
| 
 | |
|   // Create a declaration for this anonymous struct.
 | |
|   NamedDecl* Anon = FieldDecl::Create(Context,
 | |
|                              cast<RecordDecl>(CurContext),
 | |
|                              DS.getSourceRange().getBegin(),
 | |
|                              DS.getSourceRange().getBegin(),
 | |
|                              /*IdentifierInfo=*/0,
 | |
|                              Context.getTypeDeclType(Record),
 | |
|                              TInfo,
 | |
|                              /*BitWidth=*/0, /*Mutable=*/false);
 | |
|   Anon->setImplicit();
 | |
| 
 | |
|   // Add the anonymous struct object to the current context.
 | |
|   CurContext->addDecl(Anon);
 | |
| 
 | |
|   // Inject the members of the anonymous struct into the current
 | |
|   // context and into the identifier resolver chain for name lookup
 | |
|   // purposes.
 | |
|   llvm::SmallVector<NamedDecl*, 2> Chain;
 | |
|   Chain.push_back(Anon);
 | |
| 
 | |
|   if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
 | |
|                                           Record->getDefinition(),
 | |
|                                           AS_none, Chain, true))
 | |
|     Anon->setInvalidDecl();
 | |
| 
 | |
|   return Anon;
 | |
| }
 | |
| 
 | |
| /// GetNameForDeclarator - Determine the full declaration name for the
 | |
| /// given Declarator.
 | |
| DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
 | |
|   return GetNameFromUnqualifiedId(D.getName());
 | |
| }
 | |
| 
 | |
| /// \brief Retrieves the declaration name from a parsed unqualified-id.
 | |
| DeclarationNameInfo
 | |
| Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
 | |
|   DeclarationNameInfo NameInfo;
 | |
|   NameInfo.setLoc(Name.StartLocation);
 | |
| 
 | |
|   switch (Name.getKind()) {
 | |
| 
 | |
|   case UnqualifiedId::IK_Identifier:
 | |
|     NameInfo.setName(Name.Identifier);
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     return NameInfo;
 | |
| 
 | |
|   case UnqualifiedId::IK_OperatorFunctionId:
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
 | |
|                                            Name.OperatorFunctionId.Operator));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
 | |
|       = Name.OperatorFunctionId.SymbolLocations[0];
 | |
|     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
 | |
|       = Name.EndLocation.getRawEncoding();
 | |
|     return NameInfo;
 | |
| 
 | |
|   case UnqualifiedId::IK_LiteralOperatorId:
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
 | |
|                                                            Name.Identifier));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
 | |
|     return NameInfo;
 | |
| 
 | |
|   case UnqualifiedId::IK_ConversionFunctionId: {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
 | |
|     if (Ty.isNull())
 | |
|       return DeclarationNameInfo();
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
 | |
|                                                Context.getCanonicalType(Ty)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setNamedTypeInfo(TInfo);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_ConstructorName: {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
 | |
|     if (Ty.isNull())
 | |
|       return DeclarationNameInfo();
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | |
|                                               Context.getCanonicalType(Ty)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setNamedTypeInfo(TInfo);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_ConstructorTemplateId: {
 | |
|     // In well-formed code, we can only have a constructor
 | |
|     // template-id that refers to the current context, so go there
 | |
|     // to find the actual type being constructed.
 | |
|     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
 | |
|     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
 | |
|       return DeclarationNameInfo();
 | |
| 
 | |
|     // Determine the type of the class being constructed.
 | |
|     QualType CurClassType = Context.getTypeDeclType(CurClass);
 | |
| 
 | |
|     // FIXME: Check two things: that the template-id names the same type as
 | |
|     // CurClassType, and that the template-id does not occur when the name
 | |
|     // was qualified.
 | |
| 
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | |
|                                     Context.getCanonicalType(CurClassType)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     // FIXME: should we retrieve TypeSourceInfo?
 | |
|     NameInfo.setNamedTypeInfo(0);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_DestructorName: {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
 | |
|     if (Ty.isNull())
 | |
|       return DeclarationNameInfo();
 | |
|     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
 | |
|                                               Context.getCanonicalType(Ty)));
 | |
|     NameInfo.setLoc(Name.StartLocation);
 | |
|     NameInfo.setNamedTypeInfo(TInfo);
 | |
|     return NameInfo;
 | |
|   }
 | |
| 
 | |
|   case UnqualifiedId::IK_TemplateId: {
 | |
|     TemplateName TName = Name.TemplateId->Template.get();
 | |
|     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
 | |
|     return Context.getNameForTemplate(TName, TNameLoc);
 | |
|   }
 | |
| 
 | |
|   } // switch (Name.getKind())
 | |
| 
 | |
|   assert(false && "Unknown name kind");
 | |
|   return DeclarationNameInfo();
 | |
| }
 | |
| 
 | |
| /// isNearlyMatchingFunction - Determine whether the C++ functions
 | |
| /// Declaration and Definition are "nearly" matching. This heuristic
 | |
| /// is used to improve diagnostics in the case where an out-of-line
 | |
| /// function definition doesn't match any declaration within
 | |
| /// the class or namespace.
 | |
| static bool isNearlyMatchingFunction(ASTContext &Context,
 | |
|                                      FunctionDecl *Declaration,
 | |
|                                      FunctionDecl *Definition) {
 | |
|   if (Declaration->param_size() != Definition->param_size())
 | |
|     return false;
 | |
|   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
 | |
|     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
 | |
|     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
 | |
| 
 | |
|     if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
 | |
|                                         DefParamTy.getNonReferenceType()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
 | |
| /// declarator needs to be rebuilt in the current instantiation.
 | |
| /// Any bits of declarator which appear before the name are valid for
 | |
| /// consideration here.  That's specifically the type in the decl spec
 | |
| /// and the base type in any member-pointer chunks.
 | |
| static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
 | |
|                                                     DeclarationName Name) {
 | |
|   // The types we specifically need to rebuild are:
 | |
|   //   - typenames, typeofs, and decltypes
 | |
|   //   - types which will become injected class names
 | |
|   // Of course, we also need to rebuild any type referencing such a
 | |
|   // type.  It's safest to just say "dependent", but we call out a
 | |
|   // few cases here.
 | |
| 
 | |
|   DeclSpec &DS = D.getMutableDeclSpec();
 | |
|   switch (DS.getTypeSpecType()) {
 | |
|   case DeclSpec::TST_typename:
 | |
|   case DeclSpec::TST_typeofType:
 | |
|   case DeclSpec::TST_decltype: {
 | |
|     // Grab the type from the parser.
 | |
|     TypeSourceInfo *TSI = 0;
 | |
|     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
 | |
|     if (T.isNull() || !T->isDependentType()) break;
 | |
| 
 | |
|     // Make sure there's a type source info.  This isn't really much
 | |
|     // of a waste; most dependent types should have type source info
 | |
|     // attached already.
 | |
|     if (!TSI)
 | |
|       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
 | |
| 
 | |
|     // Rebuild the type in the current instantiation.
 | |
|     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
 | |
|     if (!TSI) return true;
 | |
| 
 | |
|     // Store the new type back in the decl spec.
 | |
|     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
 | |
|     DS.UpdateTypeRep(LocType);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case DeclSpec::TST_typeofExpr: {
 | |
|     Expr *E = DS.getRepAsExpr();
 | |
|     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
 | |
|     if (Result.isInvalid()) return true;
 | |
|     DS.UpdateExprRep(Result.get());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     // Nothing to do for these decl specs.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // It doesn't matter what order we do this in.
 | |
|   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
 | |
|     DeclaratorChunk &Chunk = D.getTypeObject(I);
 | |
| 
 | |
|     // The only type information in the declarator which can come
 | |
|     // before the declaration name is the base type of a member
 | |
|     // pointer.
 | |
|     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
 | |
|       continue;
 | |
| 
 | |
|     // Rebuild the scope specifier in-place.
 | |
|     CXXScopeSpec &SS = Chunk.Mem.Scope();
 | |
|     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
 | |
|   return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
 | |
| }
 | |
| 
 | |
| /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
 | |
| ///   If T is the name of a class, then each of the following shall have a 
 | |
| ///   name different from T:
 | |
| ///     - every static data member of class T;
 | |
| ///     - every member function of class T
 | |
| ///     - every member of class T that is itself a type;
 | |
| /// \returns true if the declaration name violates these rules.
 | |
| bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
 | |
|                                    DeclarationNameInfo NameInfo) {
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
| 
 | |
|   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 
 | |
|     if (Record->getIdentifier() && Record->getDeclName() == Name) {
 | |
|       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
|   
 | |
| Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
 | |
|                              MultiTemplateParamsArg TemplateParamLists,
 | |
|                              bool IsFunctionDefinition) {
 | |
|   // TODO: consider using NameInfo for diagnostic.
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
| 
 | |
|   // All of these full declarators require an identifier.  If it doesn't have
 | |
|   // one, the ParsedFreeStandingDeclSpec action should be used.
 | |
|   if (!Name) {
 | |
|     if (!D.isInvalidType())  // Reject this if we think it is valid.
 | |
|       Diag(D.getDeclSpec().getSourceRange().getBegin(),
 | |
|            diag::err_declarator_need_ident)
 | |
|         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
 | |
|     return 0;
 | |
|   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
 | |
|     return 0;
 | |
| 
 | |
|   // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | |
|   // we find one that is.
 | |
|   while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | |
|          (S->getFlags() & Scope::TemplateParamScope) != 0)
 | |
|     S = S->getParent();
 | |
| 
 | |
|   DeclContext *DC = CurContext;
 | |
|   if (D.getCXXScopeSpec().isInvalid())
 | |
|     D.setInvalidType();
 | |
|   else if (D.getCXXScopeSpec().isSet()) {
 | |
|     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 
 | |
|                                         UPPC_DeclarationQualifier))
 | |
|       return 0;
 | |
| 
 | |
|     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
 | |
|     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
 | |
|     if (!DC) {
 | |
|       // If we could not compute the declaration context, it's because the
 | |
|       // declaration context is dependent but does not refer to a class,
 | |
|       // class template, or class template partial specialization. Complain
 | |
|       // and return early, to avoid the coming semantic disaster.
 | |
|       Diag(D.getIdentifierLoc(),
 | |
|            diag::err_template_qualified_declarator_no_match)
 | |
|         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     bool IsDependentContext = DC->isDependentContext();
 | |
| 
 | |
|     if (!IsDependentContext && 
 | |
|         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
 | |
|       return 0;
 | |
| 
 | |
|     if (isa<CXXRecordDecl>(DC)) {
 | |
|       if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
 | |
|         Diag(D.getIdentifierLoc(),
 | |
|              diag::err_member_def_undefined_record)
 | |
|           << Name << DC << D.getCXXScopeSpec().getRange();
 | |
|         D.setInvalidType();
 | |
|       } else if (isa<CXXRecordDecl>(CurContext) && 
 | |
|                  !D.getDeclSpec().isFriendSpecified()) {
 | |
|         // The user provided a superfluous scope specifier inside a class
 | |
|         // definition:
 | |
|         //
 | |
|         // class X {
 | |
|         //   void X::f();
 | |
|         // };
 | |
|         if (CurContext->Equals(DC))
 | |
|           Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
 | |
|             << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
 | |
|         else
 | |
|           Diag(D.getIdentifierLoc(), diag::err_member_qualification)
 | |
|             << Name << D.getCXXScopeSpec().getRange();
 | |
|         
 | |
|         // Pretend that this qualifier was not here.
 | |
|         D.getCXXScopeSpec().clear();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check whether we need to rebuild the type of the given
 | |
|     // declaration in the current instantiation.
 | |
|     if (EnteringContext && IsDependentContext &&
 | |
|         TemplateParamLists.size() != 0) {
 | |
|       ContextRAII SavedContext(*this, DC);
 | |
|       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
 | |
|         D.setInvalidType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DiagnoseClassNameShadow(DC, NameInfo))
 | |
|     // If this is a typedef, we'll end up spewing multiple diagnostics.
 | |
|     // Just return early; it's safer.
 | |
|     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 | |
|       return 0;
 | |
|   
 | |
|   NamedDecl *New;
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType R = TInfo->getType();
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | |
|                                       UPPC_DeclarationType))
 | |
|     D.setInvalidType();
 | |
| 
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
 | |
|                         ForRedeclaration);
 | |
| 
 | |
|   // See if this is a redefinition of a variable in the same scope.
 | |
|   if (!D.getCXXScopeSpec().isSet()) {
 | |
|     bool IsLinkageLookup = false;
 | |
| 
 | |
|     // If the declaration we're planning to build will be a function
 | |
|     // or object with linkage, then look for another declaration with
 | |
|     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
 | |
|     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 | |
|       /* Do nothing*/;
 | |
|     else if (R->isFunctionType()) {
 | |
|       if (CurContext->isFunctionOrMethod() ||
 | |
|           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
 | |
|         IsLinkageLookup = true;
 | |
|     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
 | |
|       IsLinkageLookup = true;
 | |
|     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
 | |
|              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
 | |
|       IsLinkageLookup = true;
 | |
| 
 | |
|     if (IsLinkageLookup)
 | |
|       Previous.clear(LookupRedeclarationWithLinkage);
 | |
| 
 | |
|     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
 | |
|   } else { // Something like "int foo::x;"
 | |
|     LookupQualifiedName(Previous, DC);
 | |
| 
 | |
|     // Don't consider using declarations as previous declarations for
 | |
|     // out-of-line members.
 | |
|     RemoveUsingDecls(Previous);
 | |
| 
 | |
|     // C++ 7.3.1.2p2:
 | |
|     // Members (including explicit specializations of templates) of a named
 | |
|     // namespace can also be defined outside that namespace by explicit
 | |
|     // qualification of the name being defined, provided that the entity being
 | |
|     // defined was already declared in the namespace and the definition appears
 | |
|     // after the point of declaration in a namespace that encloses the
 | |
|     // declarations namespace.
 | |
|     //
 | |
|     // Note that we only check the context at this point. We don't yet
 | |
|     // have enough information to make sure that PrevDecl is actually
 | |
|     // the declaration we want to match. For example, given:
 | |
|     //
 | |
|     //   class X {
 | |
|     //     void f();
 | |
|     //     void f(float);
 | |
|     //   };
 | |
|     //
 | |
|     //   void X::f(int) { } // ill-formed
 | |
|     //
 | |
|     // In this case, PrevDecl will point to the overload set
 | |
|     // containing the two f's declared in X, but neither of them
 | |
|     // matches.
 | |
| 
 | |
|     // First check whether we named the global scope.
 | |
|     if (isa<TranslationUnitDecl>(DC)) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
 | |
|         << Name << D.getCXXScopeSpec().getRange();
 | |
|     } else {
 | |
|       DeclContext *Cur = CurContext;
 | |
|       while (isa<LinkageSpecDecl>(Cur))
 | |
|         Cur = Cur->getParent();
 | |
|       if (!Cur->Encloses(DC)) {
 | |
|         // The qualifying scope doesn't enclose the original declaration.
 | |
|         // Emit diagnostic based on current scope.
 | |
|         SourceLocation L = D.getIdentifierLoc();
 | |
|         SourceRange R = D.getCXXScopeSpec().getRange();
 | |
|         if (isa<FunctionDecl>(Cur))
 | |
|           Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
 | |
|         else
 | |
|           Diag(L, diag::err_invalid_declarator_scope)
 | |
|             << Name << cast<NamedDecl>(DC) << R;
 | |
|         D.setInvalidType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Previous.isSingleResult() &&
 | |
|       Previous.getFoundDecl()->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     if (!D.isInvalidType())
 | |
|       if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
 | |
|                                           Previous.getFoundDecl()))
 | |
|         D.setInvalidType();
 | |
| 
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   // In C++, the previous declaration we find might be a tag type
 | |
|   // (class or enum). In this case, the new declaration will hide the
 | |
|   // tag type. Note that this does does not apply if we're declaring a
 | |
|   // typedef (C++ [dcl.typedef]p4).
 | |
|   if (Previous.isSingleTagDecl() &&
 | |
|       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
 | |
|     Previous.clear();
 | |
| 
 | |
|   bool Redeclaration = false;
 | |
|   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | |
|     if (TemplateParamLists.size()) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
 | |
|   } else if (R->isFunctionType()) {
 | |
|     New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
 | |
|                                   move(TemplateParamLists),
 | |
|                                   IsFunctionDefinition, Redeclaration);
 | |
|   } else {
 | |
|     New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
 | |
|                                   move(TemplateParamLists),
 | |
|                                   Redeclaration);
 | |
|   }
 | |
| 
 | |
|   if (New == 0)
 | |
|     return 0;
 | |
| 
 | |
|   // If this has an identifier and is not an invalid redeclaration or 
 | |
|   // function template specialization, add it to the scope stack.
 | |
|   if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
 | |
|     PushOnScopeChains(New, S);
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
 | |
| /// types into constant array types in certain situations which would otherwise
 | |
| /// be errors (for GCC compatibility).
 | |
| static QualType TryToFixInvalidVariablyModifiedType(QualType T,
 | |
|                                                     ASTContext &Context,
 | |
|                                                     bool &SizeIsNegative,
 | |
|                                                     llvm::APSInt &Oversized) {
 | |
|   // This method tries to turn a variable array into a constant
 | |
|   // array even when the size isn't an ICE.  This is necessary
 | |
|   // for compatibility with code that depends on gcc's buggy
 | |
|   // constant expression folding, like struct {char x[(int)(char*)2];}
 | |
|   SizeIsNegative = false;
 | |
|   Oversized = 0;
 | |
|   
 | |
|   if (T->isDependentType())
 | |
|     return QualType();
 | |
|   
 | |
|   QualifierCollector Qs;
 | |
|   const Type *Ty = Qs.strip(T);
 | |
| 
 | |
|   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
 | |
|     QualType Pointee = PTy->getPointeeType();
 | |
|     QualType FixedType =
 | |
|         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
 | |
|                                             Oversized);
 | |
|     if (FixedType.isNull()) return FixedType;
 | |
|     FixedType = Context.getPointerType(FixedType);
 | |
|     return Qs.apply(Context, FixedType);
 | |
|   }
 | |
|   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
 | |
|     QualType Inner = PTy->getInnerType();
 | |
|     QualType FixedType =
 | |
|         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
 | |
|                                             Oversized);
 | |
|     if (FixedType.isNull()) return FixedType;
 | |
|     FixedType = Context.getParenType(FixedType);
 | |
|     return Qs.apply(Context, FixedType);
 | |
|   }
 | |
| 
 | |
|   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
 | |
|   if (!VLATy)
 | |
|     return QualType();
 | |
|   // FIXME: We should probably handle this case
 | |
|   if (VLATy->getElementType()->isVariablyModifiedType())
 | |
|     return QualType();
 | |
| 
 | |
|   Expr::EvalResult EvalResult;
 | |
|   if (!VLATy->getSizeExpr() ||
 | |
|       !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
 | |
|       !EvalResult.Val.isInt())
 | |
|     return QualType();
 | |
| 
 | |
|   // Check whether the array size is negative.
 | |
|   llvm::APSInt &Res = EvalResult.Val.getInt();
 | |
|   if (Res.isSigned() && Res.isNegative()) {
 | |
|     SizeIsNegative = true;
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Check whether the array is too large to be addressed.
 | |
|   unsigned ActiveSizeBits
 | |
|     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
 | |
|                                               Res);
 | |
|   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
 | |
|     Oversized = Res;
 | |
|     return QualType();
 | |
|   }
 | |
|   
 | |
|   return Context.getConstantArrayType(VLATy->getElementType(),
 | |
|                                       Res, ArrayType::Normal, 0);
 | |
| }
 | |
| 
 | |
| /// \brief Register the given locally-scoped external C declaration so
 | |
| /// that it can be found later for redeclarations
 | |
| void
 | |
| Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
 | |
|                                        const LookupResult &Previous,
 | |
|                                        Scope *S) {
 | |
|   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
 | |
|          "Decl is not a locally-scoped decl!");
 | |
|   // Note that we have a locally-scoped external with this name.
 | |
|   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
 | |
| 
 | |
|   if (!Previous.isSingleResult())
 | |
|     return;
 | |
| 
 | |
|   NamedDecl *PrevDecl = Previous.getFoundDecl();
 | |
| 
 | |
|   // If there was a previous declaration of this variable, it may be
 | |
|   // in our identifier chain. Update the identifier chain with the new
 | |
|   // declaration.
 | |
|   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
 | |
|     // The previous declaration was found on the identifer resolver
 | |
|     // chain, so remove it from its scope.
 | |
|     while (S && !S->isDeclScope(PrevDecl))
 | |
|       S = S->getParent();
 | |
| 
 | |
|     if (S)
 | |
|       S->RemoveDecl(PrevDecl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Diagnose function specifiers on a declaration of an identifier that
 | |
| /// does not identify a function.
 | |
| void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
 | |
|   // FIXME: We should probably indicate the identifier in question to avoid
 | |
|   // confusion for constructs like "inline int a(), b;"
 | |
|   if (D.getDeclSpec().isInlineSpecified())
 | |
|     Diag(D.getDeclSpec().getInlineSpecLoc(),
 | |
|          diag::err_inline_non_function);
 | |
| 
 | |
|   if (D.getDeclSpec().isVirtualSpecified())
 | |
|     Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | |
|          diag::err_virtual_non_function);
 | |
| 
 | |
|   if (D.getDeclSpec().isExplicitSpecified())
 | |
|     Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | |
|          diag::err_explicit_non_function);
 | |
| }
 | |
| 
 | |
| NamedDecl*
 | |
| Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
 | |
|                              QualType R,  TypeSourceInfo *TInfo,
 | |
|                              LookupResult &Previous, bool &Redeclaration) {
 | |
|   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
 | |
|   if (D.getCXXScopeSpec().isSet()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
 | |
|       << D.getCXXScopeSpec().getRange();
 | |
|     D.setInvalidType();
 | |
|     // Pretend we didn't see the scope specifier.
 | |
|     DC = CurContext;
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // Check that there are no default arguments (C++ only).
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D);
 | |
| 
 | |
|   if (D.getDeclSpec().isThreadSpecified())
 | |
|     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | |
| 
 | |
|   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
 | |
|     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
 | |
|       << D.getName().getSourceRange();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
 | |
|   if (!NewTD) return 0;
 | |
| 
 | |
|   // Handle attributes prior to checking for duplicates in MergeVarDecl
 | |
|   ProcessDeclAttributes(S, NewTD, D);
 | |
| 
 | |
|   return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
 | |
| }
 | |
| 
 | |
| /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
 | |
| /// declares a typedef-name, either using the 'typedef' type specifier or via
 | |
| /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
 | |
| NamedDecl*
 | |
| Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
 | |
|                            LookupResult &Previous, bool &Redeclaration) {
 | |
|   // C99 6.7.7p2: If a typedef name specifies a variably modified type
 | |
|   // then it shall have block scope.
 | |
|   // Note that variably modified types must be fixed before merging the decl so
 | |
|   // that redeclarations will match.
 | |
|   QualType T = NewTD->getUnderlyingType();
 | |
|   if (T->isVariablyModifiedType()) {
 | |
|     getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|     if (S->getFnParent() == 0) {
 | |
|       bool SizeIsNegative;
 | |
|       llvm::APSInt Oversized;
 | |
|       QualType FixedTy =
 | |
|           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
 | |
|                                               Oversized);
 | |
|       if (!FixedTy.isNull()) {
 | |
|         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
 | |
|         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
 | |
|       } else {
 | |
|         if (SizeIsNegative)
 | |
|           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
 | |
|         else if (T->isVariableArrayType())
 | |
|           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
 | |
|         else if (Oversized.getBoolValue())
 | |
|           Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
 | |
|         else
 | |
|           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
 | |
|         NewTD->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge the decl with the existing one if appropriate. If the decl is
 | |
|   // in an outer scope, it isn't the same thing.
 | |
|   FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
 | |
|                        /*ExplicitInstantiationOrSpecialization=*/false);
 | |
|   if (!Previous.empty()) {
 | |
|     Redeclaration = true;
 | |
|     MergeTypedefNameDecl(NewTD, Previous);
 | |
|   }
 | |
| 
 | |
|   // If this is the C FILE type, notify the AST context.
 | |
|   if (IdentifierInfo *II = NewTD->getIdentifier())
 | |
|     if (!NewTD->isInvalidDecl() &&
 | |
|         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | |
|       if (II->isStr("FILE"))
 | |
|         Context.setFILEDecl(NewTD);
 | |
|       else if (II->isStr("jmp_buf"))
 | |
|         Context.setjmp_bufDecl(NewTD);
 | |
|       else if (II->isStr("sigjmp_buf"))
 | |
|         Context.setsigjmp_bufDecl(NewTD);
 | |
|       else if (II->isStr("__builtin_va_list"))
 | |
|         Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
 | |
|     }
 | |
| 
 | |
|   return NewTD;
 | |
| }
 | |
| 
 | |
| /// \brief Determines whether the given declaration is an out-of-scope
 | |
| /// previous declaration.
 | |
| ///
 | |
| /// This routine should be invoked when name lookup has found a
 | |
| /// previous declaration (PrevDecl) that is not in the scope where a
 | |
| /// new declaration by the same name is being introduced. If the new
 | |
| /// declaration occurs in a local scope, previous declarations with
 | |
| /// linkage may still be considered previous declarations (C99
 | |
| /// 6.2.2p4-5, C++ [basic.link]p6).
 | |
| ///
 | |
| /// \param PrevDecl the previous declaration found by name
 | |
| /// lookup
 | |
| ///
 | |
| /// \param DC the context in which the new declaration is being
 | |
| /// declared.
 | |
| ///
 | |
| /// \returns true if PrevDecl is an out-of-scope previous declaration
 | |
| /// for a new delcaration with the same name.
 | |
| static bool
 | |
| isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
 | |
|                                 ASTContext &Context) {
 | |
|   if (!PrevDecl)
 | |
|     return false;
 | |
| 
 | |
|   if (!PrevDecl->hasLinkage())
 | |
|     return false;
 | |
| 
 | |
|   if (Context.getLangOptions().CPlusPlus) {
 | |
|     // C++ [basic.link]p6:
 | |
|     //   If there is a visible declaration of an entity with linkage
 | |
|     //   having the same name and type, ignoring entities declared
 | |
|     //   outside the innermost enclosing namespace scope, the block
 | |
|     //   scope declaration declares that same entity and receives the
 | |
|     //   linkage of the previous declaration.
 | |
|     DeclContext *OuterContext = DC->getRedeclContext();
 | |
|     if (!OuterContext->isFunctionOrMethod())
 | |
|       // This rule only applies to block-scope declarations.
 | |
|       return false;
 | |
|     
 | |
|     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
 | |
|     if (PrevOuterContext->isRecord())
 | |
|       // We found a member function: ignore it.
 | |
|       return false;
 | |
|     
 | |
|     // Find the innermost enclosing namespace for the new and
 | |
|     // previous declarations.
 | |
|     OuterContext = OuterContext->getEnclosingNamespaceContext();
 | |
|     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
 | |
| 
 | |
|     // The previous declaration is in a different namespace, so it
 | |
|     // isn't the same function.
 | |
|     if (!OuterContext->Equals(PrevOuterContext))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
 | |
|   CXXScopeSpec &SS = D.getCXXScopeSpec();
 | |
|   if (!SS.isSet()) return;
 | |
|   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
 | |
| }
 | |
| 
 | |
| NamedDecl*
 | |
| Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
 | |
|                               QualType R, TypeSourceInfo *TInfo,
 | |
|                               LookupResult &Previous,
 | |
|                               MultiTemplateParamsArg TemplateParamLists,
 | |
|                               bool &Redeclaration) {
 | |
|   DeclarationName Name = GetNameForDeclarator(D).getName();
 | |
| 
 | |
|   // Check that there are no default arguments (C++ only).
 | |
|   if (getLangOptions().CPlusPlus)
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
| 
 | |
|   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
 | |
|   assert(SCSpec != DeclSpec::SCS_typedef &&
 | |
|          "Parser allowed 'typedef' as storage class VarDecl.");
 | |
|   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | |
|   if (SCSpec == DeclSpec::SCS_mutable) {
 | |
|     // mutable can only appear on non-static class members, so it's always
 | |
|     // an error here
 | |
|     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
 | |
|     D.setInvalidType();
 | |
|     SC = SC_None;
 | |
|   }
 | |
|   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
 | |
|   VarDecl::StorageClass SCAsWritten
 | |
|     = StorageClassSpecToVarDeclStorageClass(SCSpec);
 | |
| 
 | |
|   IdentifierInfo *II = Name.getAsIdentifierInfo();
 | |
|   if (!II) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
 | |
|       << Name.getAsString();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D);
 | |
| 
 | |
|   if (!DC->isRecord() && S->getFnParent() == 0) {
 | |
|     // C99 6.9p2: The storage-class specifiers auto and register shall not
 | |
|     // appear in the declaration specifiers in an external declaration.
 | |
|     if (SC == SC_Auto || SC == SC_Register) {
 | |
| 
 | |
|       // If this is a register variable with an asm label specified, then this
 | |
|       // is a GNU extension.
 | |
|       if (SC == SC_Register && D.getAsmLabel())
 | |
|         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
 | |
|       else
 | |
|         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
 | |
|       D.setInvalidType();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   bool isExplicitSpecialization = false;
 | |
|   VarDecl *NewVD;
 | |
|   if (!getLangOptions().CPlusPlus) {
 | |
|     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
 | |
|                             D.getIdentifierLoc(), II,
 | |
|                             R, TInfo, SC, SCAsWritten);
 | |
|   
 | |
|     if (D.isInvalidType())
 | |
|       NewVD->setInvalidDecl();
 | |
|   } else {
 | |
|     if (DC->isRecord() && !CurContext->isRecord()) {
 | |
|       // This is an out-of-line definition of a static data member.
 | |
|       if (SC == SC_Static) {
 | |
|         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|              diag::err_static_out_of_line)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|       } else if (SC == SC_None)
 | |
|         SC = SC_Static;
 | |
|     }
 | |
|     if (SC == SC_Static) {
 | |
|       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
 | |
|         if (RD->isLocalClass())
 | |
|           Diag(D.getIdentifierLoc(),
 | |
|                diag::err_static_data_member_not_allowed_in_local_class)
 | |
|             << Name << RD->getDeclName();
 | |
| 
 | |
|         // C++ [class.union]p1: If a union contains a static data member,
 | |
|         // the program is ill-formed.
 | |
|         //
 | |
|         // We also disallow static data members in anonymous structs.
 | |
|         if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
 | |
|           Diag(D.getIdentifierLoc(),
 | |
|                diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
 | |
|             << Name << RD->isUnion();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Match up the template parameter lists with the scope specifier, then
 | |
|     // determine whether we have a template or a template specialization.
 | |
|     isExplicitSpecialization = false;
 | |
|     bool Invalid = false;
 | |
|     if (TemplateParameterList *TemplateParams
 | |
|         = MatchTemplateParametersToScopeSpecifier(
 | |
|                                                   D.getDeclSpec().getSourceRange().getBegin(),
 | |
|                                                   D.getCXXScopeSpec(),
 | |
|                                                   TemplateParamLists.get(),
 | |
|                                                   TemplateParamLists.size(),
 | |
|                                                   /*never a friend*/ false,
 | |
|                                                   isExplicitSpecialization,
 | |
|                                                   Invalid)) {
 | |
|       if (TemplateParams->size() > 0) {
 | |
|         // There is no such thing as a variable template.
 | |
|         Diag(D.getIdentifierLoc(), diag::err_template_variable)
 | |
|           << II
 | |
|           << SourceRange(TemplateParams->getTemplateLoc(),
 | |
|                          TemplateParams->getRAngleLoc());
 | |
|         return 0;
 | |
|       } else {
 | |
|         // There is an extraneous 'template<>' for this variable. Complain
 | |
|         // about it, but allow the declaration of the variable.
 | |
|         Diag(TemplateParams->getTemplateLoc(),
 | |
|              diag::err_template_variable_noparams)
 | |
|           << II
 | |
|           << SourceRange(TemplateParams->getTemplateLoc(),
 | |
|                          TemplateParams->getRAngleLoc());
 | |
|         isExplicitSpecialization = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
 | |
|                             D.getIdentifierLoc(), II,
 | |
|                             R, TInfo, SC, SCAsWritten);
 | |
| 
 | |
|     // If this decl has an auto type in need of deduction, make a note of the
 | |
|     // Decl so we can diagnose uses of it in its own initializer.
 | |
|     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
 | |
|         R->getContainedAutoType())
 | |
|       ParsingInitForAutoVars.insert(NewVD);
 | |
| 
 | |
|     if (D.isInvalidType() || Invalid)
 | |
|       NewVD->setInvalidDecl();
 | |
| 
 | |
|     SetNestedNameSpecifier(NewVD, D);
 | |
| 
 | |
|     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
 | |
|       NewVD->setTemplateParameterListsInfo(Context,
 | |
|                                            TemplateParamLists.size(),
 | |
|                                            TemplateParamLists.release());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (D.getDeclSpec().isThreadSpecified()) {
 | |
|     if (NewVD->hasLocalStorage())
 | |
|       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
 | |
|     else if (!Context.Target.isTLSSupported())
 | |
|       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
 | |
|     else
 | |
|       NewVD->setThreadSpecified(true);
 | |
|   }
 | |
| 
 | |
|   // Set the lexical context. If the declarator has a C++ scope specifier, the
 | |
|   // lexical context will be different from the semantic context.
 | |
|   NewVD->setLexicalDeclContext(CurContext);
 | |
| 
 | |
|   // Handle attributes prior to checking for duplicates in MergeVarDecl
 | |
|   ProcessDeclAttributes(S, NewVD, D);
 | |
| 
 | |
|   // Handle GNU asm-label extension (encoded as an attribute).
 | |
|   if (Expr *E = (Expr*)D.getAsmLabel()) {
 | |
|     // The parser guarantees this is a string.
 | |
|     StringLiteral *SE = cast<StringLiteral>(E);
 | |
|     llvm::StringRef Label = SE->getString();
 | |
|     if (S->getFnParent() != 0) {
 | |
|       switch (SC) {
 | |
|       case SC_None:
 | |
|       case SC_Auto:
 | |
|         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
 | |
|         break;
 | |
|       case SC_Register:
 | |
|         if (!Context.Target.isValidGCCRegisterName(Label))
 | |
|           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
 | |
|         break;
 | |
|       case SC_Static:
 | |
|       case SC_Extern:
 | |
|       case SC_PrivateExtern:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
 | |
|                                                 Context, Label));
 | |
|   }
 | |
| 
 | |
|   // Diagnose shadowed variables before filtering for scope.
 | |
|   if (!D.getCXXScopeSpec().isSet())
 | |
|     CheckShadow(S, NewVD, Previous);
 | |
| 
 | |
|   // Don't consider existing declarations that are in a different
 | |
|   // scope and are out-of-semantic-context declarations (if the new
 | |
|   // declaration has linkage).
 | |
|   FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
 | |
|                        isExplicitSpecialization);
 | |
|   
 | |
|   if (!getLangOptions().CPlusPlus)
 | |
|     CheckVariableDeclaration(NewVD, Previous, Redeclaration);
 | |
|   else {
 | |
|     // Merge the decl with the existing one if appropriate.
 | |
|     if (!Previous.empty()) {
 | |
|       if (Previous.isSingleResult() &&
 | |
|           isa<FieldDecl>(Previous.getFoundDecl()) &&
 | |
|           D.getCXXScopeSpec().isSet()) {
 | |
|         // The user tried to define a non-static data member
 | |
|         // out-of-line (C++ [dcl.meaning]p1).
 | |
|         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
 | |
|           << D.getCXXScopeSpec().getRange();
 | |
|         Previous.clear();
 | |
|         NewVD->setInvalidDecl();
 | |
|       }
 | |
|     } else if (D.getCXXScopeSpec().isSet()) {
 | |
|       // No previous declaration in the qualifying scope.
 | |
|       Diag(D.getIdentifierLoc(), diag::err_no_member)
 | |
|         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|       NewVD->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     CheckVariableDeclaration(NewVD, Previous, Redeclaration);
 | |
| 
 | |
|     // This is an explicit specialization of a static data member. Check it.
 | |
|     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
 | |
|         CheckMemberSpecialization(NewVD, Previous))
 | |
|       NewVD->setInvalidDecl();
 | |
|   }
 | |
|   
 | |
|   // attributes declared post-definition are currently ignored
 | |
|   // FIXME: This should be handled in attribute merging, not
 | |
|   // here.
 | |
|   if (Previous.isSingleResult()) {
 | |
|     VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
 | |
|     if (Def && (Def = Def->getDefinition()) &&
 | |
|         Def != NewVD && D.hasAttributes()) {
 | |
|       Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
 | |
|       Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a locally-scoped extern C variable, update the map of
 | |
|   // such variables.
 | |
|   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
 | |
|       !NewVD->isInvalidDecl())
 | |
|     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
 | |
| 
 | |
|   // If there's a #pragma GCC visibility in scope, and this isn't a class
 | |
|   // member, set the visibility of this variable.
 | |
|   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
 | |
|     AddPushedVisibilityAttribute(NewVD);
 | |
|   
 | |
|   MarkUnusedFileScopedDecl(NewVD);
 | |
| 
 | |
|   return NewVD;
 | |
| }
 | |
| 
 | |
| /// \brief Diagnose variable or built-in function shadowing.  Implements
 | |
| /// -Wshadow.
 | |
| ///
 | |
| /// This method is called whenever a VarDecl is added to a "useful"
 | |
| /// scope.
 | |
| ///
 | |
| /// \param S the scope in which the shadowing name is being declared
 | |
| /// \param R the lookup of the name
 | |
| ///
 | |
| void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
 | |
|   // Return if warning is ignored.
 | |
|   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
 | |
|         Diagnostic::Ignored)
 | |
|     return;
 | |
| 
 | |
|   // Don't diagnose declarations at file scope.
 | |
|   if (D->hasGlobalStorage())
 | |
|     return;
 | |
| 
 | |
|   DeclContext *NewDC = D->getDeclContext();
 | |
| 
 | |
|   // Only diagnose if we're shadowing an unambiguous field or variable.
 | |
|   if (R.getResultKind() != LookupResult::Found)
 | |
|     return;
 | |
| 
 | |
|   NamedDecl* ShadowedDecl = R.getFoundDecl();
 | |
|   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
 | |
|     return;
 | |
| 
 | |
|   // Fields are not shadowed by variables in C++ static methods.
 | |
|   if (isa<FieldDecl>(ShadowedDecl))
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
 | |
|       if (MD->isStatic())
 | |
|         return;
 | |
| 
 | |
|   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
 | |
|     if (shadowedVar->isExternC()) {
 | |
|       // For shadowing external vars, make sure that we point to the global
 | |
|       // declaration, not a locally scoped extern declaration.
 | |
|       for (VarDecl::redecl_iterator
 | |
|              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
 | |
|            I != E; ++I)
 | |
|         if (I->isFileVarDecl()) {
 | |
|           ShadowedDecl = *I;
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   DeclContext *OldDC = ShadowedDecl->getDeclContext();
 | |
| 
 | |
|   // Only warn about certain kinds of shadowing for class members.
 | |
|   if (NewDC && NewDC->isRecord()) {
 | |
|     // In particular, don't warn about shadowing non-class members.
 | |
|     if (!OldDC->isRecord())
 | |
|       return;
 | |
| 
 | |
|     // TODO: should we warn about static data members shadowing
 | |
|     // static data members from base classes?
 | |
|     
 | |
|     // TODO: don't diagnose for inaccessible shadowed members.
 | |
|     // This is hard to do perfectly because we might friend the
 | |
|     // shadowing context, but that's just a false negative.
 | |
|   }
 | |
| 
 | |
|   // Determine what kind of declaration we're shadowing.
 | |
|   unsigned Kind;
 | |
|   if (isa<RecordDecl>(OldDC)) {
 | |
|     if (isa<FieldDecl>(ShadowedDecl))
 | |
|       Kind = 3; // field
 | |
|     else
 | |
|       Kind = 2; // static data member
 | |
|   } else if (OldDC->isFileContext())
 | |
|     Kind = 1; // global
 | |
|   else
 | |
|     Kind = 0; // local
 | |
| 
 | |
|   DeclarationName Name = R.getLookupName();
 | |
| 
 | |
|   // Emit warning and note.
 | |
|   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
 | |
|   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
 | |
| }
 | |
| 
 | |
| /// \brief Check -Wshadow without the advantage of a previous lookup.
 | |
| void Sema::CheckShadow(Scope *S, VarDecl *D) {
 | |
|   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
 | |
|         Diagnostic::Ignored)
 | |
|     return;
 | |
| 
 | |
|   LookupResult R(*this, D->getDeclName(), D->getLocation(),
 | |
|                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
 | |
|   LookupName(R, S);
 | |
|   CheckShadow(S, D, R);
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic checking on a newly-created variable
 | |
| /// declaration.
 | |
| ///
 | |
| /// This routine performs all of the type-checking required for a
 | |
| /// variable declaration once it has been built. It is used both to
 | |
| /// check variables after they have been parsed and their declarators
 | |
| /// have been translated into a declaration, and to check variables
 | |
| /// that have been instantiated from a template.
 | |
| ///
 | |
| /// Sets NewVD->isInvalidDecl() if an error was encountered.
 | |
| void Sema::CheckVariableDeclaration(VarDecl *NewVD,
 | |
|                                     LookupResult &Previous,
 | |
|                                     bool &Redeclaration) {
 | |
|   // If the decl is already known invalid, don't check it.
 | |
|   if (NewVD->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   QualType T = NewVD->getType();
 | |
| 
 | |
|   if (T->isObjCObjectType()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
 | |
|     return NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Emit an error if an address space was applied to decl with local storage.
 | |
|   // This includes arrays of objects with address space qualifiers, but not
 | |
|   // automatic variables that point to other address spaces.
 | |
|   // ISO/IEC TR 18037 S5.1.2
 | |
|   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
 | |
|     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
 | |
|     return NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
 | |
|       && !NewVD->hasAttr<BlocksAttr>())
 | |
|     Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
 | |
|   
 | |
|   bool isVM = T->isVariablyModifiedType();
 | |
|   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
 | |
|       NewVD->hasAttr<BlocksAttr>())
 | |
|     getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|   if ((isVM && NewVD->hasLinkage()) ||
 | |
|       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
 | |
|     bool SizeIsNegative;
 | |
|     llvm::APSInt Oversized;
 | |
|     QualType FixedTy =
 | |
|         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
 | |
|                                             Oversized);
 | |
| 
 | |
|     if (FixedTy.isNull() && T->isVariableArrayType()) {
 | |
|       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
 | |
|       // FIXME: This won't give the correct result for
 | |
|       // int a[10][n];
 | |
|       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
 | |
| 
 | |
|       if (NewVD->isFileVarDecl())
 | |
|         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
 | |
|         << SizeRange;
 | |
|       else if (NewVD->getStorageClass() == SC_Static)
 | |
|         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
 | |
|         << SizeRange;
 | |
|       else
 | |
|         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
 | |
|         << SizeRange;
 | |
|       return NewVD->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     if (FixedTy.isNull()) {
 | |
|       if (NewVD->isFileVarDecl())
 | |
|         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
 | |
|       else
 | |
|         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
 | |
|       return NewVD->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
 | |
|     NewVD->setType(FixedTy);
 | |
|   }
 | |
| 
 | |
|   if (Previous.empty() && NewVD->isExternC()) {
 | |
|     // Since we did not find anything by this name and we're declaring
 | |
|     // an extern "C" variable, look for a non-visible extern "C"
 | |
|     // declaration with the same name.
 | |
|     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | |
|       = LocallyScopedExternalDecls.find(NewVD->getDeclName());
 | |
|     if (Pos != LocallyScopedExternalDecls.end())
 | |
|       Previous.addDecl(Pos->second);
 | |
|   }
 | |
| 
 | |
|   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
 | |
|       << T;
 | |
|     return NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
 | |
|     return NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
 | |
|     Diag(NewVD->getLocation(), diag::err_block_on_vm);
 | |
|     return NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // Function pointers and references cannot have qualified function type, only
 | |
|   // function pointer-to-members can do that.
 | |
|   QualType Pointee;
 | |
|   unsigned PtrOrRef = 0;
 | |
|   if (const PointerType *Ptr = T->getAs<PointerType>())
 | |
|     Pointee = Ptr->getPointeeType();
 | |
|   else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
 | |
|     Pointee = Ref->getPointeeType();
 | |
|     PtrOrRef = 1;
 | |
|   }
 | |
|   if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
 | |
|       Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
 | |
|     Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
 | |
|         << PtrOrRef;
 | |
|     return NewVD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (!Previous.empty()) {
 | |
|     Redeclaration = true;
 | |
|     MergeVarDecl(NewVD, Previous);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Data used with FindOverriddenMethod
 | |
| struct FindOverriddenMethodData {
 | |
|   Sema *S;
 | |
|   CXXMethodDecl *Method;
 | |
| };
 | |
| 
 | |
| /// \brief Member lookup function that determines whether a given C++
 | |
| /// method overrides a method in a base class, to be used with
 | |
| /// CXXRecordDecl::lookupInBases().
 | |
| static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
 | |
|                                  CXXBasePath &Path,
 | |
|                                  void *UserData) {
 | |
|   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|   FindOverriddenMethodData *Data 
 | |
|     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
 | |
|   
 | |
|   DeclarationName Name = Data->Method->getDeclName();
 | |
|   
 | |
|   // FIXME: Do we care about other names here too?
 | |
|   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | |
|     // We really want to find the base class destructor here.
 | |
|     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
 | |
|     CanQualType CT = Data->S->Context.getCanonicalType(T);
 | |
|     
 | |
|     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
 | |
|   }    
 | |
|   
 | |
|   for (Path.Decls = BaseRecord->lookup(Name);
 | |
|        Path.Decls.first != Path.Decls.second;
 | |
|        ++Path.Decls.first) {
 | |
|     NamedDecl *D = *Path.Decls.first;
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | |
|       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// AddOverriddenMethods - See if a method overrides any in the base classes,
 | |
| /// and if so, check that it's a valid override and remember it.
 | |
| bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
 | |
|   // Look for virtual methods in base classes that this method might override.
 | |
|   CXXBasePaths Paths;
 | |
|   FindOverriddenMethodData Data;
 | |
|   Data.Method = MD;
 | |
|   Data.S = this;
 | |
|   bool AddedAny = false;
 | |
|   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
 | |
|     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
 | |
|          E = Paths.found_decls_end(); I != E; ++I) {
 | |
|       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
 | |
|         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
 | |
|             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
 | |
|             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
 | |
|           MD->addOverriddenMethod(OldMD->getCanonicalDecl());
 | |
|           AddedAny = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return AddedAny;
 | |
| }
 | |
| 
 | |
| static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
 | |
|   LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
 | |
|                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
 | |
|   S.LookupQualifiedName(Prev, NewFD->getDeclContext());
 | |
|   assert(!Prev.isAmbiguous() &&
 | |
|          "Cannot have an ambiguity in previous-declaration lookup");
 | |
|   for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
 | |
|        Func != FuncEnd; ++Func) {
 | |
|     if (isa<FunctionDecl>(*Func) &&
 | |
|         isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
 | |
|       S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
 | |
|   }
 | |
| }
 | |
| 
 | |
| NamedDecl*
 | |
| Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
 | |
|                               QualType R, TypeSourceInfo *TInfo,
 | |
|                               LookupResult &Previous,
 | |
|                               MultiTemplateParamsArg TemplateParamLists,
 | |
|                               bool IsFunctionDefinition, bool &Redeclaration) {
 | |
|   assert(R.getTypePtr()->isFunctionType());
 | |
| 
 | |
|   // TODO: consider using NameInfo for diagnostic.
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   FunctionDecl::StorageClass SC = SC_None;
 | |
|   switch (D.getDeclSpec().getStorageClassSpec()) {
 | |
|   default: assert(0 && "Unknown storage class!");
 | |
|   case DeclSpec::SCS_auto:
 | |
|   case DeclSpec::SCS_register:
 | |
|   case DeclSpec::SCS_mutable:
 | |
|     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|          diag::err_typecheck_sclass_func);
 | |
|     D.setInvalidType();
 | |
|     break;
 | |
|   case DeclSpec::SCS_unspecified: SC = SC_None; break;
 | |
|   case DeclSpec::SCS_extern:      SC = SC_Extern; break;
 | |
|   case DeclSpec::SCS_static: {
 | |
|     if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
 | |
|       // C99 6.7.1p5:
 | |
|       //   The declaration of an identifier for a function that has
 | |
|       //   block scope shall have no explicit storage-class specifier
 | |
|       //   other than extern
 | |
|       // See also (C++ [dcl.stc]p4).
 | |
|       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|            diag::err_static_block_func);
 | |
|       SC = SC_None;
 | |
|     } else
 | |
|       SC = SC_Static;
 | |
|     break;
 | |
|   }
 | |
|   case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
 | |
|   }
 | |
| 
 | |
|   if (D.getDeclSpec().isThreadSpecified())
 | |
|     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | |
| 
 | |
|   // Do not allow returning a objc interface by-value.
 | |
|   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
 | |
|     Diag(D.getIdentifierLoc(),
 | |
|          diag::err_object_cannot_be_passed_returned_by_value) << 0
 | |
|     << R->getAs<FunctionType>()->getResultType();
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   
 | |
|   FunctionDecl *NewFD;
 | |
|   bool isInline = D.getDeclSpec().isInlineSpecified();
 | |
|   bool isFriend = false;
 | |
|   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
 | |
|   FunctionDecl::StorageClass SCAsWritten
 | |
|     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
 | |
|   FunctionTemplateDecl *FunctionTemplate = 0;
 | |
|   bool isExplicitSpecialization = false;
 | |
|   bool isFunctionTemplateSpecialization = false;
 | |
| 
 | |
|   if (!getLangOptions().CPlusPlus) {
 | |
|     // Determine whether the function was written with a
 | |
|     // prototype. This true when:
 | |
|     //   - there is a prototype in the declarator, or
 | |
|     //   - the type R of the function is some kind of typedef or other reference
 | |
|     //     to a type name (which eventually refers to a function type).
 | |
|     bool HasPrototype =
 | |
|     (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
 | |
|     (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
 | |
|   
 | |
|     NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
 | |
|                                  NameInfo, R, TInfo, SC, SCAsWritten, isInline,
 | |
|                                  HasPrototype);
 | |
|     if (D.isInvalidType())
 | |
|       NewFD->setInvalidDecl();
 | |
|     
 | |
|     // Set the lexical context.
 | |
|     NewFD->setLexicalDeclContext(CurContext);
 | |
|     // Filter out previous declarations that don't match the scope.
 | |
|     FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
 | |
|                          /*ExplicitInstantiationOrSpecialization=*/false);
 | |
|   } else {
 | |
|     isFriend = D.getDeclSpec().isFriendSpecified();
 | |
|     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
 | |
|     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
 | |
|     bool isVirtualOkay = false;
 | |
| 
 | |
|     // Check that the return type is not an abstract class type.
 | |
|     // For record types, this is done by the AbstractClassUsageDiagnoser once
 | |
|     // the class has been completely parsed.
 | |
|     if (!DC->isRecord() &&
 | |
|       RequireNonAbstractType(D.getIdentifierLoc(),
 | |
|                              R->getAs<FunctionType>()->getResultType(),
 | |
|                              diag::err_abstract_type_in_decl,
 | |
|                              AbstractReturnType))
 | |
|       D.setInvalidType();
 | |
| 
 | |
|     if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
 | |
|       // This is a C++ constructor declaration.
 | |
|       assert(DC->isRecord() &&
 | |
|              "Constructors can only be declared in a member context");
 | |
| 
 | |
|       R = CheckConstructorDeclarator(D, R, SC);
 | |
| 
 | |
|       // Create the new declaration
 | |
|       NewFD = CXXConstructorDecl::Create(Context,
 | |
|                                          cast<CXXRecordDecl>(DC),
 | |
|                                          D.getSourceRange().getBegin(),
 | |
|                                          NameInfo, R, TInfo,
 | |
|                                          isExplicit, isInline,
 | |
|                                          /*isImplicitlyDeclared=*/false);
 | |
|     } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | |
|       // This is a C++ destructor declaration.
 | |
|       if (DC->isRecord()) {
 | |
|         R = CheckDestructorDeclarator(D, R, SC);
 | |
| 
 | |
|         NewFD = CXXDestructorDecl::Create(Context,
 | |
|                                           cast<CXXRecordDecl>(DC),
 | |
|                                           D.getSourceRange().getBegin(),
 | |
|                                           NameInfo, R, TInfo,
 | |
|                                           isInline,
 | |
|                                           /*isImplicitlyDeclared=*/false);
 | |
|         isVirtualOkay = true;
 | |
|       } else {
 | |
|         Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
 | |
| 
 | |
|         // Create a FunctionDecl to satisfy the function definition parsing
 | |
|         // code path.
 | |
|         NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
 | |
|                                      D.getIdentifierLoc(), Name, R, TInfo,
 | |
|                                      SC, SCAsWritten, isInline,
 | |
|                                      /*hasPrototype=*/true);
 | |
|         D.setInvalidType();
 | |
|       }
 | |
|     } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
 | |
|       if (!DC->isRecord()) {
 | |
|         Diag(D.getIdentifierLoc(),
 | |
|              diag::err_conv_function_not_member);
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       CheckConversionDeclarator(D, R, SC);
 | |
|       NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
 | |
|                                         D.getSourceRange().getBegin(),
 | |
|                                         NameInfo, R, TInfo,
 | |
|                                         isInline, isExplicit,
 | |
|                                         SourceLocation());
 | |
| 
 | |
|       isVirtualOkay = true;
 | |
|     } else if (DC->isRecord()) {
 | |
|       // If the of the function is the same as the name of the record, then this
 | |
|       // must be an invalid constructor that has a return type.
 | |
|       // (The parser checks for a return type and makes the declarator a
 | |
|       // constructor if it has no return type).
 | |
|       // must have an invalid constructor that has a return type
 | |
|       if (Name.getAsIdentifierInfo() &&
 | |
|           Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
 | |
|         Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
 | |
|           << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | |
|           << SourceRange(D.getIdentifierLoc());
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       bool isStatic = SC == SC_Static;
 | |
| 
 | |
|       // [class.free]p1:
 | |
|       // Any allocation function for a class T is a static member
 | |
|       // (even if not explicitly declared static).
 | |
|       if (Name.getCXXOverloadedOperator() == OO_New ||
 | |
|           Name.getCXXOverloadedOperator() == OO_Array_New)
 | |
|         isStatic = true;
 | |
| 
 | |
|       // [class.free]p6 Any deallocation function for a class X is a static member
 | |
|       // (even if not explicitly declared static).
 | |
|       if (Name.getCXXOverloadedOperator() == OO_Delete ||
 | |
|           Name.getCXXOverloadedOperator() == OO_Array_Delete)
 | |
|         isStatic = true;
 | |
| 
 | |
|       // This is a C++ method declaration.
 | |
|       NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
 | |
|                                     D.getSourceRange().getBegin(),
 | |
|                                     NameInfo, R, TInfo,
 | |
|                                     isStatic, SCAsWritten, isInline,
 | |
|                                     SourceLocation());
 | |
| 
 | |
|       isVirtualOkay = !isStatic;
 | |
|     } else {
 | |
|       // Determine whether the function was written with a
 | |
|       // prototype. This true when:
 | |
|       //   - we're in C++ (where every function has a prototype),
 | |
|       NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
 | |
|                                    NameInfo, R, TInfo, SC, SCAsWritten, isInline,
 | |
|                                    true/*HasPrototype*/);
 | |
|     }
 | |
| 
 | |
|     if (isFriend && !isInline && IsFunctionDefinition) {
 | |
|       // C++ [class.friend]p5
 | |
|       //   A function can be defined in a friend declaration of a
 | |
|       //   class . . . . Such a function is implicitly inline.
 | |
|       NewFD->setImplicitlyInline();
 | |
|     }
 | |
| 
 | |
|     SetNestedNameSpecifier(NewFD, D);
 | |
|     isExplicitSpecialization = false;
 | |
|     isFunctionTemplateSpecialization = false;
 | |
|     if (D.isInvalidType())
 | |
|       NewFD->setInvalidDecl();
 | |
|     
 | |
|     // Set the lexical context. If the declarator has a C++
 | |
|     // scope specifier, or is the object of a friend declaration, the
 | |
|     // lexical context will be different from the semantic context.
 | |
|     NewFD->setLexicalDeclContext(CurContext);
 | |
|     
 | |
|     // Match up the template parameter lists with the scope specifier, then
 | |
|     // determine whether we have a template or a template specialization.
 | |
|     bool Invalid = false;
 | |
|     if (TemplateParameterList *TemplateParams
 | |
|           = MatchTemplateParametersToScopeSpecifier(
 | |
|                                   D.getDeclSpec().getSourceRange().getBegin(),
 | |
|                                   D.getCXXScopeSpec(),
 | |
|                                   TemplateParamLists.get(),
 | |
|                                   TemplateParamLists.size(),
 | |
|                                   isFriend,
 | |
|                                   isExplicitSpecialization,
 | |
|                                   Invalid)) {
 | |
|       if (TemplateParams->size() > 0) {
 | |
|         // This is a function template
 | |
| 
 | |
|         // Check that we can declare a template here.
 | |
|         if (CheckTemplateDeclScope(S, TemplateParams))
 | |
|           return 0;
 | |
| 
 | |
|         // A destructor cannot be a template.
 | |
|         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | |
|           Diag(NewFD->getLocation(), diag::err_destructor_template);
 | |
|           return 0;
 | |
|         }
 | |
| 
 | |
|         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
 | |
|                                                         NewFD->getLocation(),
 | |
|                                                         Name, TemplateParams,
 | |
|                                                         NewFD);
 | |
|         FunctionTemplate->setLexicalDeclContext(CurContext);
 | |
|         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
 | |
| 
 | |
|         // For source fidelity, store the other template param lists.
 | |
|         if (TemplateParamLists.size() > 1) {
 | |
|           NewFD->setTemplateParameterListsInfo(Context,
 | |
|                                                TemplateParamLists.size() - 1,
 | |
|                                                TemplateParamLists.release());
 | |
|         }
 | |
|       } else {
 | |
|         // This is a function template specialization.
 | |
|         isFunctionTemplateSpecialization = true;
 | |
|         // For source fidelity, store all the template param lists.
 | |
|         NewFD->setTemplateParameterListsInfo(Context,
 | |
|                                              TemplateParamLists.size(),
 | |
|                                              TemplateParamLists.release());
 | |
| 
 | |
|         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
 | |
|         if (isFriend) {
 | |
|           // We want to remove the "template<>", found here.
 | |
|           SourceRange RemoveRange = TemplateParams->getSourceRange();
 | |
| 
 | |
|           // If we remove the template<> and the name is not a
 | |
|           // template-id, we're actually silently creating a problem:
 | |
|           // the friend declaration will refer to an untemplated decl,
 | |
|           // and clearly the user wants a template specialization.  So
 | |
|           // we need to insert '<>' after the name.
 | |
|           SourceLocation InsertLoc;
 | |
|           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
 | |
|             InsertLoc = D.getName().getSourceRange().getEnd();
 | |
|             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
 | |
|           }
 | |
| 
 | |
|           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
 | |
|             << Name << RemoveRange
 | |
|             << FixItHint::CreateRemoval(RemoveRange)
 | |
|             << FixItHint::CreateInsertion(InsertLoc, "<>");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       // All template param lists were matched against the scope specifier:
 | |
|       // this is NOT (an explicit specialization of) a template.
 | |
|       if (TemplateParamLists.size() > 0)
 | |
|         // For source fidelity, store all the template param lists.
 | |
|         NewFD->setTemplateParameterListsInfo(Context,
 | |
|                                              TemplateParamLists.size(),
 | |
|                                              TemplateParamLists.release());
 | |
|     }
 | |
| 
 | |
|     if (Invalid) {
 | |
|       NewFD->setInvalidDecl();
 | |
|       if (FunctionTemplate)
 | |
|         FunctionTemplate->setInvalidDecl();
 | |
|     }
 | |
|   
 | |
|     // C++ [dcl.fct.spec]p5:
 | |
|     //   The virtual specifier shall only be used in declarations of
 | |
|     //   nonstatic class member functions that appear within a
 | |
|     //   member-specification of a class declaration; see 10.3.
 | |
|     //
 | |
|     if (isVirtual && !NewFD->isInvalidDecl()) {
 | |
|       if (!isVirtualOkay) {
 | |
|         Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | |
|              diag::err_virtual_non_function);
 | |
|       } else if (!CurContext->isRecord()) {
 | |
|         // 'virtual' was specified outside of the class.
 | |
|         Diag(D.getDeclSpec().getVirtualSpecLoc(), 
 | |
|              diag::err_virtual_out_of_class)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | |
|       } else if (NewFD->getDescribedFunctionTemplate()) {
 | |
|         // C++ [temp.mem]p3:
 | |
|         //  A member function template shall not be virtual.
 | |
|         Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | |
|              diag::err_virtual_member_function_template)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | |
|       } else {
 | |
|         // Okay: Add virtual to the method.
 | |
|         NewFD->setVirtualAsWritten(true);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // C++ [dcl.fct.spec]p3:
 | |
|     //  The inline specifier shall not appear on a block scope function declaration.
 | |
|     if (isInline && !NewFD->isInvalidDecl()) {
 | |
|       if (CurContext->isFunctionOrMethod()) {
 | |
|         // 'inline' is not allowed on block scope function declaration.
 | |
|         Diag(D.getDeclSpec().getInlineSpecLoc(), 
 | |
|              diag::err_inline_declaration_block_scope) << Name
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | |
|       }
 | |
|     }
 | |
|  
 | |
|     // C++ [dcl.fct.spec]p6:
 | |
|     //  The explicit specifier shall be used only in the declaration of a
 | |
|     //  constructor or conversion function within its class definition; see 12.3.1
 | |
|     //  and 12.3.2.
 | |
|     if (isExplicit && !NewFD->isInvalidDecl()) {
 | |
|       if (!CurContext->isRecord()) {
 | |
|         // 'explicit' was specified outside of the class.
 | |
|         Diag(D.getDeclSpec().getExplicitSpecLoc(), 
 | |
|              diag::err_explicit_out_of_class)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | |
|       } else if (!isa<CXXConstructorDecl>(NewFD) && 
 | |
|                  !isa<CXXConversionDecl>(NewFD)) {
 | |
|         // 'explicit' was specified on a function that wasn't a constructor
 | |
|         // or conversion function.
 | |
|         Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | |
|              diag::err_explicit_non_ctor_or_conv_function)
 | |
|           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | |
|       }      
 | |
|     }
 | |
| 
 | |
|     // Filter out previous declarations that don't match the scope.
 | |
|     FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
 | |
|                          isExplicitSpecialization || 
 | |
|                          isFunctionTemplateSpecialization);
 | |
| 
 | |
|     if (isFriend) {
 | |
|       // For now, claim that the objects have no previous declaration.
 | |
|       if (FunctionTemplate) {
 | |
|         FunctionTemplate->setObjectOfFriendDecl(false);
 | |
|         FunctionTemplate->setAccess(AS_public);
 | |
|       }
 | |
|       NewFD->setObjectOfFriendDecl(false);
 | |
|       NewFD->setAccess(AS_public);
 | |
|     }
 | |
| 
 | |
|     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
 | |
|       // A method is implicitly inline if it's defined in its class
 | |
|       // definition.
 | |
|       NewFD->setImplicitlyInline();
 | |
|     }
 | |
| 
 | |
|     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
 | |
|         !CurContext->isRecord()) {
 | |
|       // C++ [class.static]p1:
 | |
|       //   A data or function member of a class may be declared static
 | |
|       //   in a class definition, in which case it is a static member of
 | |
|       //   the class.
 | |
| 
 | |
|       // Complain about the 'static' specifier if it's on an out-of-line
 | |
|       // member function definition.
 | |
|       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | |
|            diag::err_static_out_of_line)
 | |
|         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Handle GNU asm-label extension (encoded as an attribute).
 | |
|   if (Expr *E = (Expr*) D.getAsmLabel()) {
 | |
|     // The parser guarantees this is a string.
 | |
|     StringLiteral *SE = cast<StringLiteral>(E);
 | |
|     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
 | |
|                                                 SE->getString()));
 | |
|   }
 | |
| 
 | |
|   // Copy the parameter declarations from the declarator D to the function
 | |
|   // declaration NewFD, if they are available.  First scavenge them into Params.
 | |
|   llvm::SmallVector<ParmVarDecl*, 16> Params;
 | |
|   if (D.isFunctionDeclarator()) {
 | |
|     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
| 
 | |
|     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
 | |
|     // function that takes no arguments, not a function that takes a
 | |
|     // single void argument.
 | |
|     // We let through "const void" here because Sema::GetTypeForDeclarator
 | |
|     // already checks for that case.
 | |
|     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
 | |
|         FTI.ArgInfo[0].Param &&
 | |
|         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
 | |
|       // Empty arg list, don't push any params.
 | |
|       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
 | |
| 
 | |
|       // In C++, the empty parameter-type-list must be spelled "void"; a
 | |
|       // typedef of void is not permitted.
 | |
|       if (getLangOptions().CPlusPlus &&
 | |
|           Param->getType().getUnqualifiedType() != Context.VoidTy) {
 | |
|         bool IsTypeAlias = false;
 | |
|         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
 | |
|           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
 | |
|         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
 | |
|           << IsTypeAlias;
 | |
|       }
 | |
|     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
 | |
|       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
 | |
|         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
 | |
|         assert(Param->getDeclContext() != NewFD && "Was set before ?");
 | |
|         Param->setDeclContext(NewFD);
 | |
|         Params.push_back(Param);
 | |
| 
 | |
|         if (Param->isInvalidDecl())
 | |
|           NewFD->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
 | |
|     // When we're declaring a function with a typedef, typeof, etc as in the
 | |
|     // following example, we'll need to synthesize (unnamed)
 | |
|     // parameters for use in the declaration.
 | |
|     //
 | |
|     // @code
 | |
|     // typedef void fn(int);
 | |
|     // fn f;
 | |
|     // @endcode
 | |
| 
 | |
|     // Synthesize a parameter for each argument type.
 | |
|     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
 | |
|          AE = FT->arg_type_end(); AI != AE; ++AI) {
 | |
|       ParmVarDecl *Param =
 | |
|         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
 | |
|       Params.push_back(Param);
 | |
|     }
 | |
|   } else {
 | |
|     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
 | |
|            "Should not need args for typedef of non-prototype fn");
 | |
|   }
 | |
|   // Finally, we know we have the right number of parameters, install them.
 | |
|   NewFD->setParams(Params.data(), Params.size());
 | |
| 
 | |
|   // Process the non-inheritable attributes on this declaration.
 | |
|   ProcessDeclAttributes(S, NewFD, D,
 | |
|                         /*NonInheritable=*/true, /*Inheritable=*/false);
 | |
| 
 | |
|   if (!getLangOptions().CPlusPlus) {
 | |
|     // Perform semantic checking on the function declaration.
 | |
|     bool isExplctSpecialization=false;
 | |
|     CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
 | |
|                              Redeclaration);
 | |
|     assert((NewFD->isInvalidDecl() || !Redeclaration ||
 | |
|             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | |
|            "previous declaration set still overloaded");
 | |
|   } else {
 | |
|     // If the declarator is a template-id, translate the parser's template 
 | |
|     // argument list into our AST format.
 | |
|     bool HasExplicitTemplateArgs = false;
 | |
|     TemplateArgumentListInfo TemplateArgs;
 | |
|     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
 | |
|       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | |
|       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
 | |
|       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
 | |
|       ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | |
|                                          TemplateId->getTemplateArgs(),
 | |
|                                          TemplateId->NumArgs);
 | |
|       translateTemplateArguments(TemplateArgsPtr,
 | |
|                                  TemplateArgs);
 | |
|       TemplateArgsPtr.release();
 | |
|     
 | |
|       HasExplicitTemplateArgs = true;
 | |
|     
 | |
|       if (FunctionTemplate) {
 | |
|         // Function template with explicit template arguments.
 | |
|         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
 | |
|           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
 | |
| 
 | |
|         HasExplicitTemplateArgs = false;
 | |
|       } else if (!isFunctionTemplateSpecialization && 
 | |
|                  !D.getDeclSpec().isFriendSpecified()) {
 | |
|         // We have encountered something that the user meant to be a 
 | |
|         // specialization (because it has explicitly-specified template
 | |
|         // arguments) but that was not introduced with a "template<>" (or had
 | |
|         // too few of them).
 | |
|         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
 | |
|           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
 | |
|           << FixItHint::CreateInsertion(
 | |
|                                         D.getDeclSpec().getSourceRange().getBegin(),
 | |
|                                                   "template<> ");
 | |
|         isFunctionTemplateSpecialization = true;
 | |
|       } else {
 | |
|         // "friend void foo<>(int);" is an implicit specialization decl.
 | |
|         isFunctionTemplateSpecialization = true;
 | |
|       }
 | |
|     } else if (isFriend && isFunctionTemplateSpecialization) {
 | |
|       // This combination is only possible in a recovery case;  the user
 | |
|       // wrote something like:
 | |
|       //   template <> friend void foo(int);
 | |
|       // which we're recovering from as if the user had written:
 | |
|       //   friend void foo<>(int);
 | |
|       // Go ahead and fake up a template id.
 | |
|       HasExplicitTemplateArgs = true;
 | |
|         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
 | |
|       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
 | |
|     }
 | |
| 
 | |
|     // If it's a friend (and only if it's a friend), it's possible
 | |
|     // that either the specialized function type or the specialized
 | |
|     // template is dependent, and therefore matching will fail.  In
 | |
|     // this case, don't check the specialization yet.
 | |
|     if (isFunctionTemplateSpecialization && isFriend &&
 | |
|         (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
 | |
|       assert(HasExplicitTemplateArgs &&
 | |
|              "friend function specialization without template args");
 | |
|       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
 | |
|                                                        Previous))
 | |
|         NewFD->setInvalidDecl();
 | |
|     } else if (isFunctionTemplateSpecialization) {
 | |
|       if (CurContext->isDependentContext() && CurContext->isRecord() 
 | |
|           && !isFriend) {
 | |
|         Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
 | |
|           << NewFD->getDeclName();
 | |
|         NewFD->setInvalidDecl();
 | |
|         return 0;
 | |
|       } else if (CheckFunctionTemplateSpecialization(NewFD,
 | |
|                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
 | |
|                                                      Previous))
 | |
|         NewFD->setInvalidDecl();
 | |
|     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
 | |
|       if (CheckMemberSpecialization(NewFD, Previous))
 | |
|           NewFD->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     // Perform semantic checking on the function declaration.
 | |
|     CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
 | |
|                              Redeclaration);
 | |
| 
 | |
|     assert((NewFD->isInvalidDecl() || !Redeclaration ||
 | |
|             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | |
|            "previous declaration set still overloaded");
 | |
| 
 | |
|     NamedDecl *PrincipalDecl = (FunctionTemplate
 | |
|                                 ? cast<NamedDecl>(FunctionTemplate)
 | |
|                                 : NewFD);
 | |
| 
 | |
|     if (isFriend && Redeclaration) {
 | |
|       AccessSpecifier Access = AS_public;
 | |
|       if (!NewFD->isInvalidDecl())
 | |
|         Access = NewFD->getPreviousDeclaration()->getAccess();
 | |
| 
 | |
|       NewFD->setAccess(Access);
 | |
|       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
 | |
| 
 | |
|       PrincipalDecl->setObjectOfFriendDecl(true);
 | |
|     }
 | |
| 
 | |
|     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
 | |
|         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
 | |
|       PrincipalDecl->setNonMemberOperator();
 | |
| 
 | |
|     // If we have a function template, check the template parameter
 | |
|     // list. This will check and merge default template arguments.
 | |
|     if (FunctionTemplate) {
 | |
|       FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
 | |
|       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
 | |
|                                  PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
 | |
|                             D.getDeclSpec().isFriendSpecified()
 | |
|                               ? (IsFunctionDefinition 
 | |
|                                    ? TPC_FriendFunctionTemplateDefinition
 | |
|                                    : TPC_FriendFunctionTemplate)
 | |
|                               : (D.getCXXScopeSpec().isSet() && 
 | |
|                                  DC && DC->isRecord() && 
 | |
|                                  DC->isDependentContext())
 | |
|                                   ? TPC_ClassTemplateMember
 | |
|                                   : TPC_FunctionTemplate);
 | |
|     }
 | |
| 
 | |
|     if (NewFD->isInvalidDecl()) {
 | |
|       // Ignore all the rest of this.
 | |
|     } else if (!Redeclaration) {
 | |
|       // Fake up an access specifier if it's supposed to be a class member.
 | |
|       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
 | |
|         NewFD->setAccess(AS_public);
 | |
| 
 | |
|       // Qualified decls generally require a previous declaration.
 | |
|       if (D.getCXXScopeSpec().isSet()) {
 | |
|         // ...with the major exception of templated-scope or
 | |
|         // dependent-scope friend declarations.
 | |
| 
 | |
|         // TODO: we currently also suppress this check in dependent
 | |
|         // contexts because (1) the parameter depth will be off when
 | |
|         // matching friend templates and (2) we might actually be
 | |
|         // selecting a friend based on a dependent factor.  But there
 | |
|         // are situations where these conditions don't apply and we
 | |
|         // can actually do this check immediately.
 | |
|         if (isFriend &&
 | |
|             (TemplateParamLists.size() ||
 | |
|              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
 | |
|              CurContext->isDependentContext())) {
 | |
|               // ignore these
 | |
|             } else {
 | |
|               // The user tried to provide an out-of-line definition for a
 | |
|               // function that is a member of a class or namespace, but there
 | |
|               // was no such member function declared (C++ [class.mfct]p2,
 | |
|               // C++ [namespace.memdef]p2). For example:
 | |
|               //
 | |
|               // class X {
 | |
|               //   void f() const;
 | |
|               // };
 | |
|               //
 | |
|               // void X::f() { } // ill-formed
 | |
|               //
 | |
|               // Complain about this problem, and attempt to suggest close
 | |
|               // matches (e.g., those that differ only in cv-qualifiers and
 | |
|               // whether the parameter types are references).
 | |
|               Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
 | |
|               << Name << DC << D.getCXXScopeSpec().getRange();
 | |
|               NewFD->setInvalidDecl();
 | |
| 
 | |
|               DiagnoseInvalidRedeclaration(*this, NewFD);
 | |
|             }
 | |
| 
 | |
|         // Unqualified local friend declarations are required to resolve
 | |
|         // to something.
 | |
|         } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
 | |
|           Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
 | |
|           NewFD->setInvalidDecl();
 | |
|           DiagnoseInvalidRedeclaration(*this, NewFD);
 | |
|         }
 | |
| 
 | |
|     } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
 | |
|                !isFriend && !isFunctionTemplateSpecialization &&
 | |
|                !isExplicitSpecialization) {
 | |
|       // An out-of-line member function declaration must also be a
 | |
|       // definition (C++ [dcl.meaning]p1).
 | |
|       // Note that this is not the case for explicit specializations of
 | |
|       // function templates or member functions of class templates, per
 | |
|       // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
 | |
|       // for compatibility with old SWIG code which likes to generate them.
 | |
|       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Handle attributes. We need to have merged decls when handling attributes
 | |
|   // (for example to check for conflicts, etc).
 | |
|   // FIXME: This needs to happen before we merge declarations. Then,
 | |
|   // let attribute merging cope with attribute conflicts.
 | |
|   ProcessDeclAttributes(S, NewFD, D,
 | |
|                         /*NonInheritable=*/false, /*Inheritable=*/true);
 | |
| 
 | |
|   // attributes declared post-definition are currently ignored
 | |
|   // FIXME: This should happen during attribute merging
 | |
|   if (Redeclaration && Previous.isSingleResult()) {
 | |
|     const FunctionDecl *Def;
 | |
|     FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
 | |
|     if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
 | |
|       Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
 | |
|       Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AddKnownFunctionAttributes(NewFD);
 | |
| 
 | |
|   if (NewFD->hasAttr<OverloadableAttr>() && 
 | |
|       !NewFD->getType()->getAs<FunctionProtoType>()) {
 | |
|     Diag(NewFD->getLocation(),
 | |
|          diag::err_attribute_overloadable_no_prototype)
 | |
|       << NewFD;
 | |
| 
 | |
|     // Turn this into a variadic function with no parameters.
 | |
|     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
 | |
|     FunctionProtoType::ExtProtoInfo EPI;
 | |
|     EPI.Variadic = true;
 | |
|     EPI.ExtInfo = FT->getExtInfo();
 | |
| 
 | |
|     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
 | |
|     NewFD->setType(R);
 | |
|   }
 | |
| 
 | |
|   // If there's a #pragma GCC visibility in scope, and this isn't a class
 | |
|   // member, set the visibility of this function.
 | |
|   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
 | |
|     AddPushedVisibilityAttribute(NewFD);
 | |
| 
 | |
|   // If this is a locally-scoped extern C function, update the
 | |
|   // map of such names.
 | |
|   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
 | |
|       && !NewFD->isInvalidDecl())
 | |
|     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
 | |
| 
 | |
|   // Set this FunctionDecl's range up to the right paren.
 | |
|   NewFD->setRangeEnd(D.getSourceRange().getEnd());
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     if (FunctionTemplate) {
 | |
|       if (NewFD->isInvalidDecl())
 | |
|         FunctionTemplate->setInvalidDecl();
 | |
|       return FunctionTemplate;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MarkUnusedFileScopedDecl(NewFD);
 | |
| 
 | |
|   if (getLangOptions().CUDA)
 | |
|     if (IdentifierInfo *II = NewFD->getIdentifier())
 | |
|       if (!NewFD->isInvalidDecl() &&
 | |
|           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | |
|         if (II->isStr("cudaConfigureCall")) {
 | |
|           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
 | |
|             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
 | |
| 
 | |
|           Context.setcudaConfigureCallDecl(NewFD);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   return NewFD;
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic checking of a new function declaration.
 | |
| ///
 | |
| /// Performs semantic analysis of the new function declaration
 | |
| /// NewFD. This routine performs all semantic checking that does not
 | |
| /// require the actual declarator involved in the declaration, and is
 | |
| /// used both for the declaration of functions as they are parsed
 | |
| /// (called via ActOnDeclarator) and for the declaration of functions
 | |
| /// that have been instantiated via C++ template instantiation (called
 | |
| /// via InstantiateDecl).
 | |
| ///
 | |
| /// \param IsExplicitSpecialiation whether this new function declaration is
 | |
| /// an explicit specialization of the previous declaration.
 | |
| ///
 | |
| /// This sets NewFD->isInvalidDecl() to true if there was an error.
 | |
| void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
 | |
|                                     LookupResult &Previous,
 | |
|                                     bool IsExplicitSpecialization,
 | |
|                                     bool &Redeclaration) {
 | |
|   // If NewFD is already known erroneous, don't do any of this checking.
 | |
|   if (NewFD->isInvalidDecl()) {
 | |
|     // If this is a class member, mark the class invalid immediately.
 | |
|     // This avoids some consistency errors later.
 | |
|     if (isa<CXXMethodDecl>(NewFD))
 | |
|       cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (NewFD->getResultType()->isVariablyModifiedType()) {
 | |
|     // Functions returning a variably modified type violate C99 6.7.5.2p2
 | |
|     // because all functions have linkage.
 | |
|     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
 | |
|     return NewFD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (NewFD->isMain()) 
 | |
|     CheckMain(NewFD);
 | |
| 
 | |
|   // Check for a previous declaration of this name.
 | |
|   if (Previous.empty() && NewFD->isExternC()) {
 | |
|     // Since we did not find anything by this name and we're declaring
 | |
|     // an extern "C" function, look for a non-visible extern "C"
 | |
|     // declaration with the same name.
 | |
|     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | |
|       = LocallyScopedExternalDecls.find(NewFD->getDeclName());
 | |
|     if (Pos != LocallyScopedExternalDecls.end())
 | |
|       Previous.addDecl(Pos->second);
 | |
|   }
 | |
| 
 | |
|   // Merge or overload the declaration with an existing declaration of
 | |
|   // the same name, if appropriate.
 | |
|   if (!Previous.empty()) {
 | |
|     // Determine whether NewFD is an overload of PrevDecl or
 | |
|     // a declaration that requires merging. If it's an overload,
 | |
|     // there's no more work to do here; we'll just add the new
 | |
|     // function to the scope.
 | |
| 
 | |
|     NamedDecl *OldDecl = 0;
 | |
|     if (!AllowOverloadingOfFunction(Previous, Context)) {
 | |
|       Redeclaration = true;
 | |
|       OldDecl = Previous.getFoundDecl();
 | |
|     } else {
 | |
|       switch (CheckOverload(S, NewFD, Previous, OldDecl,
 | |
|                             /*NewIsUsingDecl*/ false)) {
 | |
|       case Ovl_Match:
 | |
|         Redeclaration = true;
 | |
|         break;
 | |
| 
 | |
|       case Ovl_NonFunction:
 | |
|         Redeclaration = true;
 | |
|         break;
 | |
| 
 | |
|       case Ovl_Overload:
 | |
|         Redeclaration = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
 | |
|         // If a function name is overloadable in C, then every function
 | |
|         // with that name must be marked "overloadable".
 | |
|         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
 | |
|           << Redeclaration << NewFD;
 | |
|         NamedDecl *OverloadedDecl = 0;
 | |
|         if (Redeclaration)
 | |
|           OverloadedDecl = OldDecl;
 | |
|         else if (!Previous.empty())
 | |
|           OverloadedDecl = Previous.getRepresentativeDecl();
 | |
|         if (OverloadedDecl)
 | |
|           Diag(OverloadedDecl->getLocation(),
 | |
|                diag::note_attribute_overloadable_prev_overload);
 | |
|         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
 | |
|                                                         Context));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Redeclaration) {
 | |
|       // NewFD and OldDecl represent declarations that need to be
 | |
|       // merged.
 | |
|       if (MergeFunctionDecl(NewFD, OldDecl))
 | |
|         return NewFD->setInvalidDecl();
 | |
| 
 | |
|       Previous.clear();
 | |
|       Previous.addDecl(OldDecl);
 | |
| 
 | |
|       if (FunctionTemplateDecl *OldTemplateDecl
 | |
|                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
 | |
|         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());        
 | |
|         FunctionTemplateDecl *NewTemplateDecl
 | |
|           = NewFD->getDescribedFunctionTemplate();
 | |
|         assert(NewTemplateDecl && "Template/non-template mismatch");
 | |
|         if (CXXMethodDecl *Method 
 | |
|               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
 | |
|           Method->setAccess(OldTemplateDecl->getAccess());
 | |
|           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
 | |
|         }
 | |
|         
 | |
|         // If this is an explicit specialization of a member that is a function
 | |
|         // template, mark it as a member specialization.
 | |
|         if (IsExplicitSpecialization && 
 | |
|             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
 | |
|           NewTemplateDecl->setMemberSpecialization();
 | |
|           assert(OldTemplateDecl->isMemberSpecialization());
 | |
|         }
 | |
|       } else {
 | |
|         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
 | |
|           NewFD->setAccess(OldDecl->getAccess());
 | |
|         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Semantic checking for this function declaration (in isolation).
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // C++-specific checks.
 | |
|     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
 | |
|       CheckConstructor(Constructor);
 | |
|     } else if (CXXDestructorDecl *Destructor = 
 | |
|                 dyn_cast<CXXDestructorDecl>(NewFD)) {
 | |
|       CXXRecordDecl *Record = Destructor->getParent();
 | |
|       QualType ClassType = Context.getTypeDeclType(Record);
 | |
|       
 | |
|       // FIXME: Shouldn't we be able to perform this check even when the class
 | |
|       // type is dependent? Both gcc and edg can handle that.
 | |
|       if (!ClassType->isDependentType()) {
 | |
|         DeclarationName Name
 | |
|           = Context.DeclarationNames.getCXXDestructorName(
 | |
|                                         Context.getCanonicalType(ClassType));
 | |
|         if (NewFD->getDeclName() != Name) {
 | |
|           Diag(NewFD->getLocation(), diag::err_destructor_name);
 | |
|           return NewFD->setInvalidDecl();
 | |
|         }
 | |
|       }
 | |
|     } else if (CXXConversionDecl *Conversion
 | |
|                = dyn_cast<CXXConversionDecl>(NewFD)) {
 | |
|       ActOnConversionDeclarator(Conversion);
 | |
|     }
 | |
| 
 | |
|     // Find any virtual functions that this function overrides.
 | |
|     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
 | |
|       if (!Method->isFunctionTemplateSpecialization() && 
 | |
|           !Method->getDescribedFunctionTemplate()) {
 | |
|         if (AddOverriddenMethods(Method->getParent(), Method)) {
 | |
|           // If the function was marked as "static", we have a problem.
 | |
|           if (NewFD->getStorageClass() == SC_Static) {
 | |
|             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
 | |
|               << NewFD->getDeclName();
 | |
|             for (CXXMethodDecl::method_iterator 
 | |
|                       Overridden = Method->begin_overridden_methods(),
 | |
|                    OverriddenEnd = Method->end_overridden_methods();
 | |
|                  Overridden != OverriddenEnd;
 | |
|                  ++Overridden) {
 | |
|               Diag((*Overridden)->getLocation(), 
 | |
|                    diag::note_overridden_virtual_function);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Extra checking for C++ overloaded operators (C++ [over.oper]).
 | |
|     if (NewFD->isOverloadedOperator() &&
 | |
|         CheckOverloadedOperatorDeclaration(NewFD))
 | |
|       return NewFD->setInvalidDecl();
 | |
| 
 | |
|     // Extra checking for C++0x literal operators (C++0x [over.literal]).
 | |
|     if (NewFD->getLiteralIdentifier() &&
 | |
|         CheckLiteralOperatorDeclaration(NewFD))
 | |
|       return NewFD->setInvalidDecl();
 | |
| 
 | |
|     // In C++, check default arguments now that we have merged decls. Unless
 | |
|     // the lexical context is the class, because in this case this is done
 | |
|     // during delayed parsing anyway.
 | |
|     if (!CurContext->isRecord())
 | |
|       CheckCXXDefaultArguments(NewFD);
 | |
|     
 | |
|     // If this function declares a builtin function, check the type of this
 | |
|     // declaration against the expected type for the builtin. 
 | |
|     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
 | |
|       ASTContext::GetBuiltinTypeError Error;
 | |
|       QualType T = Context.GetBuiltinType(BuiltinID, Error);
 | |
|       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
 | |
|         // The type of this function differs from the type of the builtin,
 | |
|         // so forget about the builtin entirely.
 | |
|         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckMain(FunctionDecl* FD) {
 | |
|   // C++ [basic.start.main]p3:  A program that declares main to be inline
 | |
|   //   or static is ill-formed.
 | |
|   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
 | |
|   //   shall not appear in a declaration of main.
 | |
|   // static main is not an error under C99, but we should warn about it.
 | |
|   bool isInline = FD->isInlineSpecified();
 | |
|   bool isStatic = FD->getStorageClass() == SC_Static;
 | |
|   if (isInline || isStatic) {
 | |
|     unsigned diagID = diag::warn_unusual_main_decl;
 | |
|     if (isInline || getLangOptions().CPlusPlus)
 | |
|       diagID = diag::err_unusual_main_decl;
 | |
| 
 | |
|     int which = isStatic + (isInline << 1) - 1;
 | |
|     Diag(FD->getLocation(), diagID) << which;
 | |
|   }
 | |
| 
 | |
|   QualType T = FD->getType();
 | |
|   assert(T->isFunctionType() && "function decl is not of function type");
 | |
|   const FunctionType* FT = T->getAs<FunctionType>();
 | |
| 
 | |
|   if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
 | |
|     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
 | |
|     FD->setInvalidDecl(true);
 | |
|   }
 | |
| 
 | |
|   // Treat protoless main() as nullary.
 | |
|   if (isa<FunctionNoProtoType>(FT)) return;
 | |
| 
 | |
|   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
 | |
|   unsigned nparams = FTP->getNumArgs();
 | |
|   assert(FD->getNumParams() == nparams);
 | |
| 
 | |
|   bool HasExtraParameters = (nparams > 3);
 | |
| 
 | |
|   // Darwin passes an undocumented fourth argument of type char**.  If
 | |
|   // other platforms start sprouting these, the logic below will start
 | |
|   // getting shifty.
 | |
|   if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
 | |
|     HasExtraParameters = false;
 | |
| 
 | |
|   if (HasExtraParameters) {
 | |
|     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
 | |
|     FD->setInvalidDecl(true);
 | |
|     nparams = 3;
 | |
|   }
 | |
| 
 | |
|   // FIXME: a lot of the following diagnostics would be improved
 | |
|   // if we had some location information about types.
 | |
| 
 | |
|   QualType CharPP =
 | |
|     Context.getPointerType(Context.getPointerType(Context.CharTy));
 | |
|   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
 | |
| 
 | |
|   for (unsigned i = 0; i < nparams; ++i) {
 | |
|     QualType AT = FTP->getArgType(i);
 | |
| 
 | |
|     bool mismatch = true;
 | |
| 
 | |
|     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
 | |
|       mismatch = false;
 | |
|     else if (Expected[i] == CharPP) {
 | |
|       // As an extension, the following forms are okay:
 | |
|       //   char const **
 | |
|       //   char const * const *
 | |
|       //   char * const *
 | |
| 
 | |
|       QualifierCollector qs;
 | |
|       const PointerType* PT;
 | |
|       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
 | |
|           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
 | |
|           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
 | |
|         qs.removeConst();
 | |
|         mismatch = !qs.empty();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (mismatch) {
 | |
|       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
 | |
|       // TODO: suggest replacing given type with expected type
 | |
|       FD->setInvalidDecl(true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (nparams == 1 && !FD->isInvalidDecl()) {
 | |
|     Diag(FD->getLocation(), diag::warn_main_one_arg);
 | |
|   }
 | |
|   
 | |
|   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
 | |
|     Diag(FD->getLocation(), diag::err_main_template_decl);
 | |
|     FD->setInvalidDecl();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
 | |
|   // FIXME: Need strict checking.  In C89, we need to check for
 | |
|   // any assignment, increment, decrement, function-calls, or
 | |
|   // commas outside of a sizeof.  In C99, it's the same list,
 | |
|   // except that the aforementioned are allowed in unevaluated
 | |
|   // expressions.  Everything else falls under the
 | |
|   // "may accept other forms of constant expressions" exception.
 | |
|   // (We never end up here for C++, so the constant expression
 | |
|   // rules there don't matter.)
 | |
|   if (Init->isConstantInitializer(Context, false))
 | |
|     return false;
 | |
|   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
 | |
|     << Init->getSourceRange();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Visits an initialization expression to see if OrigDecl is evaluated in
 | |
|   // its own initialization and throws a warning if it does.
 | |
|   class SelfReferenceChecker
 | |
|       : public EvaluatedExprVisitor<SelfReferenceChecker> {
 | |
|     Sema &S;
 | |
|     Decl *OrigDecl;
 | |
| 
 | |
|   public:
 | |
|     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
 | |
| 
 | |
|     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
 | |
|                                                     S(S), OrigDecl(OrigDecl) { }
 | |
| 
 | |
|     void VisitExpr(Expr *E) {
 | |
|       if (isa<ObjCMessageExpr>(*E)) return;
 | |
|       Inherited::VisitExpr(E);
 | |
|     }
 | |
| 
 | |
|     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
 | |
|       CheckForSelfReference(E);
 | |
|       Inherited::VisitImplicitCastExpr(E);
 | |
|     }
 | |
| 
 | |
|     void CheckForSelfReference(ImplicitCastExpr *E) {
 | |
|       if (E->getCastKind() != CK_LValueToRValue) return;
 | |
|       Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
 | |
|       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
 | |
|       if (!DRE) return;
 | |
|       Decl* ReferenceDecl = DRE->getDecl();
 | |
|       if (OrigDecl != ReferenceDecl) return;
 | |
|       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
 | |
|                           Sema::NotForRedeclaration);
 | |
|       S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
 | |
|         << Result.getLookupName() << OrigDecl->getLocation()
 | |
|         << SubExpr->getSourceRange();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// AddInitializerToDecl - Adds the initializer Init to the
 | |
| /// declaration dcl. If DirectInit is true, this is C++ direct
 | |
| /// initialization rather than copy initialization.
 | |
| void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
 | |
|                                 bool DirectInit, bool TypeMayContainAuto) {
 | |
|   // If there is no declaration, there was an error parsing it.  Just ignore
 | |
|   // the initializer.
 | |
|   if (RealDecl == 0 || RealDecl->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   // Check for self-references within variable initializers.
 | |
|   if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
 | |
|     // Variables declared within a function/method body are handled
 | |
|     // by a dataflow analysis.
 | |
|     if (!vd->hasLocalStorage() && !vd->isStaticLocal())
 | |
|       SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);    
 | |
|   }
 | |
|   else {
 | |
|     SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
 | |
|   }
 | |
| 
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
 | |
|     // With declarators parsed the way they are, the parser cannot
 | |
|     // distinguish between a normal initializer and a pure-specifier.
 | |
|     // Thus this grotesque test.
 | |
|     IntegerLiteral *IL;
 | |
|     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
 | |
|         Context.getCanonicalType(IL->getType()) == Context.IntTy)
 | |
|       CheckPureMethod(Method, Init->getSourceRange());
 | |
|     else {
 | |
|       Diag(Method->getLocation(), diag::err_member_function_initialization)
 | |
|         << Method->getDeclName() << Init->getSourceRange();
 | |
|       Method->setInvalidDecl();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
 | |
|   if (!VDecl) {
 | |
|     if (getLangOptions().CPlusPlus &&
 | |
|         RealDecl->getLexicalDeclContext()->isRecord() &&
 | |
|         isa<NamedDecl>(RealDecl))
 | |
|       Diag(RealDecl->getLocation(), diag::err_member_initialization);
 | |
|     else
 | |
|       Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
 | |
|     RealDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | |
|   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
 | |
|     TypeSourceInfo *DeducedType = 0;
 | |
|     if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
 | |
|       Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
 | |
|         << VDecl->getDeclName() << VDecl->getType() << Init->getType()
 | |
|         << Init->getSourceRange();
 | |
|     if (!DeducedType) {
 | |
|       RealDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     VDecl->setTypeSourceInfo(DeducedType);
 | |
|     VDecl->setType(DeducedType->getType());
 | |
| 
 | |
|     // If this is a redeclaration, check that the type we just deduced matches
 | |
|     // the previously declared type.
 | |
|     if (VarDecl *Old = VDecl->getPreviousDeclaration())
 | |
|       MergeVarDeclTypes(VDecl, Old);
 | |
|   }
 | |
|   
 | |
| 
 | |
|   // A definition must end up with a complete type, which means it must be
 | |
|   // complete with the restriction that an array type might be completed by the
 | |
|   // initializer; note that later code assumes this restriction.
 | |
|   QualType BaseDeclType = VDecl->getType();
 | |
|   if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
 | |
|     BaseDeclType = Array->getElementType();
 | |
|   if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
 | |
|                           diag::err_typecheck_decl_incomplete_type)) {
 | |
|     RealDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The variable can not have an abstract class type.
 | |
|   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
 | |
|                              diag::err_abstract_type_in_decl,
 | |
|                              AbstractVariableType))
 | |
|     VDecl->setInvalidDecl();
 | |
| 
 | |
|   const VarDecl *Def;
 | |
|   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
 | |
|     Diag(VDecl->getLocation(), diag::err_redefinition)
 | |
|       << VDecl->getDeclName();
 | |
|     Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   const VarDecl* PrevInit = 0;
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // C++ [class.static.data]p4
 | |
|     //   If a static data member is of const integral or const
 | |
|     //   enumeration type, its declaration in the class definition can
 | |
|     //   specify a constant-initializer which shall be an integral
 | |
|     //   constant expression (5.19). In that case, the member can appear
 | |
|     //   in integral constant expressions. The member shall still be
 | |
|     //   defined in a namespace scope if it is used in the program and the
 | |
|     //   namespace scope definition shall not contain an initializer.
 | |
|     //
 | |
|     // We already performed a redefinition check above, but for static
 | |
|     // data members we also need to check whether there was an in-class
 | |
|     // declaration with an initializer.
 | |
|     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
 | |
|       Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
 | |
|       Diag(PrevInit->getLocation(), diag::note_previous_definition);
 | |
|       return;
 | |
|     }  
 | |
| 
 | |
|     if (VDecl->hasLocalStorage())
 | |
|       getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
 | |
|       VDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Capture the variable that is being initialized and the style of
 | |
|   // initialization.
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
 | |
|   
 | |
|   // FIXME: Poor source location information.
 | |
|   InitializationKind Kind
 | |
|     = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
 | |
|                                                    Init->getLocStart(),
 | |
|                                                    Init->getLocEnd())
 | |
|                 : InitializationKind::CreateCopy(VDecl->getLocation(),
 | |
|                                                  Init->getLocStart());
 | |
|   
 | |
|   // Get the decls type and save a reference for later, since
 | |
|   // CheckInitializerTypes may change it.
 | |
|   QualType DclT = VDecl->getType(), SavT = DclT;
 | |
|   if (VDecl->isLocalVarDecl()) {
 | |
|     if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
 | |
|       Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
 | |
|       VDecl->setInvalidDecl();
 | |
|     } else if (!VDecl->isInvalidDecl()) {
 | |
|       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
 | |
|       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                                 MultiExprArg(*this, &Init, 1),
 | |
|                                                 &DclT);
 | |
|       if (Result.isInvalid()) {
 | |
|         VDecl->setInvalidDecl();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       Init = Result.takeAs<Expr>();
 | |
| 
 | |
|       // C++ 3.6.2p2, allow dynamic initialization of static initializers.
 | |
|       // Don't check invalid declarations to avoid emitting useless diagnostics.
 | |
|       if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
 | |
|         if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
 | |
|           CheckForConstantInitializer(Init, DclT);
 | |
|       }
 | |
|     }
 | |
|   } else if (VDecl->isStaticDataMember() &&
 | |
|              VDecl->getLexicalDeclContext()->isRecord()) {
 | |
|     // This is an in-class initialization for a static data member, e.g.,
 | |
|     //
 | |
|     // struct S {
 | |
|     //   static const int value = 17;
 | |
|     // };
 | |
| 
 | |
|     // Try to perform the initialization regardless.
 | |
|     if (!VDecl->isInvalidDecl()) {
 | |
|       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
 | |
|       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                           MultiExprArg(*this, &Init, 1),
 | |
|                                           &DclT);
 | |
|       if (Result.isInvalid()) {
 | |
|         VDecl->setInvalidDecl();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       Init = Result.takeAs<Expr>();
 | |
|     }
 | |
| 
 | |
|     // C++ [class.mem]p4:
 | |
|     //   A member-declarator can contain a constant-initializer only
 | |
|     //   if it declares a static member (9.4) of const integral or
 | |
|     //   const enumeration type, see 9.4.2.
 | |
|     QualType T = VDecl->getType();
 | |
| 
 | |
|     // Do nothing on dependent types.
 | |
|     if (T->isDependentType()) {
 | |
| 
 | |
|     // Require constness.
 | |
|     } else if (!T.isConstQualified()) {
 | |
|       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
 | |
|         << Init->getSourceRange();
 | |
|       VDecl->setInvalidDecl();
 | |
| 
 | |
|     // We allow integer constant expressions in all cases.
 | |
|     } else if (T->isIntegralOrEnumerationType()) {
 | |
|       if (!Init->isValueDependent()) {
 | |
|         // Check whether the expression is a constant expression.
 | |
|         llvm::APSInt Value;
 | |
|         SourceLocation Loc;
 | |
|         if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
 | |
|           Diag(Loc, diag::err_in_class_initializer_non_constant)
 | |
|             << Init->getSourceRange();
 | |
|           VDecl->setInvalidDecl();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // We allow floating-point constants as an extension in C++03, and
 | |
|     // C++0x has far more complicated rules that we don't really
 | |
|     // implement fully.
 | |
|     } else {
 | |
|       bool Allowed = false;
 | |
|       if (getLangOptions().CPlusPlus0x) {
 | |
|         Allowed = T->isLiteralType();
 | |
|       } else if (T->isFloatingType()) { // also permits complex, which is ok
 | |
|         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
 | |
|           << T << Init->getSourceRange();
 | |
|         Allowed = true;
 | |
|       }
 | |
| 
 | |
|       if (!Allowed) {
 | |
|         Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
 | |
|           << T << Init->getSourceRange();
 | |
|         VDecl->setInvalidDecl();
 | |
| 
 | |
|       // TODO: there are probably expressions that pass here that shouldn't.
 | |
|       } else if (!Init->isValueDependent() &&
 | |
|                  !Init->isConstantInitializer(Context, false)) {
 | |
|         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
 | |
|           << Init->getSourceRange();
 | |
|         VDecl->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
|   } else if (VDecl->isFileVarDecl()) {
 | |
|     if (VDecl->getStorageClassAsWritten() == SC_Extern && 
 | |
|         (!getLangOptions().CPlusPlus || 
 | |
|          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
 | |
|       Diag(VDecl->getLocation(), diag::warn_extern_init);
 | |
|     if (!VDecl->isInvalidDecl()) {
 | |
|       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
 | |
|       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                                 MultiExprArg(*this, &Init, 1),
 | |
|                                                 &DclT);
 | |
|       if (Result.isInvalid()) {
 | |
|         VDecl->setInvalidDecl();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       Init = Result.takeAs<Expr>();
 | |
|     }
 | |
| 
 | |
|     // C++ 3.6.2p2, allow dynamic initialization of static initializers.
 | |
|     // Don't check invalid declarations to avoid emitting useless diagnostics.
 | |
|     if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
 | |
|       // C99 6.7.8p4. All file scoped initializers need to be constant.
 | |
|       CheckForConstantInitializer(Init, DclT);
 | |
|     }
 | |
|   }
 | |
|   // If the type changed, it means we had an incomplete type that was
 | |
|   // completed by the initializer. For example:
 | |
|   //   int ary[] = { 1, 3, 5 };
 | |
|   // "ary" transitions from a VariableArrayType to a ConstantArrayType.
 | |
|   if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
 | |
|     VDecl->setType(DclT);
 | |
|     Init->setType(DclT);
 | |
|   }
 | |
| 
 | |
|   
 | |
|   // If this variable is a local declaration with record type, make sure it
 | |
|   // doesn't have a flexible member initialization.  We only support this as a
 | |
|   // global/static definition.
 | |
|   if (VDecl->hasLocalStorage())
 | |
|     if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
 | |
|       if (RT->getDecl()->hasFlexibleArrayMember()) {
 | |
|         // Check whether the initializer tries to initialize the flexible
 | |
|         // array member itself to anything other than an empty initializer list.
 | |
|         if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
 | |
|           unsigned Index = std::distance(RT->getDecl()->field_begin(),
 | |
|                                          RT->getDecl()->field_end()) - 1;
 | |
|           if (Index < ILE->getNumInits() &&
 | |
|               !(isa<InitListExpr>(ILE->getInit(Index)) &&
 | |
|                 cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
 | |
|             Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
 | |
|             VDecl->setInvalidDecl();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   
 | |
|   // Check any implicit conversions within the expression.
 | |
|   CheckImplicitConversions(Init, VDecl->getLocation());
 | |
| 
 | |
|   Init = MaybeCreateExprWithCleanups(Init);
 | |
|   // Attach the initializer to the decl.
 | |
|   VDecl->setInit(Init);
 | |
| 
 | |
|   CheckCompleteVariableDeclaration(VDecl);
 | |
| }
 | |
| 
 | |
| /// ActOnInitializerError - Given that there was an error parsing an
 | |
| /// initializer for the given declaration, try to return to some form
 | |
| /// of sanity.
 | |
| void Sema::ActOnInitializerError(Decl *D) {
 | |
|   // Our main concern here is re-establishing invariants like "a
 | |
|   // variable's type is either dependent or complete".
 | |
|   if (!D || D->isInvalidDecl()) return;
 | |
| 
 | |
|   VarDecl *VD = dyn_cast<VarDecl>(D);
 | |
|   if (!VD) return;
 | |
| 
 | |
|   // Auto types are meaningless if we can't make sense of the initializer.
 | |
|   if (ParsingInitForAutoVars.count(D)) {
 | |
|     D->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   QualType Ty = VD->getType();
 | |
|   if (Ty->isDependentType()) return;
 | |
| 
 | |
|   // Require a complete type.
 | |
|   if (RequireCompleteType(VD->getLocation(), 
 | |
|                           Context.getBaseElementType(Ty),
 | |
|                           diag::err_typecheck_decl_incomplete_type)) {
 | |
|     VD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Require an abstract type.
 | |
|   if (RequireNonAbstractType(VD->getLocation(), Ty,
 | |
|                              diag::err_abstract_type_in_decl,
 | |
|                              AbstractVariableType)) {
 | |
|     VD->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't bother complaining about constructors or destructors,
 | |
|   // though.
 | |
| }
 | |
| 
 | |
| void Sema::ActOnUninitializedDecl(Decl *RealDecl,
 | |
|                                   bool TypeMayContainAuto) {
 | |
|   // If there is no declaration, there was an error parsing it. Just ignore it.
 | |
|   if (RealDecl == 0)
 | |
|     return;
 | |
| 
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
 | |
|     QualType Type = Var->getType();
 | |
| 
 | |
|     // C++0x [dcl.spec.auto]p3
 | |
|     if (TypeMayContainAuto && Type->getContainedAutoType()) {
 | |
|       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
 | |
|         << Var->getDeclName() << Type;
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     switch (Var->isThisDeclarationADefinition()) {
 | |
|     case VarDecl::Definition:
 | |
|       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
 | |
|         break;
 | |
| 
 | |
|       // We have an out-of-line definition of a static data member
 | |
|       // that has an in-class initializer, so we type-check this like
 | |
|       // a declaration. 
 | |
|       //
 | |
|       // Fall through
 | |
|       
 | |
|     case VarDecl::DeclarationOnly:
 | |
|       // It's only a declaration. 
 | |
| 
 | |
|       // Block scope. C99 6.7p7: If an identifier for an object is
 | |
|       // declared with no linkage (C99 6.2.2p6), the type for the
 | |
|       // object shall be complete.
 | |
|       if (!Type->isDependentType() && Var->isLocalVarDecl() && 
 | |
|           !Var->getLinkage() && !Var->isInvalidDecl() &&
 | |
|           RequireCompleteType(Var->getLocation(), Type,
 | |
|                               diag::err_typecheck_decl_incomplete_type))
 | |
|         Var->setInvalidDecl();
 | |
| 
 | |
|       // Make sure that the type is not abstract.
 | |
|       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
 | |
|           RequireNonAbstractType(Var->getLocation(), Type,
 | |
|                                  diag::err_abstract_type_in_decl,
 | |
|                                  AbstractVariableType))
 | |
|         Var->setInvalidDecl();
 | |
|       return;
 | |
| 
 | |
|     case VarDecl::TentativeDefinition:
 | |
|       // File scope. C99 6.9.2p2: A declaration of an identifier for an
 | |
|       // object that has file scope without an initializer, and without a
 | |
|       // storage-class specifier or with the storage-class specifier "static",
 | |
|       // constitutes a tentative definition. Note: A tentative definition with
 | |
|       // external linkage is valid (C99 6.2.2p5).
 | |
|       if (!Var->isInvalidDecl()) {
 | |
|         if (const IncompleteArrayType *ArrayT
 | |
|                                     = Context.getAsIncompleteArrayType(Type)) {
 | |
|           if (RequireCompleteType(Var->getLocation(),
 | |
|                                   ArrayT->getElementType(),
 | |
|                                   diag::err_illegal_decl_array_incomplete_type))
 | |
|             Var->setInvalidDecl();
 | |
|         } else if (Var->getStorageClass() == SC_Static) {
 | |
|           // C99 6.9.2p3: If the declaration of an identifier for an object is
 | |
|           // a tentative definition and has internal linkage (C99 6.2.2p3), the
 | |
|           // declared type shall not be an incomplete type.
 | |
|           // NOTE: code such as the following
 | |
|           //     static struct s;
 | |
|           //     struct s { int a; };
 | |
|           // is accepted by gcc. Hence here we issue a warning instead of
 | |
|           // an error and we do not invalidate the static declaration.
 | |
|           // NOTE: to avoid multiple warnings, only check the first declaration.
 | |
|           if (Var->getPreviousDeclaration() == 0)
 | |
|             RequireCompleteType(Var->getLocation(), Type,
 | |
|                                 diag::ext_typecheck_decl_incomplete_type);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Record the tentative definition; we're done.
 | |
|       if (!Var->isInvalidDecl())
 | |
|         TentativeDefinitions.push_back(Var);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Provide a specific diagnostic for uninitialized variable
 | |
|     // definitions with incomplete array type.
 | |
|     if (Type->isIncompleteArrayType()) {
 | |
|       Diag(Var->getLocation(),
 | |
|            diag::err_typecheck_incomplete_array_needs_initializer);
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Provide a specific diagnostic for uninitialized variable
 | |
|     // definitions with reference type.
 | |
|     if (Type->isReferenceType()) {
 | |
|       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
 | |
|         << Var->getDeclName()
 | |
|         << SourceRange(Var->getLocation(), Var->getLocation());
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Do not attempt to type-check the default initializer for a
 | |
|     // variable with dependent type.
 | |
|     if (Type->isDependentType())
 | |
|       return;
 | |
| 
 | |
|     if (Var->isInvalidDecl())
 | |
|       return;
 | |
| 
 | |
|     if (RequireCompleteType(Var->getLocation(), 
 | |
|                             Context.getBaseElementType(Type),
 | |
|                             diag::err_typecheck_decl_incomplete_type)) {
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // The variable can not have an abstract class type.
 | |
|     if (RequireNonAbstractType(Var->getLocation(), Type,
 | |
|                                diag::err_abstract_type_in_decl,
 | |
|                                AbstractVariableType)) {
 | |
|       Var->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const RecordType *Record
 | |
|       = Context.getBaseElementType(Type)->getAs<RecordType>();
 | |
|     if (Record && getLangOptions().CPlusPlus &&
 | |
|         cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
 | |
|       // C++03 [dcl.init]p9:
 | |
|       //   If no initializer is specified for an object, and the
 | |
|       //   object is of (possibly cv-qualified) non-POD class type (or
 | |
|       //   array thereof), the object shall be default-initialized; if
 | |
|       //   the object is of const-qualified type, the underlying class
 | |
|       //   type shall have a user-declared default
 | |
|       //   constructor. Otherwise, if no initializer is specified for
 | |
|       //   a non- static object, the object and its subobjects, if
 | |
|       //   any, have an indeterminate initial value); if the object
 | |
|       //   or any of its subobjects are of const-qualified type, the
 | |
|       //   program is ill-formed.
 | |
|     } else {
 | |
|       // Check for jumps past the implicit initializer.  C++0x
 | |
|       // clarifies that this applies to a "variable with automatic
 | |
|       // storage duration", not a "local variable".
 | |
|       if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
 | |
|         getCurFunction()->setHasBranchProtectedScope();
 | |
| 
 | |
|       InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
 | |
|       InitializationKind Kind
 | |
|         = InitializationKind::CreateDefault(Var->getLocation());
 | |
|     
 | |
|       InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
 | |
|       ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                         MultiExprArg(*this, 0, 0));
 | |
|       if (Init.isInvalid())
 | |
|         Var->setInvalidDecl();
 | |
|       else if (Init.get())
 | |
|         Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
 | |
|     }
 | |
| 
 | |
|     CheckCompleteVariableDeclaration(Var);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnCXXForRangeDecl(Decl *D) {
 | |
|   VarDecl *VD = dyn_cast<VarDecl>(D);
 | |
|   if (!VD) {
 | |
|     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
 | |
|     D->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   VD->setCXXForRangeDecl(true);
 | |
| 
 | |
|   // for-range-declaration cannot be given a storage class specifier.
 | |
|   int Error = -1;
 | |
|   switch (VD->getStorageClassAsWritten()) {
 | |
|   case SC_None:
 | |
|     break;
 | |
|   case SC_Extern:
 | |
|     Error = 0;
 | |
|     break;
 | |
|   case SC_Static:
 | |
|     Error = 1;
 | |
|     break;
 | |
|   case SC_PrivateExtern:
 | |
|     Error = 2;
 | |
|     break;
 | |
|   case SC_Auto:
 | |
|     Error = 3;
 | |
|     break;
 | |
|   case SC_Register:
 | |
|     Error = 4;
 | |
|     break;
 | |
|   }
 | |
|   // FIXME: constexpr isn't allowed here.
 | |
|   //if (DS.isConstexprSpecified())
 | |
|   //  Error = 5;
 | |
|   if (Error != -1) {
 | |
|     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
 | |
|       << VD->getDeclName() << Error;
 | |
|     D->setInvalidDecl();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
 | |
|   if (var->isInvalidDecl()) return;
 | |
| 
 | |
|   // All the following checks are C++ only.
 | |
|   if (!getLangOptions().CPlusPlus) return;
 | |
| 
 | |
|   QualType baseType = Context.getBaseElementType(var->getType());
 | |
|   if (baseType->isDependentType()) return;
 | |
| 
 | |
|   // __block variables might require us to capture a copy-initializer.
 | |
|   if (var->hasAttr<BlocksAttr>()) {
 | |
|     // It's currently invalid to ever have a __block variable with an
 | |
|     // array type; should we diagnose that here?
 | |
| 
 | |
|     // Regardless, we don't want to ignore array nesting when
 | |
|     // constructing this copy.
 | |
|     QualType type = var->getType();
 | |
| 
 | |
|     if (type->isStructureOrClassType()) {
 | |
|       SourceLocation poi = var->getLocation();
 | |
|       Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
 | |
|       ExprResult result =
 | |
|         PerformCopyInitialization(
 | |
|                         InitializedEntity::InitializeBlock(poi, type, false),
 | |
|                                   poi, Owned(varRef));
 | |
|       if (!result.isInvalid()) {
 | |
|         result = MaybeCreateExprWithCleanups(result);
 | |
|         Expr *init = result.takeAs<Expr>();
 | |
|         Context.setBlockVarCopyInits(var, init);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for global constructors.
 | |
|   if (!var->getDeclContext()->isDependentContext() &&
 | |
|       var->hasGlobalStorage() &&
 | |
|       !var->isStaticLocal() &&
 | |
|       var->getInit() &&
 | |
|       !var->getInit()->isConstantInitializer(Context,
 | |
|                                              baseType->isReferenceType()))
 | |
|     Diag(var->getLocation(), diag::warn_global_constructor)
 | |
|       << var->getInit()->getSourceRange();
 | |
| 
 | |
|   // Require the destructor.
 | |
|   if (const RecordType *recordType = baseType->getAs<RecordType>())
 | |
|     FinalizeVarWithDestructor(var, recordType);
 | |
| }
 | |
| 
 | |
| /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
 | |
| /// any semantic actions necessary after any initializer has been attached.
 | |
| void
 | |
| Sema::FinalizeDeclaration(Decl *ThisDecl) {
 | |
|   // Note that we are no longer parsing the initializer for this declaration.
 | |
|   ParsingInitForAutoVars.erase(ThisDecl);
 | |
| }
 | |
| 
 | |
| Sema::DeclGroupPtrTy
 | |
| Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
 | |
|                               Decl **Group, unsigned NumDecls) {
 | |
|   llvm::SmallVector<Decl*, 8> Decls;
 | |
| 
 | |
|   if (DS.isTypeSpecOwned())
 | |
|     Decls.push_back(DS.getRepAsDecl());
 | |
| 
 | |
|   for (unsigned i = 0; i != NumDecls; ++i)
 | |
|     if (Decl *D = Group[i])
 | |
|       Decls.push_back(D);
 | |
| 
 | |
|   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
 | |
|                               DS.getTypeSpecType() == DeclSpec::TST_auto);
 | |
| }
 | |
| 
 | |
| /// BuildDeclaratorGroup - convert a list of declarations into a declaration
 | |
| /// group, performing any necessary semantic checking.
 | |
| Sema::DeclGroupPtrTy
 | |
| Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
 | |
|                            bool TypeMayContainAuto) {
 | |
|   // C++0x [dcl.spec.auto]p7:
 | |
|   //   If the type deduced for the template parameter U is not the same in each
 | |
|   //   deduction, the program is ill-formed.
 | |
|   // FIXME: When initializer-list support is added, a distinction is needed
 | |
|   // between the deduced type U and the deduced type which 'auto' stands for.
 | |
|   //   auto a = 0, b = { 1, 2, 3 };
 | |
|   // is legal because the deduced type U is 'int' in both cases.
 | |
|   if (TypeMayContainAuto && NumDecls > 1) {
 | |
|     QualType Deduced;
 | |
|     CanQualType DeducedCanon;
 | |
|     VarDecl *DeducedDecl = 0;
 | |
|     for (unsigned i = 0; i != NumDecls; ++i) {
 | |
|       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
 | |
|         AutoType *AT = D->getType()->getContainedAutoType();
 | |
|         // Don't reissue diagnostics when instantiating a template.
 | |
|         if (AT && D->isInvalidDecl())
 | |
|           break;
 | |
|         if (AT && AT->isDeduced()) {
 | |
|           QualType U = AT->getDeducedType();
 | |
|           CanQualType UCanon = Context.getCanonicalType(U);
 | |
|           if (Deduced.isNull()) {
 | |
|             Deduced = U;
 | |
|             DeducedCanon = UCanon;
 | |
|             DeducedDecl = D;
 | |
|           } else if (DeducedCanon != UCanon) {
 | |
|             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
 | |
|                  diag::err_auto_different_deductions)
 | |
|               << Deduced << DeducedDecl->getDeclName()
 | |
|               << U << D->getDeclName()
 | |
|               << DeducedDecl->getInit()->getSourceRange()
 | |
|               << D->getInit()->getSourceRange();
 | |
|             D->setInvalidDecl();
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
 | |
| /// to introduce parameters into function prototype scope.
 | |
| Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
| 
 | |
|   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
 | |
|   VarDecl::StorageClass StorageClass = SC_None;
 | |
|   VarDecl::StorageClass StorageClassAsWritten = SC_None;
 | |
|   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | |
|     StorageClass = SC_Register;
 | |
|     StorageClassAsWritten = SC_Register;
 | |
|   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
 | |
|     Diag(DS.getStorageClassSpecLoc(),
 | |
|          diag::err_invalid_storage_class_in_func_decl);
 | |
|     D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
|   }
 | |
| 
 | |
|   if (D.getDeclSpec().isThreadSpecified())
 | |
|     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D);
 | |
| 
 | |
|   TagDecl *OwnedDecl = 0;
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
 | |
|   QualType parmDeclType = TInfo->getType();
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // Check that there are no default arguments inside the type of this
 | |
|     // parameter.
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
|      
 | |
|     if (OwnedDecl && OwnedDecl->isDefinition()) {
 | |
|       // C++ [dcl.fct]p6:
 | |
|       //   Types shall not be defined in return or parameter types.
 | |
|       Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
 | |
|         << Context.getTypeDeclType(OwnedDecl);
 | |
|     }
 | |
|     
 | |
|     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | |
|     if (D.getCXXScopeSpec().isSet()) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
 | |
|         << D.getCXXScopeSpec().getRange();
 | |
|       D.getCXXScopeSpec().clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ensure we have a valid name
 | |
|   IdentifierInfo *II = 0;
 | |
|   if (D.hasName()) {
 | |
|     II = D.getIdentifier();
 | |
|     if (!II) {
 | |
|       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
 | |
|         << GetNameForDeclarator(D).getName().getAsString();
 | |
|       D.setInvalidType(true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
 | |
|   if (II) {
 | |
|     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
 | |
|                    ForRedeclaration);
 | |
|     LookupName(R, S);
 | |
|     if (R.isSingleResult()) {
 | |
|       NamedDecl *PrevDecl = R.getFoundDecl();
 | |
|       if (PrevDecl->isTemplateParameter()) {
 | |
|         // Maybe we will complain about the shadowed template parameter.
 | |
|         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
|         // Just pretend that we didn't see the previous declaration.
 | |
|         PrevDecl = 0;
 | |
|       } else if (S->isDeclScope(PrevDecl)) {
 | |
|         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
| 
 | |
|         // Recover by removing the name
 | |
|         II = 0;
 | |
|         D.SetIdentifier(0, D.getIdentifierLoc());
 | |
|         D.setInvalidType(true);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Temporarily put parameter variables in the translation unit, not
 | |
|   // the enclosing context.  This prevents them from accidentally
 | |
|   // looking like class members in C++.
 | |
|   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
 | |
|                                     D.getSourceRange().getBegin(),
 | |
|                                     D.getIdentifierLoc(), II,
 | |
|                                     parmDeclType, TInfo,
 | |
|                                     StorageClass, StorageClassAsWritten);
 | |
| 
 | |
|   if (D.isInvalidType())
 | |
|     New->setInvalidDecl();  
 | |
|   
 | |
|   // Add the parameter declaration into this scope.
 | |
|   S->AddDecl(New);
 | |
|   if (II)
 | |
|     IdResolver.AddDecl(New);
 | |
| 
 | |
|   ProcessDeclAttributes(S, New, D);
 | |
| 
 | |
|   if (New->hasAttr<BlocksAttr>()) {
 | |
|     Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | |
|   }
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// \brief Synthesizes a variable for a parameter arising from a
 | |
| /// typedef.
 | |
| ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
 | |
|                                               SourceLocation Loc,
 | |
|                                               QualType T) {
 | |
|   /* FIXME: setting StartLoc == Loc.
 | |
|      Would it be worth to modify callers so as to provide proper source
 | |
|      location for the unnamed parameters, embedding the parameter's type? */
 | |
|   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
 | |
|                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
 | |
|                                            SC_None, SC_None, 0);
 | |
|   Param->setImplicit();
 | |
|   return Param;
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
 | |
|                                     ParmVarDecl * const *ParamEnd) {
 | |
|   // Don't diagnose unused-parameter errors in template instantiations; we
 | |
|   // will already have done so in the template itself.
 | |
|   if (!ActiveTemplateInstantiations.empty())
 | |
|     return;
 | |
| 
 | |
|   for (; Param != ParamEnd; ++Param) {
 | |
|     if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
 | |
|         !(*Param)->hasAttr<UnusedAttr>()) {
 | |
|       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
 | |
|         << (*Param)->getDeclName();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
 | |
|                                                   ParmVarDecl * const *ParamEnd,
 | |
|                                                   QualType ReturnTy,
 | |
|                                                   NamedDecl *D) {
 | |
|   if (LangOpts.NumLargeByValueCopy == 0) // No check.
 | |
|     return;
 | |
| 
 | |
|   // Warn if the return value is pass-by-value and larger than the specified
 | |
|   // threshold.
 | |
|   if (ReturnTy->isPODType()) {
 | |
|     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
 | |
|     if (Size > LangOpts.NumLargeByValueCopy)
 | |
|       Diag(D->getLocation(), diag::warn_return_value_size)
 | |
|           << D->getDeclName() << Size;
 | |
|   }
 | |
| 
 | |
|   // Warn if any parameter is pass-by-value and larger than the specified
 | |
|   // threshold.
 | |
|   for (; Param != ParamEnd; ++Param) {
 | |
|     QualType T = (*Param)->getType();
 | |
|     if (!T->isPODType())
 | |
|       continue;
 | |
|     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
 | |
|     if (Size > LangOpts.NumLargeByValueCopy)
 | |
|       Diag((*Param)->getLocation(), diag::warn_parameter_size)
 | |
|           << (*Param)->getDeclName() << Size;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
 | |
|                                   SourceLocation NameLoc, IdentifierInfo *Name,
 | |
|                                   QualType T, TypeSourceInfo *TSInfo,
 | |
|                                   VarDecl::StorageClass StorageClass,
 | |
|                                   VarDecl::StorageClass StorageClassAsWritten) {
 | |
|   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
 | |
|                                          adjustParameterType(T), TSInfo,
 | |
|                                          StorageClass, StorageClassAsWritten,
 | |
|                                          0);
 | |
| 
 | |
|   // Parameters can not be abstract class types.
 | |
|   // For record types, this is done by the AbstractClassUsageDiagnoser once
 | |
|   // the class has been completely parsed.
 | |
|   if (!CurContext->isRecord() &&
 | |
|       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
 | |
|                              AbstractParamType))
 | |
|     New->setInvalidDecl();
 | |
| 
 | |
|   // Parameter declarators cannot be interface types. All ObjC objects are
 | |
|   // passed by reference.
 | |
|   if (T->isObjCObjectType()) {
 | |
|     Diag(NameLoc,
 | |
|          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
 | |
|     New->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
 | |
|   // duration shall not be qualified by an address-space qualifier."
 | |
|   // Since all parameters have automatic store duration, they can not have
 | |
|   // an address space.
 | |
|   if (T.getAddressSpace() != 0) {
 | |
|     Diag(NameLoc, diag::err_arg_with_address_space);
 | |
|     New->setInvalidDecl();
 | |
|   }   
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
 | |
|                                            SourceLocation LocAfterDecls) {
 | |
|   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
| 
 | |
|   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
 | |
|   // for a K&R function.
 | |
|   if (!FTI.hasPrototype) {
 | |
|     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
 | |
|       --i;
 | |
|       if (FTI.ArgInfo[i].Param == 0) {
 | |
|         llvm::SmallString<256> Code;
 | |
|         llvm::raw_svector_ostream(Code) << "  int "
 | |
|                                         << FTI.ArgInfo[i].Ident->getName()
 | |
|                                         << ";\n";
 | |
|         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
 | |
|           << FTI.ArgInfo[i].Ident
 | |
|           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
 | |
| 
 | |
|         // Implicitly declare the argument as type 'int' for lack of a better
 | |
|         // type.
 | |
|         AttributeFactory attrs;
 | |
|         DeclSpec DS(attrs);
 | |
|         const char* PrevSpec; // unused
 | |
|         unsigned DiagID; // unused
 | |
|         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
 | |
|                            PrevSpec, DiagID);
 | |
|         Declarator ParamD(DS, Declarator::KNRTypeListContext);
 | |
|         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
 | |
|         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
 | |
|                                          Declarator &D) {
 | |
|   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
 | |
|   assert(D.isFunctionDeclarator() && "Not a function declarator!");
 | |
|   Scope *ParentScope = FnBodyScope->getParent();
 | |
| 
 | |
|   Decl *DP = HandleDeclarator(ParentScope, D,
 | |
|                               MultiTemplateParamsArg(*this),
 | |
|                               /*IsFunctionDefinition=*/true);
 | |
|   return ActOnStartOfFunctionDef(FnBodyScope, DP);
 | |
| }
 | |
| 
 | |
| static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
 | |
|   // Don't warn about invalid declarations.
 | |
|   if (FD->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // Or declarations that aren't global.
 | |
|   if (!FD->isGlobal())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about C++ member functions.
 | |
|   if (isa<CXXMethodDecl>(FD))
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about 'main'.
 | |
|   if (FD->isMain())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about inline functions.
 | |
|   if (FD->isInlined())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about function templates.
 | |
|   if (FD->getDescribedFunctionTemplate())
 | |
|     return false;
 | |
| 
 | |
|   // Don't warn about function template specializations.
 | |
|   if (FD->isFunctionTemplateSpecialization())
 | |
|     return false;
 | |
| 
 | |
|   bool MissingPrototype = true;
 | |
|   for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
 | |
|        Prev; Prev = Prev->getPreviousDeclaration()) {
 | |
|     // Ignore any declarations that occur in function or method
 | |
|     // scope, because they aren't visible from the header.
 | |
|     if (Prev->getDeclContext()->isFunctionOrMethod())
 | |
|       continue;
 | |
|       
 | |
|     MissingPrototype = !Prev->getType()->isFunctionProtoType();
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   return MissingPrototype;
 | |
| }
 | |
| 
 | |
| void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
 | |
|   // Don't complain if we're in GNU89 mode and the previous definition
 | |
|   // was an extern inline function.
 | |
|   const FunctionDecl *Definition;
 | |
|   if (FD->hasBody(Definition) &&
 | |
|       !canRedefineFunction(Definition, getLangOptions())) {
 | |
|     if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
 | |
|         Definition->getStorageClass() == SC_Extern)
 | |
|       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
 | |
|         << FD->getDeclName() << getLangOptions().CPlusPlus;
 | |
|     else
 | |
|       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
 | |
|     Diag(Definition->getLocation(), diag::note_previous_definition);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
 | |
|   // Clear the last template instantiation error context.
 | |
|   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
 | |
|   
 | |
|   if (!D)
 | |
|     return D;
 | |
|   FunctionDecl *FD = 0;
 | |
| 
 | |
|   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
 | |
|     FD = FunTmpl->getTemplatedDecl();
 | |
|   else
 | |
|     FD = cast<FunctionDecl>(D);
 | |
| 
 | |
|   // Enter a new function scope
 | |
|   PushFunctionScope();
 | |
| 
 | |
|   // See if this is a redefinition.
 | |
|   if (!FD->isLateTemplateParsed())
 | |
|     CheckForFunctionRedefinition(FD);
 | |
| 
 | |
|   // Builtin functions cannot be defined.
 | |
|   if (unsigned BuiltinID = FD->getBuiltinID()) {
 | |
|     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
 | |
|       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
 | |
|       FD->setInvalidDecl();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The return type of a function definition must be complete
 | |
|   // (C99 6.9.1p3, C++ [dcl.fct]p6).
 | |
|   QualType ResultType = FD->getResultType();
 | |
|   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
 | |
|       !FD->isInvalidDecl() &&
 | |
|       RequireCompleteType(FD->getLocation(), ResultType,
 | |
|                           diag::err_func_def_incomplete_result))
 | |
|     FD->setInvalidDecl();
 | |
| 
 | |
|   // GNU warning -Wmissing-prototypes:
 | |
|   //   Warn if a global function is defined without a previous
 | |
|   //   prototype declaration. This warning is issued even if the
 | |
|   //   definition itself provides a prototype. The aim is to detect
 | |
|   //   global functions that fail to be declared in header files.
 | |
|   if (ShouldWarnAboutMissingPrototype(FD))
 | |
|     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
 | |
| 
 | |
|   if (FnBodyScope)
 | |
|     PushDeclContext(FnBodyScope, FD);
 | |
| 
 | |
|   // Check the validity of our function parameters
 | |
|   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
 | |
|                            /*CheckParameterNames=*/true);
 | |
| 
 | |
|   // Introduce our parameters into the function scope
 | |
|   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|     Param->setOwningFunction(FD);
 | |
| 
 | |
|     // If this has an identifier, add it to the scope stack.
 | |
|     if (Param->getIdentifier() && FnBodyScope) {
 | |
|       CheckShadow(FnBodyScope, Param);
 | |
| 
 | |
|       PushOnScopeChains(Param, FnBodyScope);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Checking attributes of current function definition
 | |
|   // dllimport attribute.
 | |
|   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
 | |
|   if (DA && (!FD->getAttr<DLLExportAttr>())) {
 | |
|     // dllimport attribute cannot be directly applied to definition.
 | |
|     // Microsoft accepts dllimport for functions defined within class scope. 
 | |
|     if (!DA->isInherited() &&
 | |
|         !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
 | |
|       Diag(FD->getLocation(),
 | |
|            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
 | |
|         << "dllimport";
 | |
|       FD->setInvalidDecl();
 | |
|       return FD;
 | |
|     }
 | |
| 
 | |
|     // Visual C++ appears to not think this is an issue, so only issue
 | |
|     // a warning when Microsoft extensions are disabled.
 | |
|     if (!LangOpts.Microsoft) {
 | |
|       // If a symbol previously declared dllimport is later defined, the
 | |
|       // attribute is ignored in subsequent references, and a warning is
 | |
|       // emitted.
 | |
|       Diag(FD->getLocation(),
 | |
|            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
 | |
|         << FD->getName() << "dllimport";
 | |
|     }
 | |
|   }
 | |
|   return FD;
 | |
| }
 | |
| 
 | |
| /// \brief Given the set of return statements within a function body,
 | |
| /// compute the variables that are subject to the named return value 
 | |
| /// optimization.
 | |
| ///
 | |
| /// Each of the variables that is subject to the named return value 
 | |
| /// optimization will be marked as NRVO variables in the AST, and any
 | |
| /// return statement that has a marked NRVO variable as its NRVO candidate can
 | |
| /// use the named return value optimization.
 | |
| ///
 | |
| /// This function applies a very simplistic algorithm for NRVO: if every return
 | |
| /// statement in the function has the same NRVO candidate, that candidate is
 | |
| /// the NRVO variable.
 | |
| ///
 | |
| /// FIXME: Employ a smarter algorithm that accounts for multiple return 
 | |
| /// statements and the lifetimes of the NRVO candidates. We should be able to
 | |
| /// find a maximal set of NRVO variables.
 | |
| static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
 | |
|   ReturnStmt **Returns = Scope->Returns.data();
 | |
| 
 | |
|   const VarDecl *NRVOCandidate = 0;
 | |
|   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
 | |
|     if (!Returns[I]->getNRVOCandidate())
 | |
|       return;
 | |
|     
 | |
|     if (!NRVOCandidate)
 | |
|       NRVOCandidate = Returns[I]->getNRVOCandidate();
 | |
|     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
 | |
|       return;
 | |
|   }
 | |
|   
 | |
|   if (NRVOCandidate)
 | |
|     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
 | |
|   return ActOnFinishFunctionBody(D, move(BodyArg), false);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
 | |
|                                     bool IsInstantiation) {
 | |
|   FunctionDecl *FD = 0;
 | |
|   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
 | |
|   if (FunTmpl)
 | |
|     FD = FunTmpl->getTemplatedDecl();
 | |
|   else
 | |
|     FD = dyn_cast_or_null<FunctionDecl>(dcl);
 | |
| 
 | |
|   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
 | |
|   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
 | |
| 
 | |
|   if (FD) {
 | |
|     FD->setBody(Body);
 | |
|     if (FD->isMain()) {
 | |
|       // C and C++ allow for main to automagically return 0.
 | |
|       // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
 | |
|       FD->setHasImplicitReturnZero(true);
 | |
|       WP.disableCheckFallThrough();
 | |
|     }
 | |
| 
 | |
|     if (!FD->isInvalidDecl()) {
 | |
|       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
 | |
|       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
 | |
|                                              FD->getResultType(), FD);
 | |
|       
 | |
|       // If this is a constructor, we need a vtable.
 | |
|       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
 | |
|         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
 | |
|       
 | |
|       ComputeNRVO(Body, getCurFunction());
 | |
|     }
 | |
|     
 | |
|     assert(FD == getCurFunctionDecl() && "Function parsing confused");
 | |
|   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
 | |
|     assert(MD == getCurMethodDecl() && "Method parsing confused");
 | |
|     MD->setBody(Body);
 | |
|     if (Body)
 | |
|       MD->setEndLoc(Body->getLocEnd());
 | |
|     if (!MD->isInvalidDecl()) {
 | |
|       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
 | |
|       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
 | |
|                                              MD->getResultType(), MD);
 | |
|     }
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Verify and clean out per-function state.
 | |
|   if (Body) {
 | |
|     // C++ constructors that have function-try-blocks can't have return
 | |
|     // statements in the handlers of that block. (C++ [except.handle]p14)
 | |
|     // Verify this.
 | |
|     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
 | |
|       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
 | |
|     
 | |
|     // Verify that that gotos and switch cases don't jump into scopes illegally.
 | |
|     // Verify that that gotos and switch cases don't jump into scopes illegally.
 | |
|     if (getCurFunction()->NeedsScopeChecking() &&
 | |
|         !dcl->isInvalidDecl() &&
 | |
|         !hasAnyErrorsInThisFunction())
 | |
|       DiagnoseInvalidJumps(Body);
 | |
| 
 | |
|     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
 | |
|       if (!Destructor->getParent()->isDependentType())
 | |
|         CheckDestructor(Destructor);
 | |
| 
 | |
|       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
 | |
|                                              Destructor->getParent());
 | |
|     }
 | |
|     
 | |
|     // If any errors have occurred, clear out any temporaries that may have
 | |
|     // been leftover. This ensures that these temporaries won't be picked up for
 | |
|     // deletion in some later function.
 | |
|     if (PP.getDiagnostics().hasErrorOccurred() ||
 | |
|         PP.getDiagnostics().getSuppressAllDiagnostics())
 | |
|       ExprTemporaries.clear();
 | |
|     else if (!isa<FunctionTemplateDecl>(dcl)) {
 | |
|       // Since the body is valid, issue any analysis-based warnings that are
 | |
|       // enabled.
 | |
|       ActivePolicy = &WP;
 | |
|     }
 | |
| 
 | |
|     assert(ExprTemporaries.empty() && "Leftover temporaries in function");
 | |
|   }
 | |
|   
 | |
|   if (!IsInstantiation)
 | |
|     PopDeclContext();
 | |
| 
 | |
|   PopFunctionOrBlockScope(ActivePolicy, dcl);
 | |
|   
 | |
|   // If any errors have occurred, clear out any temporaries that may have
 | |
|   // been leftover. This ensures that these temporaries won't be picked up for
 | |
|   // deletion in some later function.
 | |
|   if (getDiagnostics().hasErrorOccurred())
 | |
|     ExprTemporaries.clear();
 | |
| 
 | |
|   return dcl;
 | |
| }
 | |
| 
 | |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
 | |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
 | |
| NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
 | |
|                                           IdentifierInfo &II, Scope *S) {
 | |
|   // Before we produce a declaration for an implicitly defined
 | |
|   // function, see whether there was a locally-scoped declaration of
 | |
|   // this name as a function or variable. If so, use that
 | |
|   // (non-visible) declaration, and complain about it.
 | |
|   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
 | |
|     = LocallyScopedExternalDecls.find(&II);
 | |
|   if (Pos != LocallyScopedExternalDecls.end()) {
 | |
|     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
 | |
|     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
 | |
|     return Pos->second;
 | |
|   }
 | |
| 
 | |
|   // Extension in C99.  Legal in C90, but warn about it.
 | |
|   if (II.getName().startswith("__builtin_"))
 | |
|     Diag(Loc, diag::warn_builtin_unknown) << &II;
 | |
|   else if (getLangOptions().C99)
 | |
|     Diag(Loc, diag::ext_implicit_function_decl) << &II;
 | |
|   else
 | |
|     Diag(Loc, diag::warn_implicit_function_decl) << &II;
 | |
| 
 | |
|   // Set a Declarator for the implicit definition: int foo();
 | |
|   const char *Dummy;
 | |
|   AttributeFactory attrFactory;
 | |
|   DeclSpec DS(attrFactory);
 | |
|   unsigned DiagID;
 | |
|   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
 | |
|   (void)Error; // Silence warning.
 | |
|   assert(!Error && "Error setting up implicit decl!");
 | |
|   Declarator D(DS, Declarator::BlockContext);
 | |
|   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
 | |
|                                              0, 0, true, SourceLocation(),
 | |
|                                              EST_None, SourceLocation(),
 | |
|                                              0, 0, 0, 0, Loc, Loc, D),
 | |
|                 DS.getAttributes(),
 | |
|                 SourceLocation());
 | |
|   D.SetIdentifier(&II, Loc);
 | |
| 
 | |
|   // Insert this function into translation-unit scope.
 | |
| 
 | |
|   DeclContext *PrevDC = CurContext;
 | |
|   CurContext = Context.getTranslationUnitDecl();
 | |
| 
 | |
|   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
 | |
|   FD->setImplicit();
 | |
| 
 | |
|   CurContext = PrevDC;
 | |
| 
 | |
|   AddKnownFunctionAttributes(FD);
 | |
| 
 | |
|   return FD;
 | |
| }
 | |
| 
 | |
| /// \brief Adds any function attributes that we know a priori based on
 | |
| /// the declaration of this function.
 | |
| ///
 | |
| /// These attributes can apply both to implicitly-declared builtins
 | |
| /// (like __builtin___printf_chk) or to library-declared functions
 | |
| /// like NSLog or printf.
 | |
| void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
 | |
|   if (FD->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   // If this is a built-in function, map its builtin attributes to
 | |
|   // actual attributes.
 | |
|   if (unsigned BuiltinID = FD->getBuiltinID()) {
 | |
|     // Handle printf-formatting attributes.
 | |
|     unsigned FormatIdx;
 | |
|     bool HasVAListArg;
 | |
|     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
 | |
|       if (!FD->getAttr<FormatAttr>())
 | |
|         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | |
|                                                 "printf", FormatIdx+1,
 | |
|                                                HasVAListArg ? 0 : FormatIdx+2));
 | |
|     }
 | |
|     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
 | |
|                                              HasVAListArg)) {
 | |
|      if (!FD->getAttr<FormatAttr>())
 | |
|        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | |
|                                               "scanf", FormatIdx+1,
 | |
|                                               HasVAListArg ? 0 : FormatIdx+2));
 | |
|     }
 | |
| 
 | |
|     // Mark const if we don't care about errno and that is the only
 | |
|     // thing preventing the function from being const. This allows
 | |
|     // IRgen to use LLVM intrinsics for such functions.
 | |
|     if (!getLangOptions().MathErrno &&
 | |
|         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
 | |
|       if (!FD->getAttr<ConstAttr>())
 | |
|         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
 | |
|     }
 | |
| 
 | |
|     if (Context.BuiltinInfo.isNoThrow(BuiltinID))
 | |
|       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
 | |
|     if (Context.BuiltinInfo.isConst(BuiltinID))
 | |
|       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
 | |
|   }
 | |
| 
 | |
|   IdentifierInfo *Name = FD->getIdentifier();
 | |
|   if (!Name)
 | |
|     return;
 | |
|   if ((!getLangOptions().CPlusPlus &&
 | |
|        FD->getDeclContext()->isTranslationUnit()) ||
 | |
|       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
 | |
|        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
 | |
|        LinkageSpecDecl::lang_c)) {
 | |
|     // Okay: this could be a libc/libm/Objective-C function we know
 | |
|     // about.
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
 | |
|     // FIXME: NSLog and NSLogv should be target specific
 | |
|     if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
 | |
|       // FIXME: We known better than our headers.
 | |
|       const_cast<FormatAttr *>(Format)->setType(Context, "printf");
 | |
|     } else
 | |
|       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | |
|                                              "printf", 1,
 | |
|                                              Name->isStr("NSLogv") ? 0 : 2));
 | |
|   } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
 | |
|     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
 | |
|     // target-specific builtins, perhaps?
 | |
|     if (!FD->getAttr<FormatAttr>())
 | |
|       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
 | |
|                                              "printf", 2,
 | |
|                                              Name->isStr("vasprintf") ? 0 : 3));
 | |
|   }
 | |
| }
 | |
| 
 | |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
 | |
|                                     TypeSourceInfo *TInfo) {
 | |
|   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
 | |
|   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
 | |
| 
 | |
|   if (!TInfo) {
 | |
|     assert(D.isInvalidType() && "no declarator info for valid type");
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(T);
 | |
|   }
 | |
| 
 | |
|   // Scope manipulation handled by caller.
 | |
|   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
 | |
|                                            D.getSourceRange().getBegin(),
 | |
|                                            D.getIdentifierLoc(),
 | |
|                                            D.getIdentifier(),
 | |
|                                            TInfo);
 | |
| 
 | |
|   // Bail out immediately if we have an invalid declaration.
 | |
|   if (D.isInvalidType()) {
 | |
|     NewTD->setInvalidDecl();
 | |
|     return NewTD;
 | |
|   }
 | |
| 
 | |
|   // C++ [dcl.typedef]p8:
 | |
|   //   If the typedef declaration defines an unnamed class (or
 | |
|   //   enum), the first typedef-name declared by the declaration
 | |
|   //   to be that class type (or enum type) is used to denote the
 | |
|   //   class type (or enum type) for linkage purposes only.
 | |
|   // We need to check whether the type was declared in the declaration.
 | |
|   switch (D.getDeclSpec().getTypeSpecType()) {
 | |
|   case TST_enum:
 | |
|   case TST_struct:
 | |
|   case TST_union:
 | |
|   case TST_class: {
 | |
|     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
 | |
| 
 | |
|     // Do nothing if the tag is not anonymous or already has an
 | |
|     // associated typedef (from an earlier typedef in this decl group).
 | |
|     if (tagFromDeclSpec->getIdentifier()) break;
 | |
|     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
 | |
| 
 | |
|     // A well-formed anonymous tag must always be a TUK_Definition.
 | |
|     assert(tagFromDeclSpec->isThisDeclarationADefinition());
 | |
| 
 | |
|     // The type must match the tag exactly;  no qualifiers allowed.
 | |
|     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
 | |
|       break;
 | |
| 
 | |
|     // Otherwise, set this is the anon-decl typedef for the tag.
 | |
|     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return NewTD;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Determine whether a tag with a given kind is acceptable
 | |
| /// as a redeclaration of the given tag declaration.
 | |
| ///
 | |
| /// \returns true if the new tag kind is acceptable, false otherwise.
 | |
| bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
 | |
|                                         TagTypeKind NewTag,
 | |
|                                         SourceLocation NewTagLoc,
 | |
|                                         const IdentifierInfo &Name) {
 | |
|   // C++ [dcl.type.elab]p3:
 | |
|   //   The class-key or enum keyword present in the
 | |
|   //   elaborated-type-specifier shall agree in kind with the
 | |
|   //   declaration to which the name in the elaborated-type-specifier
 | |
|   //   refers. This rule also applies to the form of
 | |
|   //   elaborated-type-specifier that declares a class-name or
 | |
|   //   friend class since it can be construed as referring to the
 | |
|   //   definition of the class. Thus, in any
 | |
|   //   elaborated-type-specifier, the enum keyword shall be used to
 | |
|   //   refer to an enumeration (7.2), the union class-key shall be
 | |
|   //   used to refer to a union (clause 9), and either the class or
 | |
|   //   struct class-key shall be used to refer to a class (clause 9)
 | |
|   //   declared using the class or struct class-key.
 | |
|   TagTypeKind OldTag = Previous->getTagKind();
 | |
|   if (OldTag == NewTag)
 | |
|     return true;
 | |
| 
 | |
|   if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
 | |
|       (NewTag == TTK_Struct || NewTag == TTK_Class)) {
 | |
|     // Warn about the struct/class tag mismatch.
 | |
|     bool isTemplate = false;
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
 | |
|       isTemplate = Record->getDescribedClassTemplate();
 | |
| 
 | |
|     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
 | |
|       << (NewTag == TTK_Class)
 | |
|       << isTemplate << &Name
 | |
|       << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
 | |
|                               OldTag == TTK_Class? "class" : "struct");
 | |
|     Diag(Previous->getLocation(), diag::note_previous_use);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
 | |
| /// former case, Name will be non-null.  In the later case, Name will be null.
 | |
| /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
 | |
| /// reference/declaration/definition of a tag.
 | |
| Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | |
|                      SourceLocation KWLoc, CXXScopeSpec &SS,
 | |
|                      IdentifierInfo *Name, SourceLocation NameLoc,
 | |
|                      AttributeList *Attr, AccessSpecifier AS,
 | |
|                      MultiTemplateParamsArg TemplateParameterLists,
 | |
|                      bool &OwnedDecl, bool &IsDependent,
 | |
|                      bool ScopedEnum, bool ScopedEnumUsesClassTag,
 | |
|                      TypeResult UnderlyingType) {
 | |
|   // If this is not a definition, it must have a name.
 | |
|   assert((Name != 0 || TUK == TUK_Definition) &&
 | |
|          "Nameless record must be a definition!");
 | |
|   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
 | |
| 
 | |
|   OwnedDecl = false;
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
| 
 | |
|   // FIXME: Check explicit specializations more carefully.
 | |
|   bool isExplicitSpecialization = false;
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // We only need to do this matching if we have template parameters
 | |
|   // or a scope specifier, which also conveniently avoids this work
 | |
|   // for non-C++ cases.
 | |
|   if (TemplateParameterLists.size() > 0 ||
 | |
|       (SS.isNotEmpty() && TUK != TUK_Reference)) {
 | |
|     if (TemplateParameterList *TemplateParams
 | |
|           = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
 | |
|                                                 TemplateParameterLists.get(),
 | |
|                                                 TemplateParameterLists.size(),
 | |
|                                                     TUK == TUK_Friend,
 | |
|                                                     isExplicitSpecialization,
 | |
|                                                     Invalid)) {
 | |
|       if (TemplateParams->size() > 0) {
 | |
|         // This is a declaration or definition of a class template (which may
 | |
|         // be a member of another template).
 | |
| 
 | |
|         if (Invalid)
 | |
|           return 0;
 | |
| 
 | |
|         OwnedDecl = false;
 | |
|         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
 | |
|                                                SS, Name, NameLoc, Attr,
 | |
|                                                TemplateParams, AS,
 | |
|                                            TemplateParameterLists.size() - 1,
 | |
|                  (TemplateParameterList**) TemplateParameterLists.release());
 | |
|         return Result.get();
 | |
|       } else {
 | |
|         // The "template<>" header is extraneous.
 | |
|         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
 | |
|           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
 | |
|         isExplicitSpecialization = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Figure out the underlying type if this a enum declaration. We need to do
 | |
|   // this early, because it's needed to detect if this is an incompatible
 | |
|   // redeclaration.
 | |
|   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
 | |
| 
 | |
|   if (Kind == TTK_Enum) {
 | |
|     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
 | |
|       // No underlying type explicitly specified, or we failed to parse the
 | |
|       // type, default to int.
 | |
|       EnumUnderlying = Context.IntTy.getTypePtr();
 | |
|     else if (UnderlyingType.get()) {
 | |
|       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
 | |
|       // integral type; any cv-qualification is ignored.
 | |
|       TypeSourceInfo *TI = 0;
 | |
|       QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
 | |
|       EnumUnderlying = TI;
 | |
| 
 | |
|       SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
 | |
| 
 | |
|       if (!T->isDependentType() && !T->isIntegralType(Context)) {
 | |
|         Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
 | |
|           << T;
 | |
|         // Recover by falling back to int.
 | |
|         EnumUnderlying = Context.IntTy.getTypePtr();
 | |
|       }
 | |
| 
 | |
|       if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI, 
 | |
|                                           UPPC_FixedUnderlyingType))
 | |
|         EnumUnderlying = Context.IntTy.getTypePtr();
 | |
| 
 | |
|     } else if (getLangOptions().Microsoft)
 | |
|       // Microsoft enums are always of int type.
 | |
|       EnumUnderlying = Context.IntTy.getTypePtr();
 | |
|   }
 | |
| 
 | |
|   DeclContext *SearchDC = CurContext;
 | |
|   DeclContext *DC = CurContext;
 | |
|   bool isStdBadAlloc = false;
 | |
| 
 | |
|   RedeclarationKind Redecl = ForRedeclaration;
 | |
|   if (TUK == TUK_Friend || TUK == TUK_Reference)
 | |
|     Redecl = NotForRedeclaration;
 | |
| 
 | |
|   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
 | |
| 
 | |
|   if (Name && SS.isNotEmpty()) {
 | |
|     // We have a nested-name tag ('struct foo::bar').
 | |
| 
 | |
|     // Check for invalid 'foo::'.
 | |
|     if (SS.isInvalid()) {
 | |
|       Name = 0;
 | |
|       goto CreateNewDecl;
 | |
|     }
 | |
| 
 | |
|     // If this is a friend or a reference to a class in a dependent
 | |
|     // context, don't try to make a decl for it.
 | |
|     if (TUK == TUK_Friend || TUK == TUK_Reference) {
 | |
|       DC = computeDeclContext(SS, false);
 | |
|       if (!DC) {
 | |
|         IsDependent = true;
 | |
|         return 0;
 | |
|       }
 | |
|     } else {
 | |
|       DC = computeDeclContext(SS, true);
 | |
|       if (!DC) {
 | |
|         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
 | |
|           << SS.getRange();
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (RequireCompleteDeclContext(SS, DC))
 | |
|       return 0;
 | |
| 
 | |
|     SearchDC = DC;
 | |
|     // Look-up name inside 'foo::'.
 | |
|     LookupQualifiedName(Previous, DC);
 | |
| 
 | |
|     if (Previous.isAmbiguous())
 | |
|       return 0;
 | |
| 
 | |
|     if (Previous.empty()) {
 | |
|       // Name lookup did not find anything. However, if the
 | |
|       // nested-name-specifier refers to the current instantiation,
 | |
|       // and that current instantiation has any dependent base
 | |
|       // classes, we might find something at instantiation time: treat
 | |
|       // this as a dependent elaborated-type-specifier.
 | |
|       // But this only makes any sense for reference-like lookups.
 | |
|       if (Previous.wasNotFoundInCurrentInstantiation() &&
 | |
|           (TUK == TUK_Reference || TUK == TUK_Friend)) {
 | |
|         IsDependent = true;
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       // A tag 'foo::bar' must already exist.
 | |
|       Diag(NameLoc, diag::err_not_tag_in_scope) 
 | |
|         << Kind << Name << DC << SS.getRange();
 | |
|       Name = 0;
 | |
|       Invalid = true;
 | |
|       goto CreateNewDecl;
 | |
|     }
 | |
|   } else if (Name) {
 | |
|     // If this is a named struct, check to see if there was a previous forward
 | |
|     // declaration or definition.
 | |
|     // FIXME: We're looking into outer scopes here, even when we
 | |
|     // shouldn't be. Doing so can result in ambiguities that we
 | |
|     // shouldn't be diagnosing.
 | |
|     LookupName(Previous, S);
 | |
| 
 | |
|     // Note:  there used to be some attempt at recovery here.
 | |
|     if (Previous.isAmbiguous())
 | |
|       return 0;
 | |
| 
 | |
|     if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
 | |
|       // FIXME: This makes sure that we ignore the contexts associated
 | |
|       // with C structs, unions, and enums when looking for a matching
 | |
|       // tag declaration or definition. See the similar lookup tweak
 | |
|       // in Sema::LookupName; is there a better way to deal with this?
 | |
|       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
 | |
|         SearchDC = SearchDC->getParent();
 | |
|     }
 | |
|   } else if (S->isFunctionPrototypeScope()) {
 | |
|     // If this is an enum declaration in function prototype scope, set its
 | |
|     // initial context to the translation unit.
 | |
|     SearchDC = Context.getTranslationUnitDecl();
 | |
|   }
 | |
| 
 | |
|   if (Previous.isSingleResult() &&
 | |
|       Previous.getFoundDecl()->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
 | |
|       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
 | |
|     // This is a declaration of or a reference to "std::bad_alloc".
 | |
|     isStdBadAlloc = true;
 | |
|     
 | |
|     if (Previous.empty() && StdBadAlloc) {
 | |
|       // std::bad_alloc has been implicitly declared (but made invisible to
 | |
|       // name lookup). Fill in this implicit declaration as the previous 
 | |
|       // declaration, so that the declarations get chained appropriately.
 | |
|       Previous.addDecl(getStdBadAlloc());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a previous declaration, and this is a reference
 | |
|   // (or friend reference), move to the correct scope.  In C++, we
 | |
|   // also need to do a redeclaration lookup there, just in case
 | |
|   // there's a shadow friend decl.
 | |
|   if (Name && Previous.empty() &&
 | |
|       (TUK == TUK_Reference || TUK == TUK_Friend)) {
 | |
|     if (Invalid) goto CreateNewDecl;
 | |
|     assert(SS.isEmpty());
 | |
| 
 | |
|     if (TUK == TUK_Reference) {
 | |
|       // C++ [basic.scope.pdecl]p5:
 | |
|       //   -- for an elaborated-type-specifier of the form
 | |
|       //
 | |
|       //          class-key identifier
 | |
|       //
 | |
|       //      if the elaborated-type-specifier is used in the
 | |
|       //      decl-specifier-seq or parameter-declaration-clause of a
 | |
|       //      function defined in namespace scope, the identifier is
 | |
|       //      declared as a class-name in the namespace that contains
 | |
|       //      the declaration; otherwise, except as a friend
 | |
|       //      declaration, the identifier is declared in the smallest
 | |
|       //      non-class, non-function-prototype scope that contains the
 | |
|       //      declaration.
 | |
|       //
 | |
|       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
 | |
|       // C structs and unions.
 | |
|       //
 | |
|       // It is an error in C++ to declare (rather than define) an enum
 | |
|       // type, including via an elaborated type specifier.  We'll
 | |
|       // diagnose that later; for now, declare the enum in the same
 | |
|       // scope as we would have picked for any other tag type.
 | |
|       //
 | |
|       // GNU C also supports this behavior as part of its incomplete
 | |
|       // enum types extension, while GNU C++ does not.
 | |
|       //
 | |
|       // Find the context where we'll be declaring the tag.
 | |
|       // FIXME: We would like to maintain the current DeclContext as the
 | |
|       // lexical context,
 | |
|       while (SearchDC->isRecord() || SearchDC->isTransparentContext())
 | |
|         SearchDC = SearchDC->getParent();
 | |
| 
 | |
|       // Find the scope where we'll be declaring the tag.
 | |
|       while (S->isClassScope() ||
 | |
|              (getLangOptions().CPlusPlus &&
 | |
|               S->isFunctionPrototypeScope()) ||
 | |
|              ((S->getFlags() & Scope::DeclScope) == 0) ||
 | |
|              (S->getEntity() &&
 | |
|               ((DeclContext *)S->getEntity())->isTransparentContext()))
 | |
|         S = S->getParent();
 | |
|     } else {
 | |
|       assert(TUK == TUK_Friend);
 | |
|       // C++ [namespace.memdef]p3:
 | |
|       //   If a friend declaration in a non-local class first declares a
 | |
|       //   class or function, the friend class or function is a member of
 | |
|       //   the innermost enclosing namespace.
 | |
|       SearchDC = SearchDC->getEnclosingNamespaceContext();
 | |
|     }
 | |
| 
 | |
|     // In C++, we need to do a redeclaration lookup to properly
 | |
|     // diagnose some problems.
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       Previous.setRedeclarationKind(ForRedeclaration);
 | |
|       LookupQualifiedName(Previous, SearchDC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Previous.empty()) {
 | |
|     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | |
| 
 | |
|     // It's okay to have a tag decl in the same scope as a typedef
 | |
|     // which hides a tag decl in the same scope.  Finding this
 | |
|     // insanity with a redeclaration lookup can only actually happen
 | |
|     // in C++.
 | |
|     //
 | |
|     // This is also okay for elaborated-type-specifiers, which is
 | |
|     // technically forbidden by the current standard but which is
 | |
|     // okay according to the likely resolution of an open issue;
 | |
|     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | |
|         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
 | |
|           TagDecl *Tag = TT->getDecl();
 | |
|           if (Tag->getDeclName() == Name &&
 | |
|               Tag->getDeclContext()->getRedeclContext()
 | |
|                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
 | |
|             PrevDecl = Tag;
 | |
|             Previous.clear();
 | |
|             Previous.addDecl(Tag);
 | |
|             Previous.resolveKind();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
 | |
|       // If this is a use of a previous tag, or if the tag is already declared
 | |
|       // in the same scope (so that the definition/declaration completes or
 | |
|       // rementions the tag), reuse the decl.
 | |
|       if (TUK == TUK_Reference || TUK == TUK_Friend ||
 | |
|           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
 | |
|         // Make sure that this wasn't declared as an enum and now used as a
 | |
|         // struct or something similar.
 | |
|         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
 | |
|           bool SafeToContinue
 | |
|             = (PrevTagDecl->getTagKind() != TTK_Enum &&
 | |
|                Kind != TTK_Enum);
 | |
|           if (SafeToContinue)
 | |
|             Diag(KWLoc, diag::err_use_with_wrong_tag)
 | |
|               << Name
 | |
|               << FixItHint::CreateReplacement(SourceRange(KWLoc),
 | |
|                                               PrevTagDecl->getKindName());
 | |
|           else
 | |
|             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
 | |
|           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | |
| 
 | |
|           if (SafeToContinue)
 | |
|             Kind = PrevTagDecl->getTagKind();
 | |
|           else {
 | |
|             // Recover by making this an anonymous redefinition.
 | |
|             Name = 0;
 | |
|             Previous.clear();
 | |
|             Invalid = true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
 | |
|           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
 | |
| 
 | |
|           // All conflicts with previous declarations are recovered by
 | |
|           // returning the previous declaration.
 | |
|           if (ScopedEnum != PrevEnum->isScoped()) {
 | |
|             Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
 | |
|               << PrevEnum->isScoped();
 | |
|             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | |
|             return PrevTagDecl;
 | |
|           }
 | |
|           else if (EnumUnderlying && PrevEnum->isFixed()) {
 | |
|             QualType T;
 | |
|             if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | |
|                 T = TI->getType();
 | |
|             else
 | |
|                 T = QualType(EnumUnderlying.get<const Type*>(), 0);
 | |
| 
 | |
|             if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
 | |
|               Diag(NameLoc.isValid() ? NameLoc : KWLoc, 
 | |
|                    diag::err_enum_redeclare_type_mismatch)
 | |
|                 << T
 | |
|                 << PrevEnum->getIntegerType();
 | |
|               Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | |
|               return PrevTagDecl;
 | |
|             }
 | |
|           }
 | |
|           else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
 | |
|             Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
 | |
|               << PrevEnum->isFixed();
 | |
|             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | |
|             return PrevTagDecl;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!Invalid) {
 | |
|           // If this is a use, just return the declaration we found.
 | |
| 
 | |
|           // FIXME: In the future, return a variant or some other clue
 | |
|           // for the consumer of this Decl to know it doesn't own it.
 | |
|           // For our current ASTs this shouldn't be a problem, but will
 | |
|           // need to be changed with DeclGroups.
 | |
|           if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
 | |
|               TUK == TUK_Friend)
 | |
|             return PrevTagDecl;
 | |
| 
 | |
|           // Diagnose attempts to redefine a tag.
 | |
|           if (TUK == TUK_Definition) {
 | |
|             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
 | |
|               // If we're defining a specialization and the previous definition
 | |
|               // is from an implicit instantiation, don't emit an error
 | |
|               // here; we'll catch this in the general case below.
 | |
|               if (!isExplicitSpecialization ||
 | |
|                   !isa<CXXRecordDecl>(Def) ||
 | |
|                   cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind() 
 | |
|                                                == TSK_ExplicitSpecialization) {
 | |
|                 Diag(NameLoc, diag::err_redefinition) << Name;
 | |
|                 Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|                 // If this is a redefinition, recover by making this
 | |
|                 // struct be anonymous, which will make any later
 | |
|                 // references get the previous definition.
 | |
|                 Name = 0;
 | |
|                 Previous.clear();
 | |
|                 Invalid = true;
 | |
|               }
 | |
|             } else {
 | |
|               // If the type is currently being defined, complain
 | |
|               // about a nested redefinition.
 | |
|               const TagType *Tag
 | |
|                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
 | |
|               if (Tag->isBeingDefined()) {
 | |
|                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
 | |
|                 Diag(PrevTagDecl->getLocation(),
 | |
|                      diag::note_previous_definition);
 | |
|                 Name = 0;
 | |
|                 Previous.clear();
 | |
|                 Invalid = true;
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             // Okay, this is definition of a previously declared or referenced
 | |
|             // tag PrevDecl. We're going to create a new Decl for it.
 | |
|           }
 | |
|         }
 | |
|         // If we get here we have (another) forward declaration or we
 | |
|         // have a definition.  Just create a new decl.
 | |
| 
 | |
|       } else {
 | |
|         // If we get here, this is a definition of a new tag type in a nested
 | |
|         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
 | |
|         // new decl/type.  We set PrevDecl to NULL so that the entities
 | |
|         // have distinct types.
 | |
|         Previous.clear();
 | |
|       }
 | |
|       // If we get here, we're going to create a new Decl. If PrevDecl
 | |
|       // is non-NULL, it's a definition of the tag declared by
 | |
|       // PrevDecl. If it's NULL, we have a new definition.
 | |
| 
 | |
| 
 | |
|     // Otherwise, PrevDecl is not a tag, but was found with tag
 | |
|     // lookup.  This is only actually possible in C++, where a few
 | |
|     // things like templates still live in the tag namespace.
 | |
|     } else {
 | |
|       assert(getLangOptions().CPlusPlus);
 | |
| 
 | |
|       // Use a better diagnostic if an elaborated-type-specifier
 | |
|       // found the wrong kind of type on the first
 | |
|       // (non-redeclaration) lookup.
 | |
|       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
 | |
|           !Previous.isForRedeclaration()) {
 | |
|         unsigned Kind = 0;
 | |
|         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
 | |
|         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
 | |
|         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
 | |
|         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_declared_at);
 | |
|         Invalid = true;
 | |
| 
 | |
|       // Otherwise, only diagnose if the declaration is in scope.
 | |
|       } else if (!isDeclInScope(PrevDecl, SearchDC, S, 
 | |
|                                 isExplicitSpecialization)) {
 | |
|         // do nothing
 | |
| 
 | |
|       // Diagnose implicit declarations introduced by elaborated types.
 | |
|       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | |
|         unsigned Kind = 0;
 | |
|         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
 | |
|         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
 | |
|         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
 | |
|         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | |
|         Invalid = true;
 | |
| 
 | |
|       // Otherwise it's a declaration.  Call out a particularly common
 | |
|       // case here.
 | |
|       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | |
|         unsigned Kind = 0;
 | |
|         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
 | |
|         Diag(NameLoc, diag::err_tag_definition_of_typedef)
 | |
|           << Name << Kind << TND->getUnderlyingType();
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | |
|         Invalid = true;
 | |
| 
 | |
|       // Otherwise, diagnose.
 | |
|       } else {
 | |
|         // The tag name clashes with something else in the target scope,
 | |
|         // issue an error and recover by making this tag be anonymous.
 | |
|         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|         Name = 0;
 | |
|         Invalid = true;
 | |
|       }
 | |
| 
 | |
|       // The existing declaration isn't relevant to us; we're in a
 | |
|       // new scope, so clear out the previous declaration.
 | |
|       Previous.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| CreateNewDecl:
 | |
| 
 | |
|   TagDecl *PrevDecl = 0;
 | |
|   if (Previous.isSingleResult())
 | |
|     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
 | |
| 
 | |
|   // If there is an identifier, use the location of the identifier as the
 | |
|   // location of the decl, otherwise use the location of the struct/union
 | |
|   // keyword.
 | |
|   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
 | |
| 
 | |
|   // Otherwise, create a new declaration. If there is a previous
 | |
|   // declaration of the same entity, the two will be linked via
 | |
|   // PrevDecl.
 | |
|   TagDecl *New;
 | |
| 
 | |
|   bool IsForwardReference = false;
 | |
|   if (Kind == TTK_Enum) {
 | |
|     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | |
|     // enum X { A, B, C } D;    D should chain to X.
 | |
|     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
 | |
|                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
 | |
|                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
 | |
|     // If this is an undefined enum, warn.
 | |
|     if (TUK != TUK_Definition && !Invalid) {
 | |
|       TagDecl *Def;
 | |
|       if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
 | |
|         // C++0x: 7.2p2: opaque-enum-declaration.
 | |
|         // Conflicts are diagnosed above. Do nothing.
 | |
|       }
 | |
|       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
 | |
|         Diag(Loc, diag::ext_forward_ref_enum_def)
 | |
|           << New;
 | |
|         Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|       } else {
 | |
|         unsigned DiagID = diag::ext_forward_ref_enum;
 | |
|         if (getLangOptions().Microsoft)
 | |
|           DiagID = diag::ext_ms_forward_ref_enum;
 | |
|         else if (getLangOptions().CPlusPlus)
 | |
|           DiagID = diag::err_forward_ref_enum;
 | |
|         Diag(Loc, DiagID);
 | |
|         
 | |
|         // If this is a forward-declared reference to an enumeration, make a 
 | |
|         // note of it; we won't actually be introducing the declaration into
 | |
|         // the declaration context.
 | |
|         if (TUK == TUK_Reference)
 | |
|           IsForwardReference = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (EnumUnderlying) {
 | |
|       EnumDecl *ED = cast<EnumDecl>(New);
 | |
|       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | |
|         ED->setIntegerTypeSourceInfo(TI);
 | |
|       else
 | |
|         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
 | |
|       ED->setPromotionType(ED->getIntegerType());
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // struct/union/class
 | |
| 
 | |
|     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | |
|     // struct X { int A; } D;    D should chain to X.
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       // FIXME: Look for a way to use RecordDecl for simple structs.
 | |
|       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | |
|                                   cast_or_null<CXXRecordDecl>(PrevDecl));
 | |
| 
 | |
|       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
 | |
|         StdBadAlloc = cast<CXXRecordDecl>(New);
 | |
|     } else
 | |
|       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | |
|                                cast_or_null<RecordDecl>(PrevDecl));
 | |
|   }
 | |
| 
 | |
|   // Maybe add qualifier info.
 | |
|   if (SS.isNotEmpty()) {
 | |
|     if (SS.isSet()) {
 | |
|       New->setQualifierInfo(SS.getWithLocInContext(Context));
 | |
|       if (TemplateParameterLists.size() > 0) {
 | |
|         New->setTemplateParameterListsInfo(Context,
 | |
|                                            TemplateParameterLists.size(),
 | |
|                     (TemplateParameterList**) TemplateParameterLists.release());
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|       Invalid = true;
 | |
|   }
 | |
| 
 | |
|   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
 | |
|     // Add alignment attributes if necessary; these attributes are checked when
 | |
|     // the ASTContext lays out the structure.
 | |
|     //
 | |
|     // It is important for implementing the correct semantics that this
 | |
|     // happen here (in act on tag decl). The #pragma pack stack is
 | |
|     // maintained as a result of parser callbacks which can occur at
 | |
|     // many points during the parsing of a struct declaration (because
 | |
|     // the #pragma tokens are effectively skipped over during the
 | |
|     // parsing of the struct).
 | |
|     AddAlignmentAttributesForRecord(RD);
 | |
|   }
 | |
| 
 | |
|   // If this is a specialization of a member class (of a class template),
 | |
|   // check the specialization.
 | |
|   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
 | |
|     Invalid = true;
 | |
| 
 | |
|   if (Invalid)
 | |
|     New->setInvalidDecl();
 | |
| 
 | |
|   if (Attr)
 | |
|     ProcessDeclAttributeList(S, New, Attr);
 | |
| 
 | |
|   // If we're declaring or defining a tag in function prototype scope
 | |
|   // in C, note that this type can only be used within the function.
 | |
|   if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
 | |
|     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
 | |
| 
 | |
|   // Set the lexical context. If the tag has a C++ scope specifier, the
 | |
|   // lexical context will be different from the semantic context.
 | |
|   New->setLexicalDeclContext(CurContext);
 | |
| 
 | |
|   // Mark this as a friend decl if applicable.
 | |
|   if (TUK == TUK_Friend)
 | |
|     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
 | |
| 
 | |
|   // Set the access specifier.
 | |
|   if (!Invalid && SearchDC->isRecord())
 | |
|     SetMemberAccessSpecifier(New, PrevDecl, AS);
 | |
| 
 | |
|   if (TUK == TUK_Definition)
 | |
|     New->startDefinition();
 | |
| 
 | |
|   // If this has an identifier, add it to the scope stack.
 | |
|   if (TUK == TUK_Friend) {
 | |
|     // We might be replacing an existing declaration in the lookup tables;
 | |
|     // if so, borrow its access specifier.
 | |
|     if (PrevDecl)
 | |
|       New->setAccess(PrevDecl->getAccess());
 | |
| 
 | |
|     DeclContext *DC = New->getDeclContext()->getRedeclContext();
 | |
|     DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
 | |
|     if (Name) // can be null along some error paths
 | |
|       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | |
|         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
 | |
|   } else if (Name) {
 | |
|     S = getNonFieldDeclScope(S);
 | |
|     PushOnScopeChains(New, S, !IsForwardReference);
 | |
|     if (IsForwardReference)
 | |
|       SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
 | |
| 
 | |
|   } else {
 | |
|     CurContext->addDecl(New);
 | |
|   }
 | |
| 
 | |
|   // If this is the C FILE type, notify the AST context.
 | |
|   if (IdentifierInfo *II = New->getIdentifier())
 | |
|     if (!New->isInvalidDecl() &&
 | |
|         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
 | |
|         II->isStr("FILE"))
 | |
|       Context.setFILEDecl(New);
 | |
| 
 | |
|   OwnedDecl = true;
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   TagDecl *Tag = cast<TagDecl>(TagD);
 | |
|   
 | |
|   // Enter the tag context.
 | |
|   PushDeclContext(S, Tag);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
 | |
|                                            SourceLocation FinalLoc,
 | |
|                                            SourceLocation LBraceLoc) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
 | |
| 
 | |
|   FieldCollector->StartClass();
 | |
| 
 | |
|   if (!Record->getIdentifier())
 | |
|     return;
 | |
| 
 | |
|   if (FinalLoc.isValid())
 | |
|     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
 | |
|     
 | |
|   // C++ [class]p2:
 | |
|   //   [...] The class-name is also inserted into the scope of the
 | |
|   //   class itself; this is known as the injected-class-name. For
 | |
|   //   purposes of access checking, the injected-class-name is treated
 | |
|   //   as if it were a public member name.
 | |
|   CXXRecordDecl *InjectedClassName
 | |
|     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
 | |
|                             Record->getLocStart(), Record->getLocation(),
 | |
|                             Record->getIdentifier(),
 | |
|                             /*PrevDecl=*/0,
 | |
|                             /*DelayTypeCreation=*/true);
 | |
|   Context.getTypeDeclType(InjectedClassName, Record);
 | |
|   InjectedClassName->setImplicit();
 | |
|   InjectedClassName->setAccess(AS_public);
 | |
|   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
 | |
|       InjectedClassName->setDescribedClassTemplate(Template);
 | |
|   PushOnScopeChains(InjectedClassName, S);
 | |
|   assert(InjectedClassName->isInjectedClassName() &&
 | |
|          "Broken injected-class-name");
 | |
| }
 | |
| 
 | |
| void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
 | |
|                                     SourceLocation RBraceLoc) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   TagDecl *Tag = cast<TagDecl>(TagD);
 | |
|   Tag->setRBraceLoc(RBraceLoc);
 | |
| 
 | |
|   if (isa<CXXRecordDecl>(Tag))
 | |
|     FieldCollector->FinishClass();
 | |
| 
 | |
|   // Exit this scope of this tag's definition.
 | |
|   PopDeclContext();
 | |
|                                           
 | |
|   // Notify the consumer that we've defined a tag.
 | |
|   Consumer.HandleTagDeclDefinition(Tag);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
 | |
|   AdjustDeclIfTemplate(TagD);
 | |
|   TagDecl *Tag = cast<TagDecl>(TagD);
 | |
|   Tag->setInvalidDecl();
 | |
| 
 | |
|   // We're undoing ActOnTagStartDefinition here, not
 | |
|   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
 | |
|   // the FieldCollector.
 | |
| 
 | |
|   PopDeclContext();  
 | |
| }
 | |
| 
 | |
| // Note that FieldName may be null for anonymous bitfields.
 | |
| bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
 | |
|                           QualType FieldTy, const Expr *BitWidth,
 | |
|                           bool *ZeroWidth) {
 | |
|   // Default to true; that shouldn't confuse checks for emptiness
 | |
|   if (ZeroWidth)
 | |
|     *ZeroWidth = true;
 | |
| 
 | |
|   // C99 6.7.2.1p4 - verify the field type.
 | |
|   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
 | |
|   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
 | |
|     // Handle incomplete types with specific error.
 | |
|     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
 | |
|       return true;
 | |
|     if (FieldName)
 | |
|       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
 | |
|         << FieldName << FieldTy << BitWidth->getSourceRange();
 | |
|     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
 | |
|       << FieldTy << BitWidth->getSourceRange();
 | |
|   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
 | |
|                                              UPPC_BitFieldWidth))
 | |
|     return true;
 | |
| 
 | |
|   // If the bit-width is type- or value-dependent, don't try to check
 | |
|   // it now.
 | |
|   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   llvm::APSInt Value;
 | |
|   if (VerifyIntegerConstantExpression(BitWidth, &Value))
 | |
|     return true;
 | |
| 
 | |
|   if (Value != 0 && ZeroWidth)
 | |
|     *ZeroWidth = false;
 | |
| 
 | |
|   // Zero-width bitfield is ok for anonymous field.
 | |
|   if (Value == 0 && FieldName)
 | |
|     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
 | |
| 
 | |
|   if (Value.isSigned() && Value.isNegative()) {
 | |
|     if (FieldName)
 | |
|       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
 | |
|                << FieldName << Value.toString(10);
 | |
|     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
 | |
|       << Value.toString(10);
 | |
|   }
 | |
| 
 | |
|   if (!FieldTy->isDependentType()) {
 | |
|     uint64_t TypeSize = Context.getTypeSize(FieldTy);
 | |
|     if (Value.getZExtValue() > TypeSize) {
 | |
|       if (!getLangOptions().CPlusPlus) {
 | |
|         if (FieldName) 
 | |
|           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
 | |
|             << FieldName << (unsigned)Value.getZExtValue() 
 | |
|             << (unsigned)TypeSize;
 | |
|         
 | |
|         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
 | |
|           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
 | |
|       }
 | |
|       
 | |
|       if (FieldName)
 | |
|         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
 | |
|           << FieldName << (unsigned)Value.getZExtValue() 
 | |
|           << (unsigned)TypeSize;
 | |
|       else
 | |
|         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
 | |
|           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;        
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnField - Each field of a struct/union/class is passed into this in order
 | |
| /// to create a FieldDecl object for it.
 | |
| Decl *Sema::ActOnField(Scope *S, Decl *TagD,
 | |
|                                  SourceLocation DeclStart,
 | |
|                                  Declarator &D, ExprTy *BitfieldWidth) {
 | |
|   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
 | |
|                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
 | |
|                                AS_public);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// HandleField - Analyze a field of a C struct or a C++ data member.
 | |
| ///
 | |
| FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
 | |
|                              SourceLocation DeclStart,
 | |
|                              Declarator &D, Expr *BitWidth,
 | |
|                              AccessSpecifier AS) {
 | |
|   IdentifierInfo *II = D.getIdentifier();
 | |
|   SourceLocation Loc = DeclStart;
 | |
|   if (II) Loc = D.getIdentifierLoc();
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType T = TInfo->getType();
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
| 
 | |
|     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | |
|                                         UPPC_DataMemberType)) {
 | |
|       D.setInvalidType();
 | |
|       T = Context.IntTy;
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D);
 | |
| 
 | |
|   if (D.getDeclSpec().isThreadSpecified())
 | |
|     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | |
|   
 | |
|   // Check to see if this name was declared as a member previously
 | |
|   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
 | |
|   LookupName(Previous, S);
 | |
|   assert((Previous.empty() || Previous.isOverloadedResult() || 
 | |
|           Previous.isSingleResult()) 
 | |
|     && "Lookup of member name should be either overloaded, single or null");
 | |
| 
 | |
|   // If the name is overloaded then get any declaration else get the single result
 | |
|   NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
 | |
|     Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
 | |
| 
 | |
|   if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     PrevDecl = 0;
 | |
|   }
 | |
| 
 | |
|   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
 | |
|     PrevDecl = 0;
 | |
| 
 | |
|   bool Mutable
 | |
|     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
 | |
|   SourceLocation TSSL = D.getSourceRange().getBegin();
 | |
|   FieldDecl *NewFD
 | |
|     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
 | |
|                      AS, PrevDecl, &D);
 | |
| 
 | |
|   if (NewFD->isInvalidDecl())
 | |
|     Record->setInvalidDecl();
 | |
| 
 | |
|   if (NewFD->isInvalidDecl() && PrevDecl) {
 | |
|     // Don't introduce NewFD into scope; there's already something
 | |
|     // with the same name in the same scope.
 | |
|   } else if (II) {
 | |
|     PushOnScopeChains(NewFD, S);
 | |
|   } else
 | |
|     Record->addDecl(NewFD);
 | |
| 
 | |
|   return NewFD;
 | |
| }
 | |
| 
 | |
| /// \brief Build a new FieldDecl and check its well-formedness.
 | |
| ///
 | |
| /// This routine builds a new FieldDecl given the fields name, type,
 | |
| /// record, etc. \p PrevDecl should refer to any previous declaration
 | |
| /// with the same name and in the same scope as the field to be
 | |
| /// created.
 | |
| ///
 | |
| /// \returns a new FieldDecl.
 | |
| ///
 | |
| /// \todo The Declarator argument is a hack. It will be removed once
 | |
| FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
 | |
|                                 TypeSourceInfo *TInfo,
 | |
|                                 RecordDecl *Record, SourceLocation Loc,
 | |
|                                 bool Mutable, Expr *BitWidth,
 | |
|                                 SourceLocation TSSL,
 | |
|                                 AccessSpecifier AS, NamedDecl *PrevDecl,
 | |
|                                 Declarator *D) {
 | |
|   IdentifierInfo *II = Name.getAsIdentifierInfo();
 | |
|   bool InvalidDecl = false;
 | |
|   if (D) InvalidDecl = D->isInvalidType();
 | |
| 
 | |
|   // If we receive a broken type, recover by assuming 'int' and
 | |
|   // marking this declaration as invalid.
 | |
|   if (T.isNull()) {
 | |
|     InvalidDecl = true;
 | |
|     T = Context.IntTy;
 | |
|   }
 | |
| 
 | |
|   QualType EltTy = Context.getBaseElementType(T);
 | |
|   if (!EltTy->isDependentType() &&
 | |
|       RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
 | |
|     // Fields of incomplete type force their record to be invalid.
 | |
|     Record->setInvalidDecl();
 | |
|     InvalidDecl = true;
 | |
|   }
 | |
| 
 | |
|   // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | |
|   // than a variably modified type.
 | |
|   if (!InvalidDecl && T->isVariablyModifiedType()) {
 | |
|     bool SizeIsNegative;
 | |
|     llvm::APSInt Oversized;
 | |
|     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
 | |
|                                                            SizeIsNegative,
 | |
|                                                            Oversized);
 | |
|     if (!FixedTy.isNull()) {
 | |
|       Diag(Loc, diag::warn_illegal_constant_array_size);
 | |
|       T = FixedTy;
 | |
|     } else {
 | |
|       if (SizeIsNegative)
 | |
|         Diag(Loc, diag::err_typecheck_negative_array_size);
 | |
|       else if (Oversized.getBoolValue())
 | |
|         Diag(Loc, diag::err_array_too_large)
 | |
|           << Oversized.toString(10);
 | |
|       else
 | |
|         Diag(Loc, diag::err_typecheck_field_variable_size);
 | |
|       InvalidDecl = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fields can not have abstract class types
 | |
|   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
 | |
|                                              diag::err_abstract_type_in_decl,
 | |
|                                              AbstractFieldType))
 | |
|     InvalidDecl = true;
 | |
| 
 | |
|   bool ZeroWidth = false;
 | |
|   // If this is declared as a bit-field, check the bit-field.
 | |
|   if (!InvalidDecl && BitWidth &&
 | |
|       VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
 | |
|     InvalidDecl = true;
 | |
|     BitWidth = 0;
 | |
|     ZeroWidth = false;
 | |
|   }
 | |
| 
 | |
|   // Check that 'mutable' is consistent with the type of the declaration.
 | |
|   if (!InvalidDecl && Mutable) {
 | |
|     unsigned DiagID = 0;
 | |
|     if (T->isReferenceType())
 | |
|       DiagID = diag::err_mutable_reference;
 | |
|     else if (T.isConstQualified())
 | |
|       DiagID = diag::err_mutable_const;
 | |
| 
 | |
|     if (DiagID) {
 | |
|       SourceLocation ErrLoc = Loc;
 | |
|       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
 | |
|         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
 | |
|       Diag(ErrLoc, DiagID);
 | |
|       Mutable = false;
 | |
|       InvalidDecl = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
 | |
|                                        BitWidth, Mutable);
 | |
|   if (InvalidDecl)
 | |
|     NewFD->setInvalidDecl();
 | |
| 
 | |
|   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
 | |
|     Diag(Loc, diag::err_duplicate_member) << II;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
|     NewFD->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   if (!InvalidDecl && getLangOptions().CPlusPlus) {
 | |
|     if (Record->isUnion()) {
 | |
|       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | |
|         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|         if (RDecl->getDefinition()) {
 | |
|           // C++ [class.union]p1: An object of a class with a non-trivial
 | |
|           // constructor, a non-trivial copy constructor, a non-trivial
 | |
|           // destructor, or a non-trivial copy assignment operator
 | |
|           // cannot be a member of a union, nor can an array of such
 | |
|           // objects.
 | |
|           // TODO: C++0x alters this restriction significantly.
 | |
|           if (CheckNontrivialField(NewFD))
 | |
|             NewFD->setInvalidDecl();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // C++ [class.union]p1: If a union contains a member of reference type,
 | |
|       // the program is ill-formed.
 | |
|       if (EltTy->isReferenceType()) {
 | |
|         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
 | |
|           << NewFD->getDeclName() << EltTy;
 | |
|         NewFD->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: We need to pass in the attributes given an AST
 | |
|   // representation, not a parser representation.
 | |
|   if (D)
 | |
|     // FIXME: What to pass instead of TUScope?
 | |
|     ProcessDeclAttributes(TUScope, NewFD, *D);
 | |
| 
 | |
|   if (T.isObjCGCWeak())
 | |
|     Diag(Loc, diag::warn_attribute_weak_on_field);
 | |
| 
 | |
|   NewFD->setAccess(AS);
 | |
|   return NewFD;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckNontrivialField(FieldDecl *FD) {
 | |
|   assert(FD);
 | |
|   assert(getLangOptions().CPlusPlus && "valid check only for C++");
 | |
| 
 | |
|   if (FD->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   QualType EltTy = Context.getBaseElementType(FD->getType());
 | |
|   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | |
|     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     if (RDecl->getDefinition()) {
 | |
|       // We check for copy constructors before constructors
 | |
|       // because otherwise we'll never get complaints about
 | |
|       // copy constructors.
 | |
| 
 | |
|       CXXSpecialMember member = CXXInvalid;
 | |
|       if (!RDecl->hasTrivialCopyConstructor())
 | |
|         member = CXXCopyConstructor;
 | |
|       else if (!RDecl->hasTrivialConstructor())
 | |
|         member = CXXConstructor;
 | |
|       else if (!RDecl->hasTrivialCopyAssignment())
 | |
|         member = CXXCopyAssignment;
 | |
|       else if (!RDecl->hasTrivialDestructor())
 | |
|         member = CXXDestructor;
 | |
| 
 | |
|       if (member != CXXInvalid) {
 | |
|         Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
 | |
|               << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
 | |
|         DiagnoseNontrivial(RT, member);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// DiagnoseNontrivial - Given that a class has a non-trivial
 | |
| /// special member, figure out why.
 | |
| void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
 | |
|   QualType QT(T, 0U);
 | |
|   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
 | |
| 
 | |
|   // Check whether the member was user-declared.
 | |
|   switch (member) {
 | |
|   case CXXInvalid:
 | |
|     break;
 | |
| 
 | |
|   case CXXConstructor:
 | |
|     if (RD->hasUserDeclaredConstructor()) {
 | |
|       typedef CXXRecordDecl::ctor_iterator ctor_iter;
 | |
|       for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
 | |
|         const FunctionDecl *body = 0;
 | |
|         ci->hasBody(body);
 | |
|         if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
 | |
|           SourceLocation CtorLoc = ci->getLocation();
 | |
|           Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       assert(0 && "found no user-declared constructors");
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case CXXCopyConstructor:
 | |
|     if (RD->hasUserDeclaredCopyConstructor()) {
 | |
|       SourceLocation CtorLoc =
 | |
|         RD->getCopyConstructor(Context, 0)->getLocation();
 | |
|       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case CXXCopyAssignment:
 | |
|     if (RD->hasUserDeclaredCopyAssignment()) {
 | |
|       // FIXME: this should use the location of the copy
 | |
|       // assignment, not the type.
 | |
|       SourceLocation TyLoc = RD->getSourceRange().getBegin();
 | |
|       Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case CXXDestructor:
 | |
|     if (RD->hasUserDeclaredDestructor()) {
 | |
|       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
 | |
|       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   typedef CXXRecordDecl::base_class_iterator base_iter;
 | |
| 
 | |
|   // Virtual bases and members inhibit trivial copying/construction,
 | |
|   // but not trivial destruction.
 | |
|   if (member != CXXDestructor) {
 | |
|     // Check for virtual bases.  vbases includes indirect virtual bases,
 | |
|     // so we just iterate through the direct bases.
 | |
|     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
 | |
|       if (bi->isVirtual()) {
 | |
|         SourceLocation BaseLoc = bi->getSourceRange().getBegin();
 | |
|         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     // Check for virtual methods.
 | |
|     typedef CXXRecordDecl::method_iterator meth_iter;
 | |
|     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
 | |
|          ++mi) {
 | |
|       if (mi->isVirtual()) {
 | |
|         SourceLocation MLoc = mi->getSourceRange().getBegin();
 | |
|         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool (CXXRecordDecl::*hasTrivial)() const;
 | |
|   switch (member) {
 | |
|   case CXXConstructor:
 | |
|     hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
 | |
|   case CXXCopyConstructor:
 | |
|     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
 | |
|   case CXXCopyAssignment:
 | |
|     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
 | |
|   case CXXDestructor:
 | |
|     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
 | |
|   default:
 | |
|     assert(0 && "unexpected special member"); return;
 | |
|   }
 | |
| 
 | |
|   // Check for nontrivial bases (and recurse).
 | |
|   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
 | |
|     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
 | |
|     assert(BaseRT && "Don't know how to handle dependent bases");
 | |
|     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
 | |
|     if (!(BaseRecTy->*hasTrivial)()) {
 | |
|       SourceLocation BaseLoc = bi->getSourceRange().getBegin();
 | |
|       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
 | |
|       DiagnoseNontrivial(BaseRT, member);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for nontrivial members (and recurse).
 | |
|   typedef RecordDecl::field_iterator field_iter;
 | |
|   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
 | |
|        ++fi) {
 | |
|     QualType EltTy = Context.getBaseElementType((*fi)->getType());
 | |
|     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
 | |
|       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
 | |
| 
 | |
|       if (!(EltRD->*hasTrivial)()) {
 | |
|         SourceLocation FLoc = (*fi)->getLocation();
 | |
|         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
 | |
|         DiagnoseNontrivial(EltRT, member);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(0 && "found no explanation for non-trivial member");
 | |
| }
 | |
| 
 | |
| /// TranslateIvarVisibility - Translate visibility from a token ID to an
 | |
| ///  AST enum value.
 | |
| static ObjCIvarDecl::AccessControl
 | |
| TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
 | |
|   switch (ivarVisibility) {
 | |
|   default: assert(0 && "Unknown visitibility kind");
 | |
|   case tok::objc_private: return ObjCIvarDecl::Private;
 | |
|   case tok::objc_public: return ObjCIvarDecl::Public;
 | |
|   case tok::objc_protected: return ObjCIvarDecl::Protected;
 | |
|   case tok::objc_package: return ObjCIvarDecl::Package;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnIvar - Each ivar field of an objective-c class is passed into this
 | |
| /// in order to create an IvarDecl object for it.
 | |
| Decl *Sema::ActOnIvar(Scope *S,
 | |
|                                 SourceLocation DeclStart,
 | |
|                                 Decl *IntfDecl,
 | |
|                                 Declarator &D, ExprTy *BitfieldWidth,
 | |
|                                 tok::ObjCKeywordKind Visibility) {
 | |
| 
 | |
|   IdentifierInfo *II = D.getIdentifier();
 | |
|   Expr *BitWidth = (Expr*)BitfieldWidth;
 | |
|   SourceLocation Loc = DeclStart;
 | |
|   if (II) Loc = D.getIdentifierLoc();
 | |
| 
 | |
|   // FIXME: Unnamed fields can be handled in various different ways, for
 | |
|   // example, unnamed unions inject all members into the struct namespace!
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType T = TInfo->getType();
 | |
| 
 | |
|   if (BitWidth) {
 | |
|     // 6.7.2.1p3, 6.7.2.1p4
 | |
|     if (VerifyBitField(Loc, II, T, BitWidth)) {
 | |
|       D.setInvalidType();
 | |
|       BitWidth = 0;
 | |
|     }
 | |
|   } else {
 | |
|     // Not a bitfield.
 | |
| 
 | |
|     // validate II.
 | |
| 
 | |
|   }
 | |
|   if (T->isReferenceType()) {
 | |
|     Diag(Loc, diag::err_ivar_reference_type);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | |
|   // than a variably modified type.
 | |
|   else if (T->isVariablyModifiedType()) {
 | |
|     Diag(Loc, diag::err_typecheck_ivar_variable_size);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Get the visibility (access control) for this ivar.
 | |
|   ObjCIvarDecl::AccessControl ac =
 | |
|     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
 | |
|                                         : ObjCIvarDecl::None;
 | |
|   // Must set ivar's DeclContext to its enclosing interface.
 | |
|   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
 | |
|   ObjCContainerDecl *EnclosingContext;
 | |
|   if (ObjCImplementationDecl *IMPDecl =
 | |
|       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | |
|     if (!LangOpts.ObjCNonFragileABI2) {
 | |
|     // Case of ivar declared in an implementation. Context is that of its class.
 | |
|       EnclosingContext = IMPDecl->getClassInterface();
 | |
|       assert(EnclosingContext && "Implementation has no class interface!");
 | |
|     }
 | |
|     else
 | |
|       EnclosingContext = EnclosingDecl;
 | |
|   } else {
 | |
|     if (ObjCCategoryDecl *CDecl = 
 | |
|         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | |
|       if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
 | |
|         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|     EnclosingContext = EnclosingDecl;
 | |
|   }
 | |
| 
 | |
|   // Construct the decl.
 | |
|   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
 | |
|                                              DeclStart, Loc, II, T,
 | |
|                                              TInfo, ac, (Expr *)BitfieldWidth);
 | |
| 
 | |
|   if (II) {
 | |
|     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
 | |
|                                            ForRedeclaration);
 | |
|     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
 | |
|         && !isa<TagDecl>(PrevDecl)) {
 | |
|       Diag(Loc, diag::err_duplicate_member) << II;
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | |
|       NewID->setInvalidDecl();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process attributes attached to the ivar.
 | |
|   ProcessDeclAttributes(S, NewID, D);
 | |
| 
 | |
|   if (D.isInvalidType())
 | |
|     NewID->setInvalidDecl();
 | |
| 
 | |
|   if (II) {
 | |
|     // FIXME: When interfaces are DeclContexts, we'll need to add
 | |
|     // these to the interface.
 | |
|     S->AddDecl(NewID);
 | |
|     IdResolver.AddDecl(NewID);
 | |
|   }
 | |
| 
 | |
|   return NewID;
 | |
| }
 | |
| 
 | |
| /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 
 | |
| /// class and class extensions. For every class @interface and class 
 | |
| /// extension @interface, if the last ivar is a bitfield of any type, 
 | |
| /// then add an implicit `char :0` ivar to the end of that interface.
 | |
| void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
 | |
|                              llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
 | |
|   if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
 | |
|     return;
 | |
|   
 | |
|   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
 | |
|   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
 | |
|   
 | |
|   if (!Ivar->isBitField())
 | |
|     return;
 | |
|   uint64_t BitFieldSize =
 | |
|     Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
 | |
|   if (BitFieldSize == 0)
 | |
|     return;
 | |
|   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
 | |
|   if (!ID) {
 | |
|     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | |
|       if (!CD->IsClassExtension())
 | |
|         return;
 | |
|     }
 | |
|     // No need to add this to end of @implementation.
 | |
|     else
 | |
|       return;
 | |
|   }
 | |
|   // All conditions are met. Add a new bitfield to the tail end of ivars.
 | |
|   llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
 | |
|   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
 | |
| 
 | |
|   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
 | |
|                               DeclLoc, DeclLoc, 0,
 | |
|                               Context.CharTy, 
 | |
|                               Context.CreateTypeSourceInfo(Context.CharTy),
 | |
|                               ObjCIvarDecl::Private, BW,
 | |
|                               true);
 | |
|   AllIvarDecls.push_back(Ivar);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFields(Scope* S,
 | |
|                        SourceLocation RecLoc, Decl *EnclosingDecl,
 | |
|                        Decl **Fields, unsigned NumFields,
 | |
|                        SourceLocation LBrac, SourceLocation RBrac,
 | |
|                        AttributeList *Attr) {
 | |
|   assert(EnclosingDecl && "missing record or interface decl");
 | |
| 
 | |
|   // If the decl this is being inserted into is invalid, then it may be a
 | |
|   // redeclaration or some other bogus case.  Don't try to add fields to it.
 | |
|   if (EnclosingDecl->isInvalidDecl()) {
 | |
|     // FIXME: Deallocate fields?
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Verify that all the fields are okay.
 | |
|   unsigned NumNamedMembers = 0;
 | |
|   llvm::SmallVector<FieldDecl*, 32> RecFields;
 | |
| 
 | |
|   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
 | |
|   for (unsigned i = 0; i != NumFields; ++i) {
 | |
|     FieldDecl *FD = cast<FieldDecl>(Fields[i]);
 | |
| 
 | |
|     // Get the type for the field.
 | |
|     const Type *FDTy = FD->getType().getTypePtr();
 | |
| 
 | |
|     if (!FD->isAnonymousStructOrUnion()) {
 | |
|       // Remember all fields written by the user.
 | |
|       RecFields.push_back(FD);
 | |
|     }
 | |
| 
 | |
|     // If the field is already invalid for some reason, don't emit more
 | |
|     // diagnostics about it.
 | |
|     if (FD->isInvalidDecl()) {
 | |
|       EnclosingDecl->setInvalidDecl();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C99 6.7.2.1p2:
 | |
|     //   A structure or union shall not contain a member with
 | |
|     //   incomplete or function type (hence, a structure shall not
 | |
|     //   contain an instance of itself, but may contain a pointer to
 | |
|     //   an instance of itself), except that the last member of a
 | |
|     //   structure with more than one named member may have incomplete
 | |
|     //   array type; such a structure (and any union containing,
 | |
|     //   possibly recursively, a member that is such a structure)
 | |
|     //   shall not be a member of a structure or an element of an
 | |
|     //   array.
 | |
|     if (FDTy->isFunctionType()) {
 | |
|       // Field declared as a function.
 | |
|       Diag(FD->getLocation(), diag::err_field_declared_as_function)
 | |
|         << FD->getDeclName();
 | |
|       FD->setInvalidDecl();
 | |
|       EnclosingDecl->setInvalidDecl();
 | |
|       continue;
 | |
|     } else if (FDTy->isIncompleteArrayType() && Record && 
 | |
|                ((i == NumFields - 1 && !Record->isUnion()) ||
 | |
|                 ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
 | |
|                  (i == NumFields - 1 || Record->isUnion())))) {
 | |
|       // Flexible array member.
 | |
|       // Microsoft and g++ is more permissive regarding flexible array.
 | |
|       // It will accept flexible array in union and also
 | |
|       // as the sole element of a struct/class.
 | |
|       if (getLangOptions().Microsoft) {
 | |
|         if (Record->isUnion()) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
 | |
|             << FD->getDeclName();
 | |
|         else if (NumFields == 1) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
 | |
|             << FD->getDeclName() << Record->getTagKind();
 | |
|       } else if (getLangOptions().CPlusPlus) {
 | |
|         if (Record->isUnion()) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
 | |
|             << FD->getDeclName();
 | |
|         else if (NumFields == 1) 
 | |
|           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
 | |
|             << FD->getDeclName() << Record->getTagKind();
 | |
|       } else if (NumNamedMembers < 1) {
 | |
|         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
 | |
|           << FD->getDeclName();
 | |
|         FD->setInvalidDecl();
 | |
|         EnclosingDecl->setInvalidDecl();
 | |
|         continue;
 | |
|       }
 | |
|       if (!FD->getType()->isDependentType() &&
 | |
|           !Context.getBaseElementType(FD->getType())->isPODType()) {
 | |
|         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
 | |
|           << FD->getDeclName() << FD->getType();
 | |
|         FD->setInvalidDecl();
 | |
|         EnclosingDecl->setInvalidDecl();
 | |
|         continue;
 | |
|       }
 | |
|       // Okay, we have a legal flexible array member at the end of the struct.
 | |
|       if (Record)
 | |
|         Record->setHasFlexibleArrayMember(true);
 | |
|     } else if (!FDTy->isDependentType() &&
 | |
|                RequireCompleteType(FD->getLocation(), FD->getType(),
 | |
|                                    diag::err_field_incomplete)) {
 | |
|       // Incomplete type
 | |
|       FD->setInvalidDecl();
 | |
|       EnclosingDecl->setInvalidDecl();
 | |
|       continue;
 | |
|     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
 | |
|       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
 | |
|         // If this is a member of a union, then entire union becomes "flexible".
 | |
|         if (Record && Record->isUnion()) {
 | |
|           Record->setHasFlexibleArrayMember(true);
 | |
|         } else {
 | |
|           // If this is a struct/class and this is not the last element, reject
 | |
|           // it.  Note that GCC supports variable sized arrays in the middle of
 | |
|           // structures.
 | |
|           if (i != NumFields-1)
 | |
|             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
 | |
|               << FD->getDeclName() << FD->getType();
 | |
|           else {
 | |
|             // We support flexible arrays at the end of structs in
 | |
|             // other structs as an extension.
 | |
|             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
 | |
|               << FD->getDeclName();
 | |
|             if (Record)
 | |
|               Record->setHasFlexibleArrayMember(true);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (Record && FDTTy->getDecl()->hasObjectMember())
 | |
|         Record->setHasObjectMember(true);
 | |
|     } else if (FDTy->isObjCObjectType()) {
 | |
|       /// A field cannot be an Objective-c object
 | |
|       Diag(FD->getLocation(), diag::err_statically_allocated_object);
 | |
|       FD->setInvalidDecl();
 | |
|       EnclosingDecl->setInvalidDecl();
 | |
|       continue;
 | |
|     } else if (getLangOptions().ObjC1 &&
 | |
|                getLangOptions().getGCMode() != LangOptions::NonGC &&
 | |
|                Record &&
 | |
|                (FD->getType()->isObjCObjectPointerType() ||
 | |
|                 FD->getType().isObjCGCStrong()))
 | |
|       Record->setHasObjectMember(true);
 | |
|     else if (Context.getAsArrayType(FD->getType())) {
 | |
|       QualType BaseType = Context.getBaseElementType(FD->getType());
 | |
|       if (Record && BaseType->isRecordType() && 
 | |
|           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
 | |
|         Record->setHasObjectMember(true);
 | |
|     }
 | |
|     // Keep track of the number of named members.
 | |
|     if (FD->getIdentifier())
 | |
|       ++NumNamedMembers;
 | |
|   }
 | |
| 
 | |
|   // Okay, we successfully defined 'Record'.
 | |
|   if (Record) {
 | |
|     bool Completed = false;
 | |
|     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
 | |
|       if (!CXXRecord->isInvalidDecl()) {
 | |
|         // Set access bits correctly on the directly-declared conversions.
 | |
|         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
 | |
|         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); 
 | |
|              I != E; ++I)
 | |
|           Convs->setAccess(I, (*I)->getAccess());
 | |
|         
 | |
|         if (!CXXRecord->isDependentType()) {
 | |
|           // Add any implicitly-declared members to this class.
 | |
|           AddImplicitlyDeclaredMembersToClass(CXXRecord);
 | |
| 
 | |
|           // If we have virtual base classes, we may end up finding multiple 
 | |
|           // final overriders for a given virtual function. Check for this 
 | |
|           // problem now.
 | |
|           if (CXXRecord->getNumVBases()) {
 | |
|             CXXFinalOverriderMap FinalOverriders;
 | |
|             CXXRecord->getFinalOverriders(FinalOverriders);
 | |
|             
 | |
|             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 
 | |
|                                              MEnd = FinalOverriders.end();
 | |
|                  M != MEnd; ++M) {
 | |
|               for (OverridingMethods::iterator SO = M->second.begin(), 
 | |
|                                             SOEnd = M->second.end();
 | |
|                    SO != SOEnd; ++SO) {
 | |
|                 assert(SO->second.size() > 0 && 
 | |
|                        "Virtual function without overridding functions?");
 | |
|                 if (SO->second.size() == 1)
 | |
|                   continue;
 | |
|                 
 | |
|                 // C++ [class.virtual]p2:
 | |
|                 //   In a derived class, if a virtual member function of a base
 | |
|                 //   class subobject has more than one final overrider the
 | |
|                 //   program is ill-formed.
 | |
|                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
 | |
|                   << (NamedDecl *)M->first << Record;
 | |
|                 Diag(M->first->getLocation(), 
 | |
|                      diag::note_overridden_virtual_function);
 | |
|                 for (OverridingMethods::overriding_iterator 
 | |
|                           OM = SO->second.begin(), 
 | |
|                        OMEnd = SO->second.end();
 | |
|                      OM != OMEnd; ++OM)
 | |
|                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
 | |
|                     << (NamedDecl *)M->first << OM->Method->getParent();
 | |
|                 
 | |
|                 Record->setInvalidDecl();
 | |
|               }
 | |
|             }
 | |
|             CXXRecord->completeDefinition(&FinalOverriders);
 | |
|             Completed = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!Completed)
 | |
|       Record->completeDefinition();
 | |
|   } else {
 | |
|     ObjCIvarDecl **ClsFields =
 | |
|       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
 | |
|     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
 | |
|       ID->setLocEnd(RBrac);
 | |
|       // Add ivar's to class's DeclContext.
 | |
|       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | |
|         ClsFields[i]->setLexicalDeclContext(ID);
 | |
|         ID->addDecl(ClsFields[i]);
 | |
|       }
 | |
|       // Must enforce the rule that ivars in the base classes may not be
 | |
|       // duplicates.
 | |
|       if (ID->getSuperClass())
 | |
|         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
 | |
|     } else if (ObjCImplementationDecl *IMPDecl =
 | |
|                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | |
|       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
 | |
|       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
 | |
|         // Ivar declared in @implementation never belongs to the implementation.
 | |
|         // Only it is in implementation's lexical context.
 | |
|         ClsFields[I]->setLexicalDeclContext(IMPDecl);
 | |
|       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
 | |
|     } else if (ObjCCategoryDecl *CDecl = 
 | |
|                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | |
|       // case of ivars in class extension; all other cases have been
 | |
|       // reported as errors elsewhere.
 | |
|       // FIXME. Class extension does not have a LocEnd field.
 | |
|       // CDecl->setLocEnd(RBrac);
 | |
|       // Add ivar's to class extension's DeclContext.
 | |
|       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | |
|         ClsFields[i]->setLexicalDeclContext(CDecl);
 | |
|         CDecl->addDecl(ClsFields[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Attr)
 | |
|     ProcessDeclAttributeList(S, Record, Attr);
 | |
| 
 | |
|   // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
 | |
|   // set the visibility of this record.
 | |
|   if (Record && !Record->getDeclContext()->isRecord())
 | |
|     AddPushedVisibilityAttribute(Record);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given integral value is representable within
 | |
| /// the given type T.
 | |
| static bool isRepresentableIntegerValue(ASTContext &Context,
 | |
|                                         llvm::APSInt &Value,
 | |
|                                         QualType T) {
 | |
|   assert(T->isIntegralType(Context) && "Integral type required!");
 | |
|   unsigned BitWidth = Context.getIntWidth(T);
 | |
|   
 | |
|   if (Value.isUnsigned() || Value.isNonNegative()) {
 | |
|     if (T->isSignedIntegerType()) 
 | |
|       --BitWidth;
 | |
|     return Value.getActiveBits() <= BitWidth;
 | |
|   }  
 | |
|   return Value.getMinSignedBits() <= BitWidth;
 | |
| }
 | |
| 
 | |
| // \brief Given an integral type, return the next larger integral type
 | |
| // (or a NULL type of no such type exists).
 | |
| static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
 | |
|   // FIXME: Int128/UInt128 support, which also needs to be introduced into 
 | |
|   // enum checking below.
 | |
|   assert(T->isIntegralType(Context) && "Integral type required!");
 | |
|   const unsigned NumTypes = 4;
 | |
|   QualType SignedIntegralTypes[NumTypes] = { 
 | |
|     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
 | |
|   };
 | |
|   QualType UnsignedIntegralTypes[NumTypes] = { 
 | |
|     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 
 | |
|     Context.UnsignedLongLongTy
 | |
|   };
 | |
|   
 | |
|   unsigned BitWidth = Context.getTypeSize(T);
 | |
|   QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
 | |
|                                             : UnsignedIntegralTypes;
 | |
|   for (unsigned I = 0; I != NumTypes; ++I)
 | |
|     if (Context.getTypeSize(Types[I]) > BitWidth)
 | |
|       return Types[I];
 | |
|   
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
 | |
|                                           EnumConstantDecl *LastEnumConst,
 | |
|                                           SourceLocation IdLoc,
 | |
|                                           IdentifierInfo *Id,
 | |
|                                           Expr *Val) {
 | |
|   unsigned IntWidth = Context.Target.getIntWidth();
 | |
|   llvm::APSInt EnumVal(IntWidth);
 | |
|   QualType EltTy;
 | |
| 
 | |
|   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
 | |
|     Val = 0;
 | |
| 
 | |
|   if (Val) {
 | |
|     if (Enum->isDependentType() || Val->isTypeDependent())
 | |
|       EltTy = Context.DependentTy;
 | |
|     else {
 | |
|       // C99 6.7.2.2p2: Make sure we have an integer constant expression.
 | |
|       SourceLocation ExpLoc;
 | |
|       if (!Val->isValueDependent() &&
 | |
|           VerifyIntegerConstantExpression(Val, &EnumVal)) {
 | |
|         Val = 0;
 | |
|       } else {        
 | |
|         if (!getLangOptions().CPlusPlus) {
 | |
|           // C99 6.7.2.2p2:
 | |
|           //   The expression that defines the value of an enumeration constant
 | |
|           //   shall be an integer constant expression that has a value 
 | |
|           //   representable as an int.
 | |
|           
 | |
|           // Complain if the value is not representable in an int.
 | |
|           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
 | |
|             Diag(IdLoc, diag::ext_enum_value_not_int)
 | |
|               << EnumVal.toString(10) << Val->getSourceRange()
 | |
|               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
 | |
|           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
 | |
|             // Force the type of the expression to 'int'.
 | |
|             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         if (Enum->isFixed()) {
 | |
|           EltTy = Enum->getIntegerType();
 | |
| 
 | |
|           // C++0x [dcl.enum]p5:
 | |
|           //   ... if the initializing value of an enumerator cannot be
 | |
|           //   represented by the underlying type, the program is ill-formed.
 | |
|           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | |
|             if (getLangOptions().Microsoft) {
 | |
|               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
 | |
|               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
 | |
|             } else 
 | |
|               Diag(IdLoc, diag::err_enumerator_too_large)
 | |
|                 << EltTy;
 | |
|           } else
 | |
|             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
 | |
|         }
 | |
|         else {
 | |
|           // C++0x [dcl.enum]p5:
 | |
|           //   If the underlying type is not fixed, the type of each enumerator
 | |
|           //   is the type of its initializing value:
 | |
|           //     - If an initializer is specified for an enumerator, the 
 | |
|           //       initializing value has the same type as the expression.
 | |
|           EltTy = Val->getType();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Val) {
 | |
|     if (Enum->isDependentType())
 | |
|       EltTy = Context.DependentTy;
 | |
|     else if (!LastEnumConst) {
 | |
|       // C++0x [dcl.enum]p5:
 | |
|       //   If the underlying type is not fixed, the type of each enumerator
 | |
|       //   is the type of its initializing value:
 | |
|       //     - If no initializer is specified for the first enumerator, the 
 | |
|       //       initializing value has an unspecified integral type.
 | |
|       //
 | |
|       // GCC uses 'int' for its unspecified integral type, as does 
 | |
|       // C99 6.7.2.2p3.
 | |
|       if (Enum->isFixed()) {
 | |
|         EltTy = Enum->getIntegerType();
 | |
|       }
 | |
|       else {
 | |
|         EltTy = Context.IntTy;
 | |
|       }
 | |
|     } else {
 | |
|       // Assign the last value + 1.
 | |
|       EnumVal = LastEnumConst->getInitVal();
 | |
|       ++EnumVal;
 | |
|       EltTy = LastEnumConst->getType();
 | |
| 
 | |
|       // Check for overflow on increment.
 | |
|       if (EnumVal < LastEnumConst->getInitVal()) {
 | |
|         // C++0x [dcl.enum]p5:
 | |
|         //   If the underlying type is not fixed, the type of each enumerator
 | |
|         //   is the type of its initializing value:
 | |
|         //
 | |
|         //     - Otherwise the type of the initializing value is the same as
 | |
|         //       the type of the initializing value of the preceding enumerator
 | |
|         //       unless the incremented value is not representable in that type,
 | |
|         //       in which case the type is an unspecified integral type 
 | |
|         //       sufficient to contain the incremented value. If no such type
 | |
|         //       exists, the program is ill-formed.
 | |
|         QualType T = getNextLargerIntegralType(Context, EltTy);
 | |
|         if (T.isNull() || Enum->isFixed()) {
 | |
|           // There is no integral type larger enough to represent this 
 | |
|           // value. Complain, then allow the value to wrap around.
 | |
|           EnumVal = LastEnumConst->getInitVal();
 | |
|           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
 | |
|           ++EnumVal;
 | |
|           if (Enum->isFixed())
 | |
|             // When the underlying type is fixed, this is ill-formed.
 | |
|             Diag(IdLoc, diag::err_enumerator_wrapped)
 | |
|               << EnumVal.toString(10)
 | |
|               << EltTy;
 | |
|           else
 | |
|             Diag(IdLoc, diag::warn_enumerator_too_large)
 | |
|               << EnumVal.toString(10);
 | |
|         } else {
 | |
|           EltTy = T;
 | |
|         }
 | |
|         
 | |
|         // Retrieve the last enumerator's value, extent that type to the
 | |
|         // type that is supposed to be large enough to represent the incremented
 | |
|         // value, then increment.
 | |
|         EnumVal = LastEnumConst->getInitVal();
 | |
|         EnumVal.setIsSigned(EltTy->isSignedIntegerType());
 | |
|         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
 | |
|         ++EnumVal;        
 | |
|         
 | |
|         // If we're not in C++, diagnose the overflow of enumerator values,
 | |
|         // which in C99 means that the enumerator value is not representable in
 | |
|         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
 | |
|         // permits enumerator values that are representable in some larger
 | |
|         // integral type.
 | |
|         if (!getLangOptions().CPlusPlus && !T.isNull())
 | |
|           Diag(IdLoc, diag::warn_enum_value_overflow);
 | |
|       } else if (!getLangOptions().CPlusPlus &&
 | |
|                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | |
|         // Enforce C99 6.7.2.2p2 even when we compute the next value.
 | |
|         Diag(IdLoc, diag::ext_enum_value_not_int)
 | |
|           << EnumVal.toString(10) << 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!EltTy->isDependentType()) {
 | |
|     // Make the enumerator value match the signedness and size of the 
 | |
|     // enumerator's type.
 | |
|     EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
 | |
|     EnumVal.setIsSigned(EltTy->isSignedIntegerType());
 | |
|   }
 | |
|   
 | |
|   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
 | |
|                                   Val, EnumVal);
 | |
| }
 | |
| 
 | |
| 
 | |
| Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
 | |
|                               SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                               AttributeList *Attr,
 | |
|                               SourceLocation EqualLoc, ExprTy *val) {
 | |
|   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
 | |
|   EnumConstantDecl *LastEnumConst =
 | |
|     cast_or_null<EnumConstantDecl>(lastEnumConst);
 | |
|   Expr *Val = static_cast<Expr*>(val);
 | |
| 
 | |
|   // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | |
|   // we find one that is.
 | |
|   S = getNonFieldDeclScope(S);
 | |
| 
 | |
|   // Verify that there isn't already something declared with this name in this
 | |
|   // scope.
 | |
|   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
 | |
|                                          ForRedeclaration);
 | |
|   if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | |
|     // Maybe we will complain about the shadowed template parameter.
 | |
|     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
 | |
|     // Just pretend that we didn't see the previous declaration.
 | |
|     PrevDecl = 0;
 | |
|   }
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     // When in C++, we may get a TagDecl with the same name; in this case the
 | |
|     // enum constant will 'hide' the tag.
 | |
|     assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
 | |
|            "Received TagDecl when not in C++!");
 | |
|     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
 | |
|       if (isa<EnumConstantDecl>(PrevDecl))
 | |
|         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
 | |
|       else
 | |
|         Diag(IdLoc, diag::err_redefinition) << Id;
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [class.mem]p13:
 | |
|   //   If T is the name of a class, then each of the following shall have a 
 | |
|   //   name different from T:
 | |
|   //     - every enumerator of every member of class T that is an enumerated 
 | |
|   //       type
 | |
|   if (CXXRecordDecl *Record
 | |
|                       = dyn_cast<CXXRecordDecl>(
 | |
|                              TheEnumDecl->getDeclContext()->getRedeclContext()))
 | |
|     if (Record->getIdentifier() && Record->getIdentifier() == Id)
 | |
|       Diag(IdLoc, diag::err_member_name_of_class) << Id;
 | |
|   
 | |
|   EnumConstantDecl *New =
 | |
|     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
 | |
| 
 | |
|   if (New) {
 | |
|     // Process attributes.
 | |
|     if (Attr) ProcessDeclAttributeList(S, New, Attr);
 | |
| 
 | |
|     // Register this decl in the current scope stack.
 | |
|     New->setAccess(TheEnumDecl->getAccess());
 | |
|     PushOnScopeChains(New, S);
 | |
|   }
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
 | |
|                          SourceLocation RBraceLoc, Decl *EnumDeclX,
 | |
|                          Decl **Elements, unsigned NumElements,
 | |
|                          Scope *S, AttributeList *Attr) {
 | |
|   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
 | |
|   QualType EnumType = Context.getTypeDeclType(Enum);
 | |
| 
 | |
|   if (Attr)
 | |
|     ProcessDeclAttributeList(S, Enum, Attr);
 | |
| 
 | |
|   if (Enum->isDependentType()) {
 | |
|     for (unsigned i = 0; i != NumElements; ++i) {
 | |
|       EnumConstantDecl *ECD =
 | |
|         cast_or_null<EnumConstantDecl>(Elements[i]);
 | |
|       if (!ECD) continue;
 | |
| 
 | |
|       ECD->setType(EnumType);
 | |
|     }
 | |
| 
 | |
|     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // TODO: If the result value doesn't fit in an int, it must be a long or long
 | |
|   // long value.  ISO C does not support this, but GCC does as an extension,
 | |
|   // emit a warning.
 | |
|   unsigned IntWidth = Context.Target.getIntWidth();
 | |
|   unsigned CharWidth = Context.Target.getCharWidth();
 | |
|   unsigned ShortWidth = Context.Target.getShortWidth();
 | |
| 
 | |
|   // Verify that all the values are okay, compute the size of the values, and
 | |
|   // reverse the list.
 | |
|   unsigned NumNegativeBits = 0;
 | |
|   unsigned NumPositiveBits = 0;
 | |
| 
 | |
|   // Keep track of whether all elements have type int.
 | |
|   bool AllElementsInt = true;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElements; ++i) {
 | |
|     EnumConstantDecl *ECD =
 | |
|       cast_or_null<EnumConstantDecl>(Elements[i]);
 | |
|     if (!ECD) continue;  // Already issued a diagnostic.
 | |
| 
 | |
|     const llvm::APSInt &InitVal = ECD->getInitVal();
 | |
| 
 | |
|     // Keep track of the size of positive and negative values.
 | |
|     if (InitVal.isUnsigned() || InitVal.isNonNegative())
 | |
|       NumPositiveBits = std::max(NumPositiveBits,
 | |
|                                  (unsigned)InitVal.getActiveBits());
 | |
|     else
 | |
|       NumNegativeBits = std::max(NumNegativeBits,
 | |
|                                  (unsigned)InitVal.getMinSignedBits());
 | |
| 
 | |
|     // Keep track of whether every enum element has type int (very commmon).
 | |
|     if (AllElementsInt)
 | |
|       AllElementsInt = ECD->getType() == Context.IntTy;
 | |
|   }
 | |
| 
 | |
|   // Figure out the type that should be used for this enum.
 | |
|   QualType BestType;
 | |
|   unsigned BestWidth;
 | |
| 
 | |
|   // C++0x N3000 [conv.prom]p3:
 | |
|   //   An rvalue of an unscoped enumeration type whose underlying
 | |
|   //   type is not fixed can be converted to an rvalue of the first
 | |
|   //   of the following types that can represent all the values of
 | |
|   //   the enumeration: int, unsigned int, long int, unsigned long
 | |
|   //   int, long long int, or unsigned long long int.
 | |
|   // C99 6.4.4.3p2:
 | |
|   //   An identifier declared as an enumeration constant has type int.
 | |
|   // The C99 rule is modified by a gcc extension 
 | |
|   QualType BestPromotionType;
 | |
| 
 | |
|   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
 | |
|   // -fshort-enums is the equivalent to specifying the packed attribute on all
 | |
|   // enum definitions.
 | |
|   if (LangOpts.ShortEnums)
 | |
|     Packed = true;
 | |
| 
 | |
|   if (Enum->isFixed()) {
 | |
|     BestType = BestPromotionType = Enum->getIntegerType();
 | |
|     // We don't need to set BestWidth, because BestType is going to be the type
 | |
|     // of the enumerators, but we do anyway because otherwise some compilers
 | |
|     // warn that it might be used uninitialized.
 | |
|     BestWidth = CharWidth;
 | |
|   }
 | |
|   else if (NumNegativeBits) {
 | |
|     // If there is a negative value, figure out the smallest integer type (of
 | |
|     // int/long/longlong) that fits.
 | |
|     // If it's packed, check also if it fits a char or a short.
 | |
|     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
 | |
|       BestType = Context.SignedCharTy;
 | |
|       BestWidth = CharWidth;
 | |
|     } else if (Packed && NumNegativeBits <= ShortWidth &&
 | |
|                NumPositiveBits < ShortWidth) {
 | |
|       BestType = Context.ShortTy;
 | |
|       BestWidth = ShortWidth;
 | |
|     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
 | |
|       BestType = Context.IntTy;
 | |
|       BestWidth = IntWidth;
 | |
|     } else {
 | |
|       BestWidth = Context.Target.getLongWidth();
 | |
| 
 | |
|       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
 | |
|         BestType = Context.LongTy;
 | |
|       } else {
 | |
|         BestWidth = Context.Target.getLongLongWidth();
 | |
| 
 | |
|         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
 | |
|           Diag(Enum->getLocation(), diag::warn_enum_too_large);
 | |
|         BestType = Context.LongLongTy;
 | |
|       }
 | |
|     }
 | |
|     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
 | |
|   } else {
 | |
|     // If there is no negative value, figure out the smallest type that fits
 | |
|     // all of the enumerator values.
 | |
|     // If it's packed, check also if it fits a char or a short.
 | |
|     if (Packed && NumPositiveBits <= CharWidth) {
 | |
|       BestType = Context.UnsignedCharTy;
 | |
|       BestPromotionType = Context.IntTy;
 | |
|       BestWidth = CharWidth;
 | |
|     } else if (Packed && NumPositiveBits <= ShortWidth) {
 | |
|       BestType = Context.UnsignedShortTy;
 | |
|       BestPromotionType = Context.IntTy;
 | |
|       BestWidth = ShortWidth;
 | |
|     } else if (NumPositiveBits <= IntWidth) {
 | |
|       BestType = Context.UnsignedIntTy;
 | |
|       BestWidth = IntWidth;
 | |
|       BestPromotionType
 | |
|         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
 | |
|                            ? Context.UnsignedIntTy : Context.IntTy;
 | |
|     } else if (NumPositiveBits <=
 | |
|                (BestWidth = Context.Target.getLongWidth())) {
 | |
|       BestType = Context.UnsignedLongTy;
 | |
|       BestPromotionType
 | |
|         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
 | |
|                            ? Context.UnsignedLongTy : Context.LongTy;
 | |
|     } else {
 | |
|       BestWidth = Context.Target.getLongLongWidth();
 | |
|       assert(NumPositiveBits <= BestWidth &&
 | |
|              "How could an initializer get larger than ULL?");
 | |
|       BestType = Context.UnsignedLongLongTy;
 | |
|       BestPromotionType
 | |
|         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
 | |
|                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the enumerator constants, changing their types to match
 | |
|   // the type of the enum if needed.
 | |
|   for (unsigned i = 0; i != NumElements; ++i) {
 | |
|     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
 | |
|     if (!ECD) continue;  // Already issued a diagnostic.
 | |
| 
 | |
|     // Standard C says the enumerators have int type, but we allow, as an
 | |
|     // extension, the enumerators to be larger than int size.  If each
 | |
|     // enumerator value fits in an int, type it as an int, otherwise type it the
 | |
|     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
 | |
|     // that X has type 'int', not 'unsigned'.
 | |
| 
 | |
|     // Determine whether the value fits into an int.
 | |
|     llvm::APSInt InitVal = ECD->getInitVal();
 | |
| 
 | |
|     // If it fits into an integer type, force it.  Otherwise force it to match
 | |
|     // the enum decl type.
 | |
|     QualType NewTy;
 | |
|     unsigned NewWidth;
 | |
|     bool NewSign;
 | |
|     if (!getLangOptions().CPlusPlus &&
 | |
|         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
 | |
|       NewTy = Context.IntTy;
 | |
|       NewWidth = IntWidth;
 | |
|       NewSign = true;
 | |
|     } else if (ECD->getType() == BestType) {
 | |
|       // Already the right type!
 | |
|       if (getLangOptions().CPlusPlus)
 | |
|         // C++ [dcl.enum]p4: Following the closing brace of an
 | |
|         // enum-specifier, each enumerator has the type of its
 | |
|         // enumeration.
 | |
|         ECD->setType(EnumType);
 | |
|       continue;
 | |
|     } else {
 | |
|       NewTy = BestType;
 | |
|       NewWidth = BestWidth;
 | |
|       NewSign = BestType->isSignedIntegerType();
 | |
|     }
 | |
| 
 | |
|     // Adjust the APSInt value.
 | |
|     InitVal = InitVal.extOrTrunc(NewWidth);
 | |
|     InitVal.setIsSigned(NewSign);
 | |
|     ECD->setInitVal(InitVal);
 | |
| 
 | |
|     // Adjust the Expr initializer and type.
 | |
|     if (ECD->getInitExpr() &&
 | |
| 	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
 | |
|       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
 | |
|                                                 CK_IntegralCast,
 | |
|                                                 ECD->getInitExpr(),
 | |
|                                                 /*base paths*/ 0,
 | |
|                                                 VK_RValue));
 | |
|     if (getLangOptions().CPlusPlus)
 | |
|       // C++ [dcl.enum]p4: Following the closing brace of an
 | |
|       // enum-specifier, each enumerator has the type of its
 | |
|       // enumeration.
 | |
|       ECD->setType(EnumType);
 | |
|     else
 | |
|       ECD->setType(NewTy);
 | |
|   }
 | |
| 
 | |
|   Enum->completeDefinition(BestType, BestPromotionType,
 | |
|                            NumPositiveBits, NumNegativeBits);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
 | |
|                                   SourceLocation StartLoc,
 | |
|                                   SourceLocation EndLoc) {
 | |
|   StringLiteral *AsmString = cast<StringLiteral>(expr);
 | |
| 
 | |
|   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
 | |
|                                                    AsmString, StartLoc,
 | |
|                                                    EndLoc);
 | |
|   CurContext->addDecl(New);
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
 | |
|                              SourceLocation PragmaLoc,
 | |
|                              SourceLocation NameLoc) {
 | |
|   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
 | |
|   } else {
 | |
|     (void)WeakUndeclaredIdentifiers.insert(
 | |
|       std::pair<IdentifierInfo*,WeakInfo>
 | |
|         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
 | |
|                                 IdentifierInfo* AliasName,
 | |
|                                 SourceLocation PragmaLoc,
 | |
|                                 SourceLocation NameLoc,
 | |
|                                 SourceLocation AliasNameLoc) {
 | |
|   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
 | |
|                                     LookupOrdinaryName);
 | |
|   WeakInfo W = WeakInfo(Name, NameLoc);
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     if (!PrevDecl->hasAttr<AliasAttr>())
 | |
|       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
 | |
|         DeclApplyPragmaWeak(TUScope, ND, W);
 | |
|   } else {
 | |
|     (void)WeakUndeclaredIdentifiers.insert(
 | |
|       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
 | |
|   }
 | |
| }
 |