forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			7921 lines
		
	
	
		
			307 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7921 lines
		
	
	
		
			307 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for C++ declarations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/CXXFieldCollector.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/AST/ASTConsumer.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclVisitor.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/AST/TypeOrdering.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <map>
 | |
| #include <set>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CheckDefaultArgumentVisitor
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
 | |
|   /// the default argument of a parameter to determine whether it
 | |
|   /// contains any ill-formed subexpressions. For example, this will
 | |
|   /// diagnose the use of local variables or parameters within the
 | |
|   /// default argument expression.
 | |
|   class CheckDefaultArgumentVisitor
 | |
|     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
 | |
|     Expr *DefaultArg;
 | |
|     Sema *S;
 | |
| 
 | |
|   public:
 | |
|     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
 | |
|       : DefaultArg(defarg), S(s) {}
 | |
| 
 | |
|     bool VisitExpr(Expr *Node);
 | |
|     bool VisitDeclRefExpr(DeclRefExpr *DRE);
 | |
|     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
 | |
|   };
 | |
| 
 | |
|   /// VisitExpr - Visit all of the children of this expression.
 | |
|   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
 | |
|     bool IsInvalid = false;
 | |
|     for (Stmt::child_range I = Node->children(); I; ++I)
 | |
|       IsInvalid |= Visit(*I);
 | |
|     return IsInvalid;
 | |
|   }
 | |
| 
 | |
|   /// VisitDeclRefExpr - Visit a reference to a declaration, to
 | |
|   /// determine whether this declaration can be used in the default
 | |
|   /// argument expression.
 | |
|   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
 | |
|     NamedDecl *Decl = DRE->getDecl();
 | |
|     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
 | |
|       // C++ [dcl.fct.default]p9
 | |
|       //   Default arguments are evaluated each time the function is
 | |
|       //   called. The order of evaluation of function arguments is
 | |
|       //   unspecified. Consequently, parameters of a function shall not
 | |
|       //   be used in default argument expressions, even if they are not
 | |
|       //   evaluated. Parameters of a function declared before a default
 | |
|       //   argument expression are in scope and can hide namespace and
 | |
|       //   class member names.
 | |
|       return S->Diag(DRE->getSourceRange().getBegin(),
 | |
|                      diag::err_param_default_argument_references_param)
 | |
|          << Param->getDeclName() << DefaultArg->getSourceRange();
 | |
|     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
 | |
|       // C++ [dcl.fct.default]p7
 | |
|       //   Local variables shall not be used in default argument
 | |
|       //   expressions.
 | |
|       if (VDecl->isLocalVarDecl())
 | |
|         return S->Diag(DRE->getSourceRange().getBegin(),
 | |
|                        diag::err_param_default_argument_references_local)
 | |
|           << VDecl->getDeclName() << DefaultArg->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// VisitCXXThisExpr - Visit a C++ "this" expression.
 | |
|   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
 | |
|     // C++ [dcl.fct.default]p8:
 | |
|     //   The keyword this shall not be used in a default argument of a
 | |
|     //   member function.
 | |
|     return S->Diag(ThisE->getSourceRange().getBegin(),
 | |
|                    diag::err_param_default_argument_references_this)
 | |
|                << ThisE->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
 | |
|                               SourceLocation EqualLoc) {
 | |
|   if (RequireCompleteType(Param->getLocation(), Param->getType(),
 | |
|                           diag::err_typecheck_decl_incomplete_type)) {
 | |
|     Param->setInvalidDecl();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [dcl.fct.default]p5
 | |
|   //   A default argument expression is implicitly converted (clause
 | |
|   //   4) to the parameter type. The default argument expression has
 | |
|   //   the same semantic constraints as the initializer expression in
 | |
|   //   a declaration of a variable of the parameter type, using the
 | |
|   //   copy-initialization semantics (8.5).
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | |
|                                                                     Param);
 | |
|   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
 | |
|                                                            EqualLoc);
 | |
|   InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
 | |
|   ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                       MultiExprArg(*this, &Arg, 1));
 | |
|   if (Result.isInvalid())
 | |
|     return true;
 | |
|   Arg = Result.takeAs<Expr>();
 | |
| 
 | |
|   CheckImplicitConversions(Arg, EqualLoc);
 | |
|   Arg = MaybeCreateExprWithCleanups(Arg);
 | |
| 
 | |
|   // Okay: add the default argument to the parameter
 | |
|   Param->setDefaultArg(Arg);
 | |
| 
 | |
|   // We have already instantiated this parameter; provide each of the 
 | |
|   // instantiations with the uninstantiated default argument.
 | |
|   UnparsedDefaultArgInstantiationsMap::iterator InstPos
 | |
|     = UnparsedDefaultArgInstantiations.find(Param);
 | |
|   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
 | |
|     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
 | |
|       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
 | |
|     
 | |
|     // We're done tracking this parameter's instantiations.
 | |
|     UnparsedDefaultArgInstantiations.erase(InstPos);
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnParamDefaultArgument - Check whether the default argument
 | |
| /// provided for a function parameter is well-formed. If so, attach it
 | |
| /// to the parameter declaration.
 | |
| void
 | |
| Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
 | |
|                                 Expr *DefaultArg) {
 | |
|   if (!param || !DefaultArg)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(param);
 | |
|   UnparsedDefaultArgLocs.erase(Param);
 | |
| 
 | |
|   // Default arguments are only permitted in C++
 | |
|   if (!getLangOptions().CPlusPlus) {
 | |
|     Diag(EqualLoc, diag::err_param_default_argument)
 | |
|       << DefaultArg->getSourceRange();
 | |
|     Param->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check for unexpanded parameter packs.
 | |
|   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
 | |
|     Param->setInvalidDecl();
 | |
|     return;
 | |
|   }    
 | |
|       
 | |
|   // Check that the default argument is well-formed
 | |
|   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
 | |
|   if (DefaultArgChecker.Visit(DefaultArg)) {
 | |
|     Param->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnParamUnparsedDefaultArgument - We've seen a default
 | |
| /// argument for a function parameter, but we can't parse it yet
 | |
| /// because we're inside a class definition. Note that this default
 | |
| /// argument will be parsed later.
 | |
| void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
 | |
|                                              SourceLocation EqualLoc,
 | |
|                                              SourceLocation ArgLoc) {
 | |
|   if (!param)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(param);
 | |
|   if (Param)
 | |
|     Param->setUnparsedDefaultArg();
 | |
| 
 | |
|   UnparsedDefaultArgLocs[Param] = ArgLoc;
 | |
| }
 | |
| 
 | |
| /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
 | |
| /// the default argument for the parameter param failed.
 | |
| void Sema::ActOnParamDefaultArgumentError(Decl *param) {
 | |
|   if (!param)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(param);
 | |
| 
 | |
|   Param->setInvalidDecl();
 | |
| 
 | |
|   UnparsedDefaultArgLocs.erase(Param);
 | |
| }
 | |
| 
 | |
| /// CheckExtraCXXDefaultArguments - Check for any extra default
 | |
| /// arguments in the declarator, which is not a function declaration
 | |
| /// or definition and therefore is not permitted to have default
 | |
| /// arguments. This routine should be invoked for every declarator
 | |
| /// that is not a function declaration or definition.
 | |
| void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
 | |
|   // C++ [dcl.fct.default]p3
 | |
|   //   A default argument expression shall be specified only in the
 | |
|   //   parameter-declaration-clause of a function declaration or in a
 | |
|   //   template-parameter (14.1). It shall not be specified for a
 | |
|   //   parameter pack. If it is specified in a
 | |
|   //   parameter-declaration-clause, it shall not occur within a
 | |
|   //   declarator or abstract-declarator of a parameter-declaration.
 | |
|   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
 | |
|     DeclaratorChunk &chunk = D.getTypeObject(i);
 | |
|     if (chunk.Kind == DeclaratorChunk::Function) {
 | |
|       for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
 | |
|         ParmVarDecl *Param =
 | |
|           cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
 | |
|         if (Param->hasUnparsedDefaultArg()) {
 | |
|           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
 | |
|           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
 | |
|             << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
 | |
|           delete Toks;
 | |
|           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
 | |
|         } else if (Param->getDefaultArg()) {
 | |
|           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
 | |
|             << Param->getDefaultArg()->getSourceRange();
 | |
|           Param->setDefaultArg(0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // MergeCXXFunctionDecl - Merge two declarations of the same C++
 | |
| // function, once we already know that they have the same
 | |
| // type. Subroutine of MergeFunctionDecl. Returns true if there was an
 | |
| // error, false otherwise.
 | |
| bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // C++ [dcl.fct.default]p4:
 | |
|   //   For non-template functions, default arguments can be added in
 | |
|   //   later declarations of a function in the same
 | |
|   //   scope. Declarations in different scopes have completely
 | |
|   //   distinct sets of default arguments. That is, declarations in
 | |
|   //   inner scopes do not acquire default arguments from
 | |
|   //   declarations in outer scopes, and vice versa. In a given
 | |
|   //   function declaration, all parameters subsequent to a
 | |
|   //   parameter with a default argument shall have default
 | |
|   //   arguments supplied in this or previous declarations. A
 | |
|   //   default argument shall not be redefined by a later
 | |
|   //   declaration (not even to the same value).
 | |
|   //
 | |
|   // C++ [dcl.fct.default]p6:
 | |
|   //   Except for member functions of class templates, the default arguments 
 | |
|   //   in a member function definition that appears outside of the class 
 | |
|   //   definition are added to the set of default arguments provided by the 
 | |
|   //   member function declaration in the class definition.
 | |
|   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
 | |
|     ParmVarDecl *OldParam = Old->getParamDecl(p);
 | |
|     ParmVarDecl *NewParam = New->getParamDecl(p);
 | |
| 
 | |
|     if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
 | |
| 
 | |
|       unsigned DiagDefaultParamID =
 | |
|         diag::err_param_default_argument_redefinition;
 | |
| 
 | |
|       // MSVC accepts that default parameters be redefined for member functions
 | |
|       // of template class. The new default parameter's value is ignored.
 | |
|       Invalid = true;
 | |
|       if (getLangOptions().Microsoft) {
 | |
|         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
 | |
|         if (MD && MD->getParent()->getDescribedClassTemplate()) {
 | |
|           // Merge the old default argument into the new parameter.
 | |
|           NewParam->setHasInheritedDefaultArg();
 | |
|           if (OldParam->hasUninstantiatedDefaultArg())
 | |
|             NewParam->setUninstantiatedDefaultArg(
 | |
|                                       OldParam->getUninstantiatedDefaultArg());
 | |
|           else
 | |
|             NewParam->setDefaultArg(OldParam->getInit());
 | |
|           DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
 | |
|           Invalid = false;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // FIXME: If we knew where the '=' was, we could easily provide a fix-it 
 | |
|       // hint here. Alternatively, we could walk the type-source information
 | |
|       // for NewParam to find the last source location in the type... but it
 | |
|       // isn't worth the effort right now. This is the kind of test case that
 | |
|       // is hard to get right:
 | |
|       //   int f(int);
 | |
|       //   void g(int (*fp)(int) = f);
 | |
|       //   void g(int (*fp)(int) = &f);
 | |
|       Diag(NewParam->getLocation(), DiagDefaultParamID)
 | |
|         << NewParam->getDefaultArgRange();
 | |
|       
 | |
|       // Look for the function declaration where the default argument was
 | |
|       // actually written, which may be a declaration prior to Old.
 | |
|       for (FunctionDecl *Older = Old->getPreviousDeclaration();
 | |
|            Older; Older = Older->getPreviousDeclaration()) {
 | |
|         if (!Older->getParamDecl(p)->hasDefaultArg())
 | |
|           break;
 | |
|         
 | |
|         OldParam = Older->getParamDecl(p);
 | |
|       }        
 | |
|       
 | |
|       Diag(OldParam->getLocation(), diag::note_previous_definition)
 | |
|         << OldParam->getDefaultArgRange();
 | |
|     } else if (OldParam->hasDefaultArg()) {
 | |
|       // Merge the old default argument into the new parameter.
 | |
|       // It's important to use getInit() here;  getDefaultArg()
 | |
|       // strips off any top-level ExprWithCleanups.
 | |
|       NewParam->setHasInheritedDefaultArg();
 | |
|       if (OldParam->hasUninstantiatedDefaultArg())
 | |
|         NewParam->setUninstantiatedDefaultArg(
 | |
|                                       OldParam->getUninstantiatedDefaultArg());
 | |
|       else
 | |
|         NewParam->setDefaultArg(OldParam->getInit());
 | |
|     } else if (NewParam->hasDefaultArg()) {
 | |
|       if (New->getDescribedFunctionTemplate()) {
 | |
|         // Paragraph 4, quoted above, only applies to non-template functions.
 | |
|         Diag(NewParam->getLocation(),
 | |
|              diag::err_param_default_argument_template_redecl)
 | |
|           << NewParam->getDefaultArgRange();
 | |
|         Diag(Old->getLocation(), diag::note_template_prev_declaration)
 | |
|           << false;
 | |
|       } else if (New->getTemplateSpecializationKind()
 | |
|                    != TSK_ImplicitInstantiation &&
 | |
|                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
 | |
|         // C++ [temp.expr.spec]p21:
 | |
|         //   Default function arguments shall not be specified in a declaration
 | |
|         //   or a definition for one of the following explicit specializations:
 | |
|         //     - the explicit specialization of a function template;
 | |
|         //     - the explicit specialization of a member function template;
 | |
|         //     - the explicit specialization of a member function of a class 
 | |
|         //       template where the class template specialization to which the
 | |
|         //       member function specialization belongs is implicitly 
 | |
|         //       instantiated.
 | |
|         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
 | |
|           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
 | |
|           << New->getDeclName()
 | |
|           << NewParam->getDefaultArgRange();
 | |
|       } else if (New->getDeclContext()->isDependentContext()) {
 | |
|         // C++ [dcl.fct.default]p6 (DR217):
 | |
|         //   Default arguments for a member function of a class template shall 
 | |
|         //   be specified on the initial declaration of the member function 
 | |
|         //   within the class template.
 | |
|         //
 | |
|         // Reading the tea leaves a bit in DR217 and its reference to DR205 
 | |
|         // leads me to the conclusion that one cannot add default function 
 | |
|         // arguments for an out-of-line definition of a member function of a 
 | |
|         // dependent type.
 | |
|         int WhichKind = 2;
 | |
|         if (CXXRecordDecl *Record 
 | |
|               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
 | |
|           if (Record->getDescribedClassTemplate())
 | |
|             WhichKind = 0;
 | |
|           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
 | |
|             WhichKind = 1;
 | |
|           else
 | |
|             WhichKind = 2;
 | |
|         }
 | |
|         
 | |
|         Diag(NewParam->getLocation(), 
 | |
|              diag::err_param_default_argument_member_template_redecl)
 | |
|           << WhichKind
 | |
|           << NewParam->getDefaultArgRange();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CheckEquivalentExceptionSpec(Old, New))
 | |
|     Invalid = true;
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| /// \brief Merge the exception specifications of two variable declarations.
 | |
| ///
 | |
| /// This is called when there's a redeclaration of a VarDecl. The function
 | |
| /// checks if the redeclaration might have an exception specification and
 | |
| /// validates compatibility and merges the specs if necessary.
 | |
| void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
 | |
|   // Shortcut if exceptions are disabled.
 | |
|   if (!getLangOptions().CXXExceptions)
 | |
|     return;
 | |
| 
 | |
|   assert(Context.hasSameType(New->getType(), Old->getType()) &&
 | |
|          "Should only be called if types are otherwise the same.");
 | |
| 
 | |
|   QualType NewType = New->getType();
 | |
|   QualType OldType = Old->getType();
 | |
| 
 | |
|   // We're only interested in pointers and references to functions, as well
 | |
|   // as pointers to member functions.
 | |
|   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
 | |
|     NewType = R->getPointeeType();
 | |
|     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
 | |
|   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
 | |
|     NewType = P->getPointeeType();
 | |
|     OldType = OldType->getAs<PointerType>()->getPointeeType();
 | |
|   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
 | |
|     NewType = M->getPointeeType();
 | |
|     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   if (!NewType->isFunctionProtoType())
 | |
|     return;
 | |
| 
 | |
|   // There's lots of special cases for functions. For function pointers, system
 | |
|   // libraries are hopefully not as broken so that we don't need these
 | |
|   // workarounds.
 | |
|   if (CheckEquivalentExceptionSpec(
 | |
|         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
 | |
|         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
 | |
|     New->setInvalidDecl();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckCXXDefaultArguments - Verify that the default arguments for a
 | |
| /// function declaration are well-formed according to C++
 | |
| /// [dcl.fct.default].
 | |
| void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
 | |
|   unsigned NumParams = FD->getNumParams();
 | |
|   unsigned p;
 | |
| 
 | |
|   // Find first parameter with a default argument
 | |
|   for (p = 0; p < NumParams; ++p) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|     if (Param->hasDefaultArg())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // C++ [dcl.fct.default]p4:
 | |
|   //   In a given function declaration, all parameters
 | |
|   //   subsequent to a parameter with a default argument shall
 | |
|   //   have default arguments supplied in this or previous
 | |
|   //   declarations. A default argument shall not be redefined
 | |
|   //   by a later declaration (not even to the same value).
 | |
|   unsigned LastMissingDefaultArg = 0;
 | |
|   for (; p < NumParams; ++p) {
 | |
|     ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|     if (!Param->hasDefaultArg()) {
 | |
|       if (Param->isInvalidDecl())
 | |
|         /* We already complained about this parameter. */;
 | |
|       else if (Param->getIdentifier())
 | |
|         Diag(Param->getLocation(),
 | |
|              diag::err_param_default_argument_missing_name)
 | |
|           << Param->getIdentifier();
 | |
|       else
 | |
|         Diag(Param->getLocation(),
 | |
|              diag::err_param_default_argument_missing);
 | |
| 
 | |
|       LastMissingDefaultArg = p;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LastMissingDefaultArg > 0) {
 | |
|     // Some default arguments were missing. Clear out all of the
 | |
|     // default arguments up to (and including) the last missing
 | |
|     // default argument, so that we leave the function parameters
 | |
|     // in a semantically valid state.
 | |
|     for (p = 0; p <= LastMissingDefaultArg; ++p) {
 | |
|       ParmVarDecl *Param = FD->getParamDecl(p);
 | |
|       if (Param->hasDefaultArg()) {
 | |
|         Param->setDefaultArg(0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isCurrentClassName - Determine whether the identifier II is the
 | |
| /// name of the class type currently being defined. In the case of
 | |
| /// nested classes, this will only return true if II is the name of
 | |
| /// the innermost class.
 | |
| bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
 | |
|                               const CXXScopeSpec *SS) {
 | |
|   assert(getLangOptions().CPlusPlus && "No class names in C!");
 | |
| 
 | |
|   CXXRecordDecl *CurDecl;
 | |
|   if (SS && SS->isSet() && !SS->isInvalid()) {
 | |
|     DeclContext *DC = computeDeclContext(*SS, true);
 | |
|     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
 | |
|   } else
 | |
|     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
 | |
| 
 | |
|   if (CurDecl && CurDecl->getIdentifier())
 | |
|     return &II == CurDecl->getIdentifier();
 | |
|   else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check the validity of a C++ base class specifier.
 | |
| ///
 | |
| /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
 | |
| /// and returns NULL otherwise.
 | |
| CXXBaseSpecifier *
 | |
| Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
 | |
|                          SourceRange SpecifierRange,
 | |
|                          bool Virtual, AccessSpecifier Access,
 | |
|                          TypeSourceInfo *TInfo,
 | |
|                          SourceLocation EllipsisLoc) {
 | |
|   QualType BaseType = TInfo->getType();
 | |
| 
 | |
|   // C++ [class.union]p1:
 | |
|   //   A union shall not have base classes.
 | |
|   if (Class->isUnion()) {
 | |
|     Diag(Class->getLocation(), diag::err_base_clause_on_union)
 | |
|       << SpecifierRange;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (EllipsisLoc.isValid() && 
 | |
|       !TInfo->getType()->containsUnexpandedParameterPack()) {
 | |
|     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
 | |
|       << TInfo->getTypeLoc().getSourceRange();
 | |
|     EllipsisLoc = SourceLocation();
 | |
|   }
 | |
|   
 | |
|   if (BaseType->isDependentType())
 | |
|     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
 | |
|                                           Class->getTagKind() == TTK_Class,
 | |
|                                           Access, TInfo, EllipsisLoc);
 | |
| 
 | |
|   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
 | |
| 
 | |
|   // Base specifiers must be record types.
 | |
|   if (!BaseType->isRecordType()) {
 | |
|     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.union]p1:
 | |
|   //   A union shall not be used as a base class.
 | |
|   if (BaseType->isUnionType()) {
 | |
|     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.derived]p2:
 | |
|   //   The class-name in a base-specifier shall not be an incompletely
 | |
|   //   defined class.
 | |
|   if (RequireCompleteType(BaseLoc, BaseType,
 | |
|                           PDiag(diag::err_incomplete_base_class)
 | |
|                             << SpecifierRange)) {
 | |
|     Class->setInvalidDecl();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
 | |
|   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
 | |
|   assert(BaseDecl && "Record type has no declaration");
 | |
|   BaseDecl = BaseDecl->getDefinition();
 | |
|   assert(BaseDecl && "Base type is not incomplete, but has no definition");
 | |
|   CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
 | |
|   assert(CXXBaseDecl && "Base type is not a C++ type");
 | |
| 
 | |
|   // C++ [class]p3:
 | |
|   //   If a class is marked final and it appears as a base-type-specifier in 
 | |
|   //   base-clause, the program is ill-formed.
 | |
|   if (CXXBaseDecl->hasAttr<FinalAttr>()) {
 | |
|     Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 
 | |
|       << CXXBaseDecl->getDeclName();
 | |
|     Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
 | |
|       << CXXBaseDecl->getDeclName();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (BaseDecl->isInvalidDecl())
 | |
|     Class->setInvalidDecl();
 | |
|   
 | |
|   // Create the base specifier.
 | |
|   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
 | |
|                                         Class->getTagKind() == TTK_Class,
 | |
|                                         Access, TInfo, EllipsisLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
 | |
| /// one entry in the base class list of a class specifier, for
 | |
| /// example:
 | |
| ///    class foo : public bar, virtual private baz {
 | |
| /// 'public bar' and 'virtual private baz' are each base-specifiers.
 | |
| BaseResult
 | |
| Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
 | |
|                          bool Virtual, AccessSpecifier Access,
 | |
|                          ParsedType basetype, SourceLocation BaseLoc,
 | |
|                          SourceLocation EllipsisLoc) {
 | |
|   if (!classdecl)
 | |
|     return true;
 | |
| 
 | |
|   AdjustDeclIfTemplate(classdecl);
 | |
|   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
 | |
|   if (!Class)
 | |
|     return true;
 | |
| 
 | |
|   TypeSourceInfo *TInfo = 0;
 | |
|   GetTypeFromParser(basetype, &TInfo);
 | |
| 
 | |
|   if (EllipsisLoc.isInvalid() &&
 | |
|       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 
 | |
|                                       UPPC_BaseType))
 | |
|     return true;
 | |
|   
 | |
|   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
 | |
|                                                       Virtual, Access, TInfo,
 | |
|                                                       EllipsisLoc))
 | |
|     return BaseSpec;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Performs the actual work of attaching the given base class
 | |
| /// specifiers to a C++ class.
 | |
| bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
 | |
|                                 unsigned NumBases) {
 | |
|  if (NumBases == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Used to keep track of which base types we have already seen, so
 | |
|   // that we can properly diagnose redundant direct base types. Note
 | |
|   // that the key is always the unqualified canonical type of the base
 | |
|   // class.
 | |
|   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
 | |
| 
 | |
|   // Copy non-redundant base specifiers into permanent storage.
 | |
|   unsigned NumGoodBases = 0;
 | |
|   bool Invalid = false;
 | |
|   for (unsigned idx = 0; idx < NumBases; ++idx) {
 | |
|     QualType NewBaseType
 | |
|       = Context.getCanonicalType(Bases[idx]->getType());
 | |
|     NewBaseType = NewBaseType.getLocalUnqualifiedType();
 | |
|     if (!Class->hasObjectMember()) {
 | |
|       if (const RecordType *FDTTy = 
 | |
|             NewBaseType.getTypePtr()->getAs<RecordType>())
 | |
|         if (FDTTy->getDecl()->hasObjectMember())
 | |
|           Class->setHasObjectMember(true);
 | |
|     }
 | |
|     
 | |
|     if (KnownBaseTypes[NewBaseType]) {
 | |
|       // C++ [class.mi]p3:
 | |
|       //   A class shall not be specified as a direct base class of a
 | |
|       //   derived class more than once.
 | |
|       Diag(Bases[idx]->getSourceRange().getBegin(),
 | |
|            diag::err_duplicate_base_class)
 | |
|         << KnownBaseTypes[NewBaseType]->getType()
 | |
|         << Bases[idx]->getSourceRange();
 | |
| 
 | |
|       // Delete the duplicate base class specifier; we're going to
 | |
|       // overwrite its pointer later.
 | |
|       Context.Deallocate(Bases[idx]);
 | |
| 
 | |
|       Invalid = true;
 | |
|     } else {
 | |
|       // Okay, add this new base class.
 | |
|       KnownBaseTypes[NewBaseType] = Bases[idx];
 | |
|       Bases[NumGoodBases++] = Bases[idx];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Attach the remaining base class specifiers to the derived class.
 | |
|   Class->setBases(Bases, NumGoodBases);
 | |
| 
 | |
|   // Delete the remaining (good) base class specifiers, since their
 | |
|   // data has been copied into the CXXRecordDecl.
 | |
|   for (unsigned idx = 0; idx < NumGoodBases; ++idx)
 | |
|     Context.Deallocate(Bases[idx]);
 | |
| 
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| /// ActOnBaseSpecifiers - Attach the given base specifiers to the
 | |
| /// class, after checking whether there are any duplicate base
 | |
| /// classes.
 | |
| void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
 | |
|                                unsigned NumBases) {
 | |
|   if (!ClassDecl || !Bases || !NumBases)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(ClassDecl);
 | |
|   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
 | |
|                        (CXXBaseSpecifier**)(Bases), NumBases);
 | |
| }
 | |
| 
 | |
| static CXXRecordDecl *GetClassForType(QualType T) {
 | |
|   if (const RecordType *RT = T->getAs<RecordType>())
 | |
|     return cast<CXXRecordDecl>(RT->getDecl());
 | |
|   else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
 | |
|     return ICT->getDecl();
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the type \p Derived is a C++ class that is
 | |
| /// derived from the type \p Base.
 | |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
 | |
|   if (!getLangOptions().CPlusPlus)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
 | |
|   if (!DerivedRD)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *BaseRD = GetClassForType(Base);
 | |
|   if (!BaseRD)
 | |
|     return false;
 | |
|   
 | |
|   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
 | |
|   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the type \p Derived is a C++ class that is
 | |
| /// derived from the type \p Base.
 | |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
 | |
|   if (!getLangOptions().CPlusPlus)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *DerivedRD = GetClassForType(Derived);
 | |
|   if (!DerivedRD)
 | |
|     return false;
 | |
|   
 | |
|   CXXRecordDecl *BaseRD = GetClassForType(Base);
 | |
|   if (!BaseRD)
 | |
|     return false;
 | |
|   
 | |
|   return DerivedRD->isDerivedFrom(BaseRD, Paths);
 | |
| }
 | |
| 
 | |
| void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 
 | |
|                               CXXCastPath &BasePathArray) {
 | |
|   assert(BasePathArray.empty() && "Base path array must be empty!");
 | |
|   assert(Paths.isRecordingPaths() && "Must record paths!");
 | |
|   
 | |
|   const CXXBasePath &Path = Paths.front();
 | |
|        
 | |
|   // We first go backward and check if we have a virtual base.
 | |
|   // FIXME: It would be better if CXXBasePath had the base specifier for
 | |
|   // the nearest virtual base.
 | |
|   unsigned Start = 0;
 | |
|   for (unsigned I = Path.size(); I != 0; --I) {
 | |
|     if (Path[I - 1].Base->isVirtual()) {
 | |
|       Start = I - 1;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now add all bases.
 | |
|   for (unsigned I = Start, E = Path.size(); I != E; ++I)
 | |
|     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given base path includes a virtual
 | |
| /// base class.
 | |
| bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
 | |
|   for (CXXCastPath::const_iterator B = BasePath.begin(), 
 | |
|                                 BEnd = BasePath.end();
 | |
|        B != BEnd; ++B)
 | |
|     if ((*B)->isVirtual())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
 | |
| /// conversion (where Derived and Base are class types) is
 | |
| /// well-formed, meaning that the conversion is unambiguous (and
 | |
| /// that all of the base classes are accessible). Returns true
 | |
| /// and emits a diagnostic if the code is ill-formed, returns false
 | |
| /// otherwise. Loc is the location where this routine should point to
 | |
| /// if there is an error, and Range is the source range to highlight
 | |
| /// if there is an error.
 | |
| bool
 | |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
 | |
|                                    unsigned InaccessibleBaseID,
 | |
|                                    unsigned AmbigiousBaseConvID,
 | |
|                                    SourceLocation Loc, SourceRange Range,
 | |
|                                    DeclarationName Name,
 | |
|                                    CXXCastPath *BasePath) {
 | |
|   // First, determine whether the path from Derived to Base is
 | |
|   // ambiguous. This is slightly more expensive than checking whether
 | |
|   // the Derived to Base conversion exists, because here we need to
 | |
|   // explore multiple paths to determine if there is an ambiguity.
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                      /*DetectVirtual=*/false);
 | |
|   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
 | |
|   assert(DerivationOkay &&
 | |
|          "Can only be used with a derived-to-base conversion");
 | |
|   (void)DerivationOkay;
 | |
|   
 | |
|   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
 | |
|     if (InaccessibleBaseID) {
 | |
|       // Check that the base class can be accessed.
 | |
|       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
 | |
|                                    InaccessibleBaseID)) {
 | |
|         case AR_inaccessible: 
 | |
|           return true;
 | |
|         case AR_accessible: 
 | |
|         case AR_dependent:
 | |
|         case AR_delayed:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Build a base path if necessary.
 | |
|     if (BasePath)
 | |
|       BuildBasePathArray(Paths, *BasePath);
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // We know that the derived-to-base conversion is ambiguous, and
 | |
|   // we're going to produce a diagnostic. Perform the derived-to-base
 | |
|   // search just one more time to compute all of the possible paths so
 | |
|   // that we can print them out. This is more expensive than any of
 | |
|   // the previous derived-to-base checks we've done, but at this point
 | |
|   // performance isn't as much of an issue.
 | |
|   Paths.clear();
 | |
|   Paths.setRecordingPaths(true);
 | |
|   bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
 | |
|   assert(StillOkay && "Can only be used with a derived-to-base conversion");
 | |
|   (void)StillOkay;
 | |
|   
 | |
|   // Build up a textual representation of the ambiguous paths, e.g.,
 | |
|   // D -> B -> A, that will be used to illustrate the ambiguous
 | |
|   // conversions in the diagnostic. We only print one of the paths
 | |
|   // to each base class subobject.
 | |
|   std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
 | |
|   
 | |
|   Diag(Loc, AmbigiousBaseConvID)
 | |
|   << Derived << Base << PathDisplayStr << Range << Name;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
 | |
|                                    SourceLocation Loc, SourceRange Range,
 | |
|                                    CXXCastPath *BasePath,
 | |
|                                    bool IgnoreAccess) {
 | |
|   return CheckDerivedToBaseConversion(Derived, Base,
 | |
|                                       IgnoreAccess ? 0
 | |
|                                        : diag::err_upcast_to_inaccessible_base,
 | |
|                                       diag::err_ambiguous_derived_to_base_conv,
 | |
|                                       Loc, Range, DeclarationName(), 
 | |
|                                       BasePath);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @brief Builds a string representing ambiguous paths from a
 | |
| /// specific derived class to different subobjects of the same base
 | |
| /// class.
 | |
| ///
 | |
| /// This function builds a string that can be used in error messages
 | |
| /// to show the different paths that one can take through the
 | |
| /// inheritance hierarchy to go from the derived class to different
 | |
| /// subobjects of a base class. The result looks something like this:
 | |
| /// @code
 | |
| /// struct D -> struct B -> struct A
 | |
| /// struct D -> struct C -> struct A
 | |
| /// @endcode
 | |
| std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
 | |
|   std::string PathDisplayStr;
 | |
|   std::set<unsigned> DisplayedPaths;
 | |
|   for (CXXBasePaths::paths_iterator Path = Paths.begin();
 | |
|        Path != Paths.end(); ++Path) {
 | |
|     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
 | |
|       // We haven't displayed a path to this particular base
 | |
|       // class subobject yet.
 | |
|       PathDisplayStr += "\n    ";
 | |
|       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
 | |
|       for (CXXBasePath::const_iterator Element = Path->begin();
 | |
|            Element != Path->end(); ++Element)
 | |
|         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return PathDisplayStr;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // C++ class member Handling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
 | |
| Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
 | |
|                                  SourceLocation ASLoc,
 | |
|                                  SourceLocation ColonLoc) {
 | |
|   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
 | |
|   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
 | |
|                                                   ASLoc, ColonLoc);
 | |
|   CurContext->addHiddenDecl(ASDecl);
 | |
|   return ASDecl;
 | |
| }
 | |
| 
 | |
| /// CheckOverrideControl - Check C++0x override control semantics.
 | |
| void Sema::CheckOverrideControl(const Decl *D) {
 | |
|   const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
 | |
|   if (!MD || !MD->isVirtual())
 | |
|     return;
 | |
| 
 | |
|   if (MD->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // C++0x [class.virtual]p3:
 | |
|   //   If a virtual function is marked with the virt-specifier override and does
 | |
|   //   not override a member function of a base class, 
 | |
|   //   the program is ill-formed.
 | |
|   bool HasOverriddenMethods = 
 | |
|     MD->begin_overridden_methods() != MD->end_overridden_methods();
 | |
|   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
 | |
|     Diag(MD->getLocation(), 
 | |
|                  diag::err_function_marked_override_not_overriding)
 | |
|       << MD->getDeclName();
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member 
 | |
| /// function overrides a virtual member function marked 'final', according to
 | |
| /// C++0x [class.virtual]p3.
 | |
| bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
 | |
|                                                   const CXXMethodDecl *Old) {
 | |
|   if (!Old->hasAttr<FinalAttr>())
 | |
|     return false;
 | |
| 
 | |
|   Diag(New->getLocation(), diag::err_final_function_overridden)
 | |
|     << New->getDeclName();
 | |
|   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
 | |
| /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
 | |
| /// bitfield width if there is one and 'InitExpr' specifies the initializer if
 | |
| /// any.
 | |
| Decl *
 | |
| Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
 | |
|                                MultiTemplateParamsArg TemplateParameterLists,
 | |
|                                ExprTy *BW, const VirtSpecifiers &VS,
 | |
|                                ExprTy *InitExpr, bool IsDefinition,
 | |
|                                bool Deleted) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   SourceLocation Loc = NameInfo.getLoc();
 | |
| 
 | |
|   // For anonymous bitfields, the location should point to the type.
 | |
|   if (Loc.isInvalid())
 | |
|     Loc = D.getSourceRange().getBegin();
 | |
| 
 | |
|   Expr *BitWidth = static_cast<Expr*>(BW);
 | |
|   Expr *Init = static_cast<Expr*>(InitExpr);
 | |
| 
 | |
|   assert(isa<CXXRecordDecl>(CurContext));
 | |
|   assert(!DS.isFriendSpecified());
 | |
| 
 | |
|   bool isFunc = false;
 | |
|   if (D.isFunctionDeclarator())
 | |
|     isFunc = true;
 | |
|   else if (D.getNumTypeObjects() == 0 &&
 | |
|            D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
 | |
|     QualType TDType = GetTypeFromParser(DS.getRepAsType());
 | |
|     isFunc = TDType->isFunctionType();
 | |
|   }
 | |
| 
 | |
|   // C++ 9.2p6: A member shall not be declared to have automatic storage
 | |
|   // duration (auto, register) or with the extern storage-class-specifier.
 | |
|   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
 | |
|   // data members and cannot be applied to names declared const or static,
 | |
|   // and cannot be applied to reference members.
 | |
|   switch (DS.getStorageClassSpec()) {
 | |
|     case DeclSpec::SCS_unspecified:
 | |
|     case DeclSpec::SCS_typedef:
 | |
|     case DeclSpec::SCS_static:
 | |
|       // FALL THROUGH.
 | |
|       break;
 | |
|     case DeclSpec::SCS_mutable:
 | |
|       if (isFunc) {
 | |
|         if (DS.getStorageClassSpecLoc().isValid())
 | |
|           Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
 | |
|         else
 | |
|           Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
 | |
| 
 | |
|         // FIXME: It would be nicer if the keyword was ignored only for this
 | |
|         // declarator. Otherwise we could get follow-up errors.
 | |
|         D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       if (DS.getStorageClassSpecLoc().isValid())
 | |
|         Diag(DS.getStorageClassSpecLoc(),
 | |
|              diag::err_storageclass_invalid_for_member);
 | |
|       else
 | |
|         Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
 | |
|       D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
|   }
 | |
| 
 | |
|   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
 | |
|                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
 | |
|                       !isFunc);
 | |
| 
 | |
|   Decl *Member;
 | |
|   if (isInstField) {
 | |
|     CXXScopeSpec &SS = D.getCXXScopeSpec();
 | |
|     
 | |
|     
 | |
|     if (SS.isSet() && !SS.isInvalid()) {
 | |
|       // The user provided a superfluous scope specifier inside a class
 | |
|       // definition:
 | |
|       //
 | |
|       // class X {
 | |
|       //   int X::member;
 | |
|       // };
 | |
|       DeclContext *DC = 0;
 | |
|       if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
 | |
|         Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
 | |
|         << Name << FixItHint::CreateRemoval(SS.getRange());
 | |
|       else
 | |
|         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
 | |
|           << Name << SS.getRange();
 | |
|        
 | |
|       SS.clear();
 | |
|     }
 | |
|     
 | |
|     // FIXME: Check for template parameters!
 | |
|     // FIXME: Check that the name is an identifier!
 | |
|     Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
 | |
|                          AS);
 | |
|     assert(Member && "HandleField never returns null");
 | |
|   } else {
 | |
|     Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
 | |
|     if (!Member) {
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // Non-instance-fields can't have a bitfield.
 | |
|     if (BitWidth) {
 | |
|       if (Member->isInvalidDecl()) {
 | |
|         // don't emit another diagnostic.
 | |
|       } else if (isa<VarDecl>(Member)) {
 | |
|         // C++ 9.6p3: A bit-field shall not be a static member.
 | |
|         // "static member 'A' cannot be a bit-field"
 | |
|         Diag(Loc, diag::err_static_not_bitfield)
 | |
|           << Name << BitWidth->getSourceRange();
 | |
|       } else if (isa<TypedefDecl>(Member)) {
 | |
|         // "typedef member 'x' cannot be a bit-field"
 | |
|         Diag(Loc, diag::err_typedef_not_bitfield)
 | |
|           << Name << BitWidth->getSourceRange();
 | |
|       } else {
 | |
|         // A function typedef ("typedef int f(); f a;").
 | |
|         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
 | |
|         Diag(Loc, diag::err_not_integral_type_bitfield)
 | |
|           << Name << cast<ValueDecl>(Member)->getType()
 | |
|           << BitWidth->getSourceRange();
 | |
|       }
 | |
| 
 | |
|       BitWidth = 0;
 | |
|       Member->setInvalidDecl();
 | |
|     }
 | |
| 
 | |
|     Member->setAccess(AS);
 | |
| 
 | |
|     // If we have declared a member function template, set the access of the
 | |
|     // templated declaration as well.
 | |
|     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
 | |
|       FunTmpl->getTemplatedDecl()->setAccess(AS);
 | |
|   }
 | |
| 
 | |
|   if (VS.isOverrideSpecified()) {
 | |
|     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
 | |
|     if (!MD || !MD->isVirtual()) {
 | |
|       Diag(Member->getLocStart(), 
 | |
|            diag::override_keyword_only_allowed_on_virtual_member_functions)
 | |
|         << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
 | |
|     } else
 | |
|       MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
 | |
|   }
 | |
|   if (VS.isFinalSpecified()) {
 | |
|     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
 | |
|     if (!MD || !MD->isVirtual()) {
 | |
|       Diag(Member->getLocStart(), 
 | |
|            diag::override_keyword_only_allowed_on_virtual_member_functions)
 | |
|       << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
 | |
|     } else
 | |
|       MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
 | |
|   }
 | |
| 
 | |
|   if (VS.getLastLocation().isValid()) {
 | |
|     // Update the end location of a method that has a virt-specifiers.
 | |
|     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
 | |
|       MD->setRangeEnd(VS.getLastLocation());
 | |
|   }
 | |
|       
 | |
|   CheckOverrideControl(Member);
 | |
| 
 | |
|   assert((Name || isInstField) && "No identifier for non-field ?");
 | |
| 
 | |
|   if (Init)
 | |
|     AddInitializerToDecl(Member, Init, false,
 | |
|                          DS.getTypeSpecType() == DeclSpec::TST_auto);
 | |
|   if (Deleted) // FIXME: Source location is not very good.
 | |
|     SetDeclDeleted(Member, D.getSourceRange().getBegin());
 | |
| 
 | |
|   FinalizeDeclaration(Member);
 | |
| 
 | |
|   if (isInstField)
 | |
|     FieldCollector->Add(cast<FieldDecl>(Member));
 | |
|   return Member;
 | |
| }
 | |
| 
 | |
| /// \brief Find the direct and/or virtual base specifiers that
 | |
| /// correspond to the given base type, for use in base initialization
 | |
| /// within a constructor.
 | |
| static bool FindBaseInitializer(Sema &SemaRef, 
 | |
|                                 CXXRecordDecl *ClassDecl,
 | |
|                                 QualType BaseType,
 | |
|                                 const CXXBaseSpecifier *&DirectBaseSpec,
 | |
|                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
 | |
|   // First, check for a direct base class.
 | |
|   DirectBaseSpec = 0;
 | |
|   for (CXXRecordDecl::base_class_const_iterator Base
 | |
|          = ClassDecl->bases_begin(); 
 | |
|        Base != ClassDecl->bases_end(); ++Base) {
 | |
|     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
 | |
|       // We found a direct base of this type. That's what we're
 | |
|       // initializing.
 | |
|       DirectBaseSpec = &*Base;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for a virtual base class.
 | |
|   // FIXME: We might be able to short-circuit this if we know in advance that
 | |
|   // there are no virtual bases.
 | |
|   VirtualBaseSpec = 0;
 | |
|   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
 | |
|     // We haven't found a base yet; search the class hierarchy for a
 | |
|     // virtual base class.
 | |
|     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                        /*DetectVirtual=*/false);
 | |
|     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), 
 | |
|                               BaseType, Paths)) {
 | |
|       for (CXXBasePaths::paths_iterator Path = Paths.begin();
 | |
|            Path != Paths.end(); ++Path) {
 | |
|         if (Path->back().Base->isVirtual()) {
 | |
|           VirtualBaseSpec = Path->back().Base;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DirectBaseSpec || VirtualBaseSpec;
 | |
| }
 | |
| 
 | |
| /// ActOnMemInitializer - Handle a C++ member initializer.
 | |
| MemInitResult
 | |
| Sema::ActOnMemInitializer(Decl *ConstructorD,
 | |
|                           Scope *S,
 | |
|                           CXXScopeSpec &SS,
 | |
|                           IdentifierInfo *MemberOrBase,
 | |
|                           ParsedType TemplateTypeTy,
 | |
|                           SourceLocation IdLoc,
 | |
|                           SourceLocation LParenLoc,
 | |
|                           ExprTy **Args, unsigned NumArgs,
 | |
|                           SourceLocation RParenLoc,
 | |
|                           SourceLocation EllipsisLoc) {
 | |
|   if (!ConstructorD)
 | |
|     return true;
 | |
| 
 | |
|   AdjustDeclIfTemplate(ConstructorD);
 | |
| 
 | |
|   CXXConstructorDecl *Constructor
 | |
|     = dyn_cast<CXXConstructorDecl>(ConstructorD);
 | |
|   if (!Constructor) {
 | |
|     // The user wrote a constructor initializer on a function that is
 | |
|     // not a C++ constructor. Ignore the error for now, because we may
 | |
|     // have more member initializers coming; we'll diagnose it just
 | |
|     // once in ActOnMemInitializers.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = Constructor->getParent();
 | |
| 
 | |
|   // C++ [class.base.init]p2:
 | |
|   //   Names in a mem-initializer-id are looked up in the scope of the
 | |
|   //   constructor's class and, if not found in that scope, are looked
 | |
|   //   up in the scope containing the constructor's definition.
 | |
|   //   [Note: if the constructor's class contains a member with the
 | |
|   //   same name as a direct or virtual base class of the class, a
 | |
|   //   mem-initializer-id naming the member or base class and composed
 | |
|   //   of a single identifier refers to the class member. A
 | |
|   //   mem-initializer-id for the hidden base class may be specified
 | |
|   //   using a qualified name. ]
 | |
|   if (!SS.getScopeRep() && !TemplateTypeTy) {
 | |
|     // Look for a member, first.
 | |
|     FieldDecl *Member = 0;
 | |
|     DeclContext::lookup_result Result
 | |
|       = ClassDecl->lookup(MemberOrBase);
 | |
|     if (Result.first != Result.second) {
 | |
|       Member = dyn_cast<FieldDecl>(*Result.first);
 | |
|     
 | |
|       if (Member) {
 | |
|         if (EllipsisLoc.isValid())
 | |
|           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
 | |
|             << MemberOrBase << SourceRange(IdLoc, RParenLoc);
 | |
|         
 | |
|         return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
 | |
|                                     LParenLoc, RParenLoc);
 | |
|       }
 | |
|       
 | |
|       // Handle anonymous union case.
 | |
|       if (IndirectFieldDecl* IndirectField
 | |
|             = dyn_cast<IndirectFieldDecl>(*Result.first)) {
 | |
|         if (EllipsisLoc.isValid())
 | |
|           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
 | |
|             << MemberOrBase << SourceRange(IdLoc, RParenLoc);
 | |
| 
 | |
|          return BuildMemberInitializer(IndirectField, (Expr**)Args,
 | |
|                                        NumArgs, IdLoc,
 | |
|                                        LParenLoc, RParenLoc);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // It didn't name a member, so see if it names a class.
 | |
|   QualType BaseType;
 | |
|   TypeSourceInfo *TInfo = 0;
 | |
| 
 | |
|   if (TemplateTypeTy) {
 | |
|     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
 | |
|   } else {
 | |
|     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
 | |
|     LookupParsedName(R, S, &SS);
 | |
| 
 | |
|     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
 | |
|     if (!TyD) {
 | |
|       if (R.isAmbiguous()) return true;
 | |
| 
 | |
|       // We don't want access-control diagnostics here.
 | |
|       R.suppressDiagnostics();
 | |
| 
 | |
|       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
 | |
|         bool NotUnknownSpecialization = false;
 | |
|         DeclContext *DC = computeDeclContext(SS, false);
 | |
|         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 
 | |
|           NotUnknownSpecialization = !Record->hasAnyDependentBases();
 | |
| 
 | |
|         if (!NotUnknownSpecialization) {
 | |
|           // When the scope specifier can refer to a member of an unknown
 | |
|           // specialization, we take it as a type name.
 | |
|           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
 | |
|                                        SS.getWithLocInContext(Context),
 | |
|                                        *MemberOrBase, IdLoc);
 | |
|           if (BaseType.isNull())
 | |
|             return true;
 | |
| 
 | |
|           R.clear();
 | |
|           R.setLookupName(MemberOrBase);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If no results were found, try to correct typos.
 | |
|       if (R.empty() && BaseType.isNull() &&
 | |
|           CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) && 
 | |
|           R.isSingleResult()) {
 | |
|         if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
 | |
|           if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
 | |
|             // We have found a non-static data member with a similar
 | |
|             // name to what was typed; complain and initialize that
 | |
|             // member.
 | |
|             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
 | |
|               << MemberOrBase << true << R.getLookupName()
 | |
|               << FixItHint::CreateReplacement(R.getNameLoc(),
 | |
|                                               R.getLookupName().getAsString());
 | |
|             Diag(Member->getLocation(), diag::note_previous_decl)
 | |
|               << Member->getDeclName();
 | |
| 
 | |
|             return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
 | |
|                                           LParenLoc, RParenLoc);
 | |
|           }
 | |
|         } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
 | |
|           const CXXBaseSpecifier *DirectBaseSpec;
 | |
|           const CXXBaseSpecifier *VirtualBaseSpec;
 | |
|           if (FindBaseInitializer(*this, ClassDecl, 
 | |
|                                   Context.getTypeDeclType(Type),
 | |
|                                   DirectBaseSpec, VirtualBaseSpec)) {
 | |
|             // We have found a direct or virtual base class with a
 | |
|             // similar name to what was typed; complain and initialize
 | |
|             // that base class.
 | |
|             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
 | |
|               << MemberOrBase << false << R.getLookupName()
 | |
|               << FixItHint::CreateReplacement(R.getNameLoc(),
 | |
|                                               R.getLookupName().getAsString());
 | |
| 
 | |
|             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec 
 | |
|                                                              : VirtualBaseSpec;
 | |
|             Diag(BaseSpec->getSourceRange().getBegin(),
 | |
|                  diag::note_base_class_specified_here)
 | |
|               << BaseSpec->getType()
 | |
|               << BaseSpec->getSourceRange();
 | |
| 
 | |
|             TyD = Type;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!TyD && BaseType.isNull()) {
 | |
|         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
 | |
|           << MemberOrBase << SourceRange(IdLoc, RParenLoc);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BaseType.isNull()) {
 | |
|       BaseType = Context.getTypeDeclType(TyD);
 | |
|       if (SS.isSet()) {
 | |
|         NestedNameSpecifier *Qualifier =
 | |
|           static_cast<NestedNameSpecifier*>(SS.getScopeRep());
 | |
| 
 | |
|         // FIXME: preserve source range information
 | |
|         BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!TInfo)
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
 | |
| 
 | |
|   return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, 
 | |
|                               LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
 | |
| }
 | |
| 
 | |
| /// Checks an initializer expression for use of uninitialized fields, such as
 | |
| /// containing the field that is being initialized. Returns true if there is an
 | |
| /// uninitialized field was used an updates the SourceLocation parameter; false
 | |
| /// otherwise.
 | |
| static bool InitExprContainsUninitializedFields(const Stmt *S,
 | |
|                                                 const ValueDecl *LhsField,
 | |
|                                                 SourceLocation *L) {
 | |
|   assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
 | |
| 
 | |
|   if (isa<CallExpr>(S)) {
 | |
|     // Do not descend into function calls or constructors, as the use
 | |
|     // of an uninitialized field may be valid. One would have to inspect
 | |
|     // the contents of the function/ctor to determine if it is safe or not.
 | |
|     // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
 | |
|     // may be safe, depending on what the function/ctor does.
 | |
|     return false;
 | |
|   }
 | |
|   if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
 | |
|     const NamedDecl *RhsField = ME->getMemberDecl();
 | |
| 
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
 | |
|       // The member expression points to a static data member.
 | |
|       assert(VD->isStaticDataMember() && 
 | |
|              "Member points to non-static data member!");
 | |
|       (void)VD;
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     if (isa<EnumConstantDecl>(RhsField)) {
 | |
|       // The member expression points to an enum.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (RhsField == LhsField) {
 | |
|       // Initializing a field with itself. Throw a warning.
 | |
|       // But wait; there are exceptions!
 | |
|       // Exception #1:  The field may not belong to this record.
 | |
|       // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
 | |
|       const Expr *base = ME->getBase();
 | |
|       if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
 | |
|         // Even though the field matches, it does not belong to this record.
 | |
|         return false;
 | |
|       }
 | |
|       // None of the exceptions triggered; return true to indicate an
 | |
|       // uninitialized field was used.
 | |
|       *L = ME->getMemberLoc();
 | |
|       return true;
 | |
|     }
 | |
|   } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
 | |
|     // sizeof/alignof doesn't reference contents, do not warn.
 | |
|     return false;
 | |
|   } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
 | |
|     // address-of doesn't reference contents (the pointer may be dereferenced
 | |
|     // in the same expression but it would be rare; and weird).
 | |
|     if (UOE->getOpcode() == UO_AddrOf)
 | |
|       return false;
 | |
|   }
 | |
|   for (Stmt::const_child_range it = S->children(); it; ++it) {
 | |
|     if (!*it) {
 | |
|       // An expression such as 'member(arg ?: "")' may trigger this.
 | |
|       continue;
 | |
|     }
 | |
|     if (InitExprContainsUninitializedFields(*it, LhsField, L))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| MemInitResult
 | |
| Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
 | |
|                              unsigned NumArgs, SourceLocation IdLoc,
 | |
|                              SourceLocation LParenLoc,
 | |
|                              SourceLocation RParenLoc) {
 | |
|   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
 | |
|   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
 | |
|   assert((DirectMember || IndirectMember) &&
 | |
|          "Member must be a FieldDecl or IndirectFieldDecl");
 | |
| 
 | |
|   if (Member->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   // Diagnose value-uses of fields to initialize themselves, e.g.
 | |
|   //   foo(foo)
 | |
|   // where foo is not also a parameter to the constructor.
 | |
|   // TODO: implement -Wuninitialized and fold this into that framework.
 | |
|   for (unsigned i = 0; i < NumArgs; ++i) {
 | |
|     SourceLocation L;
 | |
|     if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
 | |
|       // FIXME: Return true in the case when other fields are used before being
 | |
|       // uninitialized. For example, let this field be the i'th field. When
 | |
|       // initializing the i'th field, throw a warning if any of the >= i'th
 | |
|       // fields are used, as they are not yet initialized.
 | |
|       // Right now we are only handling the case where the i'th field uses
 | |
|       // itself in its initializer.
 | |
|       Diag(L, diag::warn_field_is_uninit);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool HasDependentArg = false;
 | |
|   for (unsigned i = 0; i < NumArgs; i++)
 | |
|     HasDependentArg |= Args[i]->isTypeDependent();
 | |
| 
 | |
|   Expr *Init;
 | |
|   if (Member->getType()->isDependentType() || HasDependentArg) {
 | |
|     // Can't check initialization for a member of dependent type or when
 | |
|     // any of the arguments are type-dependent expressions.
 | |
|     Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
 | |
|                                        RParenLoc);
 | |
| 
 | |
|     // Erase any temporaries within this evaluation context; we're not
 | |
|     // going to track them in the AST, since we'll be rebuilding the
 | |
|     // ASTs during template instantiation.
 | |
|     ExprTemporaries.erase(
 | |
|               ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
 | |
|                           ExprTemporaries.end());
 | |
|   } else {
 | |
|     // Initialize the member.
 | |
|     InitializedEntity MemberEntity =
 | |
|       DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
 | |
|                    : InitializedEntity::InitializeMember(IndirectMember, 0);
 | |
|     InitializationKind Kind =
 | |
|       InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
 | |
| 
 | |
|     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
 | |
| 
 | |
|     ExprResult MemberInit =
 | |
|       InitSeq.Perform(*this, MemberEntity, Kind,
 | |
|                       MultiExprArg(*this, Args, NumArgs), 0);
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     CheckImplicitConversions(MemberInit.get(), LParenLoc);
 | |
| 
 | |
|     // C++0x [class.base.init]p7:
 | |
|     //   The initialization of each base and member constitutes a
 | |
|     //   full-expression.
 | |
|     MemberInit = MaybeCreateExprWithCleanups(MemberInit);
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     // If we are in a dependent context, template instantiation will
 | |
|     // perform this type-checking again. Just save the arguments that we
 | |
|     // received in a ParenListExpr.
 | |
|     // FIXME: This isn't quite ideal, since our ASTs don't capture all
 | |
|     // of the information that we have about the member
 | |
|     // initializer. However, deconstructing the ASTs is a dicey process,
 | |
|     // and this approach is far more likely to get the corner cases right.
 | |
|     if (CurContext->isDependentContext())
 | |
|       Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
 | |
|                                                RParenLoc);
 | |
|     else
 | |
|       Init = MemberInit.get();
 | |
|   }
 | |
| 
 | |
|   if (DirectMember) {
 | |
|     return new (Context) CXXCtorInitializer(Context, DirectMember,
 | |
|                                                     IdLoc, LParenLoc, Init,
 | |
|                                                     RParenLoc);
 | |
|   } else {
 | |
|     return new (Context) CXXCtorInitializer(Context, IndirectMember,
 | |
|                                                     IdLoc, LParenLoc, Init,
 | |
|                                                     RParenLoc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| MemInitResult
 | |
| Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
 | |
|                                  Expr **Args, unsigned NumArgs,
 | |
|                                  SourceLocation NameLoc,
 | |
|                                  SourceLocation LParenLoc,
 | |
|                                  SourceLocation RParenLoc,
 | |
|                                  CXXRecordDecl *ClassDecl) {
 | |
|   SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | |
|   if (!LangOpts.CPlusPlus0x)
 | |
|     return Diag(Loc, diag::err_delegation_0x_only)
 | |
|       << TInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|   // Initialize the object.
 | |
|   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
 | |
|                                      QualType(ClassDecl->getTypeForDecl(), 0));
 | |
|   InitializationKind Kind =
 | |
|     InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
 | |
| 
 | |
|   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
 | |
| 
 | |
|   ExprResult DelegationInit =
 | |
|     InitSeq.Perform(*this, DelegationEntity, Kind,
 | |
|                     MultiExprArg(*this, Args, NumArgs), 0);
 | |
|   if (DelegationInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
 | |
|   CXXConstructorDecl *Constructor = ConExpr->getConstructor();
 | |
|   assert(Constructor && "Delegating constructor with no target?");
 | |
| 
 | |
|   CheckImplicitConversions(DelegationInit.get(), LParenLoc);
 | |
| 
 | |
|   // C++0x [class.base.init]p7:
 | |
|   //   The initialization of each base and member constitutes a
 | |
|   //   full-expression.
 | |
|   DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
 | |
|   if (DelegationInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // If we are in a dependent context, template instantiation will
 | |
|   // perform this type-checking again. Just save the arguments that we
 | |
|   // received in a ParenListExpr.
 | |
|   // FIXME: This isn't quite ideal, since our ASTs don't capture all
 | |
|   // of the information that we have about the base
 | |
|   // initializer. However, deconstructing the ASTs is a dicey process,
 | |
|   // and this approach is far more likely to get the corner cases right.
 | |
|   if (CurContext->isDependentContext()) {
 | |
|     ExprResult Init
 | |
|       = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
 | |
|                                           NumArgs, RParenLoc));
 | |
|     return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
 | |
|                                             Constructor, Init.takeAs<Expr>(),
 | |
|                                             RParenLoc);
 | |
|   }
 | |
| 
 | |
|   return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
 | |
|                                           DelegationInit.takeAs<Expr>(),
 | |
|                                           RParenLoc);
 | |
| }
 | |
| 
 | |
| MemInitResult
 | |
| Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
 | |
|                            Expr **Args, unsigned NumArgs, 
 | |
|                            SourceLocation LParenLoc, SourceLocation RParenLoc, 
 | |
|                            CXXRecordDecl *ClassDecl,
 | |
|                            SourceLocation EllipsisLoc) {
 | |
|   bool HasDependentArg = false;
 | |
|   for (unsigned i = 0; i < NumArgs; i++)
 | |
|     HasDependentArg |= Args[i]->isTypeDependent();
 | |
| 
 | |
|   SourceLocation BaseLoc
 | |
|     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | |
|   
 | |
|   if (!BaseType->isDependentType() && !BaseType->isRecordType())
 | |
|     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
 | |
|              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|   // C++ [class.base.init]p2:
 | |
|   //   [...] Unless the mem-initializer-id names a nonstatic data
 | |
|   //   member of the constructor's class or a direct or virtual base
 | |
|   //   of that class, the mem-initializer is ill-formed. A
 | |
|   //   mem-initializer-list can initialize a base class using any
 | |
|   //   name that denotes that base class type.
 | |
|   bool Dependent = BaseType->isDependentType() || HasDependentArg;
 | |
| 
 | |
|   if (EllipsisLoc.isValid()) {
 | |
|     // This is a pack expansion.
 | |
|     if (!BaseType->containsUnexpandedParameterPack())  {
 | |
|       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
 | |
|         << SourceRange(BaseLoc, RParenLoc);
 | |
|       
 | |
|       EllipsisLoc = SourceLocation();
 | |
|     }
 | |
|   } else {
 | |
|     // Check for any unexpanded parameter packs.
 | |
|     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
 | |
|       return true;
 | |
|     
 | |
|     for (unsigned I = 0; I != NumArgs; ++I)
 | |
|       if (DiagnoseUnexpandedParameterPack(Args[I]))
 | |
|         return true;
 | |
|   }
 | |
|   
 | |
|   // Check for direct and virtual base classes.
 | |
|   const CXXBaseSpecifier *DirectBaseSpec = 0;
 | |
|   const CXXBaseSpecifier *VirtualBaseSpec = 0;
 | |
|   if (!Dependent) { 
 | |
|     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
 | |
|                                        BaseType))
 | |
|       return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
 | |
|                                         LParenLoc, RParenLoc, ClassDecl);
 | |
| 
 | |
|     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 
 | |
|                         VirtualBaseSpec);
 | |
| 
 | |
|     // C++ [base.class.init]p2:
 | |
|     // Unless the mem-initializer-id names a nonstatic data member of the
 | |
|     // constructor's class or a direct or virtual base of that class, the
 | |
|     // mem-initializer is ill-formed.
 | |
|     if (!DirectBaseSpec && !VirtualBaseSpec) {
 | |
|       // If the class has any dependent bases, then it's possible that
 | |
|       // one of those types will resolve to the same type as
 | |
|       // BaseType. Therefore, just treat this as a dependent base
 | |
|       // class initialization.  FIXME: Should we try to check the
 | |
|       // initialization anyway? It seems odd.
 | |
|       if (ClassDecl->hasAnyDependentBases())
 | |
|         Dependent = true;
 | |
|       else
 | |
|         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
 | |
|           << BaseType << Context.getTypeDeclType(ClassDecl)
 | |
|           << BaseTInfo->getTypeLoc().getLocalSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Dependent) {
 | |
|     // Can't check initialization for a base of dependent type or when
 | |
|     // any of the arguments are type-dependent expressions.
 | |
|     ExprResult BaseInit
 | |
|       = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
 | |
|                                           RParenLoc));
 | |
| 
 | |
|     // Erase any temporaries within this evaluation context; we're not
 | |
|     // going to track them in the AST, since we'll be rebuilding the
 | |
|     // ASTs during template instantiation.
 | |
|     ExprTemporaries.erase(
 | |
|               ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
 | |
|                           ExprTemporaries.end());
 | |
| 
 | |
|     return new (Context) CXXCtorInitializer(Context, BaseTInfo, 
 | |
|                                                     /*IsVirtual=*/false,
 | |
|                                                     LParenLoc, 
 | |
|                                                     BaseInit.takeAs<Expr>(),
 | |
|                                                     RParenLoc,
 | |
|                                                     EllipsisLoc);
 | |
|   }
 | |
| 
 | |
|   // C++ [base.class.init]p2:
 | |
|   //   If a mem-initializer-id is ambiguous because it designates both
 | |
|   //   a direct non-virtual base class and an inherited virtual base
 | |
|   //   class, the mem-initializer is ill-formed.
 | |
|   if (DirectBaseSpec && VirtualBaseSpec)
 | |
|     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
 | |
|       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|   CXXBaseSpecifier *BaseSpec
 | |
|     = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
 | |
|   if (!BaseSpec)
 | |
|     BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
 | |
| 
 | |
|   // Initialize the base.
 | |
|   InitializedEntity BaseEntity =
 | |
|     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
 | |
|   InitializationKind Kind = 
 | |
|     InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
 | |
|   
 | |
|   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
 | |
|   
 | |
|   ExprResult BaseInit =
 | |
|     InitSeq.Perform(*this, BaseEntity, Kind, 
 | |
|                     MultiExprArg(*this, Args, NumArgs), 0);
 | |
|   if (BaseInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   CheckImplicitConversions(BaseInit.get(), LParenLoc);
 | |
|   
 | |
|   // C++0x [class.base.init]p7:
 | |
|   //   The initialization of each base and member constitutes a 
 | |
|   //   full-expression.
 | |
|   BaseInit = MaybeCreateExprWithCleanups(BaseInit);
 | |
|   if (BaseInit.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // If we are in a dependent context, template instantiation will
 | |
|   // perform this type-checking again. Just save the arguments that we
 | |
|   // received in a ParenListExpr.
 | |
|   // FIXME: This isn't quite ideal, since our ASTs don't capture all
 | |
|   // of the information that we have about the base
 | |
|   // initializer. However, deconstructing the ASTs is a dicey process,
 | |
|   // and this approach is far more likely to get the corner cases right.
 | |
|   if (CurContext->isDependentContext()) {
 | |
|     ExprResult Init
 | |
|       = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
 | |
|                                           RParenLoc));
 | |
|     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
 | |
|                                                     BaseSpec->isVirtual(),
 | |
|                                                     LParenLoc, 
 | |
|                                                     Init.takeAs<Expr>(),
 | |
|                                                     RParenLoc,
 | |
|                                                     EllipsisLoc);
 | |
|   }
 | |
| 
 | |
|   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
 | |
|                                                   BaseSpec->isVirtual(),
 | |
|                                                   LParenLoc, 
 | |
|                                                   BaseInit.takeAs<Expr>(),
 | |
|                                                   RParenLoc,
 | |
|                                                   EllipsisLoc);
 | |
| }
 | |
| 
 | |
| /// ImplicitInitializerKind - How an implicit base or member initializer should
 | |
| /// initialize its base or member.
 | |
| enum ImplicitInitializerKind {
 | |
|   IIK_Default,
 | |
|   IIK_Copy,
 | |
|   IIK_Move
 | |
| };
 | |
| 
 | |
| static bool
 | |
| BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
 | |
|                              ImplicitInitializerKind ImplicitInitKind,
 | |
|                              CXXBaseSpecifier *BaseSpec,
 | |
|                              bool IsInheritedVirtualBase,
 | |
|                              CXXCtorInitializer *&CXXBaseInit) {
 | |
|   InitializedEntity InitEntity
 | |
|     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
 | |
|                                         IsInheritedVirtualBase);
 | |
| 
 | |
|   ExprResult BaseInit;
 | |
|   
 | |
|   switch (ImplicitInitKind) {
 | |
|   case IIK_Default: {
 | |
|     InitializationKind InitKind
 | |
|       = InitializationKind::CreateDefault(Constructor->getLocation());
 | |
|     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
 | |
|     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
 | |
|                                MultiExprArg(SemaRef, 0, 0));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case IIK_Copy: {
 | |
|     ParmVarDecl *Param = Constructor->getParamDecl(0);
 | |
|     QualType ParamType = Param->getType().getNonReferenceType();
 | |
|     
 | |
|     Expr *CopyCtorArg = 
 | |
|       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param, 
 | |
|                           Constructor->getLocation(), ParamType,
 | |
|                           VK_LValue, 0);
 | |
|     
 | |
|     // Cast to the base class to avoid ambiguities.
 | |
|     QualType ArgTy = 
 | |
|       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 
 | |
|                                        ParamType.getQualifiers());
 | |
| 
 | |
|     CXXCastPath BasePath;
 | |
|     BasePath.push_back(BaseSpec);
 | |
|     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
 | |
|                                             CK_UncheckedDerivedToBase,
 | |
|                                             VK_LValue, &BasePath).take();
 | |
| 
 | |
|     InitializationKind InitKind
 | |
|       = InitializationKind::CreateDirect(Constructor->getLocation(),
 | |
|                                          SourceLocation(), SourceLocation());
 | |
|     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 
 | |
|                                    &CopyCtorArg, 1);
 | |
|     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
 | |
|                                MultiExprArg(&CopyCtorArg, 1));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case IIK_Move:
 | |
|     assert(false && "Unhandled initializer kind!");
 | |
|   }
 | |
| 
 | |
|   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
 | |
|   if (BaseInit.isInvalid())
 | |
|     return true;
 | |
|         
 | |
|   CXXBaseInit =
 | |
|     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
 | |
|                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 
 | |
|                                                         SourceLocation()),
 | |
|                                              BaseSpec->isVirtual(),
 | |
|                                              SourceLocation(),
 | |
|                                              BaseInit.takeAs<Expr>(),
 | |
|                                              SourceLocation(),
 | |
|                                              SourceLocation());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
 | |
|                                ImplicitInitializerKind ImplicitInitKind,
 | |
|                                FieldDecl *Field,
 | |
|                                CXXCtorInitializer *&CXXMemberInit) {
 | |
|   if (Field->isInvalidDecl())
 | |
|     return true;
 | |
| 
 | |
|   SourceLocation Loc = Constructor->getLocation();
 | |
| 
 | |
|   if (ImplicitInitKind == IIK_Copy) {
 | |
|     ParmVarDecl *Param = Constructor->getParamDecl(0);
 | |
|     QualType ParamType = Param->getType().getNonReferenceType();
 | |
|     
 | |
|     Expr *MemberExprBase = 
 | |
|       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param, 
 | |
|                           Loc, ParamType, VK_LValue, 0);
 | |
| 
 | |
|     // Build a reference to this field within the parameter.
 | |
|     CXXScopeSpec SS;
 | |
|     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
 | |
|                               Sema::LookupMemberName);
 | |
|     MemberLookup.addDecl(Field, AS_public);
 | |
|     MemberLookup.resolveKind();
 | |
|     ExprResult CopyCtorArg 
 | |
|       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
 | |
|                                          ParamType, Loc,
 | |
|                                          /*IsArrow=*/false,
 | |
|                                          SS,
 | |
|                                          /*FirstQualifierInScope=*/0,
 | |
|                                          MemberLookup,
 | |
|                                          /*TemplateArgs=*/0);    
 | |
|     if (CopyCtorArg.isInvalid())
 | |
|       return true;
 | |
|     
 | |
|     // When the field we are copying is an array, create index variables for 
 | |
|     // each dimension of the array. We use these index variables to subscript
 | |
|     // the source array, and other clients (e.g., CodeGen) will perform the
 | |
|     // necessary iteration with these index variables.
 | |
|     llvm::SmallVector<VarDecl *, 4> IndexVariables;
 | |
|     QualType BaseType = Field->getType();
 | |
|     QualType SizeType = SemaRef.Context.getSizeType();
 | |
|     while (const ConstantArrayType *Array
 | |
|                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
 | |
|       // Create the iteration variable for this array index.
 | |
|       IdentifierInfo *IterationVarName = 0;
 | |
|       {
 | |
|         llvm::SmallString<8> Str;
 | |
|         llvm::raw_svector_ostream OS(Str);
 | |
|         OS << "__i" << IndexVariables.size();
 | |
|         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
 | |
|       }
 | |
|       VarDecl *IterationVar
 | |
|         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
 | |
|                           IterationVarName, SizeType,
 | |
|                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
 | |
|                           SC_None, SC_None);
 | |
|       IndexVariables.push_back(IterationVar);
 | |
|       
 | |
|       // Create a reference to the iteration variable.
 | |
|       ExprResult IterationVarRef
 | |
|         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
 | |
|       assert(!IterationVarRef.isInvalid() &&
 | |
|              "Reference to invented variable cannot fail!");
 | |
|       
 | |
|       // Subscript the array with this iteration variable.
 | |
|       CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
 | |
|                                                             Loc,
 | |
|                                                         IterationVarRef.take(),
 | |
|                                                             Loc);
 | |
|       if (CopyCtorArg.isInvalid())
 | |
|         return true;
 | |
|       
 | |
|       BaseType = Array->getElementType();
 | |
|     }
 | |
|     
 | |
|     // Construct the entity that we will be initializing. For an array, this
 | |
|     // will be first element in the array, which may require several levels
 | |
|     // of array-subscript entities. 
 | |
|     llvm::SmallVector<InitializedEntity, 4> Entities;
 | |
|     Entities.reserve(1 + IndexVariables.size());
 | |
|     Entities.push_back(InitializedEntity::InitializeMember(Field));
 | |
|     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
 | |
|       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
 | |
|                                                               0,
 | |
|                                                               Entities.back()));
 | |
|     
 | |
|     // Direct-initialize to use the copy constructor.
 | |
|     InitializationKind InitKind =
 | |
|       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
 | |
|     
 | |
|     Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
 | |
|     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
 | |
|                                    &CopyCtorArgE, 1);
 | |
|     
 | |
|     ExprResult MemberInit
 | |
|       = InitSeq.Perform(SemaRef, Entities.back(), InitKind, 
 | |
|                         MultiExprArg(&CopyCtorArgE, 1));
 | |
|     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
| 
 | |
|     CXXMemberInit
 | |
|       = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
 | |
|                                            MemberInit.takeAs<Expr>(), Loc,
 | |
|                                            IndexVariables.data(),
 | |
|                                            IndexVariables.size());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
 | |
| 
 | |
|   QualType FieldBaseElementType = 
 | |
|     SemaRef.Context.getBaseElementType(Field->getType());
 | |
|   
 | |
|   if (FieldBaseElementType->isRecordType()) {
 | |
|     InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
 | |
|     InitializationKind InitKind = 
 | |
|       InitializationKind::CreateDefault(Loc);
 | |
|     
 | |
|     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
 | |
|     ExprResult MemberInit = 
 | |
|       InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
 | |
| 
 | |
|     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
 | |
|     if (MemberInit.isInvalid())
 | |
|       return true;
 | |
|     
 | |
|     CXXMemberInit =
 | |
|       new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
 | |
|                                                        Field, Loc, Loc,
 | |
|                                                        MemberInit.get(),
 | |
|                                                        Loc);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (FieldBaseElementType->isReferenceType()) {
 | |
|     SemaRef.Diag(Constructor->getLocation(), 
 | |
|                  diag::err_uninitialized_member_in_ctor)
 | |
|     << (int)Constructor->isImplicit() 
 | |
|     << SemaRef.Context.getTagDeclType(Constructor->getParent())
 | |
|     << 0 << Field->getDeclName();
 | |
|     SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (FieldBaseElementType.isConstQualified()) {
 | |
|     SemaRef.Diag(Constructor->getLocation(), 
 | |
|                  diag::err_uninitialized_member_in_ctor)
 | |
|     << (int)Constructor->isImplicit() 
 | |
|     << SemaRef.Context.getTagDeclType(Constructor->getParent())
 | |
|     << 1 << Field->getDeclName();
 | |
|     SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Nothing to initialize.
 | |
|   CXXMemberInit = 0;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct BaseAndFieldInfo {
 | |
|   Sema &S;
 | |
|   CXXConstructorDecl *Ctor;
 | |
|   bool AnyErrorsInInits;
 | |
|   ImplicitInitializerKind IIK;
 | |
|   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
 | |
|   llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
 | |
| 
 | |
|   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
 | |
|     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
 | |
|     // FIXME: Handle implicit move constructors.
 | |
|     if (Ctor->isImplicit() && Ctor->isCopyConstructor())
 | |
|       IIK = IIK_Copy;
 | |
|     else
 | |
|       IIK = IIK_Default;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
 | |
|                                     FieldDecl *Top, FieldDecl *Field) {
 | |
| 
 | |
|   // Overwhelmingly common case: we have a direct initializer for this field.
 | |
|   if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
 | |
|     Info.AllToInit.push_back(Init);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
 | |
|     const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
 | |
|     assert(FieldClassType && "anonymous struct/union without record type");
 | |
|     CXXRecordDecl *FieldClassDecl
 | |
|       = cast<CXXRecordDecl>(FieldClassType->getDecl());
 | |
| 
 | |
|     // Even though union members never have non-trivial default
 | |
|     // constructions in C++03, we still build member initializers for aggregate
 | |
|     // record types which can be union members, and C++0x allows non-trivial
 | |
|     // default constructors for union members, so we ensure that only one
 | |
|     // member is initialized for these.
 | |
|     if (FieldClassDecl->isUnion()) {
 | |
|       // First check for an explicit initializer for one field.
 | |
|       for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
 | |
|            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
 | |
|         if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
 | |
|           Info.AllToInit.push_back(Init);
 | |
| 
 | |
|           // Once we've initialized a field of an anonymous union, the union
 | |
|           // field in the class is also initialized, so exit immediately.
 | |
|           return false;
 | |
|         } else if ((*FA)->isAnonymousStructOrUnion()) {
 | |
|           if (CollectFieldInitializer(Info, Top, *FA))
 | |
|             return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Fallthrough and construct a default initializer for the union as
 | |
|       // a whole, which can call its default constructor if such a thing exists
 | |
|       // (C++0x perhaps). FIXME: It's not clear that this is the correct
 | |
|       // behavior going forward with C++0x, when anonymous unions there are
 | |
|       // finalized, we should revisit this.
 | |
|     } else {
 | |
|       // For structs, we simply descend through to initialize all members where
 | |
|       // necessary.
 | |
|       for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
 | |
|            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
 | |
|         if (CollectFieldInitializer(Info, Top, *FA))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Don't try to build an implicit initializer if there were semantic
 | |
|   // errors in any of the initializers (and therefore we might be
 | |
|   // missing some that the user actually wrote).
 | |
|   if (Info.AnyErrorsInInits)
 | |
|     return false;
 | |
| 
 | |
|   CXXCtorInitializer *Init = 0;
 | |
|   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
 | |
|     return true;
 | |
| 
 | |
|   if (Init)
 | |
|     Info.AllToInit.push_back(Init);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
|                                
 | |
| bool
 | |
| Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
 | |
|                                   CXXCtorInitializer **Initializers,
 | |
|                                   unsigned NumInitializers,
 | |
|                                   bool AnyErrors) {
 | |
|   if (Constructor->getDeclContext()->isDependentContext()) {
 | |
|     // Just store the initializers as written, they will be checked during
 | |
|     // instantiation.
 | |
|     if (NumInitializers > 0) {
 | |
|       Constructor->setNumCtorInitializers(NumInitializers);
 | |
|       CXXCtorInitializer **baseOrMemberInitializers =
 | |
|         new (Context) CXXCtorInitializer*[NumInitializers];
 | |
|       memcpy(baseOrMemberInitializers, Initializers,
 | |
|              NumInitializers * sizeof(CXXCtorInitializer*));
 | |
|       Constructor->setCtorInitializers(baseOrMemberInitializers);
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
 | |
| 
 | |
|   // We need to build the initializer AST according to order of construction
 | |
|   // and not what user specified in the Initializers list.
 | |
|   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
 | |
|   if (!ClassDecl)
 | |
|     return true;
 | |
|   
 | |
|   bool HadError = false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumInitializers; i++) {
 | |
|     CXXCtorInitializer *Member = Initializers[i];
 | |
|     
 | |
|     if (Member->isBaseInitializer())
 | |
|       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
 | |
|     else
 | |
|       Info.AllBaseFields[Member->getAnyMember()] = Member;
 | |
|   }
 | |
| 
 | |
|   // Keep track of the direct virtual bases.
 | |
|   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
 | |
|   for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); I != E; ++I) {
 | |
|     if (I->isVirtual())
 | |
|       DirectVBases.insert(I);
 | |
|   }
 | |
| 
 | |
|   // Push virtual bases before others.
 | |
|   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
 | |
|        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
 | |
| 
 | |
|     if (CXXCtorInitializer *Value
 | |
|         = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
 | |
|       Info.AllToInit.push_back(Value);
 | |
|     } else if (!AnyErrors) {
 | |
|       bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
 | |
|       CXXCtorInitializer *CXXBaseInit;
 | |
|       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
 | |
|                                        VBase, IsInheritedVirtualBase, 
 | |
|                                        CXXBaseInit)) {
 | |
|         HadError = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Info.AllToInit.push_back(CXXBaseInit);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     // Virtuals are in the virtual base list and already constructed.
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     if (CXXCtorInitializer *Value
 | |
|           = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
 | |
|       Info.AllToInit.push_back(Value);
 | |
|     } else if (!AnyErrors) {
 | |
|       CXXCtorInitializer *CXXBaseInit;
 | |
|       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
 | |
|                                        Base, /*IsInheritedVirtualBase=*/false,
 | |
|                                        CXXBaseInit)) {
 | |
|         HadError = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Info.AllToInit.push_back(CXXBaseInit);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fields.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|        E = ClassDecl->field_end(); Field != E; ++Field) {
 | |
|     if ((*Field)->getType()->isIncompleteArrayType()) {
 | |
|       assert(ClassDecl->hasFlexibleArrayMember() &&
 | |
|              "Incomplete array type is not valid");
 | |
|       continue;
 | |
|     }
 | |
|     if (CollectFieldInitializer(Info, *Field, *Field))
 | |
|       HadError = true;
 | |
|   }
 | |
| 
 | |
|   NumInitializers = Info.AllToInit.size();
 | |
|   if (NumInitializers > 0) {
 | |
|     Constructor->setNumCtorInitializers(NumInitializers);
 | |
|     CXXCtorInitializer **baseOrMemberInitializers =
 | |
|       new (Context) CXXCtorInitializer*[NumInitializers];
 | |
|     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
 | |
|            NumInitializers * sizeof(CXXCtorInitializer*));
 | |
|     Constructor->setCtorInitializers(baseOrMemberInitializers);
 | |
| 
 | |
|     // Constructors implicitly reference the base and member
 | |
|     // destructors.
 | |
|     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
 | |
|                                            Constructor->getParent());
 | |
|   }
 | |
| 
 | |
|   return HadError;
 | |
| }
 | |
| 
 | |
| static void *GetKeyForTopLevelField(FieldDecl *Field) {
 | |
|   // For anonymous unions, use the class declaration as the key.
 | |
|   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
 | |
|     if (RT->getDecl()->isAnonymousStructOrUnion())
 | |
|       return static_cast<void *>(RT->getDecl());
 | |
|   }
 | |
|   return static_cast<void *>(Field);
 | |
| }
 | |
| 
 | |
| static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
 | |
|   return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
 | |
| }
 | |
| 
 | |
| static void *GetKeyForMember(ASTContext &Context,
 | |
|                              CXXCtorInitializer *Member) {
 | |
|   if (!Member->isAnyMemberInitializer())
 | |
|     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
 | |
|     
 | |
|   // For fields injected into the class via declaration of an anonymous union,
 | |
|   // use its anonymous union class declaration as the unique key.
 | |
|   FieldDecl *Field = Member->getAnyMember();
 | |
|  
 | |
|   // If the field is a member of an anonymous struct or union, our key
 | |
|   // is the anonymous record decl that's a direct child of the class.
 | |
|   RecordDecl *RD = Field->getParent();
 | |
|   if (RD->isAnonymousStructOrUnion()) {
 | |
|     while (true) {
 | |
|       RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
 | |
|       if (Parent->isAnonymousStructOrUnion())
 | |
|         RD = Parent;
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|       
 | |
|     return static_cast<void *>(RD);
 | |
|   }
 | |
| 
 | |
|   return static_cast<void *>(Field);
 | |
| }
 | |
| 
 | |
| static void
 | |
| DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
 | |
|                                   const CXXConstructorDecl *Constructor,
 | |
|                                   CXXCtorInitializer **Inits,
 | |
|                                   unsigned NumInits) {
 | |
|   if (Constructor->getDeclContext()->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // Don't check initializers order unless the warning is enabled at the
 | |
|   // location of at least one initializer. 
 | |
|   bool ShouldCheckOrder = false;
 | |
|   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
 | |
|     CXXCtorInitializer *Init = Inits[InitIndex];
 | |
|     if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
 | |
|                                          Init->getSourceLocation())
 | |
|           != Diagnostic::Ignored) {
 | |
|       ShouldCheckOrder = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!ShouldCheckOrder)
 | |
|     return;
 | |
|   
 | |
|   // Build the list of bases and members in the order that they'll
 | |
|   // actually be initialized.  The explicit initializers should be in
 | |
|   // this same order but may be missing things.
 | |
|   llvm::SmallVector<const void*, 32> IdealInitKeys;
 | |
| 
 | |
|   const CXXRecordDecl *ClassDecl = Constructor->getParent();
 | |
| 
 | |
|   // 1. Virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator VBase =
 | |
|        ClassDecl->vbases_begin(),
 | |
|        E = ClassDecl->vbases_end(); VBase != E; ++VBase)
 | |
|     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
 | |
| 
 | |
|   // 2. Non-virtual bases.
 | |
|   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
|     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
 | |
|   }
 | |
| 
 | |
|   // 3. Direct fields.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|        E = ClassDecl->field_end(); Field != E; ++Field)
 | |
|     IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
 | |
| 
 | |
|   unsigned NumIdealInits = IdealInitKeys.size();
 | |
|   unsigned IdealIndex = 0;
 | |
| 
 | |
|   CXXCtorInitializer *PrevInit = 0;
 | |
|   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
 | |
|     CXXCtorInitializer *Init = Inits[InitIndex];
 | |
|     void *InitKey = GetKeyForMember(SemaRef.Context, Init);
 | |
| 
 | |
|     // Scan forward to try to find this initializer in the idealized
 | |
|     // initializers list.
 | |
|     for (; IdealIndex != NumIdealInits; ++IdealIndex)
 | |
|       if (InitKey == IdealInitKeys[IdealIndex])
 | |
|         break;
 | |
| 
 | |
|     // If we didn't find this initializer, it must be because we
 | |
|     // scanned past it on a previous iteration.  That can only
 | |
|     // happen if we're out of order;  emit a warning.
 | |
|     if (IdealIndex == NumIdealInits && PrevInit) {
 | |
|       Sema::SemaDiagnosticBuilder D =
 | |
|         SemaRef.Diag(PrevInit->getSourceLocation(),
 | |
|                      diag::warn_initializer_out_of_order);
 | |
| 
 | |
|       if (PrevInit->isAnyMemberInitializer())
 | |
|         D << 0 << PrevInit->getAnyMember()->getDeclName();
 | |
|       else
 | |
|         D << 1 << PrevInit->getBaseClassInfo()->getType();
 | |
|       
 | |
|       if (Init->isAnyMemberInitializer())
 | |
|         D << 0 << Init->getAnyMember()->getDeclName();
 | |
|       else
 | |
|         D << 1 << Init->getBaseClassInfo()->getType();
 | |
| 
 | |
|       // Move back to the initializer's location in the ideal list.
 | |
|       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
 | |
|         if (InitKey == IdealInitKeys[IdealIndex])
 | |
|           break;
 | |
| 
 | |
|       assert(IdealIndex != NumIdealInits &&
 | |
|              "initializer not found in initializer list");
 | |
|     }
 | |
| 
 | |
|     PrevInit = Init;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| bool CheckRedundantInit(Sema &S,
 | |
|                         CXXCtorInitializer *Init,
 | |
|                         CXXCtorInitializer *&PrevInit) {
 | |
|   if (!PrevInit) {
 | |
|     PrevInit = Init;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (FieldDecl *Field = Init->getMember())
 | |
|     S.Diag(Init->getSourceLocation(),
 | |
|            diag::err_multiple_mem_initialization)
 | |
|       << Field->getDeclName()
 | |
|       << Init->getSourceRange();
 | |
|   else {
 | |
|     const Type *BaseClass = Init->getBaseClass();
 | |
|     assert(BaseClass && "neither field nor base");
 | |
|     S.Diag(Init->getSourceLocation(),
 | |
|            diag::err_multiple_base_initialization)
 | |
|       << QualType(BaseClass, 0)
 | |
|       << Init->getSourceRange();
 | |
|   }
 | |
|   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
 | |
|     << 0 << PrevInit->getSourceRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
 | |
| typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
 | |
| 
 | |
| bool CheckRedundantUnionInit(Sema &S,
 | |
|                              CXXCtorInitializer *Init,
 | |
|                              RedundantUnionMap &Unions) {
 | |
|   FieldDecl *Field = Init->getAnyMember();
 | |
|   RecordDecl *Parent = Field->getParent();
 | |
|   if (!Parent->isAnonymousStructOrUnion())
 | |
|     return false;
 | |
| 
 | |
|   NamedDecl *Child = Field;
 | |
|   do {
 | |
|     if (Parent->isUnion()) {
 | |
|       UnionEntry &En = Unions[Parent];
 | |
|       if (En.first && En.first != Child) {
 | |
|         S.Diag(Init->getSourceLocation(),
 | |
|                diag::err_multiple_mem_union_initialization)
 | |
|           << Field->getDeclName()
 | |
|           << Init->getSourceRange();
 | |
|         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
 | |
|           << 0 << En.second->getSourceRange();
 | |
|         return true;
 | |
|       } else if (!En.first) {
 | |
|         En.first = Child;
 | |
|         En.second = Init;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Child = Parent;
 | |
|     Parent = cast<RecordDecl>(Parent->getDeclContext());
 | |
|   } while (Parent->isAnonymousStructOrUnion());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| }
 | |
| 
 | |
| /// ActOnMemInitializers - Handle the member initializers for a constructor.
 | |
| void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
 | |
|                                 SourceLocation ColonLoc,
 | |
|                                 MemInitTy **meminits, unsigned NumMemInits,
 | |
|                                 bool AnyErrors) {
 | |
|   if (!ConstructorDecl)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(ConstructorDecl);
 | |
| 
 | |
|   CXXConstructorDecl *Constructor
 | |
|     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
 | |
| 
 | |
|   if (!Constructor) {
 | |
|     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   CXXCtorInitializer **MemInits =
 | |
|     reinterpret_cast<CXXCtorInitializer **>(meminits);
 | |
| 
 | |
|   // Mapping for the duplicate initializers check.
 | |
|   // For member initializers, this is keyed with a FieldDecl*.
 | |
|   // For base initializers, this is keyed with a Type*.
 | |
|   llvm::DenseMap<void*, CXXCtorInitializer *> Members;
 | |
| 
 | |
|   // Mapping for the inconsistent anonymous-union initializers check.
 | |
|   RedundantUnionMap MemberUnions;
 | |
| 
 | |
|   bool HadError = false;
 | |
|   for (unsigned i = 0; i < NumMemInits; i++) {
 | |
|     CXXCtorInitializer *Init = MemInits[i];
 | |
| 
 | |
|     // Set the source order index.
 | |
|     Init->setSourceOrder(i);
 | |
| 
 | |
|     if (Init->isAnyMemberInitializer()) {
 | |
|       FieldDecl *Field = Init->getAnyMember();
 | |
|       if (CheckRedundantInit(*this, Init, Members[Field]) ||
 | |
|           CheckRedundantUnionInit(*this, Init, MemberUnions))
 | |
|         HadError = true;
 | |
|     } else if (Init->isBaseInitializer()) {
 | |
|       void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
 | |
|       if (CheckRedundantInit(*this, Init, Members[Key]))
 | |
|         HadError = true;
 | |
|     } else {
 | |
|       assert(Init->isDelegatingInitializer());
 | |
|       // This must be the only initializer
 | |
|       if (i != 0 || NumMemInits > 1) {
 | |
|         Diag(MemInits[0]->getSourceLocation(),
 | |
|              diag::err_delegating_initializer_alone)
 | |
|           << MemInits[0]->getSourceRange();
 | |
|         HadError = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HadError)
 | |
|     return;
 | |
| 
 | |
|   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
 | |
| 
 | |
|   SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
 | |
|                                              CXXRecordDecl *ClassDecl) {
 | |
|   // Ignore dependent contexts.
 | |
|   if (ClassDecl->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // FIXME: all the access-control diagnostics are positioned on the
 | |
|   // field/base declaration.  That's probably good; that said, the
 | |
|   // user might reasonably want to know why the destructor is being
 | |
|   // emitted, and we currently don't say.
 | |
|   
 | |
|   // Non-static data members.
 | |
|   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
 | |
|        E = ClassDecl->field_end(); I != E; ++I) {
 | |
|     FieldDecl *Field = *I;
 | |
|     if (Field->isInvalidDecl())
 | |
|       continue;
 | |
|     QualType FieldType = Context.getBaseElementType(Field->getType());
 | |
|     
 | |
|     const RecordType* RT = FieldType->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       continue;
 | |
|     
 | |
|     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     if (FieldClassDecl->isInvalidDecl())
 | |
|       continue;
 | |
|     if (FieldClassDecl->hasTrivialDestructor())
 | |
|       continue;
 | |
| 
 | |
|     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
 | |
|     assert(Dtor && "No dtor found for FieldClassDecl!");
 | |
|     CheckDestructorAccess(Field->getLocation(), Dtor,
 | |
|                           PDiag(diag::err_access_dtor_field)
 | |
|                             << Field->getDeclName()
 | |
|                             << FieldType);
 | |
| 
 | |
|     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
 | |
|   }
 | |
| 
 | |
|   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
 | |
| 
 | |
|   // Bases.
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     // Bases are always records in a well-formed non-dependent class.
 | |
|     const RecordType *RT = Base->getType()->getAs<RecordType>();
 | |
| 
 | |
|     // Remember direct virtual bases.
 | |
|     if (Base->isVirtual())
 | |
|       DirectVirtualBases.insert(RT);
 | |
| 
 | |
|     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     // If our base class is invalid, we probably can't get its dtor anyway.
 | |
|     if (BaseClassDecl->isInvalidDecl())
 | |
|       continue;
 | |
|     // Ignore trivial destructors.
 | |
|     if (BaseClassDecl->hasTrivialDestructor())
 | |
|       continue;
 | |
| 
 | |
|     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
 | |
|     assert(Dtor && "No dtor found for BaseClassDecl!");
 | |
| 
 | |
|     // FIXME: caret should be on the start of the class name
 | |
|     CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
 | |
|                           PDiag(diag::err_access_dtor_base)
 | |
|                             << Base->getType()
 | |
|                             << Base->getSourceRange());
 | |
|     
 | |
|     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
 | |
|   }
 | |
|   
 | |
|   // Virtual bases.
 | |
|   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
 | |
|        E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
 | |
| 
 | |
|     // Bases are always records in a well-formed non-dependent class.
 | |
|     const RecordType *RT = VBase->getType()->getAs<RecordType>();
 | |
| 
 | |
|     // Ignore direct virtual bases.
 | |
|     if (DirectVirtualBases.count(RT))
 | |
|       continue;
 | |
| 
 | |
|     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     // If our base class is invalid, we probably can't get its dtor anyway.
 | |
|     if (BaseClassDecl->isInvalidDecl())
 | |
|       continue;
 | |
|     // Ignore trivial destructors.
 | |
|     if (BaseClassDecl->hasTrivialDestructor())
 | |
|       continue;
 | |
| 
 | |
|     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
 | |
|     assert(Dtor && "No dtor found for BaseClassDecl!");
 | |
|     CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
 | |
|                           PDiag(diag::err_access_dtor_vbase)
 | |
|                             << VBase->getType());
 | |
| 
 | |
|     MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
 | |
|   if (!CDtorDecl)
 | |
|     return;
 | |
| 
 | |
|   if (CXXConstructorDecl *Constructor
 | |
|       = dyn_cast<CXXConstructorDecl>(CDtorDecl))
 | |
|     SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
 | |
| }
 | |
| 
 | |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
 | |
|                                   unsigned DiagID, AbstractDiagSelID SelID) {
 | |
|   if (SelID == -1)
 | |
|     return RequireNonAbstractType(Loc, T, PDiag(DiagID));
 | |
|   else
 | |
|     return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
 | |
| }
 | |
| 
 | |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
 | |
|                                   const PartialDiagnostic &PD) {
 | |
|   if (!getLangOptions().CPlusPlus)
 | |
|     return false;
 | |
| 
 | |
|   if (const ArrayType *AT = Context.getAsArrayType(T))
 | |
|     return RequireNonAbstractType(Loc, AT->getElementType(), PD);
 | |
| 
 | |
|   if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|     // Find the innermost pointer type.
 | |
|     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
 | |
|       PT = T;
 | |
| 
 | |
|     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
 | |
|       return RequireNonAbstractType(Loc, AT->getElementType(), PD);
 | |
|   }
 | |
| 
 | |
|   const RecordType *RT = T->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return false;
 | |
| 
 | |
|   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
| 
 | |
|   // We can't answer whether something is abstract until it has a
 | |
|   // definition.  If it's currently being defined, we'll walk back
 | |
|   // over all the declarations when we have a full definition.
 | |
|   const CXXRecordDecl *Def = RD->getDefinition();
 | |
|   if (!Def || Def->isBeingDefined())
 | |
|     return false;
 | |
| 
 | |
|   if (!RD->isAbstract())
 | |
|     return false;
 | |
| 
 | |
|   Diag(Loc, PD) << RD->getDeclName();
 | |
|   DiagnoseAbstractType(RD);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
 | |
|   // Check if we've already emitted the list of pure virtual functions
 | |
|   // for this class.
 | |
|   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
 | |
|     return;
 | |
| 
 | |
|   CXXFinalOverriderMap FinalOverriders;
 | |
|   RD->getFinalOverriders(FinalOverriders);
 | |
| 
 | |
|   // Keep a set of seen pure methods so we won't diagnose the same method
 | |
|   // more than once.
 | |
|   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
 | |
|   
 | |
|   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 
 | |
|                                    MEnd = FinalOverriders.end();
 | |
|        M != MEnd; 
 | |
|        ++M) {
 | |
|     for (OverridingMethods::iterator SO = M->second.begin(), 
 | |
|                                   SOEnd = M->second.end();
 | |
|          SO != SOEnd; ++SO) {
 | |
|       // C++ [class.abstract]p4:
 | |
|       //   A class is abstract if it contains or inherits at least one
 | |
|       //   pure virtual function for which the final overrider is pure
 | |
|       //   virtual.
 | |
| 
 | |
|       // 
 | |
|       if (SO->second.size() != 1)
 | |
|         continue;
 | |
| 
 | |
|       if (!SO->second.front().Method->isPure())
 | |
|         continue;
 | |
| 
 | |
|       if (!SeenPureMethods.insert(SO->second.front().Method))
 | |
|         continue;
 | |
| 
 | |
|       Diag(SO->second.front().Method->getLocation(), 
 | |
|            diag::note_pure_virtual_function) 
 | |
|         << SO->second.front().Method->getDeclName() << RD->getDeclName();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!PureVirtualClassDiagSet)
 | |
|     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
 | |
|   PureVirtualClassDiagSet->insert(RD);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct AbstractUsageInfo {
 | |
|   Sema &S;
 | |
|   CXXRecordDecl *Record;
 | |
|   CanQualType AbstractType;
 | |
|   bool Invalid;
 | |
| 
 | |
|   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
 | |
|     : S(S), Record(Record),
 | |
|       AbstractType(S.Context.getCanonicalType(
 | |
|                    S.Context.getTypeDeclType(Record))),
 | |
|       Invalid(false) {}
 | |
| 
 | |
|   void DiagnoseAbstractType() {
 | |
|     if (Invalid) return;
 | |
|     S.DiagnoseAbstractType(Record);
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
 | |
| };
 | |
| 
 | |
| struct CheckAbstractUsage {
 | |
|   AbstractUsageInfo &Info;
 | |
|   const NamedDecl *Ctx;
 | |
| 
 | |
|   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
 | |
|     : Info(Info), Ctx(Ctx) {}
 | |
| 
 | |
|   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     switch (TL.getTypeLocClass()) {
 | |
| #define ABSTRACT_TYPELOC(CLASS, PARENT)
 | |
| #define TYPELOC(CLASS, PARENT) \
 | |
|     case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
 | |
| #include "clang/AST/TypeLocNodes.def"
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     Visit(TL.getResultLoc(), Sema::AbstractReturnType);
 | |
|     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
 | |
|       if (!TL.getArg(I))
 | |
|         continue;
 | |
|       
 | |
|       TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
 | |
|       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
 | |
|   }
 | |
| 
 | |
|   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     // Visit the type parameters from a permissive context.
 | |
|     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
 | |
|       TemplateArgumentLoc TAL = TL.getArgLoc(I);
 | |
|       if (TAL.getArgument().getKind() == TemplateArgument::Type)
 | |
|         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
 | |
|           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
 | |
|       // TODO: other template argument types?
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Visit pointee types from a permissive context.
 | |
| #define CheckPolymorphic(Type) \
 | |
|   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
 | |
|     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
 | |
|   }
 | |
|   CheckPolymorphic(PointerTypeLoc)
 | |
|   CheckPolymorphic(ReferenceTypeLoc)
 | |
|   CheckPolymorphic(MemberPointerTypeLoc)
 | |
|   CheckPolymorphic(BlockPointerTypeLoc)
 | |
| 
 | |
|   /// Handle all the types we haven't given a more specific
 | |
|   /// implementation for above.
 | |
|   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
 | |
|     // Every other kind of type that we haven't called out already
 | |
|     // that has an inner type is either (1) sugar or (2) contains that
 | |
|     // inner type in some way as a subobject.
 | |
|     if (TypeLoc Next = TL.getNextTypeLoc())
 | |
|       return Visit(Next, Sel);
 | |
| 
 | |
|     // If there's no inner type and we're in a permissive context,
 | |
|     // don't diagnose.
 | |
|     if (Sel == Sema::AbstractNone) return;
 | |
| 
 | |
|     // Check whether the type matches the abstract type.
 | |
|     QualType T = TL.getType();
 | |
|     if (T->isArrayType()) {
 | |
|       Sel = Sema::AbstractArrayType;
 | |
|       T = Info.S.Context.getBaseElementType(T);
 | |
|     }
 | |
|     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
 | |
|     if (CT != Info.AbstractType) return;
 | |
| 
 | |
|     // It matched; do some magic.
 | |
|     if (Sel == Sema::AbstractArrayType) {
 | |
|       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
 | |
|         << T << TL.getSourceRange();
 | |
|     } else {
 | |
|       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
 | |
|         << Sel << T << TL.getSourceRange();
 | |
|     }
 | |
|     Info.DiagnoseAbstractType();
 | |
|   }
 | |
| };
 | |
| 
 | |
| void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
 | |
|                                   Sema::AbstractDiagSelID Sel) {
 | |
|   CheckAbstractUsage(*this, D).Visit(TL, Sel);
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Check for invalid uses of an abstract type in a method declaration.
 | |
| static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
 | |
|                                     CXXMethodDecl *MD) {
 | |
|   // No need to do the check on definitions, which require that
 | |
|   // the return/param types be complete.
 | |
|   if (MD->isThisDeclarationADefinition())
 | |
|     return;
 | |
| 
 | |
|   // For safety's sake, just ignore it if we don't have type source
 | |
|   // information.  This should never happen for non-implicit methods,
 | |
|   // but...
 | |
|   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
 | |
|     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
 | |
| }
 | |
| 
 | |
| /// Check for invalid uses of an abstract type within a class definition.
 | |
| static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
 | |
|                                     CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::decl_iterator
 | |
|          I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
 | |
|     Decl *D = *I;
 | |
|     if (D->isImplicit()) continue;
 | |
| 
 | |
|     // Methods and method templates.
 | |
|     if (isa<CXXMethodDecl>(D)) {
 | |
|       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
 | |
|     } else if (isa<FunctionTemplateDecl>(D)) {
 | |
|       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
 | |
|       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
 | |
| 
 | |
|     // Fields and static variables.
 | |
|     } else if (isa<FieldDecl>(D)) {
 | |
|       FieldDecl *FD = cast<FieldDecl>(D);
 | |
|       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
 | |
|         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
 | |
|     } else if (isa<VarDecl>(D)) {
 | |
|       VarDecl *VD = cast<VarDecl>(D);
 | |
|       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
 | |
|         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
 | |
| 
 | |
|     // Nested classes and class templates.
 | |
|     } else if (isa<CXXRecordDecl>(D)) {
 | |
|       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
 | |
|     } else if (isa<ClassTemplateDecl>(D)) {
 | |
|       CheckAbstractClassUsage(Info,
 | |
|                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic checks on a class definition that has been
 | |
| /// completing, introducing implicitly-declared members, checking for
 | |
| /// abstract types, etc.
 | |
| void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
 | |
|   if (!Record)
 | |
|     return;
 | |
| 
 | |
|   if (Record->isAbstract() && !Record->isInvalidDecl()) {
 | |
|     AbstractUsageInfo Info(*this, Record);
 | |
|     CheckAbstractClassUsage(Info, Record);
 | |
|   }
 | |
|   
 | |
|   // If this is not an aggregate type and has no user-declared constructor,
 | |
|   // complain about any non-static data members of reference or const scalar
 | |
|   // type, since they will never get initializers.
 | |
|   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
 | |
|       !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
 | |
|     bool Complained = false;
 | |
|     for (RecordDecl::field_iterator F = Record->field_begin(), 
 | |
|                                  FEnd = Record->field_end();
 | |
|          F != FEnd; ++F) {
 | |
|       if (F->getType()->isReferenceType() ||
 | |
|           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
 | |
|         if (!Complained) {
 | |
|           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
 | |
|             << Record->getTagKind() << Record;
 | |
|           Complained = true;
 | |
|         }
 | |
|         
 | |
|         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
 | |
|           << F->getType()->isReferenceType()
 | |
|           << F->getDeclName();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Record->isDynamicClass() && !Record->isDependentType())
 | |
|     DynamicClasses.push_back(Record);
 | |
| 
 | |
|   if (Record->getIdentifier()) {
 | |
|     // C++ [class.mem]p13:
 | |
|     //   If T is the name of a class, then each of the following shall have a 
 | |
|     //   name different from T:
 | |
|     //     - every member of every anonymous union that is a member of class T.
 | |
|     //
 | |
|     // C++ [class.mem]p14:
 | |
|     //   In addition, if class T has a user-declared constructor (12.1), every 
 | |
|     //   non-static data member of class T shall have a name different from T.
 | |
|     for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
 | |
|          R.first != R.second; ++R.first) {
 | |
|       NamedDecl *D = *R.first;
 | |
|       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
 | |
|           isa<IndirectFieldDecl>(D)) {
 | |
|         Diag(D->getLocation(), diag::err_member_name_of_class)
 | |
|           << D->getDeclName();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Warn if the class has virtual methods but non-virtual public destructor.
 | |
|   if (Record->isPolymorphic() && !Record->isDependentType()) {
 | |
|     CXXDestructorDecl *dtor = Record->getDestructor();
 | |
|     if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
 | |
|       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
 | |
|            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
 | |
|   }
 | |
| 
 | |
|   // See if a method overloads virtual methods in a base
 | |
|   /// class without overriding any.
 | |
|   if (!Record->isDependentType()) {
 | |
|     for (CXXRecordDecl::method_iterator M = Record->method_begin(),
 | |
|                                      MEnd = Record->method_end();
 | |
|          M != MEnd; ++M) {
 | |
|       if (!(*M)->isStatic())
 | |
|         DiagnoseHiddenVirtualMethods(Record, *M);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Declare inherited constructors. We do this eagerly here because:
 | |
|   // - The standard requires an eager diagnostic for conflicting inherited
 | |
|   //   constructors from different classes.
 | |
|   // - The lazy declaration of the other implicit constructors is so as to not
 | |
|   //   waste space and performance on classes that are not meant to be
 | |
|   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
 | |
|   //   have inherited constructors.
 | |
|   DeclareInheritedConstructors(Record);
 | |
| }
 | |
| 
 | |
| /// \brief Data used with FindHiddenVirtualMethod
 | |
| namespace {
 | |
|   struct FindHiddenVirtualMethodData {
 | |
|     Sema *S;
 | |
|     CXXMethodDecl *Method;
 | |
|     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
 | |
|     llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// \brief Member lookup function that determines whether a given C++
 | |
| /// method overloads virtual methods in a base class without overriding any,
 | |
| /// to be used with CXXRecordDecl::lookupInBases().
 | |
| static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
 | |
|                                     CXXBasePath &Path,
 | |
|                                     void *UserData) {
 | |
|   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|   FindHiddenVirtualMethodData &Data
 | |
|     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
 | |
| 
 | |
|   DeclarationName Name = Data.Method->getDeclName();
 | |
|   assert(Name.getNameKind() == DeclarationName::Identifier);
 | |
| 
 | |
|   bool foundSameNameMethod = false;
 | |
|   llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
 | |
|   for (Path.Decls = BaseRecord->lookup(Name);
 | |
|        Path.Decls.first != Path.Decls.second;
 | |
|        ++Path.Decls.first) {
 | |
|     NamedDecl *D = *Path.Decls.first;
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | |
|       MD = MD->getCanonicalDecl();
 | |
|       foundSameNameMethod = true;
 | |
|       // Interested only in hidden virtual methods.
 | |
|       if (!MD->isVirtual())
 | |
|         continue;
 | |
|       // If the method we are checking overrides a method from its base
 | |
|       // don't warn about the other overloaded methods.
 | |
|       if (!Data.S->IsOverload(Data.Method, MD, false))
 | |
|         return true;
 | |
|       // Collect the overload only if its hidden.
 | |
|       if (!Data.OverridenAndUsingBaseMethods.count(MD))
 | |
|         overloadedMethods.push_back(MD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (foundSameNameMethod)
 | |
|     Data.OverloadedMethods.append(overloadedMethods.begin(),
 | |
|                                    overloadedMethods.end());
 | |
|   return foundSameNameMethod;
 | |
| }
 | |
| 
 | |
| /// \brief See if a method overloads virtual methods in a base class without
 | |
| /// overriding any.
 | |
| void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
 | |
|   if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
 | |
|                                MD->getLocation()) == Diagnostic::Ignored)
 | |
|     return;
 | |
|   if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
 | |
|     return;
 | |
| 
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
 | |
|                      /*bool RecordPaths=*/false,
 | |
|                      /*bool DetectVirtual=*/false);
 | |
|   FindHiddenVirtualMethodData Data;
 | |
|   Data.Method = MD;
 | |
|   Data.S = this;
 | |
| 
 | |
|   // Keep the base methods that were overriden or introduced in the subclass
 | |
|   // by 'using' in a set. A base method not in this set is hidden.
 | |
|   for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
 | |
|        res.first != res.second; ++res.first) {
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
 | |
|       for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
 | |
|                                           E = MD->end_overridden_methods();
 | |
|            I != E; ++I)
 | |
|         Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
 | |
|     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
 | |
|       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
 | |
|         Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
 | |
|   }
 | |
| 
 | |
|   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
 | |
|       !Data.OverloadedMethods.empty()) {
 | |
|     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
 | |
|       << MD << (Data.OverloadedMethods.size() > 1);
 | |
| 
 | |
|     for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
 | |
|       CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
 | |
|       Diag(overloadedMD->getLocation(),
 | |
|            diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
 | |
|                                              Decl *TagDecl,
 | |
|                                              SourceLocation LBrac,
 | |
|                                              SourceLocation RBrac,
 | |
|                                              AttributeList *AttrList) {
 | |
|   if (!TagDecl)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(TagDecl);
 | |
| 
 | |
|   ActOnFields(S, RLoc, TagDecl,
 | |
|               // strict aliasing violation!
 | |
|               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
 | |
|               FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
 | |
| 
 | |
|   CheckCompletedCXXClass(
 | |
|                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief Helper class that collects exception specifications for 
 | |
|   /// implicitly-declared special member functions.
 | |
|   class ImplicitExceptionSpecification {
 | |
|     ASTContext &Context;
 | |
|     // We order exception specifications thus:
 | |
|     // noexcept is the most restrictive, but is only used in C++0x.
 | |
|     // throw() comes next.
 | |
|     // Then a throw(collected exceptions)
 | |
|     // Finally no specification.
 | |
|     // throw(...) is used instead if any called function uses it.
 | |
|     ExceptionSpecificationType ComputedEST;
 | |
|     llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
 | |
|     llvm::SmallVector<QualType, 4> Exceptions;
 | |
| 
 | |
|     void ClearExceptions() {
 | |
|       ExceptionsSeen.clear();
 | |
|       Exceptions.clear();
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     explicit ImplicitExceptionSpecification(ASTContext &Context) 
 | |
|       : Context(Context), ComputedEST(EST_BasicNoexcept) {
 | |
|       if (!Context.getLangOptions().CPlusPlus0x)
 | |
|         ComputedEST = EST_DynamicNone;
 | |
|     }
 | |
| 
 | |
|     /// \brief Get the computed exception specification type.
 | |
|     ExceptionSpecificationType getExceptionSpecType() const {
 | |
|       assert(ComputedEST != EST_ComputedNoexcept &&
 | |
|              "noexcept(expr) should not be a possible result");
 | |
|       return ComputedEST;
 | |
|     }
 | |
| 
 | |
|     /// \brief The number of exceptions in the exception specification.
 | |
|     unsigned size() const { return Exceptions.size(); }
 | |
| 
 | |
|     /// \brief The set of exceptions in the exception specification.
 | |
|     const QualType *data() const { return Exceptions.data(); }
 | |
| 
 | |
|     /// \brief Integrate another called method into the collected data.
 | |
|     void CalledDecl(CXXMethodDecl *Method) {
 | |
|       // If we have an MSAny spec already, don't bother.
 | |
|       if (!Method || ComputedEST == EST_MSAny)
 | |
|         return;
 | |
| 
 | |
|       const FunctionProtoType *Proto
 | |
|         = Method->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|       ExceptionSpecificationType EST = Proto->getExceptionSpecType();
 | |
| 
 | |
|       // If this function can throw any exceptions, make a note of that.
 | |
|       if (EST == EST_MSAny || EST == EST_None) {
 | |
|         ClearExceptions();
 | |
|         ComputedEST = EST;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // If this function has a basic noexcept, it doesn't affect the outcome.
 | |
|       if (EST == EST_BasicNoexcept)
 | |
|         return;
 | |
| 
 | |
|       // If we have a throw-all spec at this point, ignore the function.
 | |
|       if (ComputedEST == EST_None)
 | |
|         return;
 | |
| 
 | |
|       // If we're still at noexcept(true) and there's a nothrow() callee,
 | |
|       // change to that specification.
 | |
|       if (EST == EST_DynamicNone) {
 | |
|         if (ComputedEST == EST_BasicNoexcept)
 | |
|           ComputedEST = EST_DynamicNone;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Check out noexcept specs.
 | |
|       if (EST == EST_ComputedNoexcept) {
 | |
|         FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(Context);
 | |
|         assert(NR != FunctionProtoType::NR_NoNoexcept &&
 | |
|                "Must have noexcept result for EST_ComputedNoexcept.");
 | |
|         assert(NR != FunctionProtoType::NR_Dependent &&
 | |
|                "Should not generate implicit declarations for dependent cases, "
 | |
|                "and don't know how to handle them anyway.");
 | |
| 
 | |
|         // noexcept(false) -> no spec on the new function
 | |
|         if (NR == FunctionProtoType::NR_Throw) {
 | |
|           ClearExceptions();
 | |
|           ComputedEST = EST_None;
 | |
|         }
 | |
|         // noexcept(true) won't change anything either.
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       assert(EST == EST_Dynamic && "EST case not considered earlier.");
 | |
|       assert(ComputedEST != EST_None &&
 | |
|              "Shouldn't collect exceptions when throw-all is guaranteed.");
 | |
|       ComputedEST = EST_Dynamic;
 | |
|       // Record the exceptions in this function's exception specification.
 | |
|       for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
 | |
|                                               EEnd = Proto->exception_end();
 | |
|            E != EEnd; ++E)
 | |
|         if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
 | |
|           Exceptions.push_back(*E);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
 | |
| /// special functions, such as the default constructor, copy
 | |
| /// constructor, or destructor, to the given C++ class (C++
 | |
| /// [special]p1).  This routine can only be executed just before the
 | |
| /// definition of the class is complete.
 | |
| void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
 | |
|   if (!ClassDecl->hasUserDeclaredConstructor())
 | |
|     ++ASTContext::NumImplicitDefaultConstructors;
 | |
| 
 | |
|   if (!ClassDecl->hasUserDeclaredCopyConstructor())
 | |
|     ++ASTContext::NumImplicitCopyConstructors;
 | |
| 
 | |
|   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
 | |
|     ++ASTContext::NumImplicitCopyAssignmentOperators;
 | |
|     
 | |
|     // If we have a dynamic class, then the copy assignment operator may be 
 | |
|     // virtual, so we have to declare it immediately. This ensures that, e.g.,
 | |
|     // it shows up in the right place in the vtable and that we diagnose 
 | |
|     // problems with the implicit exception specification.    
 | |
|     if (ClassDecl->isDynamicClass())
 | |
|       DeclareImplicitCopyAssignment(ClassDecl);
 | |
|   }
 | |
| 
 | |
|   if (!ClassDecl->hasUserDeclaredDestructor()) {
 | |
|     ++ASTContext::NumImplicitDestructors;
 | |
|     
 | |
|     // If we have a dynamic class, then the destructor may be virtual, so we 
 | |
|     // have to declare the destructor immediately. This ensures that, e.g., it
 | |
|     // shows up in the right place in the vtable and that we diagnose problems
 | |
|     // with the implicit exception specification.
 | |
|     if (ClassDecl->isDynamicClass())
 | |
|       DeclareImplicitDestructor(ClassDecl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
 | |
|   if (!D)
 | |
|     return;
 | |
| 
 | |
|   int NumParamList = D->getNumTemplateParameterLists();
 | |
|   for (int i = 0; i < NumParamList; i++) {
 | |
|     TemplateParameterList* Params = D->getTemplateParameterList(i);
 | |
|     for (TemplateParameterList::iterator Param = Params->begin(),
 | |
|                                       ParamEnd = Params->end();
 | |
|           Param != ParamEnd; ++Param) {
 | |
|       NamedDecl *Named = cast<NamedDecl>(*Param);
 | |
|       if (Named->getDeclName()) {
 | |
|         S->AddDecl(Named);
 | |
|         IdResolver.AddDecl(Named);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
 | |
|   if (!D)
 | |
|     return;
 | |
|   
 | |
|   TemplateParameterList *Params = 0;
 | |
|   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
 | |
|     Params = Template->getTemplateParameters();
 | |
|   else if (ClassTemplatePartialSpecializationDecl *PartialSpec
 | |
|            = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
 | |
|     Params = PartialSpec->getTemplateParameters();
 | |
|   else
 | |
|     return;
 | |
| 
 | |
|   for (TemplateParameterList::iterator Param = Params->begin(),
 | |
|                                     ParamEnd = Params->end();
 | |
|        Param != ParamEnd; ++Param) {
 | |
|     NamedDecl *Named = cast<NamedDecl>(*Param);
 | |
|     if (Named->getDeclName()) {
 | |
|       S->AddDecl(Named);
 | |
|       IdResolver.AddDecl(Named);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
 | |
|   if (!RecordD) return;
 | |
|   AdjustDeclIfTemplate(RecordD);
 | |
|   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
 | |
|   PushDeclContext(S, Record);
 | |
| }
 | |
| 
 | |
| void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
 | |
|   if (!RecordD) return;
 | |
|   PopDeclContext();
 | |
| }
 | |
| 
 | |
| /// ActOnStartDelayedCXXMethodDeclaration - We have completed
 | |
| /// parsing a top-level (non-nested) C++ class, and we are now
 | |
| /// parsing those parts of the given Method declaration that could
 | |
| /// not be parsed earlier (C++ [class.mem]p2), such as default
 | |
| /// arguments. This action should enter the scope of the given
 | |
| /// Method declaration as if we had just parsed the qualified method
 | |
| /// name. However, it should not bring the parameters into scope;
 | |
| /// that will be performed by ActOnDelayedCXXMethodParameter.
 | |
| void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
 | |
| }
 | |
| 
 | |
| /// ActOnDelayedCXXMethodParameter - We've already started a delayed
 | |
| /// C++ method declaration. We're (re-)introducing the given
 | |
| /// function parameter into scope for use in parsing later parts of
 | |
| /// the method declaration. For example, we could see an
 | |
| /// ActOnParamDefaultArgument event for this parameter.
 | |
| void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
 | |
|   if (!ParamD)
 | |
|     return;
 | |
| 
 | |
|   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
 | |
| 
 | |
|   // If this parameter has an unparsed default argument, clear it out
 | |
|   // to make way for the parsed default argument.
 | |
|   if (Param->hasUnparsedDefaultArg())
 | |
|     Param->setDefaultArg(0);
 | |
| 
 | |
|   S->AddDecl(Param);
 | |
|   if (Param->getDeclName())
 | |
|     IdResolver.AddDecl(Param);
 | |
| }
 | |
| 
 | |
| /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
 | |
| /// processing the delayed method declaration for Method. The method
 | |
| /// declaration is now considered finished. There may be a separate
 | |
| /// ActOnStartOfFunctionDef action later (not necessarily
 | |
| /// immediately!) for this method, if it was also defined inside the
 | |
| /// class body.
 | |
| void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
 | |
|   if (!MethodD)
 | |
|     return;
 | |
| 
 | |
|   AdjustDeclIfTemplate(MethodD);
 | |
| 
 | |
|   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
 | |
| 
 | |
|   // Now that we have our default arguments, check the constructor
 | |
|   // again. It could produce additional diagnostics or affect whether
 | |
|   // the class has implicitly-declared destructors, among other
 | |
|   // things.
 | |
|   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
 | |
|     CheckConstructor(Constructor);
 | |
| 
 | |
|   // Check the default arguments, which we may have added.
 | |
|   if (!Method->isInvalidDecl())
 | |
|     CheckCXXDefaultArguments(Method);
 | |
| }
 | |
| 
 | |
| /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
 | |
| /// the well-formedness of the constructor declarator @p D with type @p
 | |
| /// R. If there are any errors in the declarator, this routine will
 | |
| /// emit diagnostics and set the invalid bit to true.  In any case, the type
 | |
| /// will be updated to reflect a well-formed type for the constructor and
 | |
| /// returned.
 | |
| QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
 | |
|                                           StorageClass &SC) {
 | |
|   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
 | |
| 
 | |
|   // C++ [class.ctor]p3:
 | |
|   //   A constructor shall not be virtual (10.3) or static (9.4). A
 | |
|   //   constructor can be invoked for a const, volatile or const
 | |
|   //   volatile object. A constructor shall not be declared const,
 | |
|   //   volatile, or const volatile (9.3.2).
 | |
|   if (isVirtual) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
 | |
|         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
 | |
|         << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   if (SC == SC_Static) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
 | |
|         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
 | |
|         << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|     SC = SC_None;
 | |
|   }
 | |
| 
 | |
|   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
|   if (FTI.TypeQuals != 0) {
 | |
|     if (FTI.TypeQuals & Qualifiers::Const)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
 | |
|         << "const" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Volatile)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
 | |
|         << "volatile" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Restrict)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
 | |
|         << "restrict" << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // C++0x [class.ctor]p4:
 | |
|   //   A constructor shall not be declared with a ref-qualifier.
 | |
|   if (FTI.hasRefQualifier()) {
 | |
|     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
 | |
|       << FTI.RefQualifierIsLValueRef 
 | |
|       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   
 | |
|   // Rebuild the function type "R" without any type qualifiers (in
 | |
|   // case any of the errors above fired) and with "void" as the
 | |
|   // return type, since constructors don't have return types.
 | |
|   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
 | |
|   if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
 | |
|     return R;
 | |
| 
 | |
|   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
 | |
|   EPI.TypeQuals = 0;
 | |
|   EPI.RefQualifier = RQ_None;
 | |
|   
 | |
|   return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
 | |
|                                  Proto->getNumArgs(), EPI);
 | |
| }
 | |
| 
 | |
| /// CheckConstructor - Checks a fully-formed constructor for
 | |
| /// well-formedness, issuing any diagnostics required. Returns true if
 | |
| /// the constructor declarator is invalid.
 | |
| void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
 | |
|   CXXRecordDecl *ClassDecl
 | |
|     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
 | |
|   if (!ClassDecl)
 | |
|     return Constructor->setInvalidDecl();
 | |
| 
 | |
|   // C++ [class.copy]p3:
 | |
|   //   A declaration of a constructor for a class X is ill-formed if
 | |
|   //   its first parameter is of type (optionally cv-qualified) X and
 | |
|   //   either there are no other parameters or else all other
 | |
|   //   parameters have default arguments.
 | |
|   if (!Constructor->isInvalidDecl() &&
 | |
|       ((Constructor->getNumParams() == 1) ||
 | |
|        (Constructor->getNumParams() > 1 &&
 | |
|         Constructor->getParamDecl(1)->hasDefaultArg())) &&
 | |
|       Constructor->getTemplateSpecializationKind()
 | |
|                                               != TSK_ImplicitInstantiation) {
 | |
|     QualType ParamType = Constructor->getParamDecl(0)->getType();
 | |
|     QualType ClassTy = Context.getTagDeclType(ClassDecl);
 | |
|     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
 | |
|       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
 | |
|       const char *ConstRef 
 | |
|         = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 
 | |
|                                                         : " const &";
 | |
|       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
 | |
|         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
 | |
| 
 | |
|       // FIXME: Rather that making the constructor invalid, we should endeavor
 | |
|       // to fix the type.
 | |
|       Constructor->setInvalidDecl();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckDestructor - Checks a fully-formed destructor definition for
 | |
| /// well-formedness, issuing any diagnostics required.  Returns true
 | |
| /// on error.
 | |
| bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
 | |
|   CXXRecordDecl *RD = Destructor->getParent();
 | |
|   
 | |
|   if (Destructor->isVirtual()) {
 | |
|     SourceLocation Loc;
 | |
|     
 | |
|     if (!Destructor->isImplicit())
 | |
|       Loc = Destructor->getLocation();
 | |
|     else
 | |
|       Loc = RD->getLocation();
 | |
|     
 | |
|     // If we have a virtual destructor, look up the deallocation function
 | |
|     FunctionDecl *OperatorDelete = 0;
 | |
|     DeclarationName Name = 
 | |
|     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
 | |
|     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
 | |
|       return true;
 | |
| 
 | |
|     MarkDeclarationReferenced(Loc, OperatorDelete);
 | |
|     
 | |
|     Destructor->setOperatorDelete(OperatorDelete);
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
 | |
|   return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
 | |
|           FTI.ArgInfo[0].Param &&
 | |
|           cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
 | |
| }
 | |
| 
 | |
| /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
 | |
| /// the well-formednes of the destructor declarator @p D with type @p
 | |
| /// R. If there are any errors in the declarator, this routine will
 | |
| /// emit diagnostics and set the declarator to invalid.  Even if this happens,
 | |
| /// will be updated to reflect a well-formed type for the destructor and
 | |
| /// returned.
 | |
| QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
 | |
|                                          StorageClass& SC) {
 | |
|   // C++ [class.dtor]p1:
 | |
|   //   [...] A typedef-name that names a class is a class-name
 | |
|   //   (7.1.3); however, a typedef-name that names a class shall not
 | |
|   //   be used as the identifier in the declarator for a destructor
 | |
|   //   declaration.
 | |
|   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
 | |
|   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
 | |
|       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
 | |
| 
 | |
|   // C++ [class.dtor]p2:
 | |
|   //   A destructor is used to destroy objects of its class type. A
 | |
|   //   destructor takes no parameters, and no return type can be
 | |
|   //   specified for it (not even void). The address of a destructor
 | |
|   //   shall not be taken. A destructor shall not be static. A
 | |
|   //   destructor can be invoked for a const, volatile or const
 | |
|   //   volatile object. A destructor shall not be declared const,
 | |
|   //   volatile or const volatile (9.3.2).
 | |
|   if (SC == SC_Static) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
 | |
|         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
 | |
|         << SourceRange(D.getIdentifierLoc())
 | |
|         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | |
|     
 | |
|     SC = SC_None;
 | |
|   }
 | |
|   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
 | |
|     // Destructors don't have return types, but the parser will
 | |
|     // happily parse something like:
 | |
|     //
 | |
|     //   class X {
 | |
|     //     float ~X();
 | |
|     //   };
 | |
|     //
 | |
|     // The return type will be eliminated later.
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
 | |
|       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | |
|       << SourceRange(D.getIdentifierLoc());
 | |
|   }
 | |
| 
 | |
|   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | |
|   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
 | |
|     if (FTI.TypeQuals & Qualifiers::Const)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
 | |
|         << "const" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Volatile)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
 | |
|         << "volatile" << SourceRange(D.getIdentifierLoc());
 | |
|     if (FTI.TypeQuals & Qualifiers::Restrict)
 | |
|       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
 | |
|         << "restrict" << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // C++0x [class.dtor]p2:
 | |
|   //   A destructor shall not be declared with a ref-qualifier.
 | |
|   if (FTI.hasRefQualifier()) {
 | |
|     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
 | |
|       << FTI.RefQualifierIsLValueRef
 | |
|       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
|   
 | |
|   // Make sure we don't have any parameters.
 | |
|   if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
 | |
| 
 | |
|     // Delete the parameters.
 | |
|     FTI.freeArgs();
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Make sure the destructor isn't variadic.
 | |
|   if (FTI.isVariadic) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Rebuild the function type "R" without any type qualifiers or
 | |
|   // parameters (in case any of the errors above fired) and with
 | |
|   // "void" as the return type, since destructors don't have return
 | |
|   // types. 
 | |
|   if (!D.isInvalidType())
 | |
|     return R;
 | |
| 
 | |
|   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
 | |
|   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
 | |
|   EPI.Variadic = false;
 | |
|   EPI.TypeQuals = 0;
 | |
|   EPI.RefQualifier = RQ_None;
 | |
|   return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
 | |
| }
 | |
| 
 | |
| /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
 | |
| /// well-formednes of the conversion function declarator @p D with
 | |
| /// type @p R. If there are any errors in the declarator, this routine
 | |
| /// will emit diagnostics and return true. Otherwise, it will return
 | |
| /// false. Either way, the type @p R will be updated to reflect a
 | |
| /// well-formed type for the conversion operator.
 | |
| void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
 | |
|                                      StorageClass& SC) {
 | |
|   // C++ [class.conv.fct]p1:
 | |
|   //   Neither parameter types nor return type can be specified. The
 | |
|   //   type of a conversion function (8.3.5) is "function taking no
 | |
|   //   parameter returning conversion-type-id."
 | |
|   if (SC == SC_Static) {
 | |
|     if (!D.isInvalidType())
 | |
|       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
 | |
|         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
 | |
|         << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|     SC = SC_None;
 | |
|   }
 | |
| 
 | |
|   QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
 | |
| 
 | |
|   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
 | |
|     // Conversion functions don't have return types, but the parser will
 | |
|     // happily parse something like:
 | |
|     //
 | |
|     //   class X {
 | |
|     //     float operator bool();
 | |
|     //   };
 | |
|     //
 | |
|     // The return type will be changed later anyway.
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
 | |
|       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | |
|       << SourceRange(D.getIdentifierLoc());
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
 | |
| 
 | |
|   // Make sure we don't have any parameters.
 | |
|   if (Proto->getNumArgs() > 0) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
 | |
| 
 | |
|     // Delete the parameters.
 | |
|     D.getFunctionTypeInfo().freeArgs();
 | |
|     D.setInvalidType();
 | |
|   } else if (Proto->isVariadic()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Diagnose "&operator bool()" and other such nonsense.  This
 | |
|   // is actually a gcc extension which we don't support.
 | |
|   if (Proto->getResultType() != ConvType) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
 | |
|       << Proto->getResultType();
 | |
|     D.setInvalidType();
 | |
|     ConvType = Proto->getResultType();
 | |
|   }
 | |
| 
 | |
|   // C++ [class.conv.fct]p4:
 | |
|   //   The conversion-type-id shall not represent a function type nor
 | |
|   //   an array type.
 | |
|   if (ConvType->isArrayType()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
 | |
|     ConvType = Context.getPointerType(ConvType);
 | |
|     D.setInvalidType();
 | |
|   } else if (ConvType->isFunctionType()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
 | |
|     ConvType = Context.getPointerType(ConvType);
 | |
|     D.setInvalidType();
 | |
|   }
 | |
| 
 | |
|   // Rebuild the function type "R" without any parameters (in case any
 | |
|   // of the errors above fired) and with the conversion type as the
 | |
|   // return type.
 | |
|   if (D.isInvalidType())
 | |
|     R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
 | |
| 
 | |
|   // C++0x explicit conversion operators.
 | |
|   if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
 | |
|     Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | |
|          diag::warn_explicit_conversion_functions)
 | |
|       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
 | |
| }
 | |
| 
 | |
| /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
 | |
| /// the declaration of the given C++ conversion function. This routine
 | |
| /// is responsible for recording the conversion function in the C++
 | |
| /// class, if possible.
 | |
| Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
 | |
|   assert(Conversion && "Expected to receive a conversion function declaration");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
 | |
| 
 | |
|   // Make sure we aren't redeclaring the conversion function.
 | |
|   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
 | |
| 
 | |
|   // C++ [class.conv.fct]p1:
 | |
|   //   [...] A conversion function is never used to convert a
 | |
|   //   (possibly cv-qualified) object to the (possibly cv-qualified)
 | |
|   //   same object type (or a reference to it), to a (possibly
 | |
|   //   cv-qualified) base class of that type (or a reference to it),
 | |
|   //   or to (possibly cv-qualified) void.
 | |
|   // FIXME: Suppress this warning if the conversion function ends up being a
 | |
|   // virtual function that overrides a virtual function in a base class.
 | |
|   QualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
 | |
|   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
 | |
|     ConvType = ConvTypeRef->getPointeeType();
 | |
|   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
 | |
|       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
 | |
|     /* Suppress diagnostics for instantiations. */;
 | |
|   else if (ConvType->isRecordType()) {
 | |
|     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
 | |
|     if (ConvType == ClassType)
 | |
|       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
 | |
|         << ClassType;
 | |
|     else if (IsDerivedFrom(ClassType, ConvType))
 | |
|       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
 | |
|         <<  ClassType << ConvType;
 | |
|   } else if (ConvType->isVoidType()) {
 | |
|     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
 | |
|       << ClassType << ConvType;
 | |
|   }
 | |
| 
 | |
|   if (FunctionTemplateDecl *ConversionTemplate
 | |
|                                 = Conversion->getDescribedFunctionTemplate())
 | |
|     return ConversionTemplate;
 | |
|   
 | |
|   return Conversion;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Namespace Handling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| 
 | |
| /// ActOnStartNamespaceDef - This is called at the start of a namespace
 | |
| /// definition.
 | |
| Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
 | |
|                                    SourceLocation InlineLoc,
 | |
|                                    SourceLocation NamespaceLoc,
 | |
|                                    SourceLocation IdentLoc,
 | |
|                                    IdentifierInfo *II,
 | |
|                                    SourceLocation LBrace,
 | |
|                                    AttributeList *AttrList) {
 | |
|   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
 | |
|   // For anonymous namespace, take the location of the left brace.
 | |
|   SourceLocation Loc = II ? IdentLoc : LBrace;
 | |
|   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
 | |
|                                                  StartLoc, Loc, II);
 | |
|   Namespc->setInline(InlineLoc.isValid());
 | |
| 
 | |
|   Scope *DeclRegionScope = NamespcScope->getParent();
 | |
| 
 | |
|   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
 | |
| 
 | |
|   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
 | |
|     PushNamespaceVisibilityAttr(Attr);
 | |
| 
 | |
|   if (II) {
 | |
|     // C++ [namespace.def]p2:
 | |
|     //   The identifier in an original-namespace-definition shall not
 | |
|     //   have been previously defined in the declarative region in
 | |
|     //   which the original-namespace-definition appears. The
 | |
|     //   identifier in an original-namespace-definition is the name of
 | |
|     //   the namespace. Subsequently in that declarative region, it is
 | |
|     //   treated as an original-namespace-name.
 | |
|     //
 | |
|     // Since namespace names are unique in their scope, and we don't
 | |
|     // look through using directives, just
 | |
|     DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
 | |
|     NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
 | |
| 
 | |
|     if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
 | |
|       // This is an extended namespace definition.
 | |
|       if (Namespc->isInline() != OrigNS->isInline()) {
 | |
|         // inline-ness must match
 | |
|         Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
 | |
|           << Namespc->isInline();
 | |
|         Diag(OrigNS->getLocation(), diag::note_previous_definition);
 | |
|         Namespc->setInvalidDecl();
 | |
|         // Recover by ignoring the new namespace's inline status.
 | |
|         Namespc->setInline(OrigNS->isInline());
 | |
|       }
 | |
| 
 | |
|       // Attach this namespace decl to the chain of extended namespace
 | |
|       // definitions.
 | |
|       OrigNS->setNextNamespace(Namespc);
 | |
|       Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
 | |
| 
 | |
|       // Remove the previous declaration from the scope.
 | |
|       if (DeclRegionScope->isDeclScope(OrigNS)) {
 | |
|         IdResolver.RemoveDecl(OrigNS);
 | |
|         DeclRegionScope->RemoveDecl(OrigNS);
 | |
|       }
 | |
|     } else if (PrevDecl) {
 | |
|       // This is an invalid name redefinition.
 | |
|       Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
 | |
|        << Namespc->getDeclName();
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|       Namespc->setInvalidDecl();
 | |
|       // Continue on to push Namespc as current DeclContext and return it.
 | |
|     } else if (II->isStr("std") && 
 | |
|                CurContext->getRedeclContext()->isTranslationUnit()) {
 | |
|       // This is the first "real" definition of the namespace "std", so update
 | |
|       // our cache of the "std" namespace to point at this definition.
 | |
|       if (NamespaceDecl *StdNS = getStdNamespace()) {
 | |
|         // We had already defined a dummy namespace "std". Link this new 
 | |
|         // namespace definition to the dummy namespace "std".
 | |
|         StdNS->setNextNamespace(Namespc);
 | |
|         StdNS->setLocation(IdentLoc);
 | |
|         Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
 | |
|       }
 | |
|       
 | |
|       // Make our StdNamespace cache point at the first real definition of the
 | |
|       // "std" namespace.
 | |
|       StdNamespace = Namespc;
 | |
|     }
 | |
| 
 | |
|     PushOnScopeChains(Namespc, DeclRegionScope);
 | |
|   } else {
 | |
|     // Anonymous namespaces.
 | |
|     assert(Namespc->isAnonymousNamespace());
 | |
| 
 | |
|     // Link the anonymous namespace into its parent.
 | |
|     NamespaceDecl *PrevDecl;
 | |
|     DeclContext *Parent = CurContext->getRedeclContext();
 | |
|     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
 | |
|       PrevDecl = TU->getAnonymousNamespace();
 | |
|       TU->setAnonymousNamespace(Namespc);
 | |
|     } else {
 | |
|       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
 | |
|       PrevDecl = ND->getAnonymousNamespace();
 | |
|       ND->setAnonymousNamespace(Namespc);
 | |
|     }
 | |
| 
 | |
|     // Link the anonymous namespace with its previous declaration.
 | |
|     if (PrevDecl) {
 | |
|       assert(PrevDecl->isAnonymousNamespace());
 | |
|       assert(!PrevDecl->getNextNamespace());
 | |
|       Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
 | |
|       PrevDecl->setNextNamespace(Namespc);
 | |
| 
 | |
|       if (Namespc->isInline() != PrevDecl->isInline()) {
 | |
|         // inline-ness must match
 | |
|         Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
 | |
|           << Namespc->isInline();
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|         Namespc->setInvalidDecl();
 | |
|         // Recover by ignoring the new namespace's inline status.
 | |
|         Namespc->setInline(PrevDecl->isInline());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CurContext->addDecl(Namespc);
 | |
| 
 | |
|     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
 | |
|     //   behaves as if it were replaced by
 | |
|     //     namespace unique { /* empty body */ }
 | |
|     //     using namespace unique;
 | |
|     //     namespace unique { namespace-body }
 | |
|     //   where all occurrences of 'unique' in a translation unit are
 | |
|     //   replaced by the same identifier and this identifier differs
 | |
|     //   from all other identifiers in the entire program.
 | |
| 
 | |
|     // We just create the namespace with an empty name and then add an
 | |
|     // implicit using declaration, just like the standard suggests.
 | |
|     //
 | |
|     // CodeGen enforces the "universally unique" aspect by giving all
 | |
|     // declarations semantically contained within an anonymous
 | |
|     // namespace internal linkage.
 | |
| 
 | |
|     if (!PrevDecl) {
 | |
|       UsingDirectiveDecl* UD
 | |
|         = UsingDirectiveDecl::Create(Context, CurContext,
 | |
|                                      /* 'using' */ LBrace,
 | |
|                                      /* 'namespace' */ SourceLocation(),
 | |
|                                      /* qualifier */ NestedNameSpecifierLoc(),
 | |
|                                      /* identifier */ SourceLocation(),
 | |
|                                      Namespc,
 | |
|                                      /* Ancestor */ CurContext);
 | |
|       UD->setImplicit();
 | |
|       CurContext->addDecl(UD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Although we could have an invalid decl (i.e. the namespace name is a
 | |
|   // redefinition), push it as current DeclContext and try to continue parsing.
 | |
|   // FIXME: We should be able to push Namespc here, so that the each DeclContext
 | |
|   // for the namespace has the declarations that showed up in that particular
 | |
|   // namespace definition.
 | |
|   PushDeclContext(NamespcScope, Namespc);
 | |
|   return Namespc;
 | |
| }
 | |
| 
 | |
| /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
 | |
| /// is a namespace alias, returns the namespace it points to.
 | |
| static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
 | |
|   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
 | |
|     return AD->getNamespace();
 | |
|   return dyn_cast_or_null<NamespaceDecl>(D);
 | |
| }
 | |
| 
 | |
| /// ActOnFinishNamespaceDef - This callback is called after a namespace is
 | |
| /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
 | |
| void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
 | |
|   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
 | |
|   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
 | |
|   Namespc->setRBraceLoc(RBrace);
 | |
|   PopDeclContext();
 | |
|   if (Namespc->hasAttr<VisibilityAttr>())
 | |
|     PopPragmaVisibility();
 | |
| }
 | |
| 
 | |
| CXXRecordDecl *Sema::getStdBadAlloc() const {
 | |
|   return cast_or_null<CXXRecordDecl>(
 | |
|                                   StdBadAlloc.get(Context.getExternalSource()));
 | |
| }
 | |
| 
 | |
| NamespaceDecl *Sema::getStdNamespace() const {
 | |
|   return cast_or_null<NamespaceDecl>(
 | |
|                                  StdNamespace.get(Context.getExternalSource()));
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the special "std" namespace, which may require us to 
 | |
| /// implicitly define the namespace.
 | |
| NamespaceDecl *Sema::getOrCreateStdNamespace() {
 | |
|   if (!StdNamespace) {
 | |
|     // The "std" namespace has not yet been defined, so build one implicitly.
 | |
|     StdNamespace = NamespaceDecl::Create(Context, 
 | |
|                                          Context.getTranslationUnitDecl(),
 | |
|                                          SourceLocation(), SourceLocation(),
 | |
|                                          &PP.getIdentifierTable().get("std"));
 | |
|     getStdNamespace()->setImplicit(true);
 | |
|   }
 | |
|   
 | |
|   return getStdNamespace();
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether a using statement is in a context where it will be
 | |
| /// apply in all contexts.
 | |
| static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
 | |
|   switch (CurContext->getDeclKind()) {
 | |
|     case Decl::TranslationUnit:
 | |
|       return true;
 | |
|     case Decl::LinkageSpec:
 | |
|       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnUsingDirective(Scope *S,
 | |
|                                           SourceLocation UsingLoc,
 | |
|                                           SourceLocation NamespcLoc,
 | |
|                                           CXXScopeSpec &SS,
 | |
|                                           SourceLocation IdentLoc,
 | |
|                                           IdentifierInfo *NamespcName,
 | |
|                                           AttributeList *AttrList) {
 | |
|   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
 | |
|   assert(NamespcName && "Invalid NamespcName.");
 | |
|   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
 | |
| 
 | |
|   // This can only happen along a recovery path.
 | |
|   while (S->getFlags() & Scope::TemplateParamScope)
 | |
|     S = S->getParent();
 | |
|   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
 | |
| 
 | |
|   UsingDirectiveDecl *UDir = 0;
 | |
|   NestedNameSpecifier *Qualifier = 0;
 | |
|   if (SS.isSet())
 | |
|     Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
 | |
|   
 | |
|   // Lookup namespace name.
 | |
|   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
 | |
|   LookupParsedName(R, S, &SS);
 | |
|   if (R.isAmbiguous())
 | |
|     return 0;
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     // Allow "using namespace std;" or "using namespace ::std;" even if 
 | |
|     // "std" hasn't been defined yet, for GCC compatibility.
 | |
|     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
 | |
|         NamespcName->isStr("std")) {
 | |
|       Diag(IdentLoc, diag::ext_using_undefined_std);
 | |
|       R.addDecl(getOrCreateStdNamespace());
 | |
|       R.resolveKind();
 | |
|     } 
 | |
|     // Otherwise, attempt typo correction.
 | |
|     else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, 
 | |
|                                                        CTC_NoKeywords, 0)) {
 | |
|       if (R.getAsSingle<NamespaceDecl>() || 
 | |
|           R.getAsSingle<NamespaceAliasDecl>()) {
 | |
|         if (DeclContext *DC = computeDeclContext(SS, false))
 | |
|           Diag(IdentLoc, diag::err_using_directive_member_suggest)
 | |
|             << NamespcName << DC << Corrected << SS.getRange()
 | |
|             << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());        
 | |
|         else
 | |
|           Diag(IdentLoc, diag::err_using_directive_suggest)
 | |
|             << NamespcName << Corrected
 | |
|             << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
 | |
|         Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
 | |
|           << Corrected;
 | |
|         
 | |
|         NamespcName = Corrected.getAsIdentifierInfo();
 | |
|       } else {
 | |
|         R.clear();
 | |
|         R.setLookupName(NamespcName);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!R.empty()) {
 | |
|     NamedDecl *Named = R.getFoundDecl();
 | |
|     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
 | |
|         && "expected namespace decl");
 | |
|     // C++ [namespace.udir]p1:
 | |
|     //   A using-directive specifies that the names in the nominated
 | |
|     //   namespace can be used in the scope in which the
 | |
|     //   using-directive appears after the using-directive. During
 | |
|     //   unqualified name lookup (3.4.1), the names appear as if they
 | |
|     //   were declared in the nearest enclosing namespace which
 | |
|     //   contains both the using-directive and the nominated
 | |
|     //   namespace. [Note: in this context, "contains" means "contains
 | |
|     //   directly or indirectly". ]
 | |
| 
 | |
|     // Find enclosing context containing both using-directive and
 | |
|     // nominated namespace.
 | |
|     NamespaceDecl *NS = getNamespaceDecl(Named);
 | |
|     DeclContext *CommonAncestor = cast<DeclContext>(NS);
 | |
|     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
 | |
|       CommonAncestor = CommonAncestor->getParent();
 | |
| 
 | |
|     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
 | |
|                                       SS.getWithLocInContext(Context),
 | |
|                                       IdentLoc, Named, CommonAncestor);
 | |
| 
 | |
|     if (IsUsingDirectiveInToplevelContext(CurContext) &&
 | |
|         !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
 | |
|       Diag(IdentLoc, diag::warn_using_directive_in_header);
 | |
|     }
 | |
| 
 | |
|     PushUsingDirective(S, UDir);
 | |
|   } else {
 | |
|     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
 | |
|   }
 | |
| 
 | |
|   // FIXME: We ignore attributes for now.
 | |
|   return UDir;
 | |
| }
 | |
| 
 | |
| void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
 | |
|   // If scope has associated entity, then using directive is at namespace
 | |
|   // or translation unit scope. We add UsingDirectiveDecls, into
 | |
|   // it's lookup structure.
 | |
|   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
 | |
|     Ctx->addDecl(UDir);
 | |
|   else
 | |
|     // Otherwise it is block-sope. using-directives will affect lookup
 | |
|     // only to the end of scope.
 | |
|     S->PushUsingDirective(UDir);
 | |
| }
 | |
| 
 | |
| 
 | |
| Decl *Sema::ActOnUsingDeclaration(Scope *S,
 | |
|                                   AccessSpecifier AS,
 | |
|                                   bool HasUsingKeyword,
 | |
|                                   SourceLocation UsingLoc,
 | |
|                                   CXXScopeSpec &SS,
 | |
|                                   UnqualifiedId &Name,
 | |
|                                   AttributeList *AttrList,
 | |
|                                   bool IsTypeName,
 | |
|                                   SourceLocation TypenameLoc) {
 | |
|   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
 | |
| 
 | |
|   switch (Name.getKind()) {
 | |
|   case UnqualifiedId::IK_Identifier:
 | |
|   case UnqualifiedId::IK_OperatorFunctionId:
 | |
|   case UnqualifiedId::IK_LiteralOperatorId:
 | |
|   case UnqualifiedId::IK_ConversionFunctionId:
 | |
|     break;
 | |
|       
 | |
|   case UnqualifiedId::IK_ConstructorName:
 | |
|   case UnqualifiedId::IK_ConstructorTemplateId:
 | |
|     // C++0x inherited constructors.
 | |
|     if (getLangOptions().CPlusPlus0x) break;
 | |
| 
 | |
|     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
 | |
|       << SS.getRange();
 | |
|     return 0;
 | |
|       
 | |
|   case UnqualifiedId::IK_DestructorName:
 | |
|     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
 | |
|       << SS.getRange();
 | |
|     return 0;
 | |
|       
 | |
|   case UnqualifiedId::IK_TemplateId:
 | |
|     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
 | |
|       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
 | |
|   DeclarationName TargetName = TargetNameInfo.getName();
 | |
|   if (!TargetName)
 | |
|     return 0;
 | |
| 
 | |
|   // Warn about using declarations.
 | |
|   // TODO: store that the declaration was written without 'using' and
 | |
|   // talk about access decls instead of using decls in the
 | |
|   // diagnostics.
 | |
|   if (!HasUsingKeyword) {
 | |
|     UsingLoc = Name.getSourceRange().getBegin();
 | |
|     
 | |
|     Diag(UsingLoc, diag::warn_access_decl_deprecated)
 | |
|       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
 | |
|   }
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
 | |
|       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
 | |
|     return 0;
 | |
| 
 | |
|   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
 | |
|                                         TargetNameInfo, AttrList,
 | |
|                                         /* IsInstantiation */ false,
 | |
|                                         IsTypeName, TypenameLoc);
 | |
|   if (UD)
 | |
|     PushOnScopeChains(UD, S, /*AddToContext*/ false);
 | |
| 
 | |
|   return UD;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether a using declaration considers the given
 | |
| /// declarations as "equivalent", e.g., if they are redeclarations of
 | |
| /// the same entity or are both typedefs of the same type.
 | |
| static bool 
 | |
| IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
 | |
|                          bool &SuppressRedeclaration) {
 | |
|   if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
 | |
|     SuppressRedeclaration = false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
 | |
|     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
 | |
|       SuppressRedeclaration = true;
 | |
|       return Context.hasSameType(TD1->getUnderlyingType(),
 | |
|                                  TD2->getUnderlyingType());
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Determines whether to create a using shadow decl for a particular
 | |
| /// decl, given the set of decls existing prior to this using lookup.
 | |
| bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
 | |
|                                 const LookupResult &Previous) {
 | |
|   // Diagnose finding a decl which is not from a base class of the
 | |
|   // current class.  We do this now because there are cases where this
 | |
|   // function will silently decide not to build a shadow decl, which
 | |
|   // will pre-empt further diagnostics.
 | |
|   //
 | |
|   // We don't need to do this in C++0x because we do the check once on
 | |
|   // the qualifier.
 | |
|   //
 | |
|   // FIXME: diagnose the following if we care enough:
 | |
|   //   struct A { int foo; };
 | |
|   //   struct B : A { using A::foo; };
 | |
|   //   template <class T> struct C : A {};
 | |
|   //   template <class T> struct D : C<T> { using B::foo; } // <---
 | |
|   // This is invalid (during instantiation) in C++03 because B::foo
 | |
|   // resolves to the using decl in B, which is not a base class of D<T>.
 | |
|   // We can't diagnose it immediately because C<T> is an unknown
 | |
|   // specialization.  The UsingShadowDecl in D<T> then points directly
 | |
|   // to A::foo, which will look well-formed when we instantiate.
 | |
|   // The right solution is to not collapse the shadow-decl chain.
 | |
|   if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
 | |
|     DeclContext *OrigDC = Orig->getDeclContext();
 | |
| 
 | |
|     // Handle enums and anonymous structs.
 | |
|     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
 | |
|     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
 | |
|     while (OrigRec->isAnonymousStructOrUnion())
 | |
|       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
 | |
| 
 | |
|     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
 | |
|       if (OrigDC == CurContext) {
 | |
|         Diag(Using->getLocation(),
 | |
|              diag::err_using_decl_nested_name_specifier_is_current_class)
 | |
|           << Using->getQualifierLoc().getSourceRange();
 | |
|         Diag(Orig->getLocation(), diag::note_using_decl_target);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       Diag(Using->getQualifierLoc().getBeginLoc(),
 | |
|            diag::err_using_decl_nested_name_specifier_is_not_base_class)
 | |
|         << Using->getQualifier()
 | |
|         << cast<CXXRecordDecl>(CurContext)
 | |
|         << Using->getQualifierLoc().getSourceRange();
 | |
|       Diag(Orig->getLocation(), diag::note_using_decl_target);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Previous.empty()) return false;
 | |
| 
 | |
|   NamedDecl *Target = Orig;
 | |
|   if (isa<UsingShadowDecl>(Target))
 | |
|     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
 | |
| 
 | |
|   // If the target happens to be one of the previous declarations, we
 | |
|   // don't have a conflict.
 | |
|   // 
 | |
|   // FIXME: but we might be increasing its access, in which case we
 | |
|   // should redeclare it.
 | |
|   NamedDecl *NonTag = 0, *Tag = 0;
 | |
|   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | |
|          I != E; ++I) {
 | |
|     NamedDecl *D = (*I)->getUnderlyingDecl();
 | |
|     bool Result;
 | |
|     if (IsEquivalentForUsingDecl(Context, D, Target, Result))
 | |
|       return Result;
 | |
| 
 | |
|     (isa<TagDecl>(D) ? Tag : NonTag) = D;
 | |
|   }
 | |
| 
 | |
|   if (Target->isFunctionOrFunctionTemplate()) {
 | |
|     FunctionDecl *FD;
 | |
|     if (isa<FunctionTemplateDecl>(Target))
 | |
|       FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
 | |
|     else
 | |
|       FD = cast<FunctionDecl>(Target);
 | |
| 
 | |
|     NamedDecl *OldDecl = 0;
 | |
|     switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
 | |
|     case Ovl_Overload:
 | |
|       return false;
 | |
| 
 | |
|     case Ovl_NonFunction:
 | |
|       Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|       break;
 | |
|       
 | |
|     // We found a decl with the exact signature.
 | |
|     case Ovl_Match:
 | |
|       // If we're in a record, we want to hide the target, so we
 | |
|       // return true (without a diagnostic) to tell the caller not to
 | |
|       // build a shadow decl.
 | |
|       if (CurContext->isRecord())
 | |
|         return true;
 | |
| 
 | |
|       // If we're not in a record, this is an error.
 | |
|       Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Diag(Target->getLocation(), diag::note_using_decl_target);
 | |
|     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Target is not a function.
 | |
| 
 | |
|   if (isa<TagDecl>(Target)) {
 | |
|     // No conflict between a tag and a non-tag.
 | |
|     if (!Tag) return false;
 | |
| 
 | |
|     Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|     Diag(Target->getLocation(), diag::note_using_decl_target);
 | |
|     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // No conflict between a tag and a non-tag.
 | |
|   if (!NonTag) return false;
 | |
| 
 | |
|   Diag(Using->getLocation(), diag::err_using_decl_conflict);
 | |
|   Diag(Target->getLocation(), diag::note_using_decl_target);
 | |
|   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Builds a shadow declaration corresponding to a 'using' declaration.
 | |
| UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
 | |
|                                             UsingDecl *UD,
 | |
|                                             NamedDecl *Orig) {
 | |
| 
 | |
|   // If we resolved to another shadow declaration, just coalesce them.
 | |
|   NamedDecl *Target = Orig;
 | |
|   if (isa<UsingShadowDecl>(Target)) {
 | |
|     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
 | |
|     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
 | |
|   }
 | |
|   
 | |
|   UsingShadowDecl *Shadow
 | |
|     = UsingShadowDecl::Create(Context, CurContext,
 | |
|                               UD->getLocation(), UD, Target);
 | |
|   UD->addShadowDecl(Shadow);
 | |
|   
 | |
|   Shadow->setAccess(UD->getAccess());
 | |
|   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
 | |
|     Shadow->setInvalidDecl();
 | |
|   
 | |
|   if (S)
 | |
|     PushOnScopeChains(Shadow, S);
 | |
|   else
 | |
|     CurContext->addDecl(Shadow);
 | |
| 
 | |
| 
 | |
|   return Shadow;
 | |
| }
 | |
| 
 | |
| /// Hides a using shadow declaration.  This is required by the current
 | |
| /// using-decl implementation when a resolvable using declaration in a
 | |
| /// class is followed by a declaration which would hide or override
 | |
| /// one or more of the using decl's targets; for example:
 | |
| ///
 | |
| ///   struct Base { void foo(int); };
 | |
| ///   struct Derived : Base {
 | |
| ///     using Base::foo;
 | |
| ///     void foo(int);
 | |
| ///   };
 | |
| ///
 | |
| /// The governing language is C++03 [namespace.udecl]p12:
 | |
| ///
 | |
| ///   When a using-declaration brings names from a base class into a
 | |
| ///   derived class scope, member functions in the derived class
 | |
| ///   override and/or hide member functions with the same name and
 | |
| ///   parameter types in a base class (rather than conflicting).
 | |
| ///
 | |
| /// There are two ways to implement this:
 | |
| ///   (1) optimistically create shadow decls when they're not hidden
 | |
| ///       by existing declarations, or
 | |
| ///   (2) don't create any shadow decls (or at least don't make them
 | |
| ///       visible) until we've fully parsed/instantiated the class.
 | |
| /// The problem with (1) is that we might have to retroactively remove
 | |
| /// a shadow decl, which requires several O(n) operations because the
 | |
| /// decl structures are (very reasonably) not designed for removal.
 | |
| /// (2) avoids this but is very fiddly and phase-dependent.
 | |
| void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
 | |
|   if (Shadow->getDeclName().getNameKind() ==
 | |
|         DeclarationName::CXXConversionFunctionName)
 | |
|     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
 | |
| 
 | |
|   // Remove it from the DeclContext...
 | |
|   Shadow->getDeclContext()->removeDecl(Shadow);
 | |
| 
 | |
|   // ...and the scope, if applicable...
 | |
|   if (S) {
 | |
|     S->RemoveDecl(Shadow);
 | |
|     IdResolver.RemoveDecl(Shadow);
 | |
|   }
 | |
| 
 | |
|   // ...and the using decl.
 | |
|   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
 | |
| 
 | |
|   // TODO: complain somehow if Shadow was used.  It shouldn't
 | |
|   // be possible for this to happen, because...?
 | |
| }
 | |
| 
 | |
| /// Builds a using declaration.
 | |
| ///
 | |
| /// \param IsInstantiation - Whether this call arises from an
 | |
| ///   instantiation of an unresolved using declaration.  We treat
 | |
| ///   the lookup differently for these declarations.
 | |
| NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
 | |
|                                        SourceLocation UsingLoc,
 | |
|                                        CXXScopeSpec &SS,
 | |
|                                        const DeclarationNameInfo &NameInfo,
 | |
|                                        AttributeList *AttrList,
 | |
|                                        bool IsInstantiation,
 | |
|                                        bool IsTypeName,
 | |
|                                        SourceLocation TypenameLoc) {
 | |
|   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
 | |
|   SourceLocation IdentLoc = NameInfo.getLoc();
 | |
|   assert(IdentLoc.isValid() && "Invalid TargetName location.");
 | |
| 
 | |
|   // FIXME: We ignore attributes for now.
 | |
| 
 | |
|   if (SS.isEmpty()) {
 | |
|     Diag(IdentLoc, diag::err_using_requires_qualname);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Do the redeclaration lookup in the current scope.
 | |
|   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
 | |
|                         ForRedeclaration);
 | |
|   Previous.setHideTags(false);
 | |
|   if (S) {
 | |
|     LookupName(Previous, S);
 | |
| 
 | |
|     // It is really dumb that we have to do this.
 | |
|     LookupResult::Filter F = Previous.makeFilter();
 | |
|     while (F.hasNext()) {
 | |
|       NamedDecl *D = F.next();
 | |
|       if (!isDeclInScope(D, CurContext, S))
 | |
|         F.erase();
 | |
|     }
 | |
|     F.done();
 | |
|   } else {
 | |
|     assert(IsInstantiation && "no scope in non-instantiation");
 | |
|     assert(CurContext->isRecord() && "scope not record in instantiation");
 | |
|     LookupQualifiedName(Previous, CurContext);
 | |
|   }
 | |
| 
 | |
|   // Check for invalid redeclarations.
 | |
|   if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
 | |
|     return 0;
 | |
| 
 | |
|   // Check for bad qualifiers.
 | |
|   if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
 | |
|     return 0;
 | |
| 
 | |
|   DeclContext *LookupContext = computeDeclContext(SS);
 | |
|   NamedDecl *D;
 | |
|   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | |
|   if (!LookupContext) {
 | |
|     if (IsTypeName) {
 | |
|       // FIXME: not all declaration name kinds are legal here
 | |
|       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
 | |
|                                               UsingLoc, TypenameLoc,
 | |
|                                               QualifierLoc,
 | |
|                                               IdentLoc, NameInfo.getName());
 | |
|     } else {
 | |
|       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 
 | |
|                                            QualifierLoc, NameInfo);
 | |
|     }
 | |
|   } else {
 | |
|     D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
 | |
|                           NameInfo, IsTypeName);
 | |
|   }
 | |
|   D->setAccess(AS);
 | |
|   CurContext->addDecl(D);
 | |
| 
 | |
|   if (!LookupContext) return D;
 | |
|   UsingDecl *UD = cast<UsingDecl>(D);
 | |
| 
 | |
|   if (RequireCompleteDeclContext(SS, LookupContext)) {
 | |
|     UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   // Constructor inheriting using decls get special treatment.
 | |
|   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
 | |
|     if (CheckInheritedConstructorUsingDecl(UD))
 | |
|       UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, look up the target name.
 | |
| 
 | |
|   LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | |
| 
 | |
|   // Unlike most lookups, we don't always want to hide tag
 | |
|   // declarations: tag names are visible through the using declaration
 | |
|   // even if hidden by ordinary names, *except* in a dependent context
 | |
|   // where it's important for the sanity of two-phase lookup.
 | |
|   if (!IsInstantiation)
 | |
|     R.setHideTags(false);
 | |
| 
 | |
|   LookupQualifiedName(R, LookupContext);
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     Diag(IdentLoc, diag::err_no_member) 
 | |
|       << NameInfo.getName() << LookupContext << SS.getRange();
 | |
|     UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   if (R.isAmbiguous()) {
 | |
|     UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   if (IsTypeName) {
 | |
|     // If we asked for a typename and got a non-type decl, error out.
 | |
|     if (!R.getAsSingle<TypeDecl>()) {
 | |
|       Diag(IdentLoc, diag::err_using_typename_non_type);
 | |
|       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | |
|         Diag((*I)->getUnderlyingDecl()->getLocation(),
 | |
|              diag::note_using_decl_target);
 | |
|       UD->setInvalidDecl();
 | |
|       return UD;
 | |
|     }
 | |
|   } else {
 | |
|     // If we asked for a non-typename and we got a type, error out,
 | |
|     // but only if this is an instantiation of an unresolved using
 | |
|     // decl.  Otherwise just silently find the type name.
 | |
|     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
 | |
|       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
 | |
|       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
 | |
|       UD->setInvalidDecl();
 | |
|       return UD;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++0x N2914 [namespace.udecl]p6:
 | |
|   // A using-declaration shall not name a namespace.
 | |
|   if (R.getAsSingle<NamespaceDecl>()) {
 | |
|     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
 | |
|       << SS.getRange();
 | |
|     UD->setInvalidDecl();
 | |
|     return UD;
 | |
|   }
 | |
| 
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     if (!CheckUsingShadowDecl(UD, *I, Previous))
 | |
|       BuildUsingShadowDecl(S, UD, *I);
 | |
|   }
 | |
| 
 | |
|   return UD;
 | |
| }
 | |
| 
 | |
| /// Additional checks for a using declaration referring to a constructor name.
 | |
| bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
 | |
|   if (UD->isTypeName()) {
 | |
|     // FIXME: Cannot specify typename when specifying constructor
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const Type *SourceType = UD->getQualifier()->getAsType();
 | |
|   assert(SourceType &&
 | |
|          "Using decl naming constructor doesn't have type in scope spec.");
 | |
|   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
 | |
| 
 | |
|   // Check whether the named type is a direct base class.
 | |
|   CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
 | |
|   CXXRecordDecl::base_class_iterator BaseIt, BaseE;
 | |
|   for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
 | |
|        BaseIt != BaseE; ++BaseIt) {
 | |
|     CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
 | |
|     if (CanonicalSourceType == BaseType)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (BaseIt == BaseE) {
 | |
|     // Did not find SourceType in the bases.
 | |
|     Diag(UD->getUsingLocation(),
 | |
|          diag::err_using_decl_constructor_not_in_direct_base)
 | |
|       << UD->getNameInfo().getSourceRange()
 | |
|       << QualType(SourceType, 0) << TargetClass;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   BaseIt->setInheritConstructors();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks that the given using declaration is not an invalid
 | |
| /// redeclaration.  Note that this is checking only for the using decl
 | |
| /// itself, not for any ill-formedness among the UsingShadowDecls.
 | |
| bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
 | |
|                                        bool isTypeName,
 | |
|                                        const CXXScopeSpec &SS,
 | |
|                                        SourceLocation NameLoc,
 | |
|                                        const LookupResult &Prev) {
 | |
|   // C++03 [namespace.udecl]p8:
 | |
|   // C++0x [namespace.udecl]p10:
 | |
|   //   A using-declaration is a declaration and can therefore be used
 | |
|   //   repeatedly where (and only where) multiple declarations are
 | |
|   //   allowed.
 | |
|   //
 | |
|   // That's in non-member contexts.
 | |
|   if (!CurContext->getRedeclContext()->isRecord())
 | |
|     return false;
 | |
| 
 | |
|   NestedNameSpecifier *Qual
 | |
|     = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
 | |
| 
 | |
|   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
| 
 | |
|     bool DTypename;
 | |
|     NestedNameSpecifier *DQual;
 | |
|     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
 | |
|       DTypename = UD->isTypeName();
 | |
|       DQual = UD->getQualifier();
 | |
|     } else if (UnresolvedUsingValueDecl *UD
 | |
|                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
 | |
|       DTypename = false;
 | |
|       DQual = UD->getQualifier();
 | |
|     } else if (UnresolvedUsingTypenameDecl *UD
 | |
|                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
 | |
|       DTypename = true;
 | |
|       DQual = UD->getQualifier();
 | |
|     } else continue;
 | |
| 
 | |
|     // using decls differ if one says 'typename' and the other doesn't.
 | |
|     // FIXME: non-dependent using decls?
 | |
|     if (isTypeName != DTypename) continue;
 | |
| 
 | |
|     // using decls differ if they name different scopes (but note that
 | |
|     // template instantiation can cause this check to trigger when it
 | |
|     // didn't before instantiation).
 | |
|     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
 | |
|         Context.getCanonicalNestedNameSpecifier(DQual))
 | |
|       continue;
 | |
| 
 | |
|     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
 | |
|     Diag(D->getLocation(), diag::note_using_decl) << 1;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Checks that the given nested-name qualifier used in a using decl
 | |
| /// in the current context is appropriately related to the current
 | |
| /// scope.  If an error is found, diagnoses it and returns true.
 | |
| bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
 | |
|                                    const CXXScopeSpec &SS,
 | |
|                                    SourceLocation NameLoc) {
 | |
|   DeclContext *NamedContext = computeDeclContext(SS);
 | |
| 
 | |
|   if (!CurContext->isRecord()) {
 | |
|     // C++03 [namespace.udecl]p3:
 | |
|     // C++0x [namespace.udecl]p8:
 | |
|     //   A using-declaration for a class member shall be a member-declaration.
 | |
| 
 | |
|     // If we weren't able to compute a valid scope, it must be a
 | |
|     // dependent class scope.
 | |
|     if (!NamedContext || NamedContext->isRecord()) {
 | |
|       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
 | |
|         << SS.getRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, everything is known to be fine.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The current scope is a record.
 | |
| 
 | |
|   // If the named context is dependent, we can't decide much.
 | |
|   if (!NamedContext) {
 | |
|     // FIXME: in C++0x, we can diagnose if we can prove that the
 | |
|     // nested-name-specifier does not refer to a base class, which is
 | |
|     // still possible in some cases.
 | |
| 
 | |
|     // Otherwise we have to conservatively report that things might be
 | |
|     // okay.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!NamedContext->isRecord()) {
 | |
|     // Ideally this would point at the last name in the specifier,
 | |
|     // but we don't have that level of source info.
 | |
|     Diag(SS.getRange().getBegin(),
 | |
|          diag::err_using_decl_nested_name_specifier_is_not_class)
 | |
|       << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!NamedContext->isDependentContext() &&
 | |
|       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
 | |
|     return true;
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus0x) {
 | |
|     // C++0x [namespace.udecl]p3:
 | |
|     //   In a using-declaration used as a member-declaration, the
 | |
|     //   nested-name-specifier shall name a base class of the class
 | |
|     //   being defined.
 | |
| 
 | |
|     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
 | |
|                                  cast<CXXRecordDecl>(NamedContext))) {
 | |
|       if (CurContext == NamedContext) {
 | |
|         Diag(NameLoc,
 | |
|              diag::err_using_decl_nested_name_specifier_is_current_class)
 | |
|           << SS.getRange();
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       Diag(SS.getRange().getBegin(),
 | |
|            diag::err_using_decl_nested_name_specifier_is_not_base_class)
 | |
|         << (NestedNameSpecifier*) SS.getScopeRep()
 | |
|         << cast<CXXRecordDecl>(CurContext)
 | |
|         << SS.getRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++03 [namespace.udecl]p4:
 | |
|   //   A using-declaration used as a member-declaration shall refer
 | |
|   //   to a member of a base class of the class being defined [etc.].
 | |
| 
 | |
|   // Salient point: SS doesn't have to name a base class as long as
 | |
|   // lookup only finds members from base classes.  Therefore we can
 | |
|   // diagnose here only if we can prove that that can't happen,
 | |
|   // i.e. if the class hierarchies provably don't intersect.
 | |
| 
 | |
|   // TODO: it would be nice if "definitely valid" results were cached
 | |
|   // in the UsingDecl and UsingShadowDecl so that these checks didn't
 | |
|   // need to be repeated.
 | |
| 
 | |
|   struct UserData {
 | |
|     llvm::DenseSet<const CXXRecordDecl*> Bases;
 | |
| 
 | |
|     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
 | |
|       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
 | |
|       Data->Bases.insert(Base);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool hasDependentBases(const CXXRecordDecl *Class) {
 | |
|       return !Class->forallBases(collect, this);
 | |
|     }
 | |
| 
 | |
|     /// Returns true if the base is dependent or is one of the
 | |
|     /// accumulated base classes.
 | |
|     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
 | |
|       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
 | |
|       return !Data->Bases.count(Base);
 | |
|     }
 | |
| 
 | |
|     bool mightShareBases(const CXXRecordDecl *Class) {
 | |
|       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   UserData Data;
 | |
| 
 | |
|   // Returns false if we find a dependent base.
 | |
|   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
 | |
|     return false;
 | |
| 
 | |
|   // Returns false if the class has a dependent base or if it or one
 | |
|   // of its bases is present in the base set of the current context.
 | |
|   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
 | |
|     return false;
 | |
| 
 | |
|   Diag(SS.getRange().getBegin(),
 | |
|        diag::err_using_decl_nested_name_specifier_is_not_base_class)
 | |
|     << (NestedNameSpecifier*) SS.getScopeRep()
 | |
|     << cast<CXXRecordDecl>(CurContext)
 | |
|     << SS.getRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnAliasDeclaration(Scope *S,
 | |
|                                   AccessSpecifier AS,
 | |
|                                   SourceLocation UsingLoc,
 | |
|                                   UnqualifiedId &Name,
 | |
|                                   TypeResult Type) {
 | |
|   assert((S->getFlags() & Scope::DeclScope) &&
 | |
|          "got alias-declaration outside of declaration scope");
 | |
| 
 | |
|   if (Type.isInvalid())
 | |
|     return 0;
 | |
| 
 | |
|   bool Invalid = false;
 | |
|   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
 | |
|   TypeSourceInfo *TInfo = 0;
 | |
|   QualType T = GetTypeFromParser(Type.get(), &TInfo);
 | |
| 
 | |
|   if (DiagnoseClassNameShadow(CurContext, NameInfo))
 | |
|     return 0;
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
 | |
|                                       UPPC_DeclarationType))
 | |
|     Invalid = true;
 | |
| 
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
 | |
|   LookupName(Previous, S);
 | |
| 
 | |
|   // Warn about shadowing the name of a template parameter.
 | |
|   if (Previous.isSingleResult() &&
 | |
|       Previous.getFoundDecl()->isTemplateParameter()) {
 | |
|     if (DiagnoseTemplateParameterShadow(Name.StartLocation,
 | |
|                                         Previous.getFoundDecl()))
 | |
|       Invalid = true;
 | |
|     Previous.clear();
 | |
|   }
 | |
| 
 | |
|   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
 | |
|          "name in alias declaration must be an identifier");
 | |
|   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
 | |
|                                                Name.StartLocation,
 | |
|                                                Name.Identifier, TInfo);
 | |
| 
 | |
|   NewTD->setAccess(AS);
 | |
| 
 | |
|   if (Invalid)
 | |
|     NewTD->setInvalidDecl();
 | |
| 
 | |
|   bool Redeclaration = false;
 | |
|   ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
 | |
| 
 | |
|   if (!Redeclaration)
 | |
|     PushOnScopeChains(NewTD, S);
 | |
| 
 | |
|   return NewTD;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
 | |
|                                              SourceLocation NamespaceLoc,
 | |
|                                              SourceLocation AliasLoc,
 | |
|                                              IdentifierInfo *Alias,
 | |
|                                              CXXScopeSpec &SS,
 | |
|                                              SourceLocation IdentLoc,
 | |
|                                              IdentifierInfo *Ident) {
 | |
| 
 | |
|   // Lookup the namespace name.
 | |
|   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
 | |
|   LookupParsedName(R, S, &SS);
 | |
| 
 | |
|   // Check if we have a previous declaration with the same name.
 | |
|   NamedDecl *PrevDecl
 | |
|     = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, 
 | |
|                        ForRedeclaration);
 | |
|   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
 | |
|     PrevDecl = 0;
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
 | |
|       // We already have an alias with the same name that points to the same
 | |
|       // namespace, so don't create a new one.
 | |
|       // FIXME: At some point, we'll want to create the (redundant)
 | |
|       // declaration to maintain better source information.
 | |
|       if (!R.isAmbiguous() && !R.empty() &&
 | |
|           AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
 | |
|       diag::err_redefinition_different_kind;
 | |
|     Diag(AliasLoc, DiagID) << Alias;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return 0;
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, 
 | |
|                                                 CTC_NoKeywords, 0)) {
 | |
|       if (R.getAsSingle<NamespaceDecl>() || 
 | |
|           R.getAsSingle<NamespaceAliasDecl>()) {
 | |
|         if (DeclContext *DC = computeDeclContext(SS, false))
 | |
|           Diag(IdentLoc, diag::err_using_directive_member_suggest)
 | |
|             << Ident << DC << Corrected << SS.getRange()
 | |
|             << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());        
 | |
|         else
 | |
|           Diag(IdentLoc, diag::err_using_directive_suggest)
 | |
|             << Ident << Corrected
 | |
|             << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
 | |
|         
 | |
|         Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
 | |
|           << Corrected;
 | |
|         
 | |
|         Ident = Corrected.getAsIdentifierInfo();
 | |
|       } else {
 | |
|         R.clear();
 | |
|         R.setLookupName(Ident);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (R.empty()) {
 | |
|       Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamespaceAliasDecl *AliasDecl =
 | |
|     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
 | |
|                                Alias, SS.getWithLocInContext(Context),
 | |
|                                IdentLoc, R.getFoundDecl());
 | |
| 
 | |
|   PushOnScopeChains(AliasDecl, S);
 | |
|   return AliasDecl;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief Scoped object used to handle the state changes required in Sema
 | |
|   /// to implicitly define the body of a C++ member function;
 | |
|   class ImplicitlyDefinedFunctionScope {
 | |
|     Sema &S;
 | |
|     Sema::ContextRAII SavedContext;
 | |
|     
 | |
|   public:
 | |
|     ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
 | |
|       : S(S), SavedContext(S, Method) 
 | |
|     {
 | |
|       S.PushFunctionScope();
 | |
|       S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
 | |
|     }
 | |
|     
 | |
|     ~ImplicitlyDefinedFunctionScope() {
 | |
|       S.PopExpressionEvaluationContext();
 | |
|       S.PopFunctionOrBlockScope();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
 | |
|                                                        CXXRecordDecl *D) {
 | |
|   ASTContext &Context = Self.Context;
 | |
|   QualType ClassType = Context.getTypeDeclType(D);
 | |
|   DeclarationName ConstructorName
 | |
|     = Context.DeclarationNames.getCXXConstructorName(
 | |
|                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
 | |
| 
 | |
|   DeclContext::lookup_const_iterator Con, ConEnd;
 | |
|   for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
 | |
|        Con != ConEnd; ++Con) {
 | |
|     // FIXME: In C++0x, a constructor template can be a default constructor.
 | |
|     if (isa<FunctionTemplateDecl>(*Con))
 | |
|       continue;
 | |
| 
 | |
|     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
 | |
|     if (Constructor->isDefaultConstructor())
 | |
|       return Constructor;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
 | |
|                                                      CXXRecordDecl *ClassDecl) {
 | |
|   // C++ [class.ctor]p5:
 | |
|   //   A default constructor for a class X is a constructor of class X
 | |
|   //   that can be called without an argument. If there is no
 | |
|   //   user-declared constructor for class X, a default constructor is
 | |
|   //   implicitly declared. An implicitly-declared default constructor
 | |
|   //   is an inline public member of its class.
 | |
|   assert(!ClassDecl->hasUserDeclaredConstructor() && 
 | |
|          "Should not build implicit default constructor!");
 | |
|   
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an 
 | |
|   //   exception-specification. [...]
 | |
|   ImplicitExceptionSpecification ExceptSpec(Context);
 | |
| 
 | |
|   // Direct base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
 | |
|                                        BEnd = ClassDecl->bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (B->isVirtual()) // Handled below.
 | |
|       continue;
 | |
|     
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       if (!BaseClassDecl->hasDeclaredDefaultConstructor())
 | |
|         ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
 | |
|       else if (CXXConstructorDecl *Constructor
 | |
|                             = getDefaultConstructorUnsafe(*this, BaseClassDecl))
 | |
|         ExceptSpec.CalledDecl(Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Virtual base-class constructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
 | |
|                                        BEnd = ClassDecl->vbases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       if (!BaseClassDecl->hasDeclaredDefaultConstructor())
 | |
|         ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
 | |
|       else if (CXXConstructorDecl *Constructor
 | |
|                             = getDefaultConstructorUnsafe(*this, BaseClassDecl))
 | |
|         ExceptSpec.CalledDecl(Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Field constructors.
 | |
|   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
 | |
|                                FEnd = ClassDecl->field_end();
 | |
|        F != FEnd; ++F) {
 | |
|     if (const RecordType *RecordTy
 | |
|               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|       if (!FieldClassDecl->hasDeclaredDefaultConstructor())
 | |
|         ExceptSpec.CalledDecl(
 | |
|                             DeclareImplicitDefaultConstructor(FieldClassDecl));
 | |
|       else if (CXXConstructorDecl *Constructor
 | |
|                            = getDefaultConstructorUnsafe(*this, FieldClassDecl))
 | |
|         ExceptSpec.CalledDecl(Constructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
 | |
|   EPI.NumExceptions = ExceptSpec.size();
 | |
|   EPI.Exceptions = ExceptSpec.data();
 | |
| 
 | |
|   // Create the actual constructor declaration.
 | |
|   CanQualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXConstructorName(ClassType);
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXConstructorDecl *DefaultCon
 | |
|     = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
 | |
|                                  Context.getFunctionType(Context.VoidTy,
 | |
|                                                          0, 0, EPI),
 | |
|                                  /*TInfo=*/0,
 | |
|                                  /*isExplicit=*/false,
 | |
|                                  /*isInline=*/true,
 | |
|                                  /*isImplicitlyDeclared=*/true);
 | |
|   DefaultCon->setAccess(AS_public);
 | |
|   DefaultCon->setImplicit();
 | |
|   DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
 | |
|   
 | |
|   // Note that we have declared this constructor.
 | |
|   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
 | |
|   
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(DefaultCon, S, false);
 | |
|   ClassDecl->addDecl(DefaultCon);
 | |
|   
 | |
|   return DefaultCon;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
 | |
|                                             CXXConstructorDecl *Constructor) {
 | |
|   assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
 | |
|           !Constructor->isUsed(false)) &&
 | |
|     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = Constructor->getParent();
 | |
|   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
 | |
| 
 | |
|   ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
|   if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
 | |
|       Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|       << CXXConstructor << Context.getTagDeclType(ClassDecl);
 | |
|     Constructor->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SourceLocation Loc = Constructor->getLocation();
 | |
|   Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
 | |
| 
 | |
|   Constructor->setUsed();
 | |
|   MarkVTableUsed(CurrentLocation, ClassDecl);
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(Constructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
 | |
|   // We start with an initial pass over the base classes to collect those that
 | |
|   // inherit constructors from. If there are none, we can forgo all further
 | |
|   // processing.
 | |
|   typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
 | |
|   BasesVector BasesToInheritFrom;
 | |
|   for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
 | |
|                                           BaseE = ClassDecl->bases_end();
 | |
|          BaseIt != BaseE; ++BaseIt) {
 | |
|     if (BaseIt->getInheritConstructors()) {
 | |
|       QualType Base = BaseIt->getType();
 | |
|       if (Base->isDependentType()) {
 | |
|         // If we inherit constructors from anything that is dependent, just
 | |
|         // abort processing altogether. We'll get another chance for the
 | |
|         // instantiations.
 | |
|         return;
 | |
|       }
 | |
|       BasesToInheritFrom.push_back(Base->castAs<RecordType>());
 | |
|     }
 | |
|   }
 | |
|   if (BasesToInheritFrom.empty())
 | |
|     return;
 | |
| 
 | |
|   // Now collect the constructors that we already have in the current class.
 | |
|   // Those take precedence over inherited constructors.
 | |
|   // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
 | |
|   //   unless there is a user-declared constructor with the same signature in
 | |
|   //   the class where the using-declaration appears.
 | |
|   llvm::SmallSet<const Type *, 8> ExistingConstructors;
 | |
|   for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
 | |
|                                     CtorE = ClassDecl->ctor_end();
 | |
|        CtorIt != CtorE; ++CtorIt) {
 | |
|     ExistingConstructors.insert(
 | |
|         Context.getCanonicalType(CtorIt->getType()).getTypePtr());
 | |
|   }
 | |
| 
 | |
|   Scope *S = getScopeForContext(ClassDecl);
 | |
|   DeclarationName CreatedCtorName =
 | |
|       Context.DeclarationNames.getCXXConstructorName(
 | |
|           ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
 | |
| 
 | |
|   // Now comes the true work.
 | |
|   // First, we keep a map from constructor types to the base that introduced
 | |
|   // them. Needed for finding conflicting constructors. We also keep the
 | |
|   // actually inserted declarations in there, for pretty diagnostics.
 | |
|   typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
 | |
|   typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
 | |
|   ConstructorToSourceMap InheritedConstructors;
 | |
|   for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
 | |
|                              BaseE = BasesToInheritFrom.end();
 | |
|        BaseIt != BaseE; ++BaseIt) {
 | |
|     const RecordType *Base = *BaseIt;
 | |
|     CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
 | |
|     CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
 | |
|     for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
 | |
|                                       CtorE = BaseDecl->ctor_end();
 | |
|          CtorIt != CtorE; ++CtorIt) {
 | |
|       // Find the using declaration for inheriting this base's constructors.
 | |
|       DeclarationName Name =
 | |
|           Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
 | |
|       UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
 | |
|           LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
 | |
|       SourceLocation UsingLoc = UD ? UD->getLocation() :
 | |
|                                      ClassDecl->getLocation();
 | |
| 
 | |
|       // C++0x [class.inhctor]p1: The candidate set of inherited constructors
 | |
|       //   from the class X named in the using-declaration consists of actual
 | |
|       //   constructors and notional constructors that result from the
 | |
|       //   transformation of defaulted parameters as follows:
 | |
|       //   - all non-template default constructors of X, and
 | |
|       //   - for each non-template constructor of X that has at least one
 | |
|       //     parameter with a default argument, the set of constructors that
 | |
|       //     results from omitting any ellipsis parameter specification and
 | |
|       //     successively omitting parameters with a default argument from the
 | |
|       //     end of the parameter-type-list.
 | |
|       CXXConstructorDecl *BaseCtor = *CtorIt;
 | |
|       bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
 | |
|       const FunctionProtoType *BaseCtorType =
 | |
|           BaseCtor->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|       for (unsigned params = BaseCtor->getMinRequiredArguments(),
 | |
|                     maxParams = BaseCtor->getNumParams();
 | |
|            params <= maxParams; ++params) {
 | |
|         // Skip default constructors. They're never inherited.
 | |
|         if (params == 0)
 | |
|           continue;
 | |
|         // Skip copy and move constructors for the same reason.
 | |
|         if (CanBeCopyOrMove && params == 1)
 | |
|           continue;
 | |
| 
 | |
|         // Build up a function type for this particular constructor.
 | |
|         // FIXME: The working paper does not consider that the exception spec
 | |
|         // for the inheriting constructor might be larger than that of the
 | |
|         // source. This code doesn't yet, either.
 | |
|         const Type *NewCtorType;
 | |
|         if (params == maxParams)
 | |
|           NewCtorType = BaseCtorType;
 | |
|         else {
 | |
|           llvm::SmallVector<QualType, 16> Args;
 | |
|           for (unsigned i = 0; i < params; ++i) {
 | |
|             Args.push_back(BaseCtorType->getArgType(i));
 | |
|           }
 | |
|           FunctionProtoType::ExtProtoInfo ExtInfo =
 | |
|               BaseCtorType->getExtProtoInfo();
 | |
|           ExtInfo.Variadic = false;
 | |
|           NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
 | |
|                                                 Args.data(), params, ExtInfo)
 | |
|                        .getTypePtr();
 | |
|         }
 | |
|         const Type *CanonicalNewCtorType =
 | |
|             Context.getCanonicalType(NewCtorType);
 | |
| 
 | |
|         // Now that we have the type, first check if the class already has a
 | |
|         // constructor with this signature.
 | |
|         if (ExistingConstructors.count(CanonicalNewCtorType))
 | |
|           continue;
 | |
| 
 | |
|         // Then we check if we have already declared an inherited constructor
 | |
|         // with this signature.
 | |
|         std::pair<ConstructorToSourceMap::iterator, bool> result =
 | |
|             InheritedConstructors.insert(std::make_pair(
 | |
|                 CanonicalNewCtorType,
 | |
|                 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
 | |
|         if (!result.second) {
 | |
|           // Already in the map. If it came from a different class, that's an
 | |
|           // error. Not if it's from the same.
 | |
|           CanQualType PreviousBase = result.first->second.first;
 | |
|           if (CanonicalBase != PreviousBase) {
 | |
|             const CXXConstructorDecl *PrevCtor = result.first->second.second;
 | |
|             const CXXConstructorDecl *PrevBaseCtor =
 | |
|                 PrevCtor->getInheritedConstructor();
 | |
|             assert(PrevBaseCtor && "Conflicting constructor was not inherited");
 | |
| 
 | |
|             Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
 | |
|             Diag(BaseCtor->getLocation(),
 | |
|                  diag::note_using_decl_constructor_conflict_current_ctor);
 | |
|             Diag(PrevBaseCtor->getLocation(),
 | |
|                  diag::note_using_decl_constructor_conflict_previous_ctor);
 | |
|             Diag(PrevCtor->getLocation(),
 | |
|                  diag::note_using_decl_constructor_conflict_previous_using);
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // OK, we're there, now add the constructor.
 | |
|         // C++0x [class.inhctor]p8: [...] that would be performed by a
 | |
|         //   user-writtern inline constructor [...]
 | |
|         DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
 | |
|         CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
 | |
|             Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
 | |
|             /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
 | |
|             /*ImplicitlyDeclared=*/true);
 | |
|         NewCtor->setAccess(BaseCtor->getAccess());
 | |
| 
 | |
|         // Build up the parameter decls and add them.
 | |
|         llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
 | |
|         for (unsigned i = 0; i < params; ++i) {
 | |
|           ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
 | |
|                                                    UsingLoc, UsingLoc,
 | |
|                                                    /*IdentifierInfo=*/0,
 | |
|                                                    BaseCtorType->getArgType(i),
 | |
|                                                    /*TInfo=*/0, SC_None,
 | |
|                                                    SC_None, /*DefaultArg=*/0));
 | |
|         }
 | |
|         NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
 | |
|         NewCtor->setInheritedConstructor(BaseCtor);
 | |
| 
 | |
|         PushOnScopeChains(NewCtor, S, false);
 | |
|         ClassDecl->addDecl(NewCtor);
 | |
|         result.first->second.second = NewCtor;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
 | |
|   // C++ [class.dtor]p2:
 | |
|   //   If a class has no user-declared destructor, a destructor is
 | |
|   //   declared implicitly. An implicitly-declared destructor is an
 | |
|   //   inline public member of its class.
 | |
|   
 | |
|   // C++ [except.spec]p14: 
 | |
|   //   An implicitly declared special member function (Clause 12) shall have 
 | |
|   //   an exception-specification.
 | |
|   ImplicitExceptionSpecification ExceptSpec(Context);
 | |
|   
 | |
|   // Direct base-class destructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
 | |
|                                        BEnd = ClassDecl->bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (B->isVirtual()) // Handled below.
 | |
|       continue;
 | |
|     
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
 | |
|       ExceptSpec.CalledDecl(
 | |
|                     LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
 | |
|   }
 | |
|   
 | |
|   // Virtual base-class destructors.
 | |
|   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
 | |
|                                        BEnd = ClassDecl->vbases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
 | |
|       ExceptSpec.CalledDecl(
 | |
|                     LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
 | |
|   }
 | |
|   
 | |
|   // Field destructors.
 | |
|   for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
 | |
|                                FEnd = ClassDecl->field_end();
 | |
|        F != FEnd; ++F) {
 | |
|     if (const RecordType *RecordTy
 | |
|         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
 | |
|       ExceptSpec.CalledDecl(
 | |
|                     LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
 | |
|   }
 | |
| 
 | |
|   // Create the actual destructor declaration.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
 | |
|   EPI.NumExceptions = ExceptSpec.size();
 | |
|   EPI.Exceptions = ExceptSpec.data();
 | |
|   QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
 | |
| 
 | |
|   CanQualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXDestructorName(ClassType);
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXDestructorDecl *Destructor
 | |
|       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
 | |
|                                   /*isInline=*/true,
 | |
|                                   /*isImplicitlyDeclared=*/true);
 | |
|   Destructor->setAccess(AS_public);
 | |
|   Destructor->setImplicit();
 | |
|   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
 | |
|   
 | |
|   // Note that we have declared this destructor.
 | |
|   ++ASTContext::NumImplicitDestructorsDeclared;
 | |
|   
 | |
|   // Introduce this destructor into its scope.
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(Destructor, S, false);
 | |
|   ClassDecl->addDecl(Destructor);
 | |
|   
 | |
|   // This could be uniqued if it ever proves significant.
 | |
|   Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
 | |
|   
 | |
|   AddOverriddenMethods(ClassDecl, Destructor);
 | |
|   
 | |
|   return Destructor;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
 | |
|                                     CXXDestructorDecl *Destructor) {
 | |
|   assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
 | |
|          "DefineImplicitDestructor - call it for implicit default dtor");
 | |
|   CXXRecordDecl *ClassDecl = Destructor->getParent();
 | |
|   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
 | |
| 
 | |
|   if (Destructor->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
 | |
| 
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
|   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
 | |
|                                          Destructor->getParent());
 | |
| 
 | |
|   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|       << CXXDestructor << Context.getTagDeclType(ClassDecl);
 | |
| 
 | |
|     Destructor->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SourceLocation Loc = Destructor->getLocation();
 | |
|   Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
 | |
| 
 | |
|   Destructor->setUsed();
 | |
|   MarkVTableUsed(CurrentLocation, ClassDecl);
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(Destructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Builds a statement that copies the given entity from \p From to
 | |
| /// \c To.
 | |
| ///
 | |
| /// This routine is used to copy the members of a class with an
 | |
| /// implicitly-declared copy assignment operator. When the entities being
 | |
| /// copied are arrays, this routine builds for loops to copy them.
 | |
| ///
 | |
| /// \param S The Sema object used for type-checking.
 | |
| ///
 | |
| /// \param Loc The location where the implicit copy is being generated.
 | |
| ///
 | |
| /// \param T The type of the expressions being copied. Both expressions must
 | |
| /// have this type.
 | |
| ///
 | |
| /// \param To The expression we are copying to.
 | |
| ///
 | |
| /// \param From The expression we are copying from.
 | |
| ///
 | |
| /// \param CopyingBaseSubobject Whether we're copying a base subobject.
 | |
| /// Otherwise, it's a non-static member subobject.
 | |
| ///
 | |
| /// \param Depth Internal parameter recording the depth of the recursion.
 | |
| ///
 | |
| /// \returns A statement or a loop that copies the expressions.
 | |
| static StmtResult
 | |
| BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 
 | |
|                       Expr *To, Expr *From,
 | |
|                       bool CopyingBaseSubobject, unsigned Depth = 0) {
 | |
|   // C++0x [class.copy]p30:
 | |
|   //   Each subobject is assigned in the manner appropriate to its type:
 | |
|   //
 | |
|   //     - if the subobject is of class type, the copy assignment operator
 | |
|   //       for the class is used (as if by explicit qualification; that is, 
 | |
|   //       ignoring any possible virtual overriding functions in more derived 
 | |
|   //       classes);
 | |
|   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
 | |
|     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|     
 | |
|     // Look for operator=.
 | |
|     DeclarationName Name
 | |
|       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
 | |
|     S.LookupQualifiedName(OpLookup, ClassDecl, false);
 | |
|     
 | |
|     // Filter out any result that isn't a copy-assignment operator.
 | |
|     LookupResult::Filter F = OpLookup.makeFilter();
 | |
|     while (F.hasNext()) {
 | |
|       NamedDecl *D = F.next();
 | |
|       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
 | |
|         if (Method->isCopyAssignmentOperator())
 | |
|           continue;
 | |
|       
 | |
|       F.erase();
 | |
|     }
 | |
|     F.done();
 | |
|     
 | |
|     // Suppress the protected check (C++ [class.protected]) for each of the
 | |
|     // assignment operators we found. This strange dance is required when 
 | |
|     // we're assigning via a base classes's copy-assignment operator. To
 | |
|     // ensure that we're getting the right base class subobject (without 
 | |
|     // ambiguities), we need to cast "this" to that subobject type; to
 | |
|     // ensure that we don't go through the virtual call mechanism, we need
 | |
|     // to qualify the operator= name with the base class (see below). However,
 | |
|     // this means that if the base class has a protected copy assignment
 | |
|     // operator, the protected member access check will fail. So, we
 | |
|     // rewrite "protected" access to "public" access in this case, since we
 | |
|     // know by construction that we're calling from a derived class.
 | |
|     if (CopyingBaseSubobject) {
 | |
|       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
 | |
|            L != LEnd; ++L) {
 | |
|         if (L.getAccess() == AS_protected)
 | |
|           L.setAccess(AS_public);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Create the nested-name-specifier that will be used to qualify the
 | |
|     // reference to operator=; this is required to suppress the virtual
 | |
|     // call mechanism.
 | |
|     CXXScopeSpec SS;
 | |
|     SS.MakeTrivial(S.Context, 
 | |
|                    NestedNameSpecifier::Create(S.Context, 0, false, 
 | |
|                                                T.getTypePtr()),
 | |
|                    Loc);
 | |
|     
 | |
|     // Create the reference to operator=.
 | |
|     ExprResult OpEqualRef
 | |
|       = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS, 
 | |
|                                    /*FirstQualifierInScope=*/0, OpLookup, 
 | |
|                                    /*TemplateArgs=*/0,
 | |
|                                    /*SuppressQualifierCheck=*/true);
 | |
|     if (OpEqualRef.isInvalid())
 | |
|       return StmtError();
 | |
|     
 | |
|     // Build the call to the assignment operator.
 | |
| 
 | |
|     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0, 
 | |
|                                                   OpEqualRef.takeAs<Expr>(),
 | |
|                                                   Loc, &From, 1, Loc);
 | |
|     if (Call.isInvalid())
 | |
|       return StmtError();
 | |
|     
 | |
|     return S.Owned(Call.takeAs<Stmt>());
 | |
|   }
 | |
| 
 | |
|   //     - if the subobject is of scalar type, the built-in assignment 
 | |
|   //       operator is used.
 | |
|   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);  
 | |
|   if (!ArrayTy) {
 | |
|     ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
 | |
|     if (Assignment.isInvalid())
 | |
|       return StmtError();
 | |
|     
 | |
|     return S.Owned(Assignment.takeAs<Stmt>());
 | |
|   }
 | |
|     
 | |
|   //     - if the subobject is an array, each element is assigned, in the 
 | |
|   //       manner appropriate to the element type;
 | |
|   
 | |
|   // Construct a loop over the array bounds, e.g.,
 | |
|   //
 | |
|   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
 | |
|   //
 | |
|   // that will copy each of the array elements. 
 | |
|   QualType SizeType = S.Context.getSizeType();
 | |
|   
 | |
|   // Create the iteration variable.
 | |
|   IdentifierInfo *IterationVarName = 0;
 | |
|   {
 | |
|     llvm::SmallString<8> Str;
 | |
|     llvm::raw_svector_ostream OS(Str);
 | |
|     OS << "__i" << Depth;
 | |
|     IterationVarName = &S.Context.Idents.get(OS.str());
 | |
|   }
 | |
|   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
 | |
|                                           IterationVarName, SizeType,
 | |
|                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
 | |
|                                           SC_None, SC_None);
 | |
|   
 | |
|   // Initialize the iteration variable to zero.
 | |
|   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
 | |
|   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
 | |
| 
 | |
|   // Create a reference to the iteration variable; we'll use this several
 | |
|   // times throughout.
 | |
|   Expr *IterationVarRef
 | |
|     = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
 | |
|   assert(IterationVarRef && "Reference to invented variable cannot fail!");
 | |
|   
 | |
|   // Create the DeclStmt that holds the iteration variable.
 | |
|   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
 | |
|   
 | |
|   // Create the comparison against the array bound.
 | |
|   llvm::APInt Upper
 | |
|     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
 | |
|   Expr *Comparison
 | |
|     = new (S.Context) BinaryOperator(IterationVarRef,
 | |
|                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
 | |
|                                      BO_NE, S.Context.BoolTy,
 | |
|                                      VK_RValue, OK_Ordinary, Loc);
 | |
|   
 | |
|   // Create the pre-increment of the iteration variable.
 | |
|   Expr *Increment
 | |
|     = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
 | |
|                                     VK_LValue, OK_Ordinary, Loc);
 | |
|   
 | |
|   // Subscript the "from" and "to" expressions with the iteration variable.
 | |
|   From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
 | |
|                                                          IterationVarRef, Loc));
 | |
|   To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
 | |
|                                                        IterationVarRef, Loc));
 | |
|   
 | |
|   // Build the copy for an individual element of the array.
 | |
|   StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
 | |
|                                           To, From, CopyingBaseSubobject,
 | |
|                                           Depth + 1);
 | |
|   if (Copy.isInvalid())
 | |
|     return StmtError();
 | |
|   
 | |
|   // Construct the loop that copies all elements of this array.
 | |
|   return S.ActOnForStmt(Loc, Loc, InitStmt, 
 | |
|                         S.MakeFullExpr(Comparison),
 | |
|                         0, S.MakeFullExpr(Increment),
 | |
|                         Loc, Copy.take());
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given class has a copy assignment operator 
 | |
| /// that accepts a const-qualified argument.
 | |
| static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
 | |
|   CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
 | |
|   
 | |
|   if (!Class->hasDeclaredCopyAssignment())
 | |
|     S.DeclareImplicitCopyAssignment(Class);
 | |
|   
 | |
|   QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
 | |
|   DeclarationName OpName 
 | |
|     = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|     
 | |
|   DeclContext::lookup_const_iterator Op, OpEnd;
 | |
|   for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
 | |
|     // C++ [class.copy]p9:
 | |
|     //   A user-declared copy assignment operator is a non-static non-template
 | |
|     //   member function of class X with exactly one parameter of type X, X&,
 | |
|     //   const X&, volatile X& or const volatile X&.
 | |
|     const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
 | |
|     if (!Method)
 | |
|       continue;
 | |
|     
 | |
|     if (Method->isStatic())
 | |
|       continue;
 | |
|     if (Method->getPrimaryTemplate())
 | |
|       continue;
 | |
|     const FunctionProtoType *FnType =
 | |
|     Method->getType()->getAs<FunctionProtoType>();
 | |
|     assert(FnType && "Overloaded operator has no prototype.");
 | |
|     // Don't assert on this; an invalid decl might have been left in the AST.
 | |
|     if (FnType->getNumArgs() != 1 || FnType->isVariadic())
 | |
|       continue;
 | |
|     bool AcceptsConst = true;
 | |
|     QualType ArgType = FnType->getArgType(0);
 | |
|     if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
 | |
|       ArgType = Ref->getPointeeType();
 | |
|       // Is it a non-const lvalue reference?
 | |
|       if (!ArgType.isConstQualified())
 | |
|         AcceptsConst = false;
 | |
|     }
 | |
|     if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
 | |
|       continue;
 | |
|     
 | |
|     // We have a single argument of type cv X or cv X&, i.e. we've found the
 | |
|     // copy assignment operator. Return whether it accepts const arguments.
 | |
|     return AcceptsConst;
 | |
|   }
 | |
|   assert(Class->isInvalidDecl() &&
 | |
|          "No copy assignment operator declared in valid code.");
 | |
|   return false;  
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
 | |
|   // Note: The following rules are largely analoguous to the copy
 | |
|   // constructor rules. Note that virtual bases are not taken into account
 | |
|   // for determining the argument type of the operator. Note also that
 | |
|   // operators taking an object instead of a reference are allowed.
 | |
|   
 | |
|   
 | |
|   // C++ [class.copy]p10:
 | |
|   //   If the class definition does not explicitly declare a copy
 | |
|   //   assignment operator, one is declared implicitly.
 | |
|   //   The implicitly-defined copy assignment operator for a class X
 | |
|   //   will have the form
 | |
|   //
 | |
|   //       X& X::operator=(const X&)
 | |
|   //
 | |
|   //   if
 | |
|   bool HasConstCopyAssignment = true;
 | |
|   
 | |
|   //       -- each direct base class B of X has a copy assignment operator
 | |
|   //          whose parameter is of type const B&, const volatile B& or B,
 | |
|   //          and
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                        BaseEnd = ClassDecl->bases_end();
 | |
|        HasConstCopyAssignment && Base != BaseEnd; ++Base) {
 | |
|     assert(!Base->getType()->isDependentType() &&
 | |
|            "Cannot generate implicit members for class with dependent bases.");
 | |
|     const CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
 | |
|   }
 | |
|   
 | |
|   //       -- for all the nonstatic data members of X that are of a class
 | |
|   //          type M (or array thereof), each such class type has a copy
 | |
|   //          assignment operator whose parameter is of type const M&,
 | |
|   //          const volatile M& or M.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end();
 | |
|        HasConstCopyAssignment && Field != FieldEnd;
 | |
|        ++Field) {
 | |
|     QualType FieldType = Context.getBaseElementType((*Field)->getType());
 | |
|     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
 | |
|       const CXXRecordDecl *FieldClassDecl
 | |
|         = cast<CXXRecordDecl>(FieldClassType->getDecl());
 | |
|       HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   //   Otherwise, the implicitly declared copy assignment operator will
 | |
|   //   have the form
 | |
|   //
 | |
|   //       X& X::operator=(X&)
 | |
|   QualType ArgType = Context.getTypeDeclType(ClassDecl);
 | |
|   QualType RetType = Context.getLValueReferenceType(ArgType);
 | |
|   if (HasConstCopyAssignment)
 | |
|     ArgType = ArgType.withConst();
 | |
|   ArgType = Context.getLValueReferenceType(ArgType);
 | |
|   
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an 
 | |
|   //   exception-specification. [...]
 | |
|   ImplicitExceptionSpecification ExceptSpec(Context);
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                        BaseEnd = ClassDecl->bases_end();
 | |
|        Base != BaseEnd; ++Base) {
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     
 | |
|     if (!BaseClassDecl->hasDeclaredCopyAssignment())
 | |
|       DeclareImplicitCopyAssignment(BaseClassDecl);
 | |
| 
 | |
|     if (CXXMethodDecl *CopyAssign
 | |
|            = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
 | |
|       ExceptSpec.CalledDecl(CopyAssign);
 | |
|   }
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end();
 | |
|        Field != FieldEnd;
 | |
|        ++Field) {
 | |
|     QualType FieldType = Context.getBaseElementType((*Field)->getType());
 | |
|     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *FieldClassDecl
 | |
|         = cast<CXXRecordDecl>(FieldClassType->getDecl());
 | |
|       
 | |
|       if (!FieldClassDecl->hasDeclaredCopyAssignment())
 | |
|         DeclareImplicitCopyAssignment(FieldClassDecl);
 | |
| 
 | |
|       if (CXXMethodDecl *CopyAssign
 | |
|             = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
 | |
|         ExceptSpec.CalledDecl(CopyAssign);      
 | |
|     }      
 | |
|   }
 | |
| 
 | |
|   //   An implicitly-declared copy assignment operator is an inline public
 | |
|   //   member of its class.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
 | |
|   EPI.NumExceptions = ExceptSpec.size();
 | |
|   EPI.Exceptions = ExceptSpec.data();
 | |
|   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXMethodDecl *CopyAssignment
 | |
|     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
 | |
|                             Context.getFunctionType(RetType, &ArgType, 1, EPI),
 | |
|                             /*TInfo=*/0, /*isStatic=*/false,
 | |
|                             /*StorageClassAsWritten=*/SC_None,
 | |
|                             /*isInline=*/true,
 | |
|                             SourceLocation());
 | |
|   CopyAssignment->setAccess(AS_public);
 | |
|   CopyAssignment->setImplicit();
 | |
|   CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
 | |
|   
 | |
|   // Add the parameter to the operator.
 | |
|   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
 | |
|                                                ClassLoc, ClassLoc, /*Id=*/0,
 | |
|                                                ArgType, /*TInfo=*/0,
 | |
|                                                SC_None,
 | |
|                                                SC_None, 0);
 | |
|   CopyAssignment->setParams(&FromParam, 1);
 | |
|   
 | |
|   // Note that we have added this copy-assignment operator.
 | |
|   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
 | |
|   
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(CopyAssignment, S, false);
 | |
|   ClassDecl->addDecl(CopyAssignment);
 | |
|   
 | |
|   AddOverriddenMethods(ClassDecl, CopyAssignment);
 | |
|   return CopyAssignment;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
 | |
|                                         CXXMethodDecl *CopyAssignOperator) {
 | |
|   assert((CopyAssignOperator->isImplicit() && 
 | |
|           CopyAssignOperator->isOverloadedOperator() &&
 | |
|           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
 | |
|           !CopyAssignOperator->isUsed(false)) &&
 | |
|          "DefineImplicitCopyAssignment called for wrong function");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
 | |
| 
 | |
|   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
 | |
|     CopyAssignOperator->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   CopyAssignOperator->setUsed();
 | |
| 
 | |
|   ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
| 
 | |
|   // C++0x [class.copy]p30:
 | |
|   //   The implicitly-defined or explicitly-defaulted copy assignment operator
 | |
|   //   for a non-union class X performs memberwise copy assignment of its 
 | |
|   //   subobjects. The direct base classes of X are assigned first, in the 
 | |
|   //   order of their declaration in the base-specifier-list, and then the 
 | |
|   //   immediate non-static data members of X are assigned, in the order in 
 | |
|   //   which they were declared in the class definition.
 | |
|   
 | |
|   // The statements that form the synthesized function body.
 | |
|   ASTOwningVector<Stmt*> Statements(*this);
 | |
|   
 | |
|   // The parameter for the "other" object, which we are copying from.
 | |
|   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
 | |
|   Qualifiers OtherQuals = Other->getType().getQualifiers();
 | |
|   QualType OtherRefType = Other->getType();
 | |
|   if (const LValueReferenceType *OtherRef
 | |
|                                 = OtherRefType->getAs<LValueReferenceType>()) {
 | |
|     OtherRefType = OtherRef->getPointeeType();
 | |
|     OtherQuals = OtherRefType.getQualifiers();
 | |
|   }
 | |
|   
 | |
|   // Our location for everything implicitly-generated.
 | |
|   SourceLocation Loc = CopyAssignOperator->getLocation();
 | |
|   
 | |
|   // Construct a reference to the "other" object. We'll be using this 
 | |
|   // throughout the generated ASTs.
 | |
|   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
 | |
|   assert(OtherRef && "Reference to parameter cannot fail!");
 | |
|   
 | |
|   // Construct the "this" pointer. We'll be using this throughout the generated
 | |
|   // ASTs.
 | |
|   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
 | |
|   assert(This && "Reference to this cannot fail!");
 | |
|   
 | |
|   // Assign base classes.
 | |
|   bool Invalid = false;
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|        E = ClassDecl->bases_end(); Base != E; ++Base) {
 | |
|     // Form the assignment:
 | |
|     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
 | |
|     QualType BaseType = Base->getType().getUnqualifiedType();
 | |
|     if (!BaseType->isRecordType()) {
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     CXXCastPath BasePath;
 | |
|     BasePath.push_back(Base);
 | |
| 
 | |
|     // Construct the "from" expression, which is an implicit cast to the
 | |
|     // appropriately-qualified base type.
 | |
|     Expr *From = OtherRef;
 | |
|     From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
 | |
|                              CK_UncheckedDerivedToBase,
 | |
|                              VK_LValue, &BasePath).take();
 | |
| 
 | |
|     // Dereference "this".
 | |
|     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
 | |
|     
 | |
|     // Implicitly cast "this" to the appropriately-qualified base type.
 | |
|     To = ImpCastExprToType(To.take(), 
 | |
|                            Context.getCVRQualifiedType(BaseType,
 | |
|                                      CopyAssignOperator->getTypeQualifiers()),
 | |
|                            CK_UncheckedDerivedToBase, 
 | |
|                            VK_LValue, &BasePath);
 | |
| 
 | |
|     // Build the copy.
 | |
|     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
 | |
|                                             To.get(), From,
 | |
|                                             /*CopyingBaseSubobject=*/true);
 | |
|     if (Copy.isInvalid()) {
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       CopyAssignOperator->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Success! Record the copy.
 | |
|     Statements.push_back(Copy.takeAs<Expr>());
 | |
|   }
 | |
|   
 | |
|   // \brief Reference to the __builtin_memcpy function.
 | |
|   Expr *BuiltinMemCpyRef = 0;
 | |
|   // \brief Reference to the __builtin_objc_memmove_collectable function.
 | |
|   Expr *CollectableMemCpyRef = 0;
 | |
|   
 | |
|   // Assign non-static members.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end(); 
 | |
|        Field != FieldEnd; ++Field) {
 | |
|     // Check for members of reference type; we can't copy those.
 | |
|     if (Field->getType()->isReferenceType()) {
 | |
|       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
 | |
|         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
 | |
|       Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       Invalid = true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Check for members of const-qualified, non-class type.
 | |
|     QualType BaseType = Context.getBaseElementType(Field->getType());
 | |
|     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
 | |
|       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
 | |
|         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
 | |
|       Diag(Field->getLocation(), diag::note_declared_at);
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       Invalid = true;      
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     QualType FieldType = Field->getType().getNonReferenceType();
 | |
|     if (FieldType->isIncompleteArrayType()) {
 | |
|       assert(ClassDecl->hasFlexibleArrayMember() && 
 | |
|              "Incomplete array type is not valid");
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Build references to the field in the object we're copying from and to.
 | |
|     CXXScopeSpec SS; // Intentionally empty
 | |
|     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
 | |
|                               LookupMemberName);
 | |
|     MemberLookup.addDecl(*Field);
 | |
|     MemberLookup.resolveKind();
 | |
|     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
 | |
|                                                Loc, /*IsArrow=*/false,
 | |
|                                                SS, 0, MemberLookup, 0);
 | |
|     ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
 | |
|                                              Loc, /*IsArrow=*/true,
 | |
|                                              SS, 0, MemberLookup, 0);
 | |
|     assert(!From.isInvalid() && "Implicit field reference cannot fail");
 | |
|     assert(!To.isInvalid() && "Implicit field reference cannot fail");
 | |
|     
 | |
|     // If the field should be copied with __builtin_memcpy rather than via
 | |
|     // explicit assignments, do so. This optimization only applies for arrays 
 | |
|     // of scalars and arrays of class type with trivial copy-assignment 
 | |
|     // operators.
 | |
|     if (FieldType->isArrayType() &&
 | |
|         (!BaseType->isRecordType() || 
 | |
|          cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
 | |
|            ->hasTrivialCopyAssignment())) {
 | |
|       // Compute the size of the memory buffer to be copied.
 | |
|       QualType SizeType = Context.getSizeType();
 | |
|       llvm::APInt Size(Context.getTypeSize(SizeType), 
 | |
|                        Context.getTypeSizeInChars(BaseType).getQuantity());
 | |
|       for (const ConstantArrayType *Array
 | |
|               = Context.getAsConstantArrayType(FieldType);
 | |
|            Array; 
 | |
|            Array = Context.getAsConstantArrayType(Array->getElementType())) {
 | |
|         llvm::APInt ArraySize
 | |
|           = Array->getSize().zextOrTrunc(Size.getBitWidth());
 | |
|         Size *= ArraySize;
 | |
|       }
 | |
|           
 | |
|       // Take the address of the field references for "from" and "to".
 | |
|       From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
 | |
|       To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
 | |
|           
 | |
|       bool NeedsCollectableMemCpy = 
 | |
|           (BaseType->isRecordType() && 
 | |
|            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
 | |
|           
 | |
|       if (NeedsCollectableMemCpy) {
 | |
|         if (!CollectableMemCpyRef) {
 | |
|           // Create a reference to the __builtin_objc_memmove_collectable function.
 | |
|           LookupResult R(*this, 
 | |
|                          &Context.Idents.get("__builtin_objc_memmove_collectable"), 
 | |
|                          Loc, LookupOrdinaryName);
 | |
|           LookupName(R, TUScope, true);
 | |
|         
 | |
|           FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
 | |
|           if (!CollectableMemCpy) {
 | |
|             // Something went horribly wrong earlier, and we will have 
 | |
|             // complained about it.
 | |
|             Invalid = true;
 | |
|             continue;
 | |
|           }
 | |
|         
 | |
|           CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy, 
 | |
|                                                   CollectableMemCpy->getType(),
 | |
|                                                   VK_LValue, Loc, 0).take();
 | |
|           assert(CollectableMemCpyRef && "Builtin reference cannot fail");
 | |
|         }
 | |
|       }
 | |
|       // Create a reference to the __builtin_memcpy builtin function.
 | |
|       else if (!BuiltinMemCpyRef) {
 | |
|         LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
 | |
|                        LookupOrdinaryName);
 | |
|         LookupName(R, TUScope, true);
 | |
|         
 | |
|         FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
 | |
|         if (!BuiltinMemCpy) {
 | |
|           // Something went horribly wrong earlier, and we will have complained
 | |
|           // about it.
 | |
|           Invalid = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy, 
 | |
|                                             BuiltinMemCpy->getType(),
 | |
|                                             VK_LValue, Loc, 0).take();
 | |
|         assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
 | |
|       }
 | |
|           
 | |
|       ASTOwningVector<Expr*> CallArgs(*this);
 | |
|       CallArgs.push_back(To.takeAs<Expr>());
 | |
|       CallArgs.push_back(From.takeAs<Expr>());
 | |
|       CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
 | |
|       ExprResult Call = ExprError();
 | |
|       if (NeedsCollectableMemCpy)
 | |
|         Call = ActOnCallExpr(/*Scope=*/0,
 | |
|                              CollectableMemCpyRef,
 | |
|                              Loc, move_arg(CallArgs), 
 | |
|                              Loc);
 | |
|       else
 | |
|         Call = ActOnCallExpr(/*Scope=*/0,
 | |
|                              BuiltinMemCpyRef,
 | |
|                              Loc, move_arg(CallArgs), 
 | |
|                              Loc);
 | |
|           
 | |
|       assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
 | |
|       Statements.push_back(Call.takeAs<Expr>());
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Build the copy of this field.
 | |
|     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType, 
 | |
|                                                   To.get(), From.get(),
 | |
|                                               /*CopyingBaseSubobject=*/false);
 | |
|     if (Copy.isInvalid()) {
 | |
|       Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|       CopyAssignOperator->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Success! Record the copy.
 | |
|     Statements.push_back(Copy.takeAs<Stmt>());
 | |
|   }
 | |
| 
 | |
|   if (!Invalid) {
 | |
|     // Add a "return *this;"
 | |
|     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
 | |
|     
 | |
|     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
 | |
|     if (Return.isInvalid())
 | |
|       Invalid = true;
 | |
|     else {
 | |
|       Statements.push_back(Return.takeAs<Stmt>());
 | |
| 
 | |
|       if (Trap.hasErrorOccurred()) {
 | |
|         Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
 | |
|         Invalid = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Invalid) {
 | |
|     CopyAssignOperator->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
 | |
|                                             /*isStmtExpr=*/false);
 | |
|   assert(!Body.isInvalid() && "Compound statement creation cannot fail");
 | |
|   CopyAssignOperator->setBody(Body.takeAs<Stmt>());
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(CopyAssignOperator);
 | |
|   }
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
 | |
|                                                     CXXRecordDecl *ClassDecl) {
 | |
|   // C++ [class.copy]p4:
 | |
|   //   If the class definition does not explicitly declare a copy
 | |
|   //   constructor, one is declared implicitly.
 | |
|   
 | |
|   // C++ [class.copy]p5:
 | |
|   //   The implicitly-declared copy constructor for a class X will
 | |
|   //   have the form
 | |
|   //
 | |
|   //       X::X(const X&)
 | |
|   //
 | |
|   //   if
 | |
|   bool HasConstCopyConstructor = true;
 | |
|   
 | |
|   //     -- each direct or virtual base class B of X has a copy
 | |
|   //        constructor whose first parameter is of type const B& or
 | |
|   //        const volatile B&, and
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                        BaseEnd = ClassDecl->bases_end();
 | |
|        HasConstCopyConstructor && Base != BaseEnd; 
 | |
|        ++Base) {
 | |
|     // Virtual bases are handled below.
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
|     
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (!BaseClassDecl->hasDeclaredCopyConstructor())
 | |
|       DeclareImplicitCopyConstructor(BaseClassDecl);
 | |
|   
 | |
|     HasConstCopyConstructor
 | |
|       = BaseClassDecl->hasConstCopyConstructor(Context);
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
 | |
|                                        BaseEnd = ClassDecl->vbases_end();
 | |
|        HasConstCopyConstructor && Base != BaseEnd; 
 | |
|        ++Base) {
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (!BaseClassDecl->hasDeclaredCopyConstructor())
 | |
|       DeclareImplicitCopyConstructor(BaseClassDecl);
 | |
|     
 | |
|     HasConstCopyConstructor
 | |
|       = BaseClassDecl->hasConstCopyConstructor(Context);
 | |
|   }
 | |
|   
 | |
|   //     -- for all the nonstatic data members of X that are of a
 | |
|   //        class type M (or array thereof), each such class type
 | |
|   //        has a copy constructor whose first parameter is of type
 | |
|   //        const M& or const volatile M&.
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end();
 | |
|        HasConstCopyConstructor && Field != FieldEnd;
 | |
|        ++Field) {
 | |
|     QualType FieldType = Context.getBaseElementType((*Field)->getType());
 | |
|     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *FieldClassDecl
 | |
|         = cast<CXXRecordDecl>(FieldClassType->getDecl());
 | |
|       if (!FieldClassDecl->hasDeclaredCopyConstructor())
 | |
|         DeclareImplicitCopyConstructor(FieldClassDecl);
 | |
| 
 | |
|       HasConstCopyConstructor
 | |
|         = FieldClassDecl->hasConstCopyConstructor(Context);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   //   Otherwise, the implicitly declared copy constructor will have
 | |
|   //   the form
 | |
|   //
 | |
|   //       X::X(X&)
 | |
|   QualType ClassType = Context.getTypeDeclType(ClassDecl);
 | |
|   QualType ArgType = ClassType;
 | |
|   if (HasConstCopyConstructor)
 | |
|     ArgType = ArgType.withConst();
 | |
|   ArgType = Context.getLValueReferenceType(ArgType);
 | |
|   
 | |
|   // C++ [except.spec]p14:
 | |
|   //   An implicitly declared special member function (Clause 12) shall have an 
 | |
|   //   exception-specification. [...]
 | |
|   ImplicitExceptionSpecification ExceptSpec(Context);
 | |
|   unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
 | |
|                                        BaseEnd = ClassDecl->bases_end();
 | |
|        Base != BaseEnd; 
 | |
|        ++Base) {
 | |
|     // Virtual bases are handled below.
 | |
|     if (Base->isVirtual())
 | |
|       continue;
 | |
|     
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (!BaseClassDecl->hasDeclaredCopyConstructor())
 | |
|       DeclareImplicitCopyConstructor(BaseClassDecl);
 | |
| 
 | |
|     if (CXXConstructorDecl *CopyConstructor
 | |
|                           = BaseClassDecl->getCopyConstructor(Context, Quals))
 | |
|       ExceptSpec.CalledDecl(CopyConstructor);
 | |
|   }
 | |
|   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
 | |
|                                        BaseEnd = ClassDecl->vbases_end();
 | |
|        Base != BaseEnd; 
 | |
|        ++Base) {
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (!BaseClassDecl->hasDeclaredCopyConstructor())
 | |
|       DeclareImplicitCopyConstructor(BaseClassDecl);
 | |
| 
 | |
|     if (CXXConstructorDecl *CopyConstructor
 | |
|                           = BaseClassDecl->getCopyConstructor(Context, Quals))
 | |
|       ExceptSpec.CalledDecl(CopyConstructor);
 | |
|   }
 | |
|   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
 | |
|                                   FieldEnd = ClassDecl->field_end();
 | |
|        Field != FieldEnd;
 | |
|        ++Field) {
 | |
|     QualType FieldType = Context.getBaseElementType((*Field)->getType());
 | |
|     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *FieldClassDecl
 | |
|         = cast<CXXRecordDecl>(FieldClassType->getDecl());
 | |
|       if (!FieldClassDecl->hasDeclaredCopyConstructor())
 | |
|         DeclareImplicitCopyConstructor(FieldClassDecl);
 | |
| 
 | |
|       if (CXXConstructorDecl *CopyConstructor
 | |
|                           = FieldClassDecl->getCopyConstructor(Context, Quals))
 | |
|         ExceptSpec.CalledDecl(CopyConstructor);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //   An implicitly-declared copy constructor is an inline public
 | |
|   //   member of its class.
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
 | |
|   EPI.NumExceptions = ExceptSpec.size();
 | |
|   EPI.Exceptions = ExceptSpec.data();
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXConstructorName(
 | |
|                                            Context.getCanonicalType(ClassType));
 | |
|   SourceLocation ClassLoc = ClassDecl->getLocation();
 | |
|   DeclarationNameInfo NameInfo(Name, ClassLoc);
 | |
|   CXXConstructorDecl *CopyConstructor
 | |
|     = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
 | |
|                                  Context.getFunctionType(Context.VoidTy,
 | |
|                                                          &ArgType, 1, EPI),
 | |
|                                  /*TInfo=*/0,
 | |
|                                  /*isExplicit=*/false,
 | |
|                                  /*isInline=*/true,
 | |
|                                  /*isImplicitlyDeclared=*/true);
 | |
|   CopyConstructor->setAccess(AS_public);
 | |
|   CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
 | |
|   
 | |
|   // Note that we have declared this constructor.
 | |
|   ++ASTContext::NumImplicitCopyConstructorsDeclared;
 | |
|   
 | |
|   // Add the parameter to the constructor.
 | |
|   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
 | |
|                                                ClassLoc, ClassLoc,
 | |
|                                                /*IdentifierInfo=*/0,
 | |
|                                                ArgType, /*TInfo=*/0,
 | |
|                                                SC_None,
 | |
|                                                SC_None, 0);
 | |
|   CopyConstructor->setParams(&FromParam, 1);
 | |
|   if (Scope *S = getScopeForContext(ClassDecl))
 | |
|     PushOnScopeChains(CopyConstructor, S, false);
 | |
|   ClassDecl->addDecl(CopyConstructor);
 | |
|   
 | |
|   return CopyConstructor;
 | |
| }
 | |
| 
 | |
| void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
 | |
|                                    CXXConstructorDecl *CopyConstructor,
 | |
|                                    unsigned TypeQuals) {
 | |
|   assert((CopyConstructor->isImplicit() &&
 | |
|           CopyConstructor->isCopyConstructor(TypeQuals) &&
 | |
|           !CopyConstructor->isUsed(false)) &&
 | |
|          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
 | |
|   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
 | |
| 
 | |
|   ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
 | |
|   DiagnosticErrorTrap Trap(Diags);
 | |
| 
 | |
|   if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
 | |
|       Trap.hasErrorOccurred()) {
 | |
|     Diag(CurrentLocation, diag::note_member_synthesized_at) 
 | |
|       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
 | |
|     CopyConstructor->setInvalidDecl();
 | |
|   }  else {
 | |
|     CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
 | |
|                                                CopyConstructor->getLocation(),
 | |
|                                                MultiStmtArg(*this, 0, 0), 
 | |
|                                                /*isStmtExpr=*/false)
 | |
|                                                               .takeAs<Stmt>());
 | |
|   }
 | |
|   
 | |
|   CopyConstructor->setUsed();
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener()) {
 | |
|     L->CompletedImplicitDefinition(CopyConstructor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
 | |
|                             CXXConstructorDecl *Constructor,
 | |
|                             MultiExprArg ExprArgs,
 | |
|                             bool RequiresZeroInit,
 | |
|                             unsigned ConstructKind,
 | |
|                             SourceRange ParenRange) {
 | |
|   bool Elidable = false;
 | |
| 
 | |
|   // C++0x [class.copy]p34:
 | |
|   //   When certain criteria are met, an implementation is allowed to
 | |
|   //   omit the copy/move construction of a class object, even if the
 | |
|   //   copy/move constructor and/or destructor for the object have
 | |
|   //   side effects. [...]
 | |
|   //     - when a temporary class object that has not been bound to a
 | |
|   //       reference (12.2) would be copied/moved to a class object
 | |
|   //       with the same cv-unqualified type, the copy/move operation
 | |
|   //       can be omitted by constructing the temporary object
 | |
|   //       directly into the target of the omitted copy/move
 | |
|   if (ConstructKind == CXXConstructExpr::CK_Complete &&
 | |
|       Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
 | |
|     Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
 | |
|     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
 | |
|   }
 | |
| 
 | |
|   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
 | |
|                                Elidable, move(ExprArgs), RequiresZeroInit,
 | |
|                                ConstructKind, ParenRange);
 | |
| }
 | |
| 
 | |
| /// BuildCXXConstructExpr - Creates a complete call to a constructor,
 | |
| /// including handling of its default argument expressions.
 | |
| ExprResult
 | |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
 | |
|                             CXXConstructorDecl *Constructor, bool Elidable,
 | |
|                             MultiExprArg ExprArgs,
 | |
|                             bool RequiresZeroInit,
 | |
|                             unsigned ConstructKind,
 | |
|                             SourceRange ParenRange) {
 | |
|   unsigned NumExprs = ExprArgs.size();
 | |
|   Expr **Exprs = (Expr **)ExprArgs.release();
 | |
| 
 | |
|   for (specific_attr_iterator<NonNullAttr>
 | |
|            i = Constructor->specific_attr_begin<NonNullAttr>(),
 | |
|            e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
 | |
|     const NonNullAttr *NonNull = *i;
 | |
|     CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
 | |
|   }
 | |
| 
 | |
|   MarkDeclarationReferenced(ConstructLoc, Constructor);
 | |
|   return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
 | |
|                                         Constructor, Elidable, Exprs, NumExprs, 
 | |
|                                         RequiresZeroInit,
 | |
|               static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
 | |
|                                         ParenRange));
 | |
| }
 | |
| 
 | |
| bool Sema::InitializeVarWithConstructor(VarDecl *VD,
 | |
|                                         CXXConstructorDecl *Constructor,
 | |
|                                         MultiExprArg Exprs) {
 | |
|   // FIXME: Provide the correct paren SourceRange when available.
 | |
|   ExprResult TempResult =
 | |
|     BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
 | |
|                           move(Exprs), false, CXXConstructExpr::CK_Complete,
 | |
|                           SourceRange());
 | |
|   if (TempResult.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   Expr *Temp = TempResult.takeAs<Expr>();
 | |
|   CheckImplicitConversions(Temp, VD->getLocation());
 | |
|   MarkDeclarationReferenced(VD->getLocation(), Constructor);
 | |
|   Temp = MaybeCreateExprWithCleanups(Temp);
 | |
|   VD->setInit(Temp);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
 | |
|   if (VD->isInvalidDecl()) return;
 | |
| 
 | |
|   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
 | |
|   if (ClassDecl->isInvalidDecl()) return;
 | |
|   if (ClassDecl->hasTrivialDestructor()) return;
 | |
|   if (ClassDecl->isDependentContext()) return;
 | |
| 
 | |
|   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
 | |
|   MarkDeclarationReferenced(VD->getLocation(), Destructor);
 | |
|   CheckDestructorAccess(VD->getLocation(), Destructor,
 | |
|                         PDiag(diag::err_access_dtor_var)
 | |
|                         << VD->getDeclName()
 | |
|                         << VD->getType());
 | |
| 
 | |
|   if (!VD->hasGlobalStorage()) return;
 | |
| 
 | |
|   // Emit warning for non-trivial dtor in global scope (a real global,
 | |
|   // class-static, function-static).
 | |
|   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
 | |
| 
 | |
|   // TODO: this should be re-enabled for static locals by !CXAAtExit
 | |
|   if (!VD->isStaticLocal())
 | |
|     Diag(VD->getLocation(), diag::warn_global_destructor);
 | |
| }
 | |
| 
 | |
| /// AddCXXDirectInitializerToDecl - This action is called immediately after
 | |
| /// ActOnDeclarator, when a C++ direct initializer is present.
 | |
| /// e.g: "int x(1);"
 | |
| void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
 | |
|                                          SourceLocation LParenLoc,
 | |
|                                          MultiExprArg Exprs,
 | |
|                                          SourceLocation RParenLoc,
 | |
|                                          bool TypeMayContainAuto) {
 | |
|   assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
 | |
| 
 | |
|   // If there is no declaration, there was an error parsing it.  Just ignore
 | |
|   // the initializer.
 | |
|   if (RealDecl == 0)
 | |
|     return;
 | |
| 
 | |
|   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
 | |
|   if (!VDecl) {
 | |
|     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
 | |
|     RealDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | |
|   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
 | |
|     // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
 | |
|     if (Exprs.size() > 1) {
 | |
|       Diag(Exprs.get()[1]->getSourceRange().getBegin(),
 | |
|            diag::err_auto_var_init_multiple_expressions)
 | |
|         << VDecl->getDeclName() << VDecl->getType()
 | |
|         << VDecl->getSourceRange();
 | |
|       RealDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Expr *Init = Exprs.get()[0];
 | |
|     TypeSourceInfo *DeducedType = 0;
 | |
|     if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
 | |
|       Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
 | |
|         << VDecl->getDeclName() << VDecl->getType() << Init->getType()
 | |
|         << Init->getSourceRange();
 | |
|     if (!DeducedType) {
 | |
|       RealDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
|     VDecl->setTypeSourceInfo(DeducedType);
 | |
|     VDecl->setType(DeducedType->getType());
 | |
| 
 | |
|     // If this is a redeclaration, check that the type we just deduced matches
 | |
|     // the previously declared type.
 | |
|     if (VarDecl *Old = VDecl->getPreviousDeclaration())
 | |
|       MergeVarDeclTypes(VDecl, Old);
 | |
|   }
 | |
| 
 | |
|   // We will represent direct-initialization similarly to copy-initialization:
 | |
|   //    int x(1);  -as-> int x = 1;
 | |
|   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
 | |
|   //
 | |
|   // Clients that want to distinguish between the two forms, can check for
 | |
|   // direct initializer using VarDecl::hasCXXDirectInitializer().
 | |
|   // A major benefit is that clients that don't particularly care about which
 | |
|   // exactly form was it (like the CodeGen) can handle both cases without
 | |
|   // special case code.
 | |
| 
 | |
|   // C++ 8.5p11:
 | |
|   // The form of initialization (using parentheses or '=') is generally
 | |
|   // insignificant, but does matter when the entity being initialized has a
 | |
|   // class type.
 | |
| 
 | |
|   if (!VDecl->getType()->isDependentType() &&
 | |
|       RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
 | |
|                           diag::err_typecheck_decl_incomplete_type)) {
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The variable can not have an abstract class type.
 | |
|   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
 | |
|                              diag::err_abstract_type_in_decl,
 | |
|                              AbstractVariableType))
 | |
|     VDecl->setInvalidDecl();
 | |
| 
 | |
|   const VarDecl *Def;
 | |
|   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
 | |
|     Diag(VDecl->getLocation(), diag::err_redefinition)
 | |
|     << VDecl->getDeclName();
 | |
|     Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.static.data]p4
 | |
|   //   If a static data member is of const integral or const
 | |
|   //   enumeration type, its declaration in the class definition can
 | |
|   //   specify a constant-initializer which shall be an integral
 | |
|   //   constant expression (5.19). In that case, the member can appear
 | |
|   //   in integral constant expressions. The member shall still be
 | |
|   //   defined in a namespace scope if it is used in the program and the
 | |
|   //   namespace scope definition shall not contain an initializer.
 | |
|   //
 | |
|   // We already performed a redefinition check above, but for static
 | |
|   // data members we also need to check whether there was an in-class
 | |
|   // declaration with an initializer.
 | |
|   const VarDecl* PrevInit = 0;
 | |
|   if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
 | |
|     Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
 | |
|     Diag(PrevInit->getLocation(), diag::note_previous_definition);
 | |
|     return;
 | |
|   } 
 | |
| 
 | |
|   bool IsDependent = false;
 | |
|   for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
 | |
|     if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
 | |
|       VDecl->setInvalidDecl();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (Exprs.get()[I]->isTypeDependent())
 | |
|       IsDependent = true;
 | |
|   }
 | |
| 
 | |
|   // If either the declaration has a dependent type or if any of the
 | |
|   // expressions is type-dependent, we represent the initialization
 | |
|   // via a ParenListExpr for later use during template instantiation.
 | |
|   if (VDecl->getType()->isDependentType() || IsDependent) {
 | |
|     // Let clients know that initialization was done with a direct initializer.
 | |
|     VDecl->setCXXDirectInitializer(true);
 | |
| 
 | |
|     // Store the initialization expressions as a ParenListExpr.
 | |
|     unsigned NumExprs = Exprs.size();
 | |
|     VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
 | |
|                                                (Expr **)Exprs.release(),
 | |
|                                                NumExprs, RParenLoc));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Capture the variable that is being initialized and the style of
 | |
|   // initialization.
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
 | |
|   
 | |
|   // FIXME: Poor source location information.
 | |
|   InitializationKind Kind
 | |
|     = InitializationKind::CreateDirect(VDecl->getLocation(),
 | |
|                                        LParenLoc, RParenLoc);
 | |
|   
 | |
|   InitializationSequence InitSeq(*this, Entity, Kind, 
 | |
|                                  Exprs.get(), Exprs.size());
 | |
|   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
 | |
|   if (Result.isInvalid()) {
 | |
|     VDecl->setInvalidDecl();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   CheckImplicitConversions(Result.get(), LParenLoc);
 | |
|   
 | |
|   Result = MaybeCreateExprWithCleanups(Result);
 | |
|   VDecl->setInit(Result.takeAs<Expr>());
 | |
|   VDecl->setCXXDirectInitializer(true);
 | |
| 
 | |
|   CheckCompleteVariableDeclaration(VDecl);
 | |
| }
 | |
| 
 | |
| /// \brief Given a constructor and the set of arguments provided for the
 | |
| /// constructor, convert the arguments and add any required default arguments
 | |
| /// to form a proper call to this constructor.
 | |
| ///
 | |
| /// \returns true if an error occurred, false otherwise.
 | |
| bool 
 | |
| Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
 | |
|                               MultiExprArg ArgsPtr,
 | |
|                               SourceLocation Loc,                                    
 | |
|                               ASTOwningVector<Expr*> &ConvertedArgs) {
 | |
|   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
 | |
|   unsigned NumArgs = ArgsPtr.size();
 | |
|   Expr **Args = (Expr **)ArgsPtr.get();
 | |
| 
 | |
|   const FunctionProtoType *Proto 
 | |
|     = Constructor->getType()->getAs<FunctionProtoType>();
 | |
|   assert(Proto && "Constructor without a prototype?");
 | |
|   unsigned NumArgsInProto = Proto->getNumArgs();
 | |
|   
 | |
|   // If too few arguments are available, we'll fill in the rest with defaults.
 | |
|   if (NumArgs < NumArgsInProto)
 | |
|     ConvertedArgs.reserve(NumArgsInProto);
 | |
|   else
 | |
|     ConvertedArgs.reserve(NumArgs);
 | |
| 
 | |
|   VariadicCallType CallType = 
 | |
|     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
 | |
|   llvm::SmallVector<Expr *, 8> AllArgs;
 | |
|   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
 | |
|                                         Proto, 0, Args, NumArgs, AllArgs, 
 | |
|                                         CallType);
 | |
|   for (unsigned i =0, size = AllArgs.size(); i < size; i++)
 | |
|     ConvertedArgs.push_back(AllArgs[i]);
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 
 | |
|                                        const FunctionDecl *FnDecl) {
 | |
|   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
 | |
|   if (isa<NamespaceDecl>(DC)) {
 | |
|     return SemaRef.Diag(FnDecl->getLocation(), 
 | |
|                         diag::err_operator_new_delete_declared_in_namespace)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
|   
 | |
|   if (isa<TranslationUnitDecl>(DC) && 
 | |
|       FnDecl->getStorageClass() == SC_Static) {
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_declared_static)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
 | |
|                             CanQualType ExpectedResultType,
 | |
|                             CanQualType ExpectedFirstParamType,
 | |
|                             unsigned DependentParamTypeDiag,
 | |
|                             unsigned InvalidParamTypeDiag) {
 | |
|   QualType ResultType = 
 | |
|     FnDecl->getType()->getAs<FunctionType>()->getResultType();
 | |
| 
 | |
|   // Check that the result type is not dependent.
 | |
|   if (ResultType->isDependentType())
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_dependent_result_type)
 | |
|     << FnDecl->getDeclName() << ExpectedResultType;
 | |
| 
 | |
|   // Check that the result type is what we expect.
 | |
|   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_invalid_result_type) 
 | |
|     << FnDecl->getDeclName() << ExpectedResultType;
 | |
|   
 | |
|   // A function template must have at least 2 parameters.
 | |
|   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                       diag::err_operator_new_delete_template_too_few_parameters)
 | |
|         << FnDecl->getDeclName();
 | |
|   
 | |
|   // The function decl must have at least 1 parameter.
 | |
|   if (FnDecl->getNumParams() == 0)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_delete_too_few_parameters)
 | |
|       << FnDecl->getDeclName();
 | |
|  
 | |
|   // Check the the first parameter type is not dependent.
 | |
|   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
 | |
|   if (FirstParamType->isDependentType())
 | |
|     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
 | |
|       << FnDecl->getDeclName() << ExpectedFirstParamType;
 | |
| 
 | |
|   // Check that the first parameter type is what we expect.
 | |
|   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 
 | |
|       ExpectedFirstParamType)
 | |
|     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
 | |
|     << FnDecl->getDeclName() << ExpectedFirstParamType;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
 | |
|   // C++ [basic.stc.dynamic.allocation]p1:
 | |
|   //   A program is ill-formed if an allocation function is declared in a
 | |
|   //   namespace scope other than global scope or declared static in global 
 | |
|   //   scope.
 | |
|   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
 | |
|     return true;
 | |
| 
 | |
|   CanQualType SizeTy = 
 | |
|     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.allocation]p1:
 | |
|   //  The return type shall be void*. The first parameter shall have type 
 | |
|   //  std::size_t.
 | |
|   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 
 | |
|                                   SizeTy,
 | |
|                                   diag::err_operator_new_dependent_param_type,
 | |
|                                   diag::err_operator_new_param_type))
 | |
|     return true;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.allocation]p1:
 | |
|   //  The first parameter shall not have an associated default argument.
 | |
|   if (FnDecl->getParamDecl(0)->hasDefaultArg())
 | |
|     return SemaRef.Diag(FnDecl->getLocation(),
 | |
|                         diag::err_operator_new_default_arg)
 | |
|       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
 | |
|   // C++ [basic.stc.dynamic.deallocation]p1:
 | |
|   //   A program is ill-formed if deallocation functions are declared in a
 | |
|   //   namespace scope other than global scope or declared static in global 
 | |
|   //   scope.
 | |
|   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
 | |
|     return true;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   Each deallocation function shall return void and its first parameter 
 | |
|   //   shall be void*.
 | |
|   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, 
 | |
|                                   SemaRef.Context.VoidPtrTy,
 | |
|                                  diag::err_operator_delete_dependent_param_type,
 | |
|                                  diag::err_operator_delete_param_type))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckOverloadedOperatorDeclaration - Check whether the declaration
 | |
| /// of this overloaded operator is well-formed. If so, returns false;
 | |
| /// otherwise, emits appropriate diagnostics and returns true.
 | |
| bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
 | |
|   assert(FnDecl && FnDecl->isOverloadedOperator() &&
 | |
|          "Expected an overloaded operator declaration");
 | |
| 
 | |
|   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
 | |
| 
 | |
|   // C++ [over.oper]p5:
 | |
|   //   The allocation and deallocation functions, operator new,
 | |
|   //   operator new[], operator delete and operator delete[], are
 | |
|   //   described completely in 3.7.3. The attributes and restrictions
 | |
|   //   found in the rest of this subclause do not apply to them unless
 | |
|   //   explicitly stated in 3.7.3.
 | |
|   if (Op == OO_Delete || Op == OO_Array_Delete)
 | |
|     return CheckOperatorDeleteDeclaration(*this, FnDecl);
 | |
|   
 | |
|   if (Op == OO_New || Op == OO_Array_New)
 | |
|     return CheckOperatorNewDeclaration(*this, FnDecl);
 | |
| 
 | |
|   // C++ [over.oper]p6:
 | |
|   //   An operator function shall either be a non-static member
 | |
|   //   function or be a non-member function and have at least one
 | |
|   //   parameter whose type is a class, a reference to a class, an
 | |
|   //   enumeration, or a reference to an enumeration.
 | |
|   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | |
|     if (MethodDecl->isStatic())
 | |
|       return Diag(FnDecl->getLocation(),
 | |
|                   diag::err_operator_overload_static) << FnDecl->getDeclName();
 | |
|   } else {
 | |
|     bool ClassOrEnumParam = false;
 | |
|     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
 | |
|                                    ParamEnd = FnDecl->param_end();
 | |
|          Param != ParamEnd; ++Param) {
 | |
|       QualType ParamType = (*Param)->getType().getNonReferenceType();
 | |
|       if (ParamType->isDependentType() || ParamType->isRecordType() ||
 | |
|           ParamType->isEnumeralType()) {
 | |
|         ClassOrEnumParam = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!ClassOrEnumParam)
 | |
|       return Diag(FnDecl->getLocation(),
 | |
|                   diag::err_operator_overload_needs_class_or_enum)
 | |
|         << FnDecl->getDeclName();
 | |
|   }
 | |
| 
 | |
|   // C++ [over.oper]p8:
 | |
|   //   An operator function cannot have default arguments (8.3.6),
 | |
|   //   except where explicitly stated below.
 | |
|   //
 | |
|   // Only the function-call operator allows default arguments
 | |
|   // (C++ [over.call]p1).
 | |
|   if (Op != OO_Call) {
 | |
|     for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
 | |
|          Param != FnDecl->param_end(); ++Param) {
 | |
|       if ((*Param)->hasDefaultArg())
 | |
|         return Diag((*Param)->getLocation(),
 | |
|                     diag::err_operator_overload_default_arg)
 | |
|           << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
 | |
|     { false, false, false }
 | |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
 | |
|     , { Unary, Binary, MemberOnly }
 | |
| #include "clang/Basic/OperatorKinds.def"
 | |
|   };
 | |
| 
 | |
|   bool CanBeUnaryOperator = OperatorUses[Op][0];
 | |
|   bool CanBeBinaryOperator = OperatorUses[Op][1];
 | |
|   bool MustBeMemberOperator = OperatorUses[Op][2];
 | |
| 
 | |
|   // C++ [over.oper]p8:
 | |
|   //   [...] Operator functions cannot have more or fewer parameters
 | |
|   //   than the number required for the corresponding operator, as
 | |
|   //   described in the rest of this subclause.
 | |
|   unsigned NumParams = FnDecl->getNumParams()
 | |
|                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
 | |
|   if (Op != OO_Call &&
 | |
|       ((NumParams == 1 && !CanBeUnaryOperator) ||
 | |
|        (NumParams == 2 && !CanBeBinaryOperator) ||
 | |
|        (NumParams < 1) || (NumParams > 2))) {
 | |
|     // We have the wrong number of parameters.
 | |
|     unsigned ErrorKind;
 | |
|     if (CanBeUnaryOperator && CanBeBinaryOperator) {
 | |
|       ErrorKind = 2;  // 2 -> unary or binary.
 | |
|     } else if (CanBeUnaryOperator) {
 | |
|       ErrorKind = 0;  // 0 -> unary
 | |
|     } else {
 | |
|       assert(CanBeBinaryOperator &&
 | |
|              "All non-call overloaded operators are unary or binary!");
 | |
|       ErrorKind = 1;  // 1 -> binary
 | |
|     }
 | |
| 
 | |
|     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
 | |
|       << FnDecl->getDeclName() << NumParams << ErrorKind;
 | |
|   }
 | |
| 
 | |
|   // Overloaded operators other than operator() cannot be variadic.
 | |
|   if (Op != OO_Call &&
 | |
|       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
 | |
|     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
| 
 | |
|   // Some operators must be non-static member functions.
 | |
|   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
 | |
|     return Diag(FnDecl->getLocation(),
 | |
|                 diag::err_operator_overload_must_be_member)
 | |
|       << FnDecl->getDeclName();
 | |
|   }
 | |
| 
 | |
|   // C++ [over.inc]p1:
 | |
|   //   The user-defined function called operator++ implements the
 | |
|   //   prefix and postfix ++ operator. If this function is a member
 | |
|   //   function with no parameters, or a non-member function with one
 | |
|   //   parameter of class or enumeration type, it defines the prefix
 | |
|   //   increment operator ++ for objects of that type. If the function
 | |
|   //   is a member function with one parameter (which shall be of type
 | |
|   //   int) or a non-member function with two parameters (the second
 | |
|   //   of which shall be of type int), it defines the postfix
 | |
|   //   increment operator ++ for objects of that type.
 | |
|   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
 | |
|     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
 | |
|     bool ParamIsInt = false;
 | |
|     if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
 | |
|       ParamIsInt = BT->getKind() == BuiltinType::Int;
 | |
| 
 | |
|     if (!ParamIsInt)
 | |
|       return Diag(LastParam->getLocation(),
 | |
|                   diag::err_operator_overload_post_incdec_must_be_int)
 | |
|         << LastParam->getType() << (Op == OO_MinusMinus);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckLiteralOperatorDeclaration - Check whether the declaration
 | |
| /// of this literal operator function is well-formed. If so, returns
 | |
| /// false; otherwise, emits appropriate diagnostics and returns true.
 | |
| bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
 | |
|   DeclContext *DC = FnDecl->getDeclContext();
 | |
|   Decl::Kind Kind = DC->getDeclKind();
 | |
|   if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
 | |
|       Kind != Decl::LinkageSpec) {
 | |
|     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
 | |
|       << FnDecl->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool Valid = false;
 | |
| 
 | |
|   // template <char...> type operator "" name() is the only valid template
 | |
|   // signature, and the only valid signature with no parameters.
 | |
|   if (FnDecl->param_size() == 0) {
 | |
|     if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
 | |
|       // Must have only one template parameter
 | |
|       TemplateParameterList *Params = TpDecl->getTemplateParameters();
 | |
|       if (Params->size() == 1) {
 | |
|         NonTypeTemplateParmDecl *PmDecl =
 | |
|           cast<NonTypeTemplateParmDecl>(Params->getParam(0));
 | |
| 
 | |
|         // The template parameter must be a char parameter pack.
 | |
|         if (PmDecl && PmDecl->isTemplateParameterPack() &&
 | |
|             Context.hasSameType(PmDecl->getType(), Context.CharTy))
 | |
|           Valid = true;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Check the first parameter
 | |
|     FunctionDecl::param_iterator Param = FnDecl->param_begin();
 | |
| 
 | |
|     QualType T = (*Param)->getType();
 | |
| 
 | |
|     // unsigned long long int, long double, and any character type are allowed
 | |
|     // as the only parameters.
 | |
|     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
 | |
|         Context.hasSameType(T, Context.LongDoubleTy) ||
 | |
|         Context.hasSameType(T, Context.CharTy) ||
 | |
|         Context.hasSameType(T, Context.WCharTy) ||
 | |
|         Context.hasSameType(T, Context.Char16Ty) ||
 | |
|         Context.hasSameType(T, Context.Char32Ty)) {
 | |
|       if (++Param == FnDecl->param_end())
 | |
|         Valid = true;
 | |
|       goto FinishedParams;
 | |
|     }
 | |
| 
 | |
|     // Otherwise it must be a pointer to const; let's strip those qualifiers.
 | |
|     const PointerType *PT = T->getAs<PointerType>();
 | |
|     if (!PT)
 | |
|       goto FinishedParams;
 | |
|     T = PT->getPointeeType();
 | |
|     if (!T.isConstQualified())
 | |
|       goto FinishedParams;
 | |
|     T = T.getUnqualifiedType();
 | |
| 
 | |
|     // Move on to the second parameter;
 | |
|     ++Param;
 | |
| 
 | |
|     // If there is no second parameter, the first must be a const char *
 | |
|     if (Param == FnDecl->param_end()) {
 | |
|       if (Context.hasSameType(T, Context.CharTy))
 | |
|         Valid = true;
 | |
|       goto FinishedParams;
 | |
|     }
 | |
| 
 | |
|     // const char *, const wchar_t*, const char16_t*, and const char32_t*
 | |
|     // are allowed as the first parameter to a two-parameter function
 | |
|     if (!(Context.hasSameType(T, Context.CharTy) ||
 | |
|           Context.hasSameType(T, Context.WCharTy) ||
 | |
|           Context.hasSameType(T, Context.Char16Ty) ||
 | |
|           Context.hasSameType(T, Context.Char32Ty)))
 | |
|       goto FinishedParams;
 | |
| 
 | |
|     // The second and final parameter must be an std::size_t
 | |
|     T = (*Param)->getType().getUnqualifiedType();
 | |
|     if (Context.hasSameType(T, Context.getSizeType()) &&
 | |
|         ++Param == FnDecl->param_end())
 | |
|       Valid = true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: This diagnostic is absolutely terrible.
 | |
| FinishedParams:
 | |
|   if (!Valid) {
 | |
|     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
 | |
|       << FnDecl->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
 | |
| /// linkage specification, including the language and (if present)
 | |
| /// the '{'. ExternLoc is the location of the 'extern', LangLoc is
 | |
| /// the location of the language string literal, which is provided
 | |
| /// by Lang/StrSize. LBraceLoc, if valid, provides the location of
 | |
| /// the '{' brace. Otherwise, this linkage specification does not
 | |
| /// have any braces.
 | |
| Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
 | |
|                                            SourceLocation LangLoc,
 | |
|                                            llvm::StringRef Lang,
 | |
|                                            SourceLocation LBraceLoc) {
 | |
|   LinkageSpecDecl::LanguageIDs Language;
 | |
|   if (Lang == "\"C\"")
 | |
|     Language = LinkageSpecDecl::lang_c;
 | |
|   else if (Lang == "\"C++\"")
 | |
|     Language = LinkageSpecDecl::lang_cxx;
 | |
|   else {
 | |
|     Diag(LangLoc, diag::err_bad_language);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Add all the various semantics of linkage specifications
 | |
| 
 | |
|   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
 | |
|                                                ExternLoc, LangLoc, Language);
 | |
|   CurContext->addDecl(D);
 | |
|   PushDeclContext(S, D);
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| /// ActOnFinishLinkageSpecification - Complete the definition of
 | |
| /// the C++ linkage specification LinkageSpec. If RBraceLoc is
 | |
| /// valid, it's the position of the closing '}' brace in a linkage
 | |
| /// specification that uses braces.
 | |
| Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
 | |
|                                             Decl *LinkageSpec,
 | |
|                                             SourceLocation RBraceLoc) {
 | |
|   if (LinkageSpec) {
 | |
|     if (RBraceLoc.isValid()) {
 | |
|       LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
 | |
|       LSDecl->setRBraceLoc(RBraceLoc);
 | |
|     }
 | |
|     PopDeclContext();
 | |
|   }
 | |
|   return LinkageSpec;
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic analysis for the variable declaration that
 | |
| /// occurs within a C++ catch clause, returning the newly-created
 | |
| /// variable.
 | |
| VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
 | |
|                                          TypeSourceInfo *TInfo,
 | |
|                                          SourceLocation StartLoc,
 | |
|                                          SourceLocation Loc,
 | |
|                                          IdentifierInfo *Name) {
 | |
|   bool Invalid = false;
 | |
|   QualType ExDeclType = TInfo->getType();
 | |
|   
 | |
|   // Arrays and functions decay.
 | |
|   if (ExDeclType->isArrayType())
 | |
|     ExDeclType = Context.getArrayDecayedType(ExDeclType);
 | |
|   else if (ExDeclType->isFunctionType())
 | |
|     ExDeclType = Context.getPointerType(ExDeclType);
 | |
| 
 | |
|   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
 | |
|   // The exception-declaration shall not denote a pointer or reference to an
 | |
|   // incomplete type, other than [cv] void*.
 | |
|   // N2844 forbids rvalue references.
 | |
|   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
 | |
|     Diag(Loc, diag::err_catch_rvalue_ref);
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   // GCC allows catching pointers and references to incomplete types
 | |
|   // as an extension; so do we, but we warn by default.
 | |
| 
 | |
|   QualType BaseType = ExDeclType;
 | |
|   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
 | |
|   unsigned DK = diag::err_catch_incomplete;
 | |
|   bool IncompleteCatchIsInvalid = true;
 | |
|   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
 | |
|     BaseType = Ptr->getPointeeType();
 | |
|     Mode = 1;
 | |
|     DK = diag::ext_catch_incomplete_ptr;
 | |
|     IncompleteCatchIsInvalid = false;
 | |
|   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
 | |
|     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
 | |
|     BaseType = Ref->getPointeeType();
 | |
|     Mode = 2;
 | |
|     DK = diag::ext_catch_incomplete_ref;
 | |
|     IncompleteCatchIsInvalid = false;
 | |
|   }
 | |
|   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
 | |
|       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
 | |
|       IncompleteCatchIsInvalid)
 | |
|     Invalid = true;
 | |
| 
 | |
|   if (!Invalid && !ExDeclType->isDependentType() &&
 | |
|       RequireNonAbstractType(Loc, ExDeclType,
 | |
|                              diag::err_abstract_type_in_decl,
 | |
|                              AbstractVariableType))
 | |
|     Invalid = true;
 | |
| 
 | |
|   // Only the non-fragile NeXT runtime currently supports C++ catches
 | |
|   // of ObjC types, and no runtime supports catching ObjC types by value.
 | |
|   if (!Invalid && getLangOptions().ObjC1) {
 | |
|     QualType T = ExDeclType;
 | |
|     if (const ReferenceType *RT = T->getAs<ReferenceType>())
 | |
|       T = RT->getPointeeType();
 | |
| 
 | |
|     if (T->isObjCObjectType()) {
 | |
|       Diag(Loc, diag::err_objc_object_catch);
 | |
|       Invalid = true;
 | |
|     } else if (T->isObjCObjectPointerType()) {
 | |
|       if (!getLangOptions().ObjCNonFragileABI) {
 | |
|         Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
 | |
|         Invalid = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
 | |
|                                     ExDeclType, TInfo, SC_None, SC_None);
 | |
|   ExDecl->setExceptionVariable(true);
 | |
|   
 | |
|   if (!Invalid) {
 | |
|     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
 | |
|       // C++ [except.handle]p16:
 | |
|       //   The object declared in an exception-declaration or, if the 
 | |
|       //   exception-declaration does not specify a name, a temporary (12.2) is 
 | |
|       //   copy-initialized (8.5) from the exception object. [...]
 | |
|       //   The object is destroyed when the handler exits, after the destruction
 | |
|       //   of any automatic objects initialized within the handler.
 | |
|       //
 | |
|       // We just pretend to initialize the object with itself, then make sure 
 | |
|       // it can be destroyed later.
 | |
|       QualType initType = ExDeclType;
 | |
| 
 | |
|       InitializedEntity entity =
 | |
|         InitializedEntity::InitializeVariable(ExDecl);
 | |
|       InitializationKind initKind =
 | |
|         InitializationKind::CreateCopy(Loc, SourceLocation());
 | |
| 
 | |
|       Expr *opaqueValue =
 | |
|         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
 | |
|       InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
 | |
|       ExprResult result = sequence.Perform(*this, entity, initKind,
 | |
|                                            MultiExprArg(&opaqueValue, 1));
 | |
|       if (result.isInvalid())
 | |
|         Invalid = true;
 | |
|       else {
 | |
|         // If the constructor used was non-trivial, set this as the
 | |
|         // "initializer".
 | |
|         CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
 | |
|         if (!construct->getConstructor()->isTrivial()) {
 | |
|           Expr *init = MaybeCreateExprWithCleanups(construct);
 | |
|           ExDecl->setInit(init);
 | |
|         }
 | |
|         
 | |
|         // And make sure it's destructable.
 | |
|         FinalizeVarWithDestructor(ExDecl, recordType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Invalid)
 | |
|     ExDecl->setInvalidDecl();
 | |
| 
 | |
|   return ExDecl;
 | |
| }
 | |
| 
 | |
| /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
 | |
| /// handler.
 | |
| Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   bool Invalid = D.isInvalidType();
 | |
| 
 | |
|   // Check for unexpanded parameter packs.
 | |
|   if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | |
|                                                UPPC_ExceptionType)) {
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 
 | |
|                                              D.getIdentifierLoc());
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   IdentifierInfo *II = D.getIdentifier();
 | |
|   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
 | |
|                                              LookupOrdinaryName,
 | |
|                                              ForRedeclaration)) {
 | |
|     // The scope should be freshly made just for us. There is just no way
 | |
|     // it contains any previous declaration.
 | |
|     assert(!S->isDeclScope(PrevDecl));
 | |
|     if (PrevDecl->isTemplateParameter()) {
 | |
|       // Maybe we will complain about the shadowed template parameter.
 | |
|       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (D.getCXXScopeSpec().isSet() && !Invalid) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
 | |
|       << D.getCXXScopeSpec().getRange();
 | |
|     Invalid = true;
 | |
|   }
 | |
| 
 | |
|   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
 | |
|                                               D.getSourceRange().getBegin(),
 | |
|                                               D.getIdentifierLoc(),
 | |
|                                               D.getIdentifier());
 | |
|   if (Invalid)
 | |
|     ExDecl->setInvalidDecl();
 | |
| 
 | |
|   // Add the exception declaration into this scope.
 | |
|   if (II)
 | |
|     PushOnScopeChains(ExDecl, S);
 | |
|   else
 | |
|     CurContext->addDecl(ExDecl);
 | |
| 
 | |
|   ProcessDeclAttributes(S, ExDecl, D);
 | |
|   return ExDecl;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
 | |
|                                          Expr *AssertExpr,
 | |
|                                          Expr *AssertMessageExpr_,
 | |
|                                          SourceLocation RParenLoc) {
 | |
|   StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
 | |
| 
 | |
|   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
 | |
|     llvm::APSInt Value(32);
 | |
|     if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
 | |
|       Diag(StaticAssertLoc,
 | |
|            diag::err_static_assert_expression_is_not_constant) <<
 | |
|         AssertExpr->getSourceRange();
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     if (Value == 0) {
 | |
|       Diag(StaticAssertLoc, diag::err_static_assert_failed)
 | |
|         << AssertMessage->getString() << AssertExpr->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
 | |
|     return 0;
 | |
| 
 | |
|   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
 | |
|                                         AssertExpr, AssertMessage, RParenLoc);
 | |
| 
 | |
|   CurContext->addDecl(Decl);
 | |
|   return Decl;
 | |
| }
 | |
| 
 | |
| /// \brief Perform semantic analysis of the given friend type declaration.
 | |
| ///
 | |
| /// \returns A friend declaration that.
 | |
| FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc, 
 | |
|                                       TypeSourceInfo *TSInfo) {
 | |
|   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
 | |
|   
 | |
|   QualType T = TSInfo->getType();
 | |
|   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
 | |
|   
 | |
|   if (!getLangOptions().CPlusPlus0x) {
 | |
|     // C++03 [class.friend]p2:
 | |
|     //   An elaborated-type-specifier shall be used in a friend declaration
 | |
|     //   for a class.*
 | |
|     //
 | |
|     //   * The class-key of the elaborated-type-specifier is required.
 | |
|     if (!ActiveTemplateInstantiations.empty()) {
 | |
|       // Do not complain about the form of friend template types during
 | |
|       // template instantiation; we will already have complained when the
 | |
|       // template was declared.
 | |
|     } else if (!T->isElaboratedTypeSpecifier()) {
 | |
|       // If we evaluated the type to a record type, suggest putting
 | |
|       // a tag in front.
 | |
|       if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|         RecordDecl *RD = RT->getDecl();
 | |
|         
 | |
|         std::string InsertionText = std::string(" ") + RD->getKindName();
 | |
|         
 | |
|         Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
 | |
|           << (unsigned) RD->getTagKind()
 | |
|           << T
 | |
|           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
 | |
|                                         InsertionText);
 | |
|       } else {
 | |
|         Diag(FriendLoc, diag::ext_nonclass_type_friend)
 | |
|           << T
 | |
|           << SourceRange(FriendLoc, TypeRange.getEnd());
 | |
|       }
 | |
|     } else if (T->getAs<EnumType>()) {
 | |
|       Diag(FriendLoc, diag::ext_enum_friend)
 | |
|         << T
 | |
|         << SourceRange(FriendLoc, TypeRange.getEnd());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // C++0x [class.friend]p3:
 | |
|   //   If the type specifier in a friend declaration designates a (possibly
 | |
|   //   cv-qualified) class type, that class is declared as a friend; otherwise, 
 | |
|   //   the friend declaration is ignored.
 | |
|   
 | |
|   // FIXME: C++0x has some syntactic restrictions on friend type declarations
 | |
|   // in [class.friend]p3 that we do not implement.
 | |
|   
 | |
|   return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
 | |
| }
 | |
| 
 | |
| /// Handle a friend tag declaration where the scope specifier was
 | |
| /// templated.
 | |
| Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
 | |
|                                     unsigned TagSpec, SourceLocation TagLoc,
 | |
|                                     CXXScopeSpec &SS,
 | |
|                                     IdentifierInfo *Name, SourceLocation NameLoc,
 | |
|                                     AttributeList *Attr,
 | |
|                                     MultiTemplateParamsArg TempParamLists) {
 | |
|   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | |
| 
 | |
|   bool isExplicitSpecialization = false;
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   if (TemplateParameterList *TemplateParams
 | |
|         = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
 | |
|                                                   TempParamLists.get(),
 | |
|                                                   TempParamLists.size(),
 | |
|                                                   /*friend*/ true,
 | |
|                                                   isExplicitSpecialization,
 | |
|                                                   Invalid)) {
 | |
|     if (TemplateParams->size() > 0) {
 | |
|       // This is a declaration of a class template.
 | |
|       if (Invalid)
 | |
|         return 0;
 | |
| 
 | |
|       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
 | |
|                                 SS, Name, NameLoc, Attr,
 | |
|                                 TemplateParams, AS_public,
 | |
|                                 TempParamLists.size() - 1,
 | |
|                    (TemplateParameterList**) TempParamLists.release()).take();
 | |
|     } else {
 | |
|       // The "template<>" header is extraneous.
 | |
|       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
 | |
|         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
 | |
|       isExplicitSpecialization = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Invalid) return 0;
 | |
| 
 | |
|   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
 | |
| 
 | |
|   bool isAllExplicitSpecializations = true;
 | |
|   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
 | |
|     if (TempParamLists.get()[I]->size()) {
 | |
|       isAllExplicitSpecializations = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: don't ignore attributes.
 | |
| 
 | |
|   // If it's explicit specializations all the way down, just forget
 | |
|   // about the template header and build an appropriate non-templated
 | |
|   // friend.  TODO: for source fidelity, remember the headers.
 | |
|   if (isAllExplicitSpecializations) {
 | |
|     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | |
|     ElaboratedTypeKeyword Keyword
 | |
|       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
 | |
|     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
 | |
|                                    *Name, NameLoc);
 | |
|     if (T.isNull())
 | |
|       return 0;
 | |
| 
 | |
|     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
 | |
|     if (isa<DependentNameType>(T)) {
 | |
|       DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
 | |
|       TL.setKeywordLoc(TagLoc);
 | |
|       TL.setQualifierLoc(QualifierLoc);
 | |
|       TL.setNameLoc(NameLoc);
 | |
|     } else {
 | |
|       ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
 | |
|       TL.setKeywordLoc(TagLoc);
 | |
|       TL.setQualifierLoc(QualifierLoc);
 | |
|       cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
 | |
|     }
 | |
| 
 | |
|     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
 | |
|                                             TSI, FriendLoc);
 | |
|     Friend->setAccess(AS_public);
 | |
|     CurContext->addDecl(Friend);
 | |
|     return Friend;
 | |
|   }
 | |
| 
 | |
|   // Handle the case of a templated-scope friend class.  e.g.
 | |
|   //   template <class T> class A<T>::B;
 | |
|   // FIXME: we don't support these right now.
 | |
|   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
 | |
|   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
 | |
|   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
 | |
|   DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
 | |
|   TL.setKeywordLoc(TagLoc);
 | |
|   TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | |
|   TL.setNameLoc(NameLoc);
 | |
| 
 | |
|   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
 | |
|                                           TSI, FriendLoc);
 | |
|   Friend->setAccess(AS_public);
 | |
|   Friend->setUnsupportedFriend(true);
 | |
|   CurContext->addDecl(Friend);
 | |
|   return Friend;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Handle a friend type declaration.  This works in tandem with
 | |
| /// ActOnTag.
 | |
| ///
 | |
| /// Notes on friend class templates:
 | |
| ///
 | |
| /// We generally treat friend class declarations as if they were
 | |
| /// declaring a class.  So, for example, the elaborated type specifier
 | |
| /// in a friend declaration is required to obey the restrictions of a
 | |
| /// class-head (i.e. no typedefs in the scope chain), template
 | |
| /// parameters are required to match up with simple template-ids, &c.
 | |
| /// However, unlike when declaring a template specialization, it's
 | |
| /// okay to refer to a template specialization without an empty
 | |
| /// template parameter declaration, e.g.
 | |
| ///   friend class A<T>::B<unsigned>;
 | |
| /// We permit this as a special case; if there are any template
 | |
| /// parameters present at all, require proper matching, i.e.
 | |
| ///   template <> template <class T> friend class A<int>::B;
 | |
| Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
 | |
|                                 MultiTemplateParamsArg TempParams) {
 | |
|   SourceLocation Loc = DS.getSourceRange().getBegin();
 | |
| 
 | |
|   assert(DS.isFriendSpecified());
 | |
|   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
 | |
| 
 | |
|   // Try to convert the decl specifier to a type.  This works for
 | |
|   // friend templates because ActOnTag never produces a ClassTemplateDecl
 | |
|   // for a TUK_Friend.
 | |
|   Declarator TheDeclarator(DS, Declarator::MemberContext);
 | |
|   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
 | |
|   QualType T = TSI->getType();
 | |
|   if (TheDeclarator.isInvalidType())
 | |
|     return 0;
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
 | |
|     return 0;
 | |
| 
 | |
|   // This is definitely an error in C++98.  It's probably meant to
 | |
|   // be forbidden in C++0x, too, but the specification is just
 | |
|   // poorly written.
 | |
|   //
 | |
|   // The problem is with declarations like the following:
 | |
|   //   template <T> friend A<T>::foo;
 | |
|   // where deciding whether a class C is a friend or not now hinges
 | |
|   // on whether there exists an instantiation of A that causes
 | |
|   // 'foo' to equal C.  There are restrictions on class-heads
 | |
|   // (which we declare (by fiat) elaborated friend declarations to
 | |
|   // be) that makes this tractable.
 | |
|   //
 | |
|   // FIXME: handle "template <> friend class A<T>;", which
 | |
|   // is possibly well-formed?  Who even knows?
 | |
|   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
 | |
|     Diag(Loc, diag::err_tagless_friend_type_template)
 | |
|       << DS.getSourceRange();
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // C++98 [class.friend]p1: A friend of a class is a function
 | |
|   //   or class that is not a member of the class . . .
 | |
|   // This is fixed in DR77, which just barely didn't make the C++03
 | |
|   // deadline.  It's also a very silly restriction that seriously
 | |
|   // affects inner classes and which nobody else seems to implement;
 | |
|   // thus we never diagnose it, not even in -pedantic.
 | |
|   //
 | |
|   // But note that we could warn about it: it's always useless to
 | |
|   // friend one of your own members (it's not, however, worthless to
 | |
|   // friend a member of an arbitrary specialization of your template).
 | |
| 
 | |
|   Decl *D;
 | |
|   if (unsigned NumTempParamLists = TempParams.size())
 | |
|     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
 | |
|                                    NumTempParamLists,
 | |
|                                    TempParams.release(),
 | |
|                                    TSI,
 | |
|                                    DS.getFriendSpecLoc());
 | |
|   else
 | |
|     D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
 | |
|   
 | |
|   if (!D)
 | |
|     return 0;
 | |
|   
 | |
|   D->setAccess(AS_public);
 | |
|   CurContext->addDecl(D);
 | |
| 
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
 | |
|                                     MultiTemplateParamsArg TemplateParams) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
| 
 | |
|   assert(DS.isFriendSpecified());
 | |
|   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
 | |
| 
 | |
|   SourceLocation Loc = D.getIdentifierLoc();
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType T = TInfo->getType();
 | |
| 
 | |
|   // C++ [class.friend]p1
 | |
|   //   A friend of a class is a function or class....
 | |
|   // Note that this sees through typedefs, which is intended.
 | |
|   // It *doesn't* see through dependent types, which is correct
 | |
|   // according to [temp.arg.type]p3:
 | |
|   //   If a declaration acquires a function type through a
 | |
|   //   type dependent on a template-parameter and this causes
 | |
|   //   a declaration that does not use the syntactic form of a
 | |
|   //   function declarator to have a function type, the program
 | |
|   //   is ill-formed.
 | |
|   if (!T->isFunctionType()) {
 | |
|     Diag(Loc, diag::err_unexpected_friend);
 | |
| 
 | |
|     // It might be worthwhile to try to recover by creating an
 | |
|     // appropriate declaration.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // C++ [namespace.memdef]p3
 | |
|   //  - If a friend declaration in a non-local class first declares a
 | |
|   //    class or function, the friend class or function is a member
 | |
|   //    of the innermost enclosing namespace.
 | |
|   //  - The name of the friend is not found by simple name lookup
 | |
|   //    until a matching declaration is provided in that namespace
 | |
|   //    scope (either before or after the class declaration granting
 | |
|   //    friendship).
 | |
|   //  - If a friend function is called, its name may be found by the
 | |
|   //    name lookup that considers functions from namespaces and
 | |
|   //    classes associated with the types of the function arguments.
 | |
|   //  - When looking for a prior declaration of a class or a function
 | |
|   //    declared as a friend, scopes outside the innermost enclosing
 | |
|   //    namespace scope are not considered.
 | |
| 
 | |
|   CXXScopeSpec &SS = D.getCXXScopeSpec();
 | |
|   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   assert(Name);
 | |
| 
 | |
|   // Check for unexpanded parameter packs.
 | |
|   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
 | |
|       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
 | |
|       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
 | |
|     return 0;
 | |
| 
 | |
|   // The context we found the declaration in, or in which we should
 | |
|   // create the declaration.
 | |
|   DeclContext *DC;
 | |
|   Scope *DCScope = S;
 | |
|   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
 | |
|                         ForRedeclaration);
 | |
| 
 | |
|   // FIXME: there are different rules in local classes
 | |
| 
 | |
|   // There are four cases here.
 | |
|   //   - There's no scope specifier, in which case we just go to the
 | |
|   //     appropriate scope and look for a function or function template
 | |
|   //     there as appropriate.
 | |
|   // Recover from invalid scope qualifiers as if they just weren't there.
 | |
|   if (SS.isInvalid() || !SS.isSet()) {
 | |
|     // C++0x [namespace.memdef]p3:
 | |
|     //   If the name in a friend declaration is neither qualified nor
 | |
|     //   a template-id and the declaration is a function or an
 | |
|     //   elaborated-type-specifier, the lookup to determine whether
 | |
|     //   the entity has been previously declared shall not consider
 | |
|     //   any scopes outside the innermost enclosing namespace.
 | |
|     // C++0x [class.friend]p11:
 | |
|     //   If a friend declaration appears in a local class and the name
 | |
|     //   specified is an unqualified name, a prior declaration is
 | |
|     //   looked up without considering scopes that are outside the
 | |
|     //   innermost enclosing non-class scope. For a friend function
 | |
|     //   declaration, if there is no prior declaration, the program is
 | |
|     //   ill-formed.
 | |
|     bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
 | |
|     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
 | |
| 
 | |
|     // Find the appropriate context according to the above.
 | |
|     DC = CurContext;
 | |
|     while (true) {
 | |
|       // Skip class contexts.  If someone can cite chapter and verse
 | |
|       // for this behavior, that would be nice --- it's what GCC and
 | |
|       // EDG do, and it seems like a reasonable intent, but the spec
 | |
|       // really only says that checks for unqualified existing
 | |
|       // declarations should stop at the nearest enclosing namespace,
 | |
|       // not that they should only consider the nearest enclosing
 | |
|       // namespace.
 | |
|       while (DC->isRecord()) 
 | |
|         DC = DC->getParent();
 | |
| 
 | |
|       LookupQualifiedName(Previous, DC);
 | |
| 
 | |
|       // TODO: decide what we think about using declarations.
 | |
|       if (isLocal || !Previous.empty())
 | |
|         break;
 | |
| 
 | |
|       if (isTemplateId) {
 | |
|         if (isa<TranslationUnitDecl>(DC)) break;
 | |
|       } else {
 | |
|         if (DC->isFileContext()) break;
 | |
|       }
 | |
|       DC = DC->getParent();
 | |
|     }
 | |
| 
 | |
|     // C++ [class.friend]p1: A friend of a class is a function or
 | |
|     //   class that is not a member of the class . . .
 | |
|     // C++0x changes this for both friend types and functions.
 | |
|     // Most C++ 98 compilers do seem to give an error here, so
 | |
|     // we do, too.
 | |
|     if (!Previous.empty() && DC->Equals(CurContext)
 | |
|         && !getLangOptions().CPlusPlus0x)
 | |
|       Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
 | |
| 
 | |
|     DCScope = getScopeForDeclContext(S, DC);
 | |
| 
 | |
|   //   - There's a non-dependent scope specifier, in which case we
 | |
|   //     compute it and do a previous lookup there for a function
 | |
|   //     or function template.
 | |
|   } else if (!SS.getScopeRep()->isDependent()) {
 | |
|     DC = computeDeclContext(SS);
 | |
|     if (!DC) return 0;
 | |
| 
 | |
|     if (RequireCompleteDeclContext(SS, DC)) return 0;
 | |
| 
 | |
|     LookupQualifiedName(Previous, DC);
 | |
| 
 | |
|     // Ignore things found implicitly in the wrong scope.
 | |
|     // TODO: better diagnostics for this case.  Suggesting the right
 | |
|     // qualified scope would be nice...
 | |
|     LookupResult::Filter F = Previous.makeFilter();
 | |
|     while (F.hasNext()) {
 | |
|       NamedDecl *D = F.next();
 | |
|       if (!DC->InEnclosingNamespaceSetOf(
 | |
|               D->getDeclContext()->getRedeclContext()))
 | |
|         F.erase();
 | |
|     }
 | |
|     F.done();
 | |
| 
 | |
|     if (Previous.empty()) {
 | |
|       D.setInvalidType();
 | |
|       Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // C++ [class.friend]p1: A friend of a class is a function or
 | |
|     //   class that is not a member of the class . . .
 | |
|     if (DC->Equals(CurContext))
 | |
|       Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
 | |
| 
 | |
|   //   - There's a scope specifier that does not match any template
 | |
|   //     parameter lists, in which case we use some arbitrary context,
 | |
|   //     create a method or method template, and wait for instantiation.
 | |
|   //   - There's a scope specifier that does match some template
 | |
|   //     parameter lists, which we don't handle right now.
 | |
|   } else {
 | |
|     DC = CurContext;
 | |
|     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
 | |
|   }
 | |
| 
 | |
|   if (!DC->isRecord()) {
 | |
|     // This implies that it has to be an operator or function.
 | |
|     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
 | |
|         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
 | |
|         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
 | |
|       Diag(Loc, diag::err_introducing_special_friend) <<
 | |
|         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
 | |
|          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Redeclaration = false;
 | |
|   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
 | |
|                                           move(TemplateParams),
 | |
|                                           IsDefinition,
 | |
|                                           Redeclaration);
 | |
|   if (!ND) return 0;
 | |
| 
 | |
|   assert(ND->getDeclContext() == DC);
 | |
|   assert(ND->getLexicalDeclContext() == CurContext);
 | |
| 
 | |
|   // Add the function declaration to the appropriate lookup tables,
 | |
|   // adjusting the redeclarations list as necessary.  We don't
 | |
|   // want to do this yet if the friending class is dependent.
 | |
|   //
 | |
|   // Also update the scope-based lookup if the target context's
 | |
|   // lookup context is in lexical scope.
 | |
|   if (!CurContext->isDependentContext()) {
 | |
|     DC = DC->getRedeclContext();
 | |
|     DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
 | |
|     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | |
|       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
 | |
|   }
 | |
| 
 | |
|   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
 | |
|                                        D.getIdentifierLoc(), ND,
 | |
|                                        DS.getFriendSpecLoc());
 | |
|   FrD->setAccess(AS_public);
 | |
|   CurContext->addDecl(FrD);
 | |
| 
 | |
|   if (ND->isInvalidDecl())
 | |
|     FrD->setInvalidDecl();
 | |
|   else {
 | |
|     FunctionDecl *FD;
 | |
|     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
 | |
|       FD = FTD->getTemplatedDecl();
 | |
|     else
 | |
|       FD = cast<FunctionDecl>(ND);
 | |
| 
 | |
|     // Mark templated-scope function declarations as unsupported.
 | |
|     if (FD->getNumTemplateParameterLists())
 | |
|       FrD->setUnsupportedFriend(true);
 | |
|   }
 | |
| 
 | |
|   return ND;
 | |
| }
 | |
| 
 | |
| void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
 | |
|   AdjustDeclIfTemplate(Dcl);
 | |
| 
 | |
|   FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
 | |
|   if (!Fn) {
 | |
|     Diag(DelLoc, diag::err_deleted_non_function);
 | |
|     return;
 | |
|   }
 | |
|   if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
 | |
|     Diag(DelLoc, diag::err_deleted_decl_not_first);
 | |
|     Diag(Prev->getLocation(), diag::note_previous_declaration);
 | |
|     // If the declaration wasn't the first, we delete the function anyway for
 | |
|     // recovery.
 | |
|   }
 | |
|   Fn->setDeleted();
 | |
| }
 | |
| 
 | |
| static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
 | |
|   for (Stmt::child_range CI = S->children(); CI; ++CI) {
 | |
|     Stmt *SubStmt = *CI;
 | |
|     if (!SubStmt)
 | |
|       continue;
 | |
|     if (isa<ReturnStmt>(SubStmt))
 | |
|       Self.Diag(SubStmt->getSourceRange().getBegin(),
 | |
|            diag::err_return_in_constructor_handler);
 | |
|     if (!isa<Expr>(SubStmt))
 | |
|       SearchForReturnInStmt(Self, SubStmt);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
 | |
|   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
 | |
|     CXXCatchStmt *Handler = TryBlock->getHandler(I);
 | |
|     SearchForReturnInStmt(*this, Handler);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
 | |
|                                              const CXXMethodDecl *Old) {
 | |
|   QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
 | |
|   QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
 | |
| 
 | |
|   if (Context.hasSameType(NewTy, OldTy) ||
 | |
|       NewTy->isDependentType() || OldTy->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the return types are covariant
 | |
|   QualType NewClassTy, OldClassTy;
 | |
| 
 | |
|   /// Both types must be pointers or references to classes.
 | |
|   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
 | |
|     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
 | |
|       NewClassTy = NewPT->getPointeeType();
 | |
|       OldClassTy = OldPT->getPointeeType();
 | |
|     }
 | |
|   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
 | |
|     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
 | |
|       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
 | |
|         NewClassTy = NewRT->getPointeeType();
 | |
|         OldClassTy = OldRT->getPointeeType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The return types aren't either both pointers or references to a class type.
 | |
|   if (NewClassTy.isNull()) {
 | |
|     Diag(New->getLocation(),
 | |
|          diag::err_different_return_type_for_overriding_virtual_function)
 | |
|       << New->getDeclName() << NewTy << OldTy;
 | |
|     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // C++ [class.virtual]p6:
 | |
|   //   If the return type of D::f differs from the return type of B::f, the 
 | |
|   //   class type in the return type of D::f shall be complete at the point of
 | |
|   //   declaration of D::f or shall be the class type D.
 | |
|   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
 | |
|     if (!RT->isBeingDefined() &&
 | |
|         RequireCompleteType(New->getLocation(), NewClassTy, 
 | |
|                             PDiag(diag::err_covariant_return_incomplete)
 | |
|                               << New->getDeclName()))
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
 | |
|     // Check if the new class derives from the old class.
 | |
|     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
 | |
|       Diag(New->getLocation(),
 | |
|            diag::err_covariant_return_not_derived)
 | |
|       << New->getDeclName() << NewTy << OldTy;
 | |
|       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check if we the conversion from derived to base is valid.
 | |
|     if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
 | |
|                     diag::err_covariant_return_inaccessible_base,
 | |
|                     diag::err_covariant_return_ambiguous_derived_to_base_conv,
 | |
|                     // FIXME: Should this point to the return type?
 | |
|                     New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
 | |
|       // FIXME: this note won't trigger for delayed access control
 | |
|       // diagnostics, and it's impossible to get an undelayed error
 | |
|       // here from access control during the original parse because
 | |
|       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
 | |
|       Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The qualifiers of the return types must be the same.
 | |
|   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
 | |
|     Diag(New->getLocation(),
 | |
|          diag::err_covariant_return_type_different_qualifications)
 | |
|     << New->getDeclName() << NewTy << OldTy;
 | |
|     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // The new class type must have the same or less qualifiers as the old type.
 | |
|   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
 | |
|     Diag(New->getLocation(),
 | |
|          diag::err_covariant_return_type_class_type_more_qualified)
 | |
|     << New->getDeclName() << NewTy << OldTy;
 | |
|     Diag(Old->getLocation(), diag::note_overridden_virtual_function);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Mark the given method pure.
 | |
| ///
 | |
| /// \param Method the method to be marked pure.
 | |
| ///
 | |
| /// \param InitRange the source range that covers the "0" initializer.
 | |
| bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
 | |
|   SourceLocation EndLoc = InitRange.getEnd();
 | |
|   if (EndLoc.isValid())
 | |
|     Method->setRangeEnd(EndLoc);
 | |
| 
 | |
|   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
 | |
|     Method->setPure();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Method->isInvalidDecl())
 | |
|     Diag(Method->getLocation(), diag::err_non_virtual_pure)
 | |
|       << Method->getDeclName() << InitRange;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
 | |
| /// an initializer for the out-of-line declaration 'Dcl'.  The scope
 | |
| /// is a fresh scope pushed for just this purpose.
 | |
| ///
 | |
| /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
 | |
| /// static data member of class X, names should be looked up in the scope of
 | |
| /// class X.
 | |
| void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
 | |
|   // If there is no declaration, there was an error parsing it.
 | |
|   if (D == 0 || D->isInvalidDecl()) return;
 | |
| 
 | |
|   // We should only get called for declarations with scope specifiers, like:
 | |
|   //   int foo::bar;
 | |
|   assert(D->isOutOfLine());
 | |
|   EnterDeclaratorContext(S, D->getDeclContext());
 | |
| }
 | |
| 
 | |
| /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
 | |
| /// initializer for the out-of-line declaration 'D'.
 | |
| void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
 | |
|   // If there is no declaration, there was an error parsing it.
 | |
|   if (D == 0 || D->isInvalidDecl()) return;
 | |
| 
 | |
|   assert(D->isOutOfLine());
 | |
|   ExitDeclaratorContext(S);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
 | |
| /// C++ if/switch/while/for statement.
 | |
| /// e.g: "if (int x = f()) {...}"
 | |
| DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
 | |
|   // C++ 6.4p2:
 | |
|   // The declarator shall not specify a function or an array.
 | |
|   // The type-specifier-seq shall not contain typedef and shall not declare a
 | |
|   // new class or enumeration.
 | |
|   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
 | |
|          "Parser allowed 'typedef' as storage class of condition decl.");
 | |
|   
 | |
|   TagDecl *OwnedTag = 0;
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
 | |
|   QualType Ty = TInfo->getType();
 | |
|   
 | |
|   if (Ty->isFunctionType()) { // The declarator shall not specify a function...
 | |
|                               // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
 | |
|                               // would be created and CXXConditionDeclExpr wants a VarDecl.
 | |
|     Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
 | |
|       << D.getSourceRange();
 | |
|     return DeclResult();
 | |
|   } else if (OwnedTag && OwnedTag->isDefinition()) {
 | |
|     // The type-specifier-seq shall not declare a new class or enumeration.
 | |
|     Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
 | |
|   }
 | |
|   
 | |
|   Decl *Dcl = ActOnDeclarator(S, D);
 | |
|   if (!Dcl)
 | |
|     return DeclResult();
 | |
| 
 | |
|   return Dcl;
 | |
| }
 | |
| 
 | |
| void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
 | |
|                           bool DefinitionRequired) {
 | |
|   // Ignore any vtable uses in unevaluated operands or for classes that do
 | |
|   // not have a vtable.
 | |
|   if (!Class->isDynamicClass() || Class->isDependentContext() ||
 | |
|       CurContext->isDependentContext() ||
 | |
|       ExprEvalContexts.back().Context == Unevaluated)
 | |
|     return;
 | |
| 
 | |
|   // Try to insert this class into the map.
 | |
|   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
 | |
|   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
 | |
|     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
 | |
|   if (!Pos.second) {
 | |
|     // If we already had an entry, check to see if we are promoting this vtable
 | |
|     // to required a definition. If so, we need to reappend to the VTableUses
 | |
|     // list, since we may have already processed the first entry.
 | |
|     if (DefinitionRequired && !Pos.first->second) {
 | |
|       Pos.first->second = true;
 | |
|     } else {
 | |
|       // Otherwise, we can early exit.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Local classes need to have their virtual members marked
 | |
|   // immediately. For all other classes, we mark their virtual members
 | |
|   // at the end of the translation unit.
 | |
|   if (Class->isLocalClass())
 | |
|     MarkVirtualMembersReferenced(Loc, Class);
 | |
|   else
 | |
|     VTableUses.push_back(std::make_pair(Class, Loc));
 | |
| }
 | |
| 
 | |
| bool Sema::DefineUsedVTables() {
 | |
|   if (VTableUses.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Note: The VTableUses vector could grow as a result of marking
 | |
|   // the members of a class as "used", so we check the size each
 | |
|   // time through the loop and prefer indices (with are stable) to
 | |
|   // iterators (which are not).
 | |
|   bool DefinedAnything = false;
 | |
|   for (unsigned I = 0; I != VTableUses.size(); ++I) {
 | |
|     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
 | |
|     if (!Class)
 | |
|       continue;
 | |
| 
 | |
|     SourceLocation Loc = VTableUses[I].second;
 | |
| 
 | |
|     // If this class has a key function, but that key function is
 | |
|     // defined in another translation unit, we don't need to emit the
 | |
|     // vtable even though we're using it.
 | |
|     const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
 | |
|     if (KeyFunction && !KeyFunction->hasBody()) {
 | |
|       switch (KeyFunction->getTemplateSpecializationKind()) {
 | |
|       case TSK_Undeclared:
 | |
|       case TSK_ExplicitSpecialization:
 | |
|       case TSK_ExplicitInstantiationDeclaration:
 | |
|         // The key function is in another translation unit.
 | |
|         continue;
 | |
| 
 | |
|       case TSK_ExplicitInstantiationDefinition:
 | |
|       case TSK_ImplicitInstantiation:
 | |
|         // We will be instantiating the key function.
 | |
|         break;
 | |
|       }
 | |
|     } else if (!KeyFunction) {
 | |
|       // If we have a class with no key function that is the subject
 | |
|       // of an explicit instantiation declaration, suppress the
 | |
|       // vtable; it will live with the explicit instantiation
 | |
|       // definition.
 | |
|       bool IsExplicitInstantiationDeclaration
 | |
|         = Class->getTemplateSpecializationKind()
 | |
|                                       == TSK_ExplicitInstantiationDeclaration;
 | |
|       for (TagDecl::redecl_iterator R = Class->redecls_begin(),
 | |
|                                  REnd = Class->redecls_end();
 | |
|            R != REnd; ++R) {
 | |
|         TemplateSpecializationKind TSK
 | |
|           = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
 | |
|         if (TSK == TSK_ExplicitInstantiationDeclaration)
 | |
|           IsExplicitInstantiationDeclaration = true;
 | |
|         else if (TSK == TSK_ExplicitInstantiationDefinition) {
 | |
|           IsExplicitInstantiationDeclaration = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (IsExplicitInstantiationDeclaration)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Mark all of the virtual members of this class as referenced, so
 | |
|     // that we can build a vtable. Then, tell the AST consumer that a
 | |
|     // vtable for this class is required.
 | |
|     DefinedAnything = true;
 | |
|     MarkVirtualMembersReferenced(Loc, Class);
 | |
|     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
 | |
|     Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
 | |
| 
 | |
|     // Optionally warn if we're emitting a weak vtable.
 | |
|     if (Class->getLinkage() == ExternalLinkage &&
 | |
|         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
 | |
|       if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
 | |
|         Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
 | |
|     }
 | |
|   }
 | |
|   VTableUses.clear();
 | |
| 
 | |
|   return DefinedAnything;
 | |
| }
 | |
| 
 | |
| void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
 | |
|                                         const CXXRecordDecl *RD) {
 | |
|   for (CXXRecordDecl::method_iterator i = RD->method_begin(), 
 | |
|        e = RD->method_end(); i != e; ++i) {
 | |
|     CXXMethodDecl *MD = *i;
 | |
| 
 | |
|     // C++ [basic.def.odr]p2:
 | |
|     //   [...] A virtual member function is used if it is not pure. [...]
 | |
|     if (MD->isVirtual() && !MD->isPure())
 | |
|       MarkDeclarationReferenced(Loc, MD);
 | |
|   }
 | |
| 
 | |
|   // Only classes that have virtual bases need a VTT.
 | |
|   if (RD->getNumVBases() == 0)
 | |
|     return;
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
 | |
|            e = RD->bases_end(); i != e; ++i) {
 | |
|     const CXXRecordDecl *Base =
 | |
|         cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (Base->getNumVBases() == 0)
 | |
|       continue;
 | |
|     MarkVirtualMembersReferenced(Loc, Base);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SetIvarInitializers - This routine builds initialization ASTs for the
 | |
| /// Objective-C implementation whose ivars need be initialized.
 | |
| void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
 | |
|   if (!getLangOptions().CPlusPlus)
 | |
|     return;
 | |
|   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
 | |
|     llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
 | |
|     CollectIvarsToConstructOrDestruct(OID, ivars);
 | |
|     if (ivars.empty())
 | |
|       return;
 | |
|     llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
 | |
|     for (unsigned i = 0; i < ivars.size(); i++) {
 | |
|       FieldDecl *Field = ivars[i];
 | |
|       if (Field->isInvalidDecl())
 | |
|         continue;
 | |
|       
 | |
|       CXXCtorInitializer *Member;
 | |
|       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
 | |
|       InitializationKind InitKind = 
 | |
|         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
 | |
|       
 | |
|       InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
 | |
|       ExprResult MemberInit = 
 | |
|         InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
 | |
|       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
 | |
|       // Note, MemberInit could actually come back empty if no initialization 
 | |
|       // is required (e.g., because it would call a trivial default constructor)
 | |
|       if (!MemberInit.get() || MemberInit.isInvalid())
 | |
|         continue;
 | |
| 
 | |
|       Member =
 | |
|         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
 | |
|                                          SourceLocation(),
 | |
|                                          MemberInit.takeAs<Expr>(),
 | |
|                                          SourceLocation());
 | |
|       AllToInit.push_back(Member);
 | |
|       
 | |
|       // Be sure that the destructor is accessible and is marked as referenced.
 | |
|       if (const RecordType *RecordTy
 | |
|                   = Context.getBaseElementType(Field->getType())
 | |
|                                                         ->getAs<RecordType>()) {
 | |
|                     CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
 | |
|           MarkDeclarationReferenced(Field->getLocation(), Destructor);
 | |
|           CheckDestructorAccess(Field->getLocation(), Destructor,
 | |
|                             PDiag(diag::err_access_dtor_ivar)
 | |
|                               << Context.getBaseElementType(Field->getType()));
 | |
|         }
 | |
|       }      
 | |
|     }
 | |
|     ObjCImplementation->setIvarInitializers(Context, 
 | |
|                                             AllToInit.data(), AllToInit.size());
 | |
|   }
 | |
| }
 |