forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			10743 lines
		
	
	
		
			407 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10743 lines
		
	
	
		
			407 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for expressions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/AnalysisBasedWarnings.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/RecursiveASTVisitor.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/LiteralSupport.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Designator.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Sema/Template.h"
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| 
 | |
| /// \brief Determine whether the use of this declaration is valid, and
 | |
| /// emit any corresponding diagnostics.
 | |
| ///
 | |
| /// This routine diagnoses various problems with referencing
 | |
| /// declarations that can occur when using a declaration. For example,
 | |
| /// it might warn if a deprecated or unavailable declaration is being
 | |
| /// used, or produce an error (and return true) if a C++0x deleted
 | |
| /// function is being used.
 | |
| ///
 | |
| /// If IgnoreDeprecated is set to true, this should not warn about deprecated
 | |
| /// decls.
 | |
| ///
 | |
| /// \returns true if there was an error (this declaration cannot be
 | |
| /// referenced), false otherwise.
 | |
| ///
 | |
| bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
 | |
|                              const ObjCInterfaceDecl *UnknownObjCClass) {
 | |
|   if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
 | |
|     // If there were any diagnostics suppressed by template argument deduction,
 | |
|     // emit them now.
 | |
|     llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
 | |
|       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
 | |
|     if (Pos != SuppressedDiagnostics.end()) {
 | |
|       llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
 | |
|       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
 | |
|         Diag(Suppressed[I].first, Suppressed[I].second);
 | |
|       
 | |
|       // Clear out the list of suppressed diagnostics, so that we don't emit
 | |
|       // them again for this specialization. However, we don't obsolete this
 | |
|       // entry from the table, because we want to avoid ever emitting these
 | |
|       // diagnostics again.
 | |
|       Suppressed.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if this is an auto-typed variable whose initializer we are parsing.
 | |
|   if (ParsingInitForAutoVars.count(D)) {
 | |
|     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
 | |
|       << D->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // See if this is a deleted function.
 | |
|   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (FD->isDeleted()) {
 | |
|       Diag(Loc, diag::err_deleted_function_use);
 | |
|       Diag(D->getLocation(), diag::note_unavailable_here) << true;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if this declaration is unavailable or deprecated.
 | |
|   std::string Message;
 | |
|   switch (D->getAvailability(&Message)) {
 | |
|   case AR_Available:
 | |
|   case AR_NotYetIntroduced:
 | |
|     break;
 | |
| 
 | |
|   case AR_Deprecated:
 | |
|     EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
 | |
|     break;
 | |
| 
 | |
|   case AR_Unavailable:
 | |
|     if (Message.empty()) {
 | |
|       if (!UnknownObjCClass)
 | |
|         Diag(Loc, diag::err_unavailable) << D->getDeclName();
 | |
|       else
 | |
|         Diag(Loc, diag::warn_unavailable_fwdclass_message) 
 | |
|              << D->getDeclName();
 | |
|     }
 | |
|     else 
 | |
|       Diag(Loc, diag::err_unavailable_message) 
 | |
|         << D->getDeclName() << Message;
 | |
|     Diag(D->getLocation(), diag::note_unavailable_here) << 0;    
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Warn if this is used but marked unused.
 | |
|   if (D->hasAttr<UnusedAttr>())
 | |
|     Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the message suffix that should be added to a
 | |
| /// diagnostic complaining about the given function being deleted or
 | |
| /// unavailable.
 | |
| std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
 | |
|   // FIXME: C++0x implicitly-deleted special member functions could be
 | |
|   // detected here so that we could improve diagnostics to say, e.g.,
 | |
|   // "base class 'A' had a deleted copy constructor".
 | |
|   if (FD->isDeleted())
 | |
|     return std::string();
 | |
| 
 | |
|   std::string Message;
 | |
|   if (FD->getAvailability(&Message))
 | |
|     return ": " + Message;
 | |
| 
 | |
|   return std::string();
 | |
| }
 | |
| 
 | |
| /// DiagnoseSentinelCalls - This routine checks on method dispatch calls
 | |
| /// (and other functions in future), which have been declared with sentinel
 | |
| /// attribute. It warns if call does not have the sentinel argument.
 | |
| ///
 | |
| void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
 | |
|                                  Expr **Args, unsigned NumArgs) {
 | |
|   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
 | |
|   if (!attr)
 | |
|     return;
 | |
| 
 | |
|   // FIXME: In C++0x, if any of the arguments are parameter pack
 | |
|   // expansions, we can't check for the sentinel now.
 | |
|   int sentinelPos = attr->getSentinel();
 | |
|   int nullPos = attr->getNullPos();
 | |
| 
 | |
|   // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
 | |
|   // base class. Then we won't be needing two versions of the same code.
 | |
|   unsigned int i = 0;
 | |
|   bool warnNotEnoughArgs = false;
 | |
|   int isMethod = 0;
 | |
|   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | |
|     // skip over named parameters.
 | |
|     ObjCMethodDecl::param_iterator P, E = MD->param_end();
 | |
|     for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
 | |
|       if (nullPos)
 | |
|         --nullPos;
 | |
|       else
 | |
|         ++i;
 | |
|     }
 | |
|     warnNotEnoughArgs = (P != E || i >= NumArgs);
 | |
|     isMethod = 1;
 | |
|   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     // skip over named parameters.
 | |
|     ObjCMethodDecl::param_iterator P, E = FD->param_end();
 | |
|     for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
 | |
|       if (nullPos)
 | |
|         --nullPos;
 | |
|       else
 | |
|         ++i;
 | |
|     }
 | |
|     warnNotEnoughArgs = (P != E || i >= NumArgs);
 | |
|   } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
 | |
|     // block or function pointer call.
 | |
|     QualType Ty = V->getType();
 | |
|     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
 | |
|       const FunctionType *FT = Ty->isFunctionPointerType()
 | |
|       ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
 | |
|       : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
 | |
|       if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
 | |
|         unsigned NumArgsInProto = Proto->getNumArgs();
 | |
|         unsigned k;
 | |
|         for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
 | |
|           if (nullPos)
 | |
|             --nullPos;
 | |
|           else
 | |
|             ++i;
 | |
|         }
 | |
|         warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
 | |
|       }
 | |
|       if (Ty->isBlockPointerType())
 | |
|         isMethod = 2;
 | |
|     } else
 | |
|       return;
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   if (warnNotEnoughArgs) {
 | |
|     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
 | |
|     Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
 | |
|     return;
 | |
|   }
 | |
|   int sentinel = i;
 | |
|   while (sentinelPos > 0 && i < NumArgs-1) {
 | |
|     --sentinelPos;
 | |
|     ++i;
 | |
|   }
 | |
|   if (sentinelPos > 0) {
 | |
|     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
 | |
|     Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
 | |
|     return;
 | |
|   }
 | |
|   while (i < NumArgs-1) {
 | |
|     ++i;
 | |
|     ++sentinel;
 | |
|   }
 | |
|   Expr *sentinelExpr = Args[sentinel];
 | |
|   if (!sentinelExpr) return;
 | |
|   if (sentinelExpr->isTypeDependent()) return;
 | |
|   if (sentinelExpr->isValueDependent()) return;
 | |
| 
 | |
|   // nullptr_t is always treated as null.
 | |
|   if (sentinelExpr->getType()->isNullPtrType()) return;
 | |
| 
 | |
|   if (sentinelExpr->getType()->isAnyPointerType() &&
 | |
|       sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
 | |
|                                             Expr::NPC_ValueDependentIsNull))
 | |
|     return;
 | |
| 
 | |
|   // Unfortunately, __null has type 'int'.
 | |
|   if (isa<GNUNullExpr>(sentinelExpr)) return;
 | |
| 
 | |
|   Diag(Loc, diag::warn_missing_sentinel) << isMethod;
 | |
|   Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
 | |
| }
 | |
| 
 | |
| SourceRange Sema::getExprRange(ExprTy *E) const {
 | |
|   Expr *Ex = (Expr *)E;
 | |
|   return Ex? Ex->getSourceRange() : SourceRange();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Standard Promotions and Conversions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
 | |
| ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
 | |
|   QualType Ty = E->getType();
 | |
|   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
 | |
| 
 | |
|   if (Ty->isFunctionType())
 | |
|     E = ImpCastExprToType(E, Context.getPointerType(Ty),
 | |
|                           CK_FunctionToPointerDecay).take();
 | |
|   else if (Ty->isArrayType()) {
 | |
|     // In C90 mode, arrays only promote to pointers if the array expression is
 | |
|     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
 | |
|     // type 'array of type' is converted to an expression that has type 'pointer
 | |
|     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
 | |
|     // that has type 'array of type' ...".  The relevant change is "an lvalue"
 | |
|     // (C90) to "an expression" (C99).
 | |
|     //
 | |
|     // C++ 4.2p1:
 | |
|     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
 | |
|     // T" can be converted to an rvalue of type "pointer to T".
 | |
|     //
 | |
|     if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
 | |
|       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
 | |
|                             CK_ArrayToPointerDecay).take();
 | |
|   }
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::DefaultLvalueConversion(Expr *E) {
 | |
|   // C++ [conv.lval]p1:
 | |
|   //   A glvalue of a non-function, non-array type T can be
 | |
|   //   converted to a prvalue.
 | |
|   if (!E->isGLValue()) return Owned(E);
 | |
| 
 | |
|   QualType T = E->getType();
 | |
|   assert(!T.isNull() && "r-value conversion on typeless expression?");
 | |
| 
 | |
|   // Create a load out of an ObjCProperty l-value, if necessary.
 | |
|   if (E->getObjectKind() == OK_ObjCProperty) {
 | |
|     ExprResult Res = ConvertPropertyForRValue(E);
 | |
|     if (Res.isInvalid())
 | |
|       return Owned(E);
 | |
|     E = Res.take();
 | |
|     if (!E->isGLValue())
 | |
|       return Owned(E);
 | |
|   }
 | |
| 
 | |
|   // We don't want to throw lvalue-to-rvalue casts on top of
 | |
|   // expressions of certain types in C++.
 | |
|   if (getLangOptions().CPlusPlus &&
 | |
|       (E->getType() == Context.OverloadTy ||
 | |
|        T->isDependentType() ||
 | |
|        T->isRecordType()))
 | |
|     return Owned(E);
 | |
| 
 | |
|   // The C standard is actually really unclear on this point, and
 | |
|   // DR106 tells us what the result should be but not why.  It's
 | |
|   // generally best to say that void types just doesn't undergo
 | |
|   // lvalue-to-rvalue at all.  Note that expressions of unqualified
 | |
|   // 'void' type are never l-values, but qualified void can be.
 | |
|   if (T->isVoidType())
 | |
|     return Owned(E);
 | |
| 
 | |
|   // C++ [conv.lval]p1:
 | |
|   //   [...] If T is a non-class type, the type of the prvalue is the
 | |
|   //   cv-unqualified version of T. Otherwise, the type of the
 | |
|   //   rvalue is T.
 | |
|   //
 | |
|   // C99 6.3.2.1p2:
 | |
|   //   If the lvalue has qualified type, the value has the unqualified
 | |
|   //   version of the type of the lvalue; otherwise, the value has the
 | |
|   //   type of the lvalue.    
 | |
|   if (T.hasQualifiers())
 | |
|     T = T.getUnqualifiedType();
 | |
| 
 | |
|   CheckArrayAccess(E);
 | |
|   
 | |
|   return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
 | |
|                                         E, 0, VK_RValue));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
 | |
|   ExprResult Res = DefaultFunctionArrayConversion(E);
 | |
|   if (Res.isInvalid())
 | |
|     return ExprError();
 | |
|   Res = DefaultLvalueConversion(Res.take());
 | |
|   if (Res.isInvalid())
 | |
|     return ExprError();
 | |
|   return move(Res);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// UsualUnaryConversions - Performs various conversions that are common to most
 | |
| /// operators (C99 6.3). The conversions of array and function types are
 | |
| /// sometimes suppressed. For example, the array->pointer conversion doesn't
 | |
| /// apply if the array is an argument to the sizeof or address (&) operators.
 | |
| /// In these instances, this routine should *not* be called.
 | |
| ExprResult Sema::UsualUnaryConversions(Expr *E) {
 | |
|   // First, convert to an r-value.
 | |
|   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
 | |
|   if (Res.isInvalid())
 | |
|     return Owned(E);
 | |
|   E = Res.take();
 | |
|   
 | |
|   QualType Ty = E->getType();
 | |
|   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
 | |
|   
 | |
|   // Try to perform integral promotions if the object has a theoretically
 | |
|   // promotable type.
 | |
|   if (Ty->isIntegralOrUnscopedEnumerationType()) {
 | |
|     // C99 6.3.1.1p2:
 | |
|     //
 | |
|     //   The following may be used in an expression wherever an int or
 | |
|     //   unsigned int may be used:
 | |
|     //     - an object or expression with an integer type whose integer
 | |
|     //       conversion rank is less than or equal to the rank of int
 | |
|     //       and unsigned int.
 | |
|     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
 | |
|     //
 | |
|     //   If an int can represent all values of the original type, the
 | |
|     //   value is converted to an int; otherwise, it is converted to an
 | |
|     //   unsigned int. These are called the integer promotions. All
 | |
|     //   other types are unchanged by the integer promotions.
 | |
|   
 | |
|     QualType PTy = Context.isPromotableBitField(E);
 | |
|     if (!PTy.isNull()) {
 | |
|       E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
 | |
|       return Owned(E);
 | |
|     }
 | |
|     if (Ty->isPromotableIntegerType()) {
 | |
|       QualType PT = Context.getPromotedIntegerType(Ty);
 | |
|       E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
 | |
|       return Owned(E);
 | |
|     }
 | |
|   }
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
 | |
| /// do not have a prototype. Arguments that have type float are promoted to
 | |
| /// double. All other argument types are converted by UsualUnaryConversions().
 | |
| ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
 | |
|   QualType Ty = E->getType();
 | |
|   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
 | |
| 
 | |
|   ExprResult Res = UsualUnaryConversions(E);
 | |
|   if (Res.isInvalid())
 | |
|     return Owned(E);
 | |
|   E = Res.take();
 | |
| 
 | |
|   // If this is a 'float' (CVR qualified or typedef) promote to double.
 | |
|   if (Ty->isSpecificBuiltinType(BuiltinType::Float))
 | |
|     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
 | |
| 
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
 | |
| /// will warn if the resulting type is not a POD type, and rejects ObjC
 | |
| /// interfaces passed by value.
 | |
| ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
 | |
|                                             FunctionDecl *FDecl) {
 | |
|   ExprResult ExprRes = DefaultArgumentPromotion(E);
 | |
|   if (ExprRes.isInvalid())
 | |
|     return ExprError();
 | |
|   E = ExprRes.take();
 | |
| 
 | |
|   // __builtin_va_start takes the second argument as a "varargs" argument, but
 | |
|   // it doesn't actually do anything with it.  It doesn't need to be non-pod
 | |
|   // etc.
 | |
|   if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
 | |
|     return Owned(E);
 | |
|   
 | |
|   if (E->getType()->isObjCObjectType() &&
 | |
|       DiagRuntimeBehavior(E->getLocStart(), 0,
 | |
|         PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
 | |
|           << E->getType() << CT))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!E->getType()->isPODType() &&
 | |
|       DiagRuntimeBehavior(E->getLocStart(), 0,
 | |
|                           PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
 | |
|                             << E->getType() << CT))
 | |
|     return ExprError();
 | |
| 
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| /// UsualArithmeticConversions - Performs various conversions that are common to
 | |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
 | |
| /// routine returns the first non-arithmetic type found. The client is
 | |
| /// responsible for emitting appropriate error diagnostics.
 | |
| /// FIXME: verify the conversion rules for "complex int" are consistent with
 | |
| /// GCC.
 | |
| QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr,
 | |
|                                           bool isCompAssign) {
 | |
|   if (!isCompAssign) {
 | |
|     lhsExpr = UsualUnaryConversions(lhsExpr.take());
 | |
|     if (lhsExpr.isInvalid())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   rhsExpr = UsualUnaryConversions(rhsExpr.take());
 | |
|   if (rhsExpr.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   // For conversion purposes, we ignore any qualifiers.
 | |
|   // For example, "const float" and "float" are equivalent.
 | |
|   QualType lhs =
 | |
|     Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType();
 | |
|   QualType rhs =
 | |
|     Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType();
 | |
| 
 | |
|   // If both types are identical, no conversion is needed.
 | |
|   if (lhs == rhs)
 | |
|     return lhs;
 | |
| 
 | |
|   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
 | |
|   // The caller can deal with this (e.g. pointer + int).
 | |
|   if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
 | |
|     return lhs;
 | |
| 
 | |
|   // Apply unary and bitfield promotions to the LHS's type.
 | |
|   QualType lhs_unpromoted = lhs;
 | |
|   if (lhs->isPromotableIntegerType())
 | |
|     lhs = Context.getPromotedIntegerType(lhs);
 | |
|   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get());
 | |
|   if (!LHSBitfieldPromoteTy.isNull())
 | |
|     lhs = LHSBitfieldPromoteTy;
 | |
|   if (lhs != lhs_unpromoted && !isCompAssign)
 | |
|     lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast);
 | |
| 
 | |
|   // If both types are identical, no conversion is needed.
 | |
|   if (lhs == rhs)
 | |
|     return lhs;
 | |
| 
 | |
|   // At this point, we have two different arithmetic types.
 | |
| 
 | |
|   // Handle complex types first (C99 6.3.1.8p1).
 | |
|   bool LHSComplexFloat = lhs->isComplexType();
 | |
|   bool RHSComplexFloat = rhs->isComplexType();
 | |
|   if (LHSComplexFloat || RHSComplexFloat) {
 | |
|     // if we have an integer operand, the result is the complex type.
 | |
| 
 | |
|     if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
 | |
|       if (rhs->isIntegerType()) {
 | |
|         QualType fp = cast<ComplexType>(lhs)->getElementType();
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating);
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
 | |
|       } else {
 | |
|         assert(rhs->isComplexIntegerType());
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex);
 | |
|       }
 | |
|       return lhs;
 | |
|     }
 | |
| 
 | |
|     if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
 | |
|       if (!isCompAssign) {
 | |
|         // int -> float -> _Complex float
 | |
|         if (lhs->isIntegerType()) {
 | |
|           QualType fp = cast<ComplexType>(rhs)->getElementType();
 | |
|           lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating);
 | |
|           lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
 | |
|         } else {
 | |
|           assert(lhs->isComplexIntegerType());
 | |
|           lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex);
 | |
|         }
 | |
|       }
 | |
|       return rhs;
 | |
|     }
 | |
| 
 | |
|     // This handles complex/complex, complex/float, or float/complex.
 | |
|     // When both operands are complex, the shorter operand is converted to the
 | |
|     // type of the longer, and that is the type of the result. This corresponds
 | |
|     // to what is done when combining two real floating-point operands.
 | |
|     // The fun begins when size promotion occur across type domains.
 | |
|     // From H&S 6.3.4: When one operand is complex and the other is a real
 | |
|     // floating-point type, the less precise type is converted, within it's
 | |
|     // real or complex domain, to the precision of the other type. For example,
 | |
|     // when combining a "long double" with a "double _Complex", the
 | |
|     // "double _Complex" is promoted to "long double _Complex".
 | |
|     int order = Context.getFloatingTypeOrder(lhs, rhs);
 | |
| 
 | |
|     // If both are complex, just cast to the more precise type.
 | |
|     if (LHSComplexFloat && RHSComplexFloat) {
 | |
|       if (order > 0) {
 | |
|         // _Complex float -> _Complex double
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast);
 | |
|         return lhs;
 | |
| 
 | |
|       } else if (order < 0) {
 | |
|         // _Complex float -> _Complex double
 | |
|         if (!isCompAssign)
 | |
|           lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast);
 | |
|         return rhs;
 | |
|       }
 | |
|       return lhs;
 | |
|     }
 | |
| 
 | |
|     // If just the LHS is complex, the RHS needs to be converted,
 | |
|     // and the LHS might need to be promoted.
 | |
|     if (LHSComplexFloat) {
 | |
|       if (order > 0) { // LHS is wider
 | |
|         // float -> _Complex double
 | |
|         QualType fp = cast<ComplexType>(lhs)->getElementType();
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast);
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
 | |
|         return lhs;        
 | |
|       }
 | |
| 
 | |
|       // RHS is at least as wide.  Find its corresponding complex type.
 | |
|       QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
 | |
| 
 | |
|       // double -> _Complex double
 | |
|       rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
 | |
| 
 | |
|       // _Complex float -> _Complex double
 | |
|       if (!isCompAssign && order < 0)
 | |
|         lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast);
 | |
| 
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     // Just the RHS is complex, so the LHS needs to be converted
 | |
|     // and the RHS might need to be promoted.
 | |
|     assert(RHSComplexFloat);
 | |
| 
 | |
|     if (order < 0) { // RHS is wider
 | |
|       // float -> _Complex double
 | |
|       if (!isCompAssign) {
 | |
|         QualType fp = cast<ComplexType>(rhs)->getElementType();
 | |
|         lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast);
 | |
|         lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
 | |
|       }
 | |
|       return rhs;
 | |
|     }
 | |
| 
 | |
|     // LHS is at least as wide.  Find its corresponding complex type.
 | |
|     QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
 | |
| 
 | |
|     // double -> _Complex double
 | |
|     if (!isCompAssign)
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
 | |
| 
 | |
|     // _Complex float -> _Complex double
 | |
|     if (order > 0)
 | |
|       rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast);
 | |
| 
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   // Now handle "real" floating types (i.e. float, double, long double).
 | |
|   bool LHSFloat = lhs->isRealFloatingType();
 | |
|   bool RHSFloat = rhs->isRealFloatingType();
 | |
|   if (LHSFloat || RHSFloat) {
 | |
|     // If we have two real floating types, convert the smaller operand
 | |
|     // to the bigger result.
 | |
|     if (LHSFloat && RHSFloat) {
 | |
|       int order = Context.getFloatingTypeOrder(lhs, rhs);
 | |
|       if (order > 0) {
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast);
 | |
|         return lhs;
 | |
|       }
 | |
| 
 | |
|       assert(order < 0 && "illegal float comparison");
 | |
|       if (!isCompAssign)
 | |
|         lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast);
 | |
|       return rhs;
 | |
|     }
 | |
| 
 | |
|     // If we have an integer operand, the result is the real floating type.
 | |
|     if (LHSFloat) {
 | |
|       if (rhs->isIntegerType()) {
 | |
|         // Convert rhs to the lhs floating point type.
 | |
|         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating);
 | |
|         return lhs;
 | |
|       }
 | |
| 
 | |
|       // Convert both sides to the appropriate complex float.
 | |
|       assert(rhs->isComplexIntegerType());
 | |
|       QualType result = Context.getComplexType(lhs);
 | |
| 
 | |
|       // _Complex int -> _Complex float
 | |
|       rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
 | |
| 
 | |
|       // float -> _Complex float
 | |
|       if (!isCompAssign)
 | |
|         lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
 | |
| 
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     assert(RHSFloat);
 | |
|     if (lhs->isIntegerType()) {
 | |
|       // Convert lhs to the rhs floating point type.
 | |
|       if (!isCompAssign)
 | |
|         lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating);
 | |
|       return rhs;
 | |
|     }
 | |
| 
 | |
|     // Convert both sides to the appropriate complex float.
 | |
|     assert(lhs->isComplexIntegerType());
 | |
|     QualType result = Context.getComplexType(rhs);
 | |
| 
 | |
|     // _Complex int -> _Complex float
 | |
|     if (!isCompAssign)
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
 | |
| 
 | |
|     // float -> _Complex float
 | |
|     rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
 | |
| 
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   // Handle GCC complex int extension.
 | |
|   // FIXME: if the operands are (int, _Complex long), we currently
 | |
|   // don't promote the complex.  Also, signedness?
 | |
|   const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
 | |
|   const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
 | |
|   if (lhsComplexInt && rhsComplexInt) {
 | |
|     int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
 | |
|                                             rhsComplexInt->getElementType());
 | |
|     assert(order && "inequal types with equal element ordering");
 | |
|     if (order > 0) {
 | |
|       // _Complex int -> _Complex long
 | |
|       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast);
 | |
|       return lhs;
 | |
|     }
 | |
| 
 | |
|     if (!isCompAssign)
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast);
 | |
|     return rhs;
 | |
|   } else if (lhsComplexInt) {
 | |
|     // int -> _Complex int
 | |
|     rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex);
 | |
|     return lhs;
 | |
|   } else if (rhsComplexInt) {
 | |
|     // int -> _Complex int
 | |
|     if (!isCompAssign)
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex);
 | |
|     return rhs;
 | |
|   }
 | |
| 
 | |
|   // Finally, we have two differing integer types.
 | |
|   // The rules for this case are in C99 6.3.1.8
 | |
|   int compare = Context.getIntegerTypeOrder(lhs, rhs);
 | |
|   bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
 | |
|        rhsSigned = rhs->hasSignedIntegerRepresentation();
 | |
|   if (lhsSigned == rhsSigned) {
 | |
|     // Same signedness; use the higher-ranked type
 | |
|     if (compare >= 0) {
 | |
|       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
 | |
|       return lhs;
 | |
|     } else if (!isCompAssign) 
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
 | |
|     return rhs;
 | |
|   } else if (compare != (lhsSigned ? 1 : -1)) {
 | |
|     // The unsigned type has greater than or equal rank to the
 | |
|     // signed type, so use the unsigned type
 | |
|     if (rhsSigned) {
 | |
|       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
 | |
|       return lhs;
 | |
|     } else if (!isCompAssign)
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
 | |
|     return rhs;
 | |
|   } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
 | |
|     // The two types are different widths; if we are here, that
 | |
|     // means the signed type is larger than the unsigned type, so
 | |
|     // use the signed type.
 | |
|     if (lhsSigned) {
 | |
|       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
 | |
|       return lhs;
 | |
|     } else if (!isCompAssign)
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
 | |
|     return rhs;
 | |
|   } else {
 | |
|     // The signed type is higher-ranked than the unsigned type,
 | |
|     // but isn't actually any bigger (like unsigned int and long
 | |
|     // on most 32-bit systems).  Use the unsigned type corresponding
 | |
|     // to the signed type.
 | |
|     QualType result =
 | |
|       Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
 | |
|     rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast);
 | |
|     if (!isCompAssign)
 | |
|       lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast);
 | |
|     return result;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Semantic Analysis for various Expression Types
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
 | |
|                                 SourceLocation DefaultLoc,
 | |
|                                 SourceLocation RParenLoc,
 | |
|                                 Expr *ControllingExpr,
 | |
|                                 MultiTypeArg types,
 | |
|                                 MultiExprArg exprs) {
 | |
|   unsigned NumAssocs = types.size();
 | |
|   assert(NumAssocs == exprs.size());
 | |
| 
 | |
|   ParsedType *ParsedTypes = types.release();
 | |
|   Expr **Exprs = exprs.release();
 | |
| 
 | |
|   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
 | |
|   for (unsigned i = 0; i < NumAssocs; ++i) {
 | |
|     if (ParsedTypes[i])
 | |
|       (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
 | |
|     else
 | |
|       Types[i] = 0;
 | |
|   }
 | |
| 
 | |
|   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
 | |
|                                              ControllingExpr, Types, Exprs,
 | |
|                                              NumAssocs);
 | |
|   delete [] Types;
 | |
|   return ER;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
 | |
|                                  SourceLocation DefaultLoc,
 | |
|                                  SourceLocation RParenLoc,
 | |
|                                  Expr *ControllingExpr,
 | |
|                                  TypeSourceInfo **Types,
 | |
|                                  Expr **Exprs,
 | |
|                                  unsigned NumAssocs) {
 | |
|   bool TypeErrorFound = false,
 | |
|        IsResultDependent = ControllingExpr->isTypeDependent(),
 | |
|        ContainsUnexpandedParameterPack
 | |
|          = ControllingExpr->containsUnexpandedParameterPack();
 | |
| 
 | |
|   for (unsigned i = 0; i < NumAssocs; ++i) {
 | |
|     if (Exprs[i]->containsUnexpandedParameterPack())
 | |
|       ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     if (Types[i]) {
 | |
|       if (Types[i]->getType()->containsUnexpandedParameterPack())
 | |
|         ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|       if (Types[i]->getType()->isDependentType()) {
 | |
|         IsResultDependent = true;
 | |
|       } else {
 | |
|         // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
 | |
|         // complete object type other than a variably modified type."
 | |
|         unsigned D = 0;
 | |
|         if (Types[i]->getType()->isIncompleteType())
 | |
|           D = diag::err_assoc_type_incomplete;
 | |
|         else if (!Types[i]->getType()->isObjectType())
 | |
|           D = diag::err_assoc_type_nonobject;
 | |
|         else if (Types[i]->getType()->isVariablyModifiedType())
 | |
|           D = diag::err_assoc_type_variably_modified;
 | |
| 
 | |
|         if (D != 0) {
 | |
|           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
 | |
|             << Types[i]->getTypeLoc().getSourceRange()
 | |
|             << Types[i]->getType();
 | |
|           TypeErrorFound = true;
 | |
|         }
 | |
| 
 | |
|         // C1X 6.5.1.1p2 "No two generic associations in the same generic
 | |
|         // selection shall specify compatible types."
 | |
|         for (unsigned j = i+1; j < NumAssocs; ++j)
 | |
|           if (Types[j] && !Types[j]->getType()->isDependentType() &&
 | |
|               Context.typesAreCompatible(Types[i]->getType(),
 | |
|                                          Types[j]->getType())) {
 | |
|             Diag(Types[j]->getTypeLoc().getBeginLoc(),
 | |
|                  diag::err_assoc_compatible_types)
 | |
|               << Types[j]->getTypeLoc().getSourceRange()
 | |
|               << Types[j]->getType()
 | |
|               << Types[i]->getType();
 | |
|             Diag(Types[i]->getTypeLoc().getBeginLoc(),
 | |
|                  diag::note_compat_assoc)
 | |
|               << Types[i]->getTypeLoc().getSourceRange()
 | |
|               << Types[i]->getType();
 | |
|             TypeErrorFound = true;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (TypeErrorFound)
 | |
|     return ExprError();
 | |
| 
 | |
|   // If we determined that the generic selection is result-dependent, don't
 | |
|   // try to compute the result expression.
 | |
|   if (IsResultDependent)
 | |
|     return Owned(new (Context) GenericSelectionExpr(
 | |
|                    Context, KeyLoc, ControllingExpr,
 | |
|                    Types, Exprs, NumAssocs, DefaultLoc,
 | |
|                    RParenLoc, ContainsUnexpandedParameterPack));
 | |
| 
 | |
|   llvm::SmallVector<unsigned, 1> CompatIndices;
 | |
|   unsigned DefaultIndex = -1U;
 | |
|   for (unsigned i = 0; i < NumAssocs; ++i) {
 | |
|     if (!Types[i])
 | |
|       DefaultIndex = i;
 | |
|     else if (Context.typesAreCompatible(ControllingExpr->getType(),
 | |
|                                         Types[i]->getType()))
 | |
|       CompatIndices.push_back(i);
 | |
|   }
 | |
| 
 | |
|   // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
 | |
|   // type compatible with at most one of the types named in its generic
 | |
|   // association list."
 | |
|   if (CompatIndices.size() > 1) {
 | |
|     // We strip parens here because the controlling expression is typically
 | |
|     // parenthesized in macro definitions.
 | |
|     ControllingExpr = ControllingExpr->IgnoreParens();
 | |
|     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
 | |
|       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
 | |
|       << (unsigned) CompatIndices.size();
 | |
|     for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
 | |
|          E = CompatIndices.end(); I != E; ++I) {
 | |
|       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
 | |
|            diag::note_compat_assoc)
 | |
|         << Types[*I]->getTypeLoc().getSourceRange()
 | |
|         << Types[*I]->getType();
 | |
|     }
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
 | |
|   // its controlling expression shall have type compatible with exactly one of
 | |
|   // the types named in its generic association list."
 | |
|   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
 | |
|     // We strip parens here because the controlling expression is typically
 | |
|     // parenthesized in macro definitions.
 | |
|     ControllingExpr = ControllingExpr->IgnoreParens();
 | |
|     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
 | |
|       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
 | |
|   // type name that is compatible with the type of the controlling expression,
 | |
|   // then the result expression of the generic selection is the expression
 | |
|   // in that generic association. Otherwise, the result expression of the
 | |
|   // generic selection is the expression in the default generic association."
 | |
|   unsigned ResultIndex =
 | |
|     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
 | |
| 
 | |
|   return Owned(new (Context) GenericSelectionExpr(
 | |
|                  Context, KeyLoc, ControllingExpr,
 | |
|                  Types, Exprs, NumAssocs, DefaultLoc,
 | |
|                  RParenLoc, ContainsUnexpandedParameterPack,
 | |
|                  ResultIndex));
 | |
| }
 | |
| 
 | |
| /// ActOnStringLiteral - The specified tokens were lexed as pasted string
 | |
| /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
 | |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
 | |
| /// multiple tokens.  However, the common case is that StringToks points to one
 | |
| /// string.
 | |
| ///
 | |
| ExprResult
 | |
| Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
 | |
|   assert(NumStringToks && "Must have at least one string!");
 | |
| 
 | |
|   StringLiteralParser Literal(StringToks, NumStringToks, PP);
 | |
|   if (Literal.hadError)
 | |
|     return ExprError();
 | |
| 
 | |
|   llvm::SmallVector<SourceLocation, 4> StringTokLocs;
 | |
|   for (unsigned i = 0; i != NumStringToks; ++i)
 | |
|     StringTokLocs.push_back(StringToks[i].getLocation());
 | |
| 
 | |
|   QualType StrTy = Context.CharTy;
 | |
|   if (Literal.AnyWide) 
 | |
|     StrTy = Context.getWCharType();
 | |
|   else if (Literal.Pascal)
 | |
|     StrTy = Context.UnsignedCharTy;
 | |
| 
 | |
|   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
 | |
|   if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
 | |
|     StrTy.addConst();
 | |
| 
 | |
|   // Get an array type for the string, according to C99 6.4.5.  This includes
 | |
|   // the nul terminator character as well as the string length for pascal
 | |
|   // strings.
 | |
|   StrTy = Context.getConstantArrayType(StrTy,
 | |
|                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
 | |
|                                        ArrayType::Normal, 0);
 | |
| 
 | |
|   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
 | |
|   return Owned(StringLiteral::Create(Context, Literal.GetString(),
 | |
|                                      Literal.GetStringLength(),
 | |
|                                      Literal.AnyWide, Literal.Pascal, StrTy,
 | |
|                                      &StringTokLocs[0],
 | |
|                                      StringTokLocs.size()));
 | |
| }
 | |
| 
 | |
| enum CaptureResult {
 | |
|   /// No capture is required.
 | |
|   CR_NoCapture,
 | |
| 
 | |
|   /// A capture is required.
 | |
|   CR_Capture,
 | |
| 
 | |
|   /// A by-ref capture is required.
 | |
|   CR_CaptureByRef,
 | |
| 
 | |
|   /// An error occurred when trying to capture the given variable.
 | |
|   CR_Error
 | |
| };
 | |
| 
 | |
| /// Diagnose an uncapturable value reference.
 | |
| ///
 | |
| /// \param var - the variable referenced
 | |
| /// \param DC - the context which we couldn't capture through
 | |
| static CaptureResult
 | |
| diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
 | |
|                                    VarDecl *var, DeclContext *DC) {
 | |
|   switch (S.ExprEvalContexts.back().Context) {
 | |
|   case Sema::Unevaluated:
 | |
|     // The argument will never be evaluated, so don't complain.
 | |
|     return CR_NoCapture;
 | |
| 
 | |
|   case Sema::PotentiallyEvaluated:
 | |
|   case Sema::PotentiallyEvaluatedIfUsed:
 | |
|     break;
 | |
| 
 | |
|   case Sema::PotentiallyPotentiallyEvaluated:
 | |
|     // FIXME: delay these!
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Don't diagnose about capture if we're not actually in code right
 | |
|   // now; in general, there are more appropriate places that will
 | |
|   // diagnose this.
 | |
|   if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
 | |
| 
 | |
|   // Certain madnesses can happen with parameter declarations, which
 | |
|   // we want to ignore.
 | |
|   if (isa<ParmVarDecl>(var)) {
 | |
|     // - If the parameter still belongs to the translation unit, then
 | |
|     //   we're actually just using one parameter in the declaration of
 | |
|     //   the next.  This is useful in e.g. VLAs.
 | |
|     if (isa<TranslationUnitDecl>(var->getDeclContext()))
 | |
|       return CR_NoCapture;
 | |
| 
 | |
|     // - This particular madness can happen in ill-formed default
 | |
|     //   arguments; claim it's okay and let downstream code handle it.
 | |
|     if (S.CurContext == var->getDeclContext()->getParent())
 | |
|       return CR_NoCapture;
 | |
|   }
 | |
| 
 | |
|   DeclarationName functionName;
 | |
|   if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
 | |
|     functionName = fn->getDeclName();
 | |
|   // FIXME: variable from enclosing block that we couldn't capture from!
 | |
| 
 | |
|   S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
 | |
|     << var->getIdentifier() << functionName;
 | |
|   S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
 | |
|     << var->getIdentifier();
 | |
| 
 | |
|   return CR_Error;
 | |
| }
 | |
| 
 | |
| /// There is a well-formed capture at a particular scope level;
 | |
| /// propagate it through all the nested blocks.
 | |
| static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
 | |
|                                       const BlockDecl::Capture &capture) {
 | |
|   VarDecl *var = capture.getVariable();
 | |
| 
 | |
|   // Update all the inner blocks with the capture information.
 | |
|   for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
 | |
|          i != e; ++i) {
 | |
|     BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
 | |
|     innerBlock->Captures.push_back(
 | |
|       BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
 | |
|                          /*nested*/ true, capture.getCopyExpr()));
 | |
|     innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
 | |
|   }
 | |
| 
 | |
|   return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
 | |
| }
 | |
| 
 | |
| /// shouldCaptureValueReference - Determine if a reference to the
 | |
| /// given value in the current context requires a variable capture.
 | |
| ///
 | |
| /// This also keeps the captures set in the BlockScopeInfo records
 | |
| /// up-to-date.
 | |
| static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
 | |
|                                                  ValueDecl *value) {
 | |
|   // Only variables ever require capture.
 | |
|   VarDecl *var = dyn_cast<VarDecl>(value);
 | |
|   if (!var) return CR_NoCapture;
 | |
| 
 | |
|   // Fast path: variables from the current context never require capture.
 | |
|   DeclContext *DC = S.CurContext;
 | |
|   if (var->getDeclContext() == DC) return CR_NoCapture;
 | |
| 
 | |
|   // Only variables with local storage require capture.
 | |
|   // FIXME: What about 'const' variables in C++?
 | |
|   if (!var->hasLocalStorage()) return CR_NoCapture;
 | |
| 
 | |
|   // Otherwise, we need to capture.
 | |
| 
 | |
|   unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
 | |
|   do {
 | |
|     // Only blocks (and eventually C++0x closures) can capture; other
 | |
|     // scopes don't work.
 | |
|     if (!isa<BlockDecl>(DC))
 | |
|       return diagnoseUncapturableValueReference(S, loc, var, DC);
 | |
| 
 | |
|     BlockScopeInfo *blockScope =
 | |
|       cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
 | |
|     assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
 | |
| 
 | |
|     // Check whether we've already captured it in this block.  If so,
 | |
|     // we're done.
 | |
|     if (unsigned indexPlus1 = blockScope->CaptureMap[var])
 | |
|       return propagateCapture(S, functionScopesIndex,
 | |
|                               blockScope->Captures[indexPlus1 - 1]);
 | |
| 
 | |
|     functionScopesIndex--;
 | |
|     DC = cast<BlockDecl>(DC)->getDeclContext();
 | |
|   } while (var->getDeclContext() != DC);
 | |
| 
 | |
|   // Okay, we descended all the way to the block that defines the variable.
 | |
|   // Actually try to capture it.
 | |
|   QualType type = var->getType();
 | |
| 
 | |
|   // Prohibit variably-modified types.
 | |
|   if (type->isVariablyModifiedType()) {
 | |
|     S.Diag(loc, diag::err_ref_vm_type);
 | |
|     S.Diag(var->getLocation(), diag::note_declared_at);
 | |
|     return CR_Error;
 | |
|   }
 | |
| 
 | |
|   // Prohibit arrays, even in __block variables, but not references to
 | |
|   // them.
 | |
|   if (type->isArrayType()) {
 | |
|     S.Diag(loc, diag::err_ref_array_type);
 | |
|     S.Diag(var->getLocation(), diag::note_declared_at);
 | |
|     return CR_Error;
 | |
|   }
 | |
| 
 | |
|   S.MarkDeclarationReferenced(loc, var);
 | |
| 
 | |
|   // The BlocksAttr indicates the variable is bound by-reference.
 | |
|   bool byRef = var->hasAttr<BlocksAttr>();
 | |
| 
 | |
|   // Build a copy expression.
 | |
|   Expr *copyExpr = 0;
 | |
|   if (!byRef && S.getLangOptions().CPlusPlus &&
 | |
|       !type->isDependentType() && type->isStructureOrClassType()) {
 | |
|     // According to the blocks spec, the capture of a variable from
 | |
|     // the stack requires a const copy constructor.  This is not true
 | |
|     // of the copy/move done to move a __block variable to the heap.
 | |
|     type.addConst();
 | |
| 
 | |
|     Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
 | |
|     ExprResult result =
 | |
|       S.PerformCopyInitialization(
 | |
|                       InitializedEntity::InitializeBlock(var->getLocation(),
 | |
|                                                          type, false),
 | |
|                                   loc, S.Owned(declRef));
 | |
| 
 | |
|     // Build a full-expression copy expression if initialization
 | |
|     // succeeded and used a non-trivial constructor.  Recover from
 | |
|     // errors by pretending that the copy isn't necessary.
 | |
|     if (!result.isInvalid() &&
 | |
|         !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
 | |
|       result = S.MaybeCreateExprWithCleanups(result);
 | |
|       copyExpr = result.take();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We're currently at the declarer; go back to the closure.
 | |
|   functionScopesIndex++;
 | |
|   BlockScopeInfo *blockScope =
 | |
|     cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
 | |
| 
 | |
|   // Build a valid capture in this scope.
 | |
|   blockScope->Captures.push_back(
 | |
|                  BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
 | |
|   blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
 | |
| 
 | |
|   // Propagate that to inner captures if necessary.
 | |
|   return propagateCapture(S, functionScopesIndex,
 | |
|                           blockScope->Captures.back());
 | |
| }
 | |
| 
 | |
| static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
 | |
|                                         const DeclarationNameInfo &NameInfo,
 | |
|                                         bool byRef) {
 | |
|   assert(isa<VarDecl>(vd) && "capturing non-variable");
 | |
| 
 | |
|   VarDecl *var = cast<VarDecl>(vd);
 | |
|   assert(var->hasLocalStorage() && "capturing non-local");
 | |
|   assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
 | |
| 
 | |
|   QualType exprType = var->getType().getNonReferenceType();
 | |
| 
 | |
|   BlockDeclRefExpr *BDRE;
 | |
|   if (!byRef) {
 | |
|     // The variable will be bound by copy; make it const within the
 | |
|     // closure, but record that this was done in the expression.
 | |
|     bool constAdded = !exprType.isConstQualified();
 | |
|     exprType.addConst();
 | |
| 
 | |
|     BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
 | |
|                                             NameInfo.getLoc(), false,
 | |
|                                             constAdded);
 | |
|   } else {
 | |
|     BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
 | |
|                                             NameInfo.getLoc(), true);
 | |
|   }
 | |
| 
 | |
|   return S.Owned(BDRE);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
 | |
|                        SourceLocation Loc,
 | |
|                        const CXXScopeSpec *SS) {
 | |
|   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
 | |
|   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
 | |
| }
 | |
| 
 | |
| /// BuildDeclRefExpr - Build an expression that references a
 | |
| /// declaration that does not require a closure capture.
 | |
| ExprResult
 | |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
 | |
|                        const DeclarationNameInfo &NameInfo,
 | |
|                        const CXXScopeSpec *SS) {
 | |
|   MarkDeclarationReferenced(NameInfo.getLoc(), D);
 | |
| 
 | |
|   Expr *E = DeclRefExpr::Create(Context,
 | |
|                                 SS? SS->getWithLocInContext(Context) 
 | |
|                                   : NestedNameSpecifierLoc(),
 | |
|                                 D, NameInfo, Ty, VK);
 | |
| 
 | |
|   // Just in case we're building an illegal pointer-to-member.
 | |
|   if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
 | |
|     E->setObjectKind(OK_BitField);
 | |
| 
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| static ExprResult
 | |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
 | |
|                         const CXXScopeSpec &SS, FieldDecl *Field,
 | |
|                         DeclAccessPair FoundDecl,
 | |
|                         const DeclarationNameInfo &MemberNameInfo);
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
 | |
|                                                SourceLocation loc,
 | |
|                                                IndirectFieldDecl *indirectField,
 | |
|                                                Expr *baseObjectExpr,
 | |
|                                                SourceLocation opLoc) {
 | |
|   // First, build the expression that refers to the base object.
 | |
| 
 | |
|   bool baseObjectIsPointer = false;
 | |
|   Qualifiers baseQuals;
 | |
| 
 | |
|   // Case 1:  the base of the indirect field is not a field.
 | |
|   VarDecl *baseVariable = indirectField->getVarDecl();
 | |
|   CXXScopeSpec EmptySS;
 | |
|   if (baseVariable) {
 | |
|     assert(baseVariable->getType()->isRecordType());
 | |
| 
 | |
|     // In principle we could have a member access expression that
 | |
|     // accesses an anonymous struct/union that's a static member of
 | |
|     // the base object's class.  However, under the current standard,
 | |
|     // static data members cannot be anonymous structs or unions.
 | |
|     // Supporting this is as easy as building a MemberExpr here.
 | |
|     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
 | |
| 
 | |
|     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
 | |
| 
 | |
|     ExprResult result =
 | |
|       BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
 | |
|     if (result.isInvalid()) return ExprError();
 | |
| 
 | |
|     baseObjectExpr = result.take();    
 | |
|     baseObjectIsPointer = false;
 | |
|     baseQuals = baseObjectExpr->getType().getQualifiers();
 | |
| 
 | |
|   // Case 2: the base of the indirect field is a field and the user
 | |
|   // wrote a member expression.
 | |
|   } else if (baseObjectExpr) {
 | |
|     // The caller provided the base object expression. Determine
 | |
|     // whether its a pointer and whether it adds any qualifiers to the
 | |
|     // anonymous struct/union fields we're looking into.
 | |
|     QualType objectType = baseObjectExpr->getType();
 | |
|     
 | |
|     if (const PointerType *ptr = objectType->getAs<PointerType>()) {
 | |
|       baseObjectIsPointer = true;
 | |
|       objectType = ptr->getPointeeType();
 | |
|     } else {
 | |
|       baseObjectIsPointer = false;
 | |
|     }
 | |
|     baseQuals = objectType.getQualifiers();
 | |
| 
 | |
|   // Case 3: the base of the indirect field is a field and we should
 | |
|   // build an implicit member access.
 | |
|   } else {
 | |
|     // We've found a member of an anonymous struct/union that is
 | |
|     // inside a non-anonymous struct/union, so in a well-formed
 | |
|     // program our base object expression is "this".
 | |
|     CXXMethodDecl *method = tryCaptureCXXThis();
 | |
|     if (!method) {
 | |
|       Diag(loc, diag::err_invalid_member_use_in_static_method)
 | |
|         << indirectField->getDeclName();
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     // Our base object expression is "this".
 | |
|     baseObjectExpr =
 | |
|       new (Context) CXXThisExpr(loc, method->getThisType(Context),
 | |
|                                 /*isImplicit=*/ true);
 | |
|     baseObjectIsPointer = true;
 | |
|     baseQuals = Qualifiers::fromCVRMask(method->getTypeQualifiers());
 | |
|   }
 | |
| 
 | |
|   // Build the implicit member references to the field of the
 | |
|   // anonymous struct/union.
 | |
|   Expr *result = baseObjectExpr;
 | |
|   IndirectFieldDecl::chain_iterator
 | |
|     FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
 | |
| 
 | |
|   // Build the first member access in the chain with full information.
 | |
|   if (!baseVariable) {
 | |
|     FieldDecl *field = cast<FieldDecl>(*FI);
 | |
| 
 | |
|     // FIXME: use the real found-decl info!
 | |
|     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
 | |
| 
 | |
|     // Make a nameInfo that properly uses the anonymous name.
 | |
|     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
 | |
| 
 | |
|     result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
 | |
|                                      EmptySS, field, foundDecl,
 | |
|                                      memberNameInfo).take();
 | |
|     baseObjectIsPointer = false;
 | |
| 
 | |
|     // FIXME: check qualified member access
 | |
|   }
 | |
| 
 | |
|   // In all cases, we should now skip the first declaration in the chain.
 | |
|   ++FI;
 | |
| 
 | |
|   while (FI != FEnd) {
 | |
|     FieldDecl *field = cast<FieldDecl>(*FI++);
 | |
| 
 | |
|     // FIXME: these are somewhat meaningless
 | |
|     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
 | |
|     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
 | |
| 
 | |
|     result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
 | |
|                                      (FI == FEnd? SS : EmptySS), field, 
 | |
|                                      foundDecl, memberNameInfo)
 | |
|       .take();
 | |
|   }
 | |
| 
 | |
|   return Owned(result);
 | |
| }
 | |
| 
 | |
| /// Decomposes the given name into a DeclarationNameInfo, its location, and
 | |
| /// possibly a list of template arguments.
 | |
| ///
 | |
| /// If this produces template arguments, it is permitted to call
 | |
| /// DecomposeTemplateName.
 | |
| ///
 | |
| /// This actually loses a lot of source location information for
 | |
| /// non-standard name kinds; we should consider preserving that in
 | |
| /// some way.
 | |
| static void DecomposeUnqualifiedId(Sema &SemaRef,
 | |
|                                    const UnqualifiedId &Id,
 | |
|                                    TemplateArgumentListInfo &Buffer,
 | |
|                                    DeclarationNameInfo &NameInfo,
 | |
|                              const TemplateArgumentListInfo *&TemplateArgs) {
 | |
|   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
 | |
|     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
 | |
|     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
 | |
| 
 | |
|     ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
 | |
|                                        Id.TemplateId->getTemplateArgs(),
 | |
|                                        Id.TemplateId->NumArgs);
 | |
|     SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
 | |
|     TemplateArgsPtr.release();
 | |
| 
 | |
|     TemplateName TName = Id.TemplateId->Template.get();
 | |
|     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
 | |
|     NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
 | |
|     TemplateArgs = &Buffer;
 | |
|   } else {
 | |
|     NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
 | |
|     TemplateArgs = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determines if the given class is provably not derived from all of
 | |
| /// the prospective base classes.
 | |
| static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
 | |
|                                      CXXRecordDecl *Record,
 | |
|                             const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
 | |
|   if (Bases.count(Record->getCanonicalDecl()))
 | |
|     return false;
 | |
| 
 | |
|   RecordDecl *RD = Record->getDefinition();
 | |
|   if (!RD) return false;
 | |
|   Record = cast<CXXRecordDecl>(RD);
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
 | |
|          E = Record->bases_end(); I != E; ++I) {
 | |
|     CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
 | |
|     CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
 | |
|     if (!BaseRT) return false;
 | |
| 
 | |
|     CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
 | |
|     if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| enum IMAKind {
 | |
|   /// The reference is definitely not an instance member access.
 | |
|   IMA_Static,
 | |
| 
 | |
|   /// The reference may be an implicit instance member access.
 | |
|   IMA_Mixed,
 | |
| 
 | |
|   /// The reference may be to an instance member, but it is invalid if
 | |
|   /// so, because the context is not an instance method.
 | |
|   IMA_Mixed_StaticContext,
 | |
| 
 | |
|   /// The reference may be to an instance member, but it is invalid if
 | |
|   /// so, because the context is from an unrelated class.
 | |
|   IMA_Mixed_Unrelated,
 | |
| 
 | |
|   /// The reference is definitely an implicit instance member access.
 | |
|   IMA_Instance,
 | |
| 
 | |
|   /// The reference may be to an unresolved using declaration.
 | |
|   IMA_Unresolved,
 | |
| 
 | |
|   /// The reference may be to an unresolved using declaration and the
 | |
|   /// context is not an instance method.
 | |
|   IMA_Unresolved_StaticContext,
 | |
| 
 | |
|   /// All possible referrents are instance members and the current
 | |
|   /// context is not an instance method.
 | |
|   IMA_Error_StaticContext,
 | |
| 
 | |
|   /// All possible referrents are instance members of an unrelated
 | |
|   /// class.
 | |
|   IMA_Error_Unrelated
 | |
| };
 | |
| 
 | |
| /// The given lookup names class member(s) and is not being used for
 | |
| /// an address-of-member expression.  Classify the type of access
 | |
| /// according to whether it's possible that this reference names an
 | |
| /// instance member.  This is best-effort; it is okay to
 | |
| /// conservatively answer "yes", in which case some errors will simply
 | |
| /// not be caught until template-instantiation.
 | |
| static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
 | |
|                                             const LookupResult &R) {
 | |
|   assert(!R.empty() && (*R.begin())->isCXXClassMember());
 | |
| 
 | |
|   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
 | |
|   bool isStaticContext =
 | |
|     (!isa<CXXMethodDecl>(DC) ||
 | |
|      cast<CXXMethodDecl>(DC)->isStatic());
 | |
| 
 | |
|   if (R.isUnresolvableResult())
 | |
|     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
 | |
| 
 | |
|   // Collect all the declaring classes of instance members we find.
 | |
|   bool hasNonInstance = false;
 | |
|   bool hasField = false;
 | |
|   llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
| 
 | |
|     if (D->isCXXInstanceMember()) {
 | |
|       if (dyn_cast<FieldDecl>(D))
 | |
|         hasField = true;
 | |
| 
 | |
|       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
 | |
|       Classes.insert(R->getCanonicalDecl());
 | |
|     }
 | |
|     else
 | |
|       hasNonInstance = true;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find any instance members, it can't be an implicit
 | |
|   // member reference.
 | |
|   if (Classes.empty())
 | |
|     return IMA_Static;
 | |
| 
 | |
|   // If the current context is not an instance method, it can't be
 | |
|   // an implicit member reference.
 | |
|   if (isStaticContext) {
 | |
|     if (hasNonInstance)
 | |
|         return IMA_Mixed_StaticContext;
 | |
|         
 | |
|     if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
 | |
|       // C++0x [expr.prim.general]p10:
 | |
|       //   An id-expression that denotes a non-static data member or non-static
 | |
|       //   member function of a class can only be used:
 | |
|       //   (...)
 | |
|       //   - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
 | |
|       const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back();
 | |
|       bool isUnevaluatedExpression = record.Context == Sema::Unevaluated;
 | |
|       if (isUnevaluatedExpression)
 | |
|         return IMA_Mixed_StaticContext;
 | |
|     }
 | |
|     
 | |
|     return IMA_Error_StaticContext;
 | |
|   }
 | |
| 
 | |
|   CXXRecordDecl *
 | |
|         contextClass = cast<CXXMethodDecl>(DC)->getParent()->getCanonicalDecl();
 | |
| 
 | |
|   // [class.mfct.non-static]p3: 
 | |
|   // ...is used in the body of a non-static member function of class X,
 | |
|   // if name lookup (3.4.1) resolves the name in the id-expression to a
 | |
|   // non-static non-type member of some class C [...]
 | |
|   // ...if C is not X or a base class of X, the class member access expression
 | |
|   // is ill-formed.
 | |
|   if (R.getNamingClass() &&
 | |
|       contextClass != R.getNamingClass()->getCanonicalDecl() &&
 | |
|       contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
 | |
|     return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
 | |
| 
 | |
|   // If we can prove that the current context is unrelated to all the
 | |
|   // declaring classes, it can't be an implicit member reference (in
 | |
|   // which case it's an error if any of those members are selected).
 | |
|   if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
 | |
|     return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
 | |
| 
 | |
|   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
 | |
| }
 | |
| 
 | |
| /// Diagnose a reference to a field with no object available.
 | |
| static void DiagnoseInstanceReference(Sema &SemaRef,
 | |
|                                       const CXXScopeSpec &SS,
 | |
|                                       NamedDecl *rep,
 | |
|                                       const DeclarationNameInfo &nameInfo) {
 | |
|   SourceLocation Loc = nameInfo.getLoc();
 | |
|   SourceRange Range(Loc);
 | |
|   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
 | |
| 
 | |
|   if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
 | |
|       if (MD->isStatic()) {
 | |
|         // "invalid use of member 'x' in static member function"
 | |
|         SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
 | |
|           << Range << nameInfo.getName();
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
 | |
|       << nameInfo.getName() << Range;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
 | |
| }
 | |
| 
 | |
| /// Diagnose an empty lookup.
 | |
| ///
 | |
| /// \return false if new lookup candidates were found
 | |
| bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
 | |
|                                CorrectTypoContext CTC) {
 | |
|   DeclarationName Name = R.getLookupName();
 | |
| 
 | |
|   unsigned diagnostic = diag::err_undeclared_var_use;
 | |
|   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
 | |
|   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
 | |
|       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
 | |
|       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
 | |
|     diagnostic = diag::err_undeclared_use;
 | |
|     diagnostic_suggest = diag::err_undeclared_use_suggest;
 | |
|   }
 | |
| 
 | |
|   // If the original lookup was an unqualified lookup, fake an
 | |
|   // unqualified lookup.  This is useful when (for example) the
 | |
|   // original lookup would not have found something because it was a
 | |
|   // dependent name.
 | |
|   for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
 | |
|        DC; DC = DC->getParent()) {
 | |
|     if (isa<CXXRecordDecl>(DC)) {
 | |
|       LookupQualifiedName(R, DC);
 | |
| 
 | |
|       if (!R.empty()) {
 | |
|         // Don't give errors about ambiguities in this lookup.
 | |
|         R.suppressDiagnostics();
 | |
| 
 | |
|         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
 | |
|         bool isInstance = CurMethod &&
 | |
|                           CurMethod->isInstance() &&
 | |
|                           DC == CurMethod->getParent();
 | |
| 
 | |
|         // Give a code modification hint to insert 'this->'.
 | |
|         // TODO: fixit for inserting 'Base<T>::' in the other cases.
 | |
|         // Actually quite difficult!
 | |
|         if (isInstance) {
 | |
|           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
 | |
|               CallsUndergoingInstantiation.back()->getCallee());
 | |
|           CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
 | |
|               CurMethod->getInstantiatedFromMemberFunction());
 | |
|           if (DepMethod) {
 | |
|             Diag(R.getNameLoc(), diagnostic) << Name
 | |
|               << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
 | |
|             QualType DepThisType = DepMethod->getThisType(Context);
 | |
|             CXXThisExpr *DepThis = new (Context) CXXThisExpr(
 | |
|                                        R.getNameLoc(), DepThisType, false);
 | |
|             TemplateArgumentListInfo TList;
 | |
|             if (ULE->hasExplicitTemplateArgs())
 | |
|               ULE->copyTemplateArgumentsInto(TList);
 | |
|             
 | |
|             CXXScopeSpec SS;
 | |
|             SS.Adopt(ULE->getQualifierLoc());
 | |
|             CXXDependentScopeMemberExpr *DepExpr =
 | |
|                 CXXDependentScopeMemberExpr::Create(
 | |
|                     Context, DepThis, DepThisType, true, SourceLocation(),
 | |
|                     SS.getWithLocInContext(Context), NULL,
 | |
|                     R.getLookupNameInfo(), &TList);
 | |
|             CallsUndergoingInstantiation.back()->setCallee(DepExpr);
 | |
|           } else {
 | |
|             // FIXME: we should be able to handle this case too. It is correct
 | |
|             // to add this-> here. This is a workaround for PR7947.
 | |
|             Diag(R.getNameLoc(), diagnostic) << Name;
 | |
|           }
 | |
|         } else {
 | |
|           Diag(R.getNameLoc(), diagnostic) << Name;
 | |
|         }
 | |
| 
 | |
|         // Do we really want to note all of these?
 | |
|         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | |
|           Diag((*I)->getLocation(), diag::note_dependent_var_use);
 | |
| 
 | |
|         // Tell the callee to try to recover.
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       R.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We didn't find anything, so try to correct for a typo.
 | |
|   DeclarationName Corrected;
 | |
|   if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
 | |
|     if (!R.empty()) {
 | |
|       if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
 | |
|         if (SS.isEmpty())
 | |
|           Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
 | |
|             << FixItHint::CreateReplacement(R.getNameLoc(),
 | |
|                                             R.getLookupName().getAsString());
 | |
|         else
 | |
|           Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | |
|             << Name << computeDeclContext(SS, false) << R.getLookupName()
 | |
|             << SS.getRange()
 | |
|             << FixItHint::CreateReplacement(R.getNameLoc(),
 | |
|                                             R.getLookupName().getAsString());
 | |
|         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
 | |
|           Diag(ND->getLocation(), diag::note_previous_decl)
 | |
|             << ND->getDeclName();
 | |
| 
 | |
|         // Tell the callee to try to recover.
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
 | |
|         // FIXME: If we ended up with a typo for a type name or
 | |
|         // Objective-C class name, we're in trouble because the parser
 | |
|         // is in the wrong place to recover. Suggest the typo
 | |
|         // correction, but don't make it a fix-it since we're not going
 | |
|         // to recover well anyway.
 | |
|         if (SS.isEmpty())
 | |
|           Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
 | |
|         else
 | |
|           Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | |
|             << Name << computeDeclContext(SS, false) << R.getLookupName()
 | |
|             << SS.getRange();
 | |
| 
 | |
|         // Don't try to recover; it won't work.
 | |
|         return true;
 | |
|       }
 | |
|     } else {
 | |
|       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
 | |
|       // because we aren't able to recover.
 | |
|       if (SS.isEmpty())
 | |
|         Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
 | |
|       else
 | |
|         Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | |
|         << Name << computeDeclContext(SS, false) << Corrected
 | |
|         << SS.getRange();
 | |
|       return true;
 | |
|     }
 | |
|     R.clear();
 | |
|   }
 | |
| 
 | |
|   // Emit a special diagnostic for failed member lookups.
 | |
|   // FIXME: computing the declaration context might fail here (?)
 | |
|   if (!SS.isEmpty()) {
 | |
|     Diag(R.getNameLoc(), diag::err_no_member)
 | |
|       << Name << computeDeclContext(SS, false)
 | |
|       << SS.getRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Give up, we can't recover.
 | |
|   Diag(R.getNameLoc(), diagnostic) << Name;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
 | |
|   ObjCMethodDecl *CurMeth = getCurMethodDecl();
 | |
|   ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
 | |
|   if (!IDecl)
 | |
|     return 0;
 | |
|   ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
 | |
|   if (!ClassImpDecl)
 | |
|     return 0;
 | |
|   ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
 | |
|   if (!property)
 | |
|     return 0;
 | |
|   if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
 | |
|     if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
 | |
|         PIDecl->getPropertyIvarDecl())
 | |
|       return 0;
 | |
|   return property;
 | |
| }
 | |
| 
 | |
| bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
 | |
|   ObjCMethodDecl *CurMeth = getCurMethodDecl();
 | |
|   ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
 | |
|   if (!IDecl)
 | |
|     return false;
 | |
|   ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
 | |
|   if (!ClassImpDecl)
 | |
|     return false;
 | |
|   if (ObjCPropertyImplDecl *PIDecl
 | |
|                 = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
 | |
|     if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
 | |
|         PIDecl->getPropertyIvarDecl())
 | |
|       return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup,
 | |
|                                               IdentifierInfo *II,
 | |
|                                               SourceLocation NameLoc) {
 | |
|   ObjCMethodDecl *CurMeth = getCurMethodDecl();
 | |
|   bool LookForIvars;
 | |
|   if (Lookup.empty())
 | |
|     LookForIvars = true;
 | |
|   else if (CurMeth->isClassMethod())
 | |
|     LookForIvars = false;
 | |
|   else
 | |
|     LookForIvars = (Lookup.isSingleResult() &&
 | |
|                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
 | |
|                     (Lookup.getAsSingle<VarDecl>() != 0));
 | |
|   if (!LookForIvars)
 | |
|     return 0;
 | |
|   
 | |
|   ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
 | |
|   if (!IDecl)
 | |
|     return 0;
 | |
|   ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
 | |
|   if (!ClassImpDecl)
 | |
|     return 0;
 | |
|   bool DynamicImplSeen = false;
 | |
|   ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
 | |
|   if (!property)
 | |
|     return 0;
 | |
|   if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
 | |
|     DynamicImplSeen = 
 | |
|       (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
 | |
|     // property implementation has a designated ivar. No need to assume a new
 | |
|     // one.
 | |
|     if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
 | |
|       return 0;
 | |
|   }
 | |
|   if (!DynamicImplSeen) {
 | |
|     QualType PropType = Context.getCanonicalType(property->getType());
 | |
|     ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl, 
 | |
|                                               NameLoc, NameLoc,
 | |
|                                               II, PropType, /*Dinfo=*/0,
 | |
|                                               ObjCIvarDecl::Private,
 | |
|                                               (Expr *)0, true);
 | |
|     ClassImpDecl->addDecl(Ivar);
 | |
|     IDecl->makeDeclVisibleInContext(Ivar, false);
 | |
|     property->setPropertyIvarDecl(Ivar);
 | |
|     return Ivar;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnIdExpression(Scope *S,
 | |
|                                    CXXScopeSpec &SS,
 | |
|                                    UnqualifiedId &Id,
 | |
|                                    bool HasTrailingLParen,
 | |
|                                    bool isAddressOfOperand) {
 | |
|   assert(!(isAddressOfOperand && HasTrailingLParen) &&
 | |
|          "cannot be direct & operand and have a trailing lparen");
 | |
| 
 | |
|   if (SS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   TemplateArgumentListInfo TemplateArgsBuffer;
 | |
| 
 | |
|   // Decompose the UnqualifiedId into the following data.
 | |
|   DeclarationNameInfo NameInfo;
 | |
|   const TemplateArgumentListInfo *TemplateArgs;
 | |
|   DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
 | |
| 
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   IdentifierInfo *II = Name.getAsIdentifierInfo();
 | |
|   SourceLocation NameLoc = NameInfo.getLoc();
 | |
| 
 | |
|   // C++ [temp.dep.expr]p3:
 | |
|   //   An id-expression is type-dependent if it contains:
 | |
|   //     -- an identifier that was declared with a dependent type,
 | |
|   //        (note: handled after lookup)
 | |
|   //     -- a template-id that is dependent,
 | |
|   //        (note: handled in BuildTemplateIdExpr)
 | |
|   //     -- a conversion-function-id that specifies a dependent type,
 | |
|   //     -- a nested-name-specifier that contains a class-name that
 | |
|   //        names a dependent type.
 | |
|   // Determine whether this is a member of an unknown specialization;
 | |
|   // we need to handle these differently.
 | |
|   bool DependentID = false;
 | |
|   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
 | |
|       Name.getCXXNameType()->isDependentType()) {
 | |
|     DependentID = true;
 | |
|   } else if (SS.isSet()) {
 | |
|     if (DeclContext *DC = computeDeclContext(SS, false)) {
 | |
|       if (RequireCompleteDeclContext(SS, DC))
 | |
|         return ExprError();
 | |
|     } else {
 | |
|       DependentID = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (DependentID)
 | |
|     return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
 | |
|                                       TemplateArgs);
 | |
| 
 | |
|   bool IvarLookupFollowUp = false;
 | |
|   // Perform the required lookup.
 | |
|   LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | |
|   if (TemplateArgs) {
 | |
|     // Lookup the template name again to correctly establish the context in
 | |
|     // which it was found. This is really unfortunate as we already did the
 | |
|     // lookup to determine that it was a template name in the first place. If
 | |
|     // this becomes a performance hit, we can work harder to preserve those
 | |
|     // results until we get here but it's likely not worth it.
 | |
|     bool MemberOfUnknownSpecialization;
 | |
|     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
 | |
|                        MemberOfUnknownSpecialization);
 | |
|     
 | |
|     if (MemberOfUnknownSpecialization ||
 | |
|         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
 | |
|       return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
 | |
|                                         TemplateArgs);
 | |
|   } else {
 | |
|     IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
 | |
|     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
 | |
| 
 | |
|     // If the result might be in a dependent base class, this is a dependent 
 | |
|     // id-expression.
 | |
|     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
 | |
|       return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
 | |
|                                         TemplateArgs);
 | |
|       
 | |
|     // If this reference is in an Objective-C method, then we need to do
 | |
|     // some special Objective-C lookup, too.
 | |
|     if (IvarLookupFollowUp) {
 | |
|       ExprResult E(LookupInObjCMethod(R, S, II, true));
 | |
|       if (E.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       if (Expr *Ex = E.takeAs<Expr>())
 | |
|         return Owned(Ex);
 | |
|       
 | |
|       // Synthesize ivars lazily.
 | |
|       if (getLangOptions().ObjCDefaultSynthProperties &&
 | |
|           getLangOptions().ObjCNonFragileABI2) {
 | |
|         if (SynthesizeProvisionalIvar(R, II, NameLoc)) {
 | |
|           if (const ObjCPropertyDecl *Property = 
 | |
|                 canSynthesizeProvisionalIvar(II)) {
 | |
|             Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
 | |
|             Diag(Property->getLocation(), diag::note_property_declare);
 | |
|           }
 | |
|           return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
 | |
|                                    isAddressOfOperand);
 | |
|         }
 | |
|       }
 | |
|       // for further use, this must be set to false if in class method.
 | |
|       IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Determine whether this name might be a candidate for
 | |
|   // argument-dependent lookup.
 | |
|   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
 | |
| 
 | |
|   if (R.empty() && !ADL) {
 | |
|     // Otherwise, this could be an implicitly declared function reference (legal
 | |
|     // in C90, extension in C99, forbidden in C++).
 | |
|     if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
 | |
|       NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
 | |
|       if (D) R.addDecl(D);
 | |
|     }
 | |
| 
 | |
|     // If this name wasn't predeclared and if this is not a function
 | |
|     // call, diagnose the problem.
 | |
|     if (R.empty()) {
 | |
|       if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
 | |
|         return ExprError();
 | |
| 
 | |
|       assert(!R.empty() &&
 | |
|              "DiagnoseEmptyLookup returned false but added no results");
 | |
| 
 | |
|       // If we found an Objective-C instance variable, let
 | |
|       // LookupInObjCMethod build the appropriate expression to
 | |
|       // reference the ivar.
 | |
|       if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
 | |
|         R.clear();
 | |
|         ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
 | |
|         assert(E.isInvalid() || E.get());
 | |
|         return move(E);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is guaranteed from this point on.
 | |
|   assert(!R.empty() || ADL);
 | |
| 
 | |
|   // Check whether this might be a C++ implicit instance member access.
 | |
|   // C++ [class.mfct.non-static]p3:
 | |
|   //   When an id-expression that is not part of a class member access
 | |
|   //   syntax and not used to form a pointer to member is used in the
 | |
|   //   body of a non-static member function of class X, if name lookup
 | |
|   //   resolves the name in the id-expression to a non-static non-type
 | |
|   //   member of some class C, the id-expression is transformed into a
 | |
|   //   class member access expression using (*this) as the
 | |
|   //   postfix-expression to the left of the . operator.
 | |
|   //
 | |
|   // But we don't actually need to do this for '&' operands if R
 | |
|   // resolved to a function or overloaded function set, because the
 | |
|   // expression is ill-formed if it actually works out to be a
 | |
|   // non-static member function:
 | |
|   //
 | |
|   // C++ [expr.ref]p4:
 | |
|   //   Otherwise, if E1.E2 refers to a non-static member function. . .
 | |
|   //   [t]he expression can be used only as the left-hand operand of a
 | |
|   //   member function call.
 | |
|   //
 | |
|   // There are other safeguards against such uses, but it's important
 | |
|   // to get this right here so that we don't end up making a
 | |
|   // spuriously dependent expression if we're inside a dependent
 | |
|   // instance method.
 | |
|   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
 | |
|     bool MightBeImplicitMember;
 | |
|     if (!isAddressOfOperand)
 | |
|       MightBeImplicitMember = true;
 | |
|     else if (!SS.isEmpty())
 | |
|       MightBeImplicitMember = false;
 | |
|     else if (R.isOverloadedResult())
 | |
|       MightBeImplicitMember = false;
 | |
|     else if (R.isUnresolvableResult())
 | |
|       MightBeImplicitMember = true;
 | |
|     else
 | |
|       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
 | |
|                               isa<IndirectFieldDecl>(R.getFoundDecl());
 | |
| 
 | |
|     if (MightBeImplicitMember)
 | |
|       return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   if (TemplateArgs)
 | |
|     return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
 | |
| 
 | |
|   return BuildDeclarationNameExpr(SS, R, ADL);
 | |
| }
 | |
| 
 | |
| /// Builds an expression which might be an implicit member expression.
 | |
| ExprResult
 | |
| Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
 | |
|                                       LookupResult &R,
 | |
|                                 const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   switch (ClassifyImplicitMemberAccess(*this, R)) {
 | |
|   case IMA_Instance:
 | |
|     return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
 | |
| 
 | |
|   case IMA_Mixed:
 | |
|   case IMA_Mixed_Unrelated:
 | |
|   case IMA_Unresolved:
 | |
|     return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
 | |
| 
 | |
|   case IMA_Static:
 | |
|   case IMA_Mixed_StaticContext:
 | |
|   case IMA_Unresolved_StaticContext:
 | |
|     if (TemplateArgs)
 | |
|       return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
 | |
|     return BuildDeclarationNameExpr(SS, R, false);
 | |
| 
 | |
|   case IMA_Error_StaticContext:
 | |
|   case IMA_Error_Unrelated:
 | |
|     DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
 | |
|                               R.getLookupNameInfo());
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unexpected instance member access kind");
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
 | |
| /// declaration name, generally during template instantiation.
 | |
| /// There's a large number of things which don't need to be done along
 | |
| /// this path.
 | |
| ExprResult
 | |
| Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
 | |
|                                         const DeclarationNameInfo &NameInfo) {
 | |
|   DeclContext *DC;
 | |
|   if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
 | |
|     return BuildDependentDeclRefExpr(SS, NameInfo, 0);
 | |
| 
 | |
|   if (RequireCompleteDeclContext(SS, DC))
 | |
|     return ExprError();
 | |
| 
 | |
|   LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | |
|   LookupQualifiedName(R, DC);
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     Diag(NameInfo.getLoc(), diag::err_no_member)
 | |
|       << NameInfo.getName() << DC << SS.getRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
 | |
| }
 | |
| 
 | |
| /// LookupInObjCMethod - The parser has read a name in, and Sema has
 | |
| /// detected that we're currently inside an ObjC method.  Perform some
 | |
| /// additional lookup.
 | |
| ///
 | |
| /// Ideally, most of this would be done by lookup, but there's
 | |
| /// actually quite a lot of extra work involved.
 | |
| ///
 | |
| /// Returns a null sentinel to indicate trivial success.
 | |
| ExprResult
 | |
| Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
 | |
|                          IdentifierInfo *II, bool AllowBuiltinCreation) {
 | |
|   SourceLocation Loc = Lookup.getNameLoc();
 | |
|   ObjCMethodDecl *CurMethod = getCurMethodDecl();
 | |
| 
 | |
|   // There are two cases to handle here.  1) scoped lookup could have failed,
 | |
|   // in which case we should look for an ivar.  2) scoped lookup could have
 | |
|   // found a decl, but that decl is outside the current instance method (i.e.
 | |
|   // a global variable).  In these two cases, we do a lookup for an ivar with
 | |
|   // this name, if the lookup sucedes, we replace it our current decl.
 | |
| 
 | |
|   // If we're in a class method, we don't normally want to look for
 | |
|   // ivars.  But if we don't find anything else, and there's an
 | |
|   // ivar, that's an error.
 | |
|   bool IsClassMethod = CurMethod->isClassMethod();
 | |
| 
 | |
|   bool LookForIvars;
 | |
|   if (Lookup.empty())
 | |
|     LookForIvars = true;
 | |
|   else if (IsClassMethod)
 | |
|     LookForIvars = false;
 | |
|   else
 | |
|     LookForIvars = (Lookup.isSingleResult() &&
 | |
|                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
 | |
|   ObjCInterfaceDecl *IFace = 0;
 | |
|   if (LookForIvars) {
 | |
|     IFace = CurMethod->getClassInterface();
 | |
|     ObjCInterfaceDecl *ClassDeclared;
 | |
|     if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
 | |
|       // Diagnose using an ivar in a class method.
 | |
|       if (IsClassMethod)
 | |
|         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
 | |
|                          << IV->getDeclName());
 | |
| 
 | |
|       // If we're referencing an invalid decl, just return this as a silent
 | |
|       // error node.  The error diagnostic was already emitted on the decl.
 | |
|       if (IV->isInvalidDecl())
 | |
|         return ExprError();
 | |
| 
 | |
|       // Check if referencing a field with __attribute__((deprecated)).
 | |
|       if (DiagnoseUseOfDecl(IV, Loc))
 | |
|         return ExprError();
 | |
| 
 | |
|       // Diagnose the use of an ivar outside of the declaring class.
 | |
|       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
 | |
|           ClassDeclared != IFace)
 | |
|         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
 | |
| 
 | |
|       // FIXME: This should use a new expr for a direct reference, don't
 | |
|       // turn this into Self->ivar, just return a BareIVarExpr or something.
 | |
|       IdentifierInfo &II = Context.Idents.get("self");
 | |
|       UnqualifiedId SelfName;
 | |
|       SelfName.setIdentifier(&II, SourceLocation());
 | |
|       CXXScopeSpec SelfScopeSpec;
 | |
|       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
 | |
|                                               SelfName, false, false);
 | |
|       if (SelfExpr.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       SelfExpr = DefaultLvalueConversion(SelfExpr.take());
 | |
|       if (SelfExpr.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       MarkDeclarationReferenced(Loc, IV);
 | |
|       Expr *base = SelfExpr.take();
 | |
|       base = base->IgnoreParenImpCasts();
 | |
|       if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(base)) {
 | |
|         const NamedDecl *ND = DE->getDecl();
 | |
|         if (!isa<ImplicitParamDecl>(ND)) {
 | |
|           // relax the rule such that it is allowed to have a shadow 'self'
 | |
|           // where stand-alone ivar can be found in this 'self' object. 
 | |
|           // This is to match gcc's behavior.
 | |
|           ObjCInterfaceDecl *selfIFace = 0;
 | |
|           if (const ObjCObjectPointerType *OPT =
 | |
|               base->getType()->getAsObjCInterfacePointerType())
 | |
|             selfIFace = OPT->getInterfaceDecl();
 | |
|           if (!selfIFace || 
 | |
|               !selfIFace->lookupInstanceVariable(IV->getIdentifier())) {
 | |
|             Diag(Loc, diag::error_implicit_ivar_access)
 | |
|             << IV->getDeclName();
 | |
|             Diag(ND->getLocation(), diag::note_declared_at);
 | |
|             return ExprError();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return Owned(new (Context)
 | |
|                    ObjCIvarRefExpr(IV, IV->getType(), Loc,
 | |
|                                    SelfExpr.take(), true, true));
 | |
|     }
 | |
|   } else if (CurMethod->isInstanceMethod()) {
 | |
|     // We should warn if a local variable hides an ivar.
 | |
|     ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
 | |
|     ObjCInterfaceDecl *ClassDeclared;
 | |
|     if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
 | |
|       if (IV->getAccessControl() != ObjCIvarDecl::Private ||
 | |
|           IFace == ClassDeclared)
 | |
|         Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Lookup.empty() && II && AllowBuiltinCreation) {
 | |
|     // FIXME. Consolidate this with similar code in LookupName.
 | |
|     if (unsigned BuiltinID = II->getBuiltinID()) {
 | |
|       if (!(getLangOptions().CPlusPlus &&
 | |
|             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
 | |
|         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
 | |
|                                            S, Lookup.isForRedeclaration(),
 | |
|                                            Lookup.getNameLoc());
 | |
|         if (D) Lookup.addDecl(D);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Sentinel value saying that we didn't do anything special.
 | |
|   return Owned((Expr*) 0);
 | |
| }
 | |
| 
 | |
| /// \brief Cast a base object to a member's actual type.
 | |
| ///
 | |
| /// Logically this happens in three phases:
 | |
| ///
 | |
| /// * First we cast from the base type to the naming class.
 | |
| ///   The naming class is the class into which we were looking
 | |
| ///   when we found the member;  it's the qualifier type if a
 | |
| ///   qualifier was provided, and otherwise it's the base type.
 | |
| ///
 | |
| /// * Next we cast from the naming class to the declaring class.
 | |
| ///   If the member we found was brought into a class's scope by
 | |
| ///   a using declaration, this is that class;  otherwise it's
 | |
| ///   the class declaring the member.
 | |
| ///
 | |
| /// * Finally we cast from the declaring class to the "true"
 | |
| ///   declaring class of the member.  This conversion does not
 | |
| ///   obey access control.
 | |
| ExprResult
 | |
| Sema::PerformObjectMemberConversion(Expr *From,
 | |
|                                     NestedNameSpecifier *Qualifier,
 | |
|                                     NamedDecl *FoundDecl,
 | |
|                                     NamedDecl *Member) {
 | |
|   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
 | |
|   if (!RD)
 | |
|     return Owned(From);
 | |
| 
 | |
|   QualType DestRecordType;
 | |
|   QualType DestType;
 | |
|   QualType FromRecordType;
 | |
|   QualType FromType = From->getType();
 | |
|   bool PointerConversions = false;
 | |
|   if (isa<FieldDecl>(Member)) {
 | |
|     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
 | |
| 
 | |
|     if (FromType->getAs<PointerType>()) {
 | |
|       DestType = Context.getPointerType(DestRecordType);
 | |
|       FromRecordType = FromType->getPointeeType();
 | |
|       PointerConversions = true;
 | |
|     } else {
 | |
|       DestType = DestRecordType;
 | |
|       FromRecordType = FromType;
 | |
|     }
 | |
|   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
 | |
|     if (Method->isStatic())
 | |
|       return Owned(From);
 | |
| 
 | |
|     DestType = Method->getThisType(Context);
 | |
|     DestRecordType = DestType->getPointeeType();
 | |
| 
 | |
|     if (FromType->getAs<PointerType>()) {
 | |
|       FromRecordType = FromType->getPointeeType();
 | |
|       PointerConversions = true;
 | |
|     } else {
 | |
|       FromRecordType = FromType;
 | |
|       DestType = DestRecordType;
 | |
|     }
 | |
|   } else {
 | |
|     // No conversion necessary.
 | |
|     return Owned(From);
 | |
|   }
 | |
| 
 | |
|   if (DestType->isDependentType() || FromType->isDependentType())
 | |
|     return Owned(From);
 | |
| 
 | |
|   // If the unqualified types are the same, no conversion is necessary.
 | |
|   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
 | |
|     return Owned(From);
 | |
| 
 | |
|   SourceRange FromRange = From->getSourceRange();
 | |
|   SourceLocation FromLoc = FromRange.getBegin();
 | |
| 
 | |
|   ExprValueKind VK = CastCategory(From);
 | |
| 
 | |
|   // C++ [class.member.lookup]p8:
 | |
|   //   [...] Ambiguities can often be resolved by qualifying a name with its
 | |
|   //   class name.
 | |
|   //
 | |
|   // If the member was a qualified name and the qualified referred to a
 | |
|   // specific base subobject type, we'll cast to that intermediate type
 | |
|   // first and then to the object in which the member is declared. That allows
 | |
|   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
 | |
|   //
 | |
|   //   class Base { public: int x; };
 | |
|   //   class Derived1 : public Base { };
 | |
|   //   class Derived2 : public Base { };
 | |
|   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
 | |
|   //
 | |
|   //   void VeryDerived::f() {
 | |
|   //     x = 17; // error: ambiguous base subobjects
 | |
|   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
 | |
|   //   }
 | |
|   if (Qualifier) {
 | |
|     QualType QType = QualType(Qualifier->getAsType(), 0);
 | |
|     assert(!QType.isNull() && "lookup done with dependent qualifier?");
 | |
|     assert(QType->isRecordType() && "lookup done with non-record type");
 | |
| 
 | |
|     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
 | |
| 
 | |
|     // In C++98, the qualifier type doesn't actually have to be a base
 | |
|     // type of the object type, in which case we just ignore it.
 | |
|     // Otherwise build the appropriate casts.
 | |
|     if (IsDerivedFrom(FromRecordType, QRecordType)) {
 | |
|       CXXCastPath BasePath;
 | |
|       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
 | |
|                                        FromLoc, FromRange, &BasePath))
 | |
|         return ExprError();
 | |
| 
 | |
|       if (PointerConversions)
 | |
|         QType = Context.getPointerType(QType);
 | |
|       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
 | |
|                                VK, &BasePath).take();
 | |
| 
 | |
|       FromType = QType;
 | |
|       FromRecordType = QRecordType;
 | |
| 
 | |
|       // If the qualifier type was the same as the destination type,
 | |
|       // we're done.
 | |
|       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
 | |
|         return Owned(From);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool IgnoreAccess = false;
 | |
| 
 | |
|   // If we actually found the member through a using declaration, cast
 | |
|   // down to the using declaration's type.
 | |
|   //
 | |
|   // Pointer equality is fine here because only one declaration of a
 | |
|   // class ever has member declarations.
 | |
|   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
 | |
|     assert(isa<UsingShadowDecl>(FoundDecl));
 | |
|     QualType URecordType = Context.getTypeDeclType(
 | |
|                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
 | |
| 
 | |
|     // We only need to do this if the naming-class to declaring-class
 | |
|     // conversion is non-trivial.
 | |
|     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
 | |
|       assert(IsDerivedFrom(FromRecordType, URecordType));
 | |
|       CXXCastPath BasePath;
 | |
|       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
 | |
|                                        FromLoc, FromRange, &BasePath))
 | |
|         return ExprError();
 | |
| 
 | |
|       QualType UType = URecordType;
 | |
|       if (PointerConversions)
 | |
|         UType = Context.getPointerType(UType);
 | |
|       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
 | |
|                                VK, &BasePath).take();
 | |
|       FromType = UType;
 | |
|       FromRecordType = URecordType;
 | |
|     }
 | |
| 
 | |
|     // We don't do access control for the conversion from the
 | |
|     // declaring class to the true declaring class.
 | |
|     IgnoreAccess = true;
 | |
|   }
 | |
| 
 | |
|   CXXCastPath BasePath;
 | |
|   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
 | |
|                                    FromLoc, FromRange, &BasePath,
 | |
|                                    IgnoreAccess))
 | |
|     return ExprError();
 | |
| 
 | |
|   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
 | |
|                            VK, &BasePath);
 | |
| }
 | |
| 
 | |
| /// \brief Build a MemberExpr AST node.
 | |
| static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
 | |
|                                    const CXXScopeSpec &SS, ValueDecl *Member,
 | |
|                                    DeclAccessPair FoundDecl,
 | |
|                                    const DeclarationNameInfo &MemberNameInfo,
 | |
|                                    QualType Ty,
 | |
|                                    ExprValueKind VK, ExprObjectKind OK,
 | |
|                           const TemplateArgumentListInfo *TemplateArgs = 0) {
 | |
|   return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
 | |
|                             Member, FoundDecl, MemberNameInfo,
 | |
|                             TemplateArgs, Ty, VK, OK);
 | |
| }
 | |
| 
 | |
| static ExprResult
 | |
| BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
 | |
|                         const CXXScopeSpec &SS, FieldDecl *Field,
 | |
|                         DeclAccessPair FoundDecl,
 | |
|                         const DeclarationNameInfo &MemberNameInfo) {
 | |
|   // x.a is an l-value if 'a' has a reference type. Otherwise:
 | |
|   // x.a is an l-value/x-value/pr-value if the base is (and note
 | |
|   //   that *x is always an l-value), except that if the base isn't
 | |
|   //   an ordinary object then we must have an rvalue.
 | |
|   ExprValueKind VK = VK_LValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
|   if (!IsArrow) {
 | |
|     if (BaseExpr->getObjectKind() == OK_Ordinary)
 | |
|       VK = BaseExpr->getValueKind();
 | |
|     else
 | |
|       VK = VK_RValue;
 | |
|   }
 | |
|   if (VK != VK_RValue && Field->isBitField())
 | |
|     OK = OK_BitField;
 | |
| 
 | |
|   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
 | |
|   QualType MemberType = Field->getType();
 | |
|   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
 | |
|     MemberType = Ref->getPointeeType();
 | |
|     VK = VK_LValue;
 | |
|   } else {
 | |
|     QualType BaseType = BaseExpr->getType();
 | |
|     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|     Qualifiers BaseQuals = BaseType.getQualifiers();
 | |
| 
 | |
|     // GC attributes are never picked up by members.
 | |
|     BaseQuals.removeObjCGCAttr();
 | |
| 
 | |
|     // CVR attributes from the base are picked up by members,
 | |
|     // except that 'mutable' members don't pick up 'const'.
 | |
|     if (Field->isMutable()) BaseQuals.removeConst();
 | |
| 
 | |
|     Qualifiers MemberQuals
 | |
|       = S.Context.getCanonicalType(MemberType).getQualifiers();
 | |
| 
 | |
|     // TR 18037 does not allow fields to be declared with address spaces.
 | |
|     assert(!MemberQuals.hasAddressSpace());
 | |
| 
 | |
|     Qualifiers Combined = BaseQuals + MemberQuals;
 | |
|     if (Combined != MemberQuals)
 | |
|       MemberType = S.Context.getQualifiedType(MemberType, Combined);
 | |
|   }
 | |
| 
 | |
|   S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
 | |
|   ExprResult Base =
 | |
|     S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
 | |
|                                     FoundDecl, Field);
 | |
|   if (Base.isInvalid())
 | |
|     return ExprError();
 | |
|   return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS,
 | |
|                                  Field, FoundDecl, MemberNameInfo,
 | |
|                                  MemberType, VK, OK));
 | |
| }
 | |
| 
 | |
| /// Builds an implicit member access expression.  The current context
 | |
| /// is known to be an instance method, and the given unqualified lookup
 | |
| /// set is known to contain only instance members, at least one of which
 | |
| /// is from an appropriate type.
 | |
| ExprResult
 | |
| Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
 | |
|                               LookupResult &R,
 | |
|                               const TemplateArgumentListInfo *TemplateArgs,
 | |
|                               bool IsKnownInstance) {
 | |
|   assert(!R.empty() && !R.isAmbiguous());
 | |
| 
 | |
|   SourceLocation loc = R.getNameLoc();
 | |
| 
 | |
|   // We may have found a field within an anonymous union or struct
 | |
|   // (C++ [class.union]).
 | |
|   // FIXME: template-ids inside anonymous structs?
 | |
|   if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
 | |
|     return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
 | |
| 
 | |
|   // If this is known to be an instance access, go ahead and build an
 | |
|   // implicit 'this' expression now.
 | |
|   // 'this' expression now.
 | |
|   CXXMethodDecl *method = tryCaptureCXXThis();
 | |
|   assert(method && "didn't correctly pre-flight capture of 'this'");
 | |
| 
 | |
|   QualType thisType = method->getThisType(Context);
 | |
|   Expr *baseExpr = 0; // null signifies implicit access
 | |
|   if (IsKnownInstance) {
 | |
|     SourceLocation Loc = R.getNameLoc();
 | |
|     if (SS.getRange().isValid())
 | |
|       Loc = SS.getRange().getBegin();
 | |
|     baseExpr = new (Context) CXXThisExpr(loc, thisType, /*isImplicit=*/true);
 | |
|   }
 | |
| 
 | |
|   return BuildMemberReferenceExpr(baseExpr, thisType,
 | |
|                                   /*OpLoc*/ SourceLocation(),
 | |
|                                   /*IsArrow*/ true,
 | |
|                                   SS,
 | |
|                                   /*FirstQualifierInScope*/ 0,
 | |
|                                   R, TemplateArgs);
 | |
| }
 | |
| 
 | |
| bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
 | |
|                                       const LookupResult &R,
 | |
|                                       bool HasTrailingLParen) {
 | |
|   // Only when used directly as the postfix-expression of a call.
 | |
|   if (!HasTrailingLParen)
 | |
|     return false;
 | |
| 
 | |
|   // Never if a scope specifier was provided.
 | |
|   if (SS.isSet())
 | |
|     return false;
 | |
| 
 | |
|   // Only in C++ or ObjC++.
 | |
|   if (!getLangOptions().CPlusPlus)
 | |
|     return false;
 | |
| 
 | |
|   // Turn off ADL when we find certain kinds of declarations during
 | |
|   // normal lookup:
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
| 
 | |
|     // C++0x [basic.lookup.argdep]p3:
 | |
|     //     -- a declaration of a class member
 | |
|     // Since using decls preserve this property, we check this on the
 | |
|     // original decl.
 | |
|     if (D->isCXXClassMember())
 | |
|       return false;
 | |
| 
 | |
|     // C++0x [basic.lookup.argdep]p3:
 | |
|     //     -- a block-scope function declaration that is not a
 | |
|     //        using-declaration
 | |
|     // NOTE: we also trigger this for function templates (in fact, we
 | |
|     // don't check the decl type at all, since all other decl types
 | |
|     // turn off ADL anyway).
 | |
|     if (isa<UsingShadowDecl>(D))
 | |
|       D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
|     else if (D->getDeclContext()->isFunctionOrMethod())
 | |
|       return false;
 | |
| 
 | |
|     // C++0x [basic.lookup.argdep]p3:
 | |
|     //     -- a declaration that is neither a function or a function
 | |
|     //        template
 | |
|     // And also for builtin functions.
 | |
|     if (isa<FunctionDecl>(D)) {
 | |
|       FunctionDecl *FDecl = cast<FunctionDecl>(D);
 | |
| 
 | |
|       // But also builtin functions.
 | |
|       if (FDecl->getBuiltinID() && FDecl->isImplicit())
 | |
|         return false;
 | |
|     } else if (!isa<FunctionTemplateDecl>(D))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Diagnoses obvious problems with the use of the given declaration
 | |
| /// as an expression.  This is only actually called for lookups that
 | |
| /// were not overloaded, and it doesn't promise that the declaration
 | |
| /// will in fact be used.
 | |
| static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
 | |
|   if (isa<TypedefNameDecl>(D)) {
 | |
|     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (isa<ObjCInterfaceDecl>(D)) {
 | |
|     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (isa<NamespaceDecl>(D)) {
 | |
|     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
 | |
|                                LookupResult &R,
 | |
|                                bool NeedsADL) {
 | |
|   // If this is a single, fully-resolved result and we don't need ADL,
 | |
|   // just build an ordinary singleton decl ref.
 | |
|   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
 | |
|     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
 | |
|                                     R.getFoundDecl());
 | |
| 
 | |
|   // We only need to check the declaration if there's exactly one
 | |
|   // result, because in the overloaded case the results can only be
 | |
|   // functions and function templates.
 | |
|   if (R.isSingleResult() &&
 | |
|       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Otherwise, just build an unresolved lookup expression.  Suppress
 | |
|   // any lookup-related diagnostics; we'll hash these out later, when
 | |
|   // we've picked a target.
 | |
|   R.suppressDiagnostics();
 | |
| 
 | |
|   UnresolvedLookupExpr *ULE
 | |
|     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
 | |
|                                    SS.getWithLocInContext(Context),
 | |
|                                    R.getLookupNameInfo(),
 | |
|                                    NeedsADL, R.isOverloadedResult(),
 | |
|                                    R.begin(), R.end());
 | |
| 
 | |
|   return Owned(ULE);
 | |
| }
 | |
| 
 | |
| /// \brief Complete semantic analysis for a reference to the given declaration.
 | |
| ExprResult
 | |
| Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
 | |
|                                const DeclarationNameInfo &NameInfo,
 | |
|                                NamedDecl *D) {
 | |
|   assert(D && "Cannot refer to a NULL declaration");
 | |
|   assert(!isa<FunctionTemplateDecl>(D) &&
 | |
|          "Cannot refer unambiguously to a function template");
 | |
| 
 | |
|   SourceLocation Loc = NameInfo.getLoc();
 | |
|   if (CheckDeclInExpr(*this, Loc, D))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
 | |
|     // Specifically diagnose references to class templates that are missing
 | |
|     // a template argument list.
 | |
|     Diag(Loc, diag::err_template_decl_ref)
 | |
|       << Template << SS.getRange();
 | |
|     Diag(Template->getLocation(), diag::note_template_decl_here);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Make sure that we're referring to a value.
 | |
|   ValueDecl *VD = dyn_cast<ValueDecl>(D);
 | |
|   if (!VD) {
 | |
|     Diag(Loc, diag::err_ref_non_value)
 | |
|       << D << SS.getRange();
 | |
|     Diag(D->getLocation(), diag::note_declared_at);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Check whether this declaration can be used. Note that we suppress
 | |
|   // this check when we're going to perform argument-dependent lookup
 | |
|   // on this function name, because this might not be the function
 | |
|   // that overload resolution actually selects.
 | |
|   if (DiagnoseUseOfDecl(VD, Loc))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Only create DeclRefExpr's for valid Decl's.
 | |
|   if (VD->isInvalidDecl())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Handle members of anonymous structs and unions.  If we got here,
 | |
|   // and the reference is to a class member indirect field, then this
 | |
|   // must be the subject of a pointer-to-member expression.
 | |
|   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
 | |
|     if (!indirectField->isCXXClassMember())
 | |
|       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
 | |
|                                                       indirectField);
 | |
| 
 | |
|   // If the identifier reference is inside a block, and it refers to a value
 | |
|   // that is outside the block, create a BlockDeclRefExpr instead of a
 | |
|   // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
 | |
|   // the block is formed.
 | |
|   //
 | |
|   // We do not do this for things like enum constants, global variables, etc,
 | |
|   // as they do not get snapshotted.
 | |
|   //
 | |
|   switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
 | |
|   case CR_Error:
 | |
|     return ExprError();
 | |
| 
 | |
|   case CR_Capture:
 | |
|     assert(!SS.isSet() && "referenced local variable with scope specifier?");
 | |
|     return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
 | |
| 
 | |
|   case CR_CaptureByRef:
 | |
|     assert(!SS.isSet() && "referenced local variable with scope specifier?");
 | |
|     return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
 | |
| 
 | |
|   case CR_NoCapture: {
 | |
|     // If this reference is not in a block or if the referenced
 | |
|     // variable is within the block, create a normal DeclRefExpr.
 | |
| 
 | |
|     QualType type = VD->getType();
 | |
|     ExprValueKind valueKind = VK_RValue;
 | |
| 
 | |
|     switch (D->getKind()) {
 | |
|     // Ignore all the non-ValueDecl kinds.
 | |
| #define ABSTRACT_DECL(kind)
 | |
| #define VALUE(type, base)
 | |
| #define DECL(type, base) \
 | |
|     case Decl::type:
 | |
| #include "clang/AST/DeclNodes.inc"
 | |
|       llvm_unreachable("invalid value decl kind");
 | |
|       return ExprError();
 | |
| 
 | |
|     // These shouldn't make it here.
 | |
|     case Decl::ObjCAtDefsField:
 | |
|     case Decl::ObjCIvar:
 | |
|       llvm_unreachable("forming non-member reference to ivar?");
 | |
|       return ExprError();
 | |
| 
 | |
|     // Enum constants are always r-values and never references.
 | |
|     // Unresolved using declarations are dependent.
 | |
|     case Decl::EnumConstant:
 | |
|     case Decl::UnresolvedUsingValue:
 | |
|       valueKind = VK_RValue;
 | |
|       break;
 | |
| 
 | |
|     // Fields and indirect fields that got here must be for
 | |
|     // pointer-to-member expressions; we just call them l-values for
 | |
|     // internal consistency, because this subexpression doesn't really
 | |
|     // exist in the high-level semantics.
 | |
|     case Decl::Field:
 | |
|     case Decl::IndirectField:
 | |
|       assert(getLangOptions().CPlusPlus &&
 | |
|              "building reference to field in C?");
 | |
| 
 | |
|       // These can't have reference type in well-formed programs, but
 | |
|       // for internal consistency we do this anyway.
 | |
|       type = type.getNonReferenceType();
 | |
|       valueKind = VK_LValue;
 | |
|       break;
 | |
| 
 | |
|     // Non-type template parameters are either l-values or r-values
 | |
|     // depending on the type.
 | |
|     case Decl::NonTypeTemplateParm: {
 | |
|       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
 | |
|         type = reftype->getPointeeType();
 | |
|         valueKind = VK_LValue; // even if the parameter is an r-value reference
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // For non-references, we need to strip qualifiers just in case
 | |
|       // the template parameter was declared as 'const int' or whatever.
 | |
|       valueKind = VK_RValue;
 | |
|       type = type.getUnqualifiedType();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Decl::Var:
 | |
|       // In C, "extern void blah;" is valid and is an r-value.
 | |
|       if (!getLangOptions().CPlusPlus &&
 | |
|           !type.hasQualifiers() &&
 | |
|           type->isVoidType()) {
 | |
|         valueKind = VK_RValue;
 | |
|         break;
 | |
|       }
 | |
|       // fallthrough
 | |
| 
 | |
|     case Decl::ImplicitParam:
 | |
|     case Decl::ParmVar:
 | |
|       // These are always l-values.
 | |
|       valueKind = VK_LValue;
 | |
|       type = type.getNonReferenceType();
 | |
|       break;
 | |
| 
 | |
|     case Decl::Function: {
 | |
|       const FunctionType *fty = type->castAs<FunctionType>();
 | |
| 
 | |
|       // If we're referring to a function with an __unknown_anytype
 | |
|       // result type, make the entire expression __unknown_anytype.
 | |
|       if (fty->getResultType() == Context.UnknownAnyTy) {
 | |
|         type = Context.UnknownAnyTy;
 | |
|         valueKind = VK_RValue;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Functions are l-values in C++.
 | |
|       if (getLangOptions().CPlusPlus) {
 | |
|         valueKind = VK_LValue;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       // C99 DR 316 says that, if a function type comes from a
 | |
|       // function definition (without a prototype), that type is only
 | |
|       // used for checking compatibility. Therefore, when referencing
 | |
|       // the function, we pretend that we don't have the full function
 | |
|       // type.
 | |
|       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
 | |
|           isa<FunctionProtoType>(fty))
 | |
|         type = Context.getFunctionNoProtoType(fty->getResultType(),
 | |
|                                               fty->getExtInfo());
 | |
| 
 | |
|       // Functions are r-values in C.
 | |
|       valueKind = VK_RValue;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Decl::CXXMethod:
 | |
|       // If we're referring to a method with an __unknown_anytype
 | |
|       // result type, make the entire expression __unknown_anytype.
 | |
|       // This should only be possible with a type written directly.
 | |
|       if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType()))
 | |
|         if (proto->getResultType() == Context.UnknownAnyTy) {
 | |
|           type = Context.UnknownAnyTy;
 | |
|           valueKind = VK_RValue;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // C++ methods are l-values if static, r-values if non-static.
 | |
|       if (cast<CXXMethodDecl>(VD)->isStatic()) {
 | |
|         valueKind = VK_LValue;
 | |
|         break;
 | |
|       }
 | |
|       // fallthrough
 | |
| 
 | |
|     case Decl::CXXConversion:
 | |
|     case Decl::CXXDestructor:
 | |
|     case Decl::CXXConstructor:
 | |
|       valueKind = VK_RValue;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
 | |
|   }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown capture result");
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
 | |
|   PredefinedExpr::IdentType IT;
 | |
| 
 | |
|   switch (Kind) {
 | |
|   default: assert(0 && "Unknown simple primary expr!");
 | |
|   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
 | |
|   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
 | |
|   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
 | |
|   }
 | |
| 
 | |
|   // Pre-defined identifiers are of type char[x], where x is the length of the
 | |
|   // string.
 | |
| 
 | |
|   Decl *currentDecl = getCurFunctionOrMethodDecl();
 | |
|   if (!currentDecl && getCurBlock())
 | |
|     currentDecl = getCurBlock()->TheDecl;
 | |
|   if (!currentDecl) {
 | |
|     Diag(Loc, diag::ext_predef_outside_function);
 | |
|     currentDecl = Context.getTranslationUnitDecl();
 | |
|   }
 | |
| 
 | |
|   QualType ResTy;
 | |
|   if (cast<DeclContext>(currentDecl)->isDependentContext()) {
 | |
|     ResTy = Context.DependentTy;
 | |
|   } else {
 | |
|     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
 | |
| 
 | |
|     llvm::APInt LengthI(32, Length + 1);
 | |
|     ResTy = Context.CharTy.withConst();
 | |
|     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
 | |
|   }
 | |
|   return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
 | |
|   llvm::SmallString<16> CharBuffer;
 | |
|   bool Invalid = false;
 | |
|   llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
 | |
|   if (Invalid)
 | |
|     return ExprError();
 | |
| 
 | |
|   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
 | |
|                             PP);
 | |
|   if (Literal.hadError())
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType Ty;
 | |
|   if (!getLangOptions().CPlusPlus)
 | |
|     Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
 | |
|   else if (Literal.isWide())
 | |
|     Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
 | |
|   else if (Literal.isMultiChar())
 | |
|     Ty = Context.IntTy;   // 'wxyz' -> int in C++.
 | |
|   else
 | |
|     Ty = Context.CharTy;  // 'x' -> char in C++
 | |
| 
 | |
|   return Owned(new (Context) CharacterLiteral(Literal.getValue(),
 | |
|                                               Literal.isWide(),
 | |
|                                               Ty, Tok.getLocation()));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
 | |
|   // Fast path for a single digit (which is quite common).  A single digit
 | |
|   // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
 | |
|   if (Tok.getLength() == 1) {
 | |
|     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
 | |
|     unsigned IntSize = Context.Target.getIntWidth();
 | |
|     return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
 | |
|                     Context.IntTy, Tok.getLocation()));
 | |
|   }
 | |
| 
 | |
|   llvm::SmallString<512> IntegerBuffer;
 | |
|   // Add padding so that NumericLiteralParser can overread by one character.
 | |
|   IntegerBuffer.resize(Tok.getLength()+1);
 | |
|   const char *ThisTokBegin = &IntegerBuffer[0];
 | |
| 
 | |
|   // Get the spelling of the token, which eliminates trigraphs, etc.
 | |
|   bool Invalid = false;
 | |
|   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
 | |
|   if (Invalid)
 | |
|     return ExprError();
 | |
| 
 | |
|   NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
 | |
|                                Tok.getLocation(), PP);
 | |
|   if (Literal.hadError)
 | |
|     return ExprError();
 | |
| 
 | |
|   Expr *Res;
 | |
| 
 | |
|   if (Literal.isFloatingLiteral()) {
 | |
|     QualType Ty;
 | |
|     if (Literal.isFloat)
 | |
|       Ty = Context.FloatTy;
 | |
|     else if (!Literal.isLong)
 | |
|       Ty = Context.DoubleTy;
 | |
|     else
 | |
|       Ty = Context.LongDoubleTy;
 | |
| 
 | |
|     const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
 | |
| 
 | |
|     using llvm::APFloat;
 | |
|     APFloat Val(Format);
 | |
| 
 | |
|     APFloat::opStatus result = Literal.GetFloatValue(Val);
 | |
| 
 | |
|     // Overflow is always an error, but underflow is only an error if
 | |
|     // we underflowed to zero (APFloat reports denormals as underflow).
 | |
|     if ((result & APFloat::opOverflow) ||
 | |
|         ((result & APFloat::opUnderflow) && Val.isZero())) {
 | |
|       unsigned diagnostic;
 | |
|       llvm::SmallString<20> buffer;
 | |
|       if (result & APFloat::opOverflow) {
 | |
|         diagnostic = diag::warn_float_overflow;
 | |
|         APFloat::getLargest(Format).toString(buffer);
 | |
|       } else {
 | |
|         diagnostic = diag::warn_float_underflow;
 | |
|         APFloat::getSmallest(Format).toString(buffer);
 | |
|       }
 | |
| 
 | |
|       Diag(Tok.getLocation(), diagnostic)
 | |
|         << Ty
 | |
|         << llvm::StringRef(buffer.data(), buffer.size());
 | |
|     }
 | |
| 
 | |
|     bool isExact = (result == APFloat::opOK);
 | |
|     Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
 | |
| 
 | |
|     if (Ty == Context.DoubleTy) {
 | |
|       if (getLangOptions().SinglePrecisionConstants) {
 | |
|         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
 | |
|       } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
 | |
|         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
 | |
|         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
 | |
|       }
 | |
|     }
 | |
|   } else if (!Literal.isIntegerLiteral()) {
 | |
|     return ExprError();
 | |
|   } else {
 | |
|     QualType Ty;
 | |
| 
 | |
|     // long long is a C99 feature.
 | |
|     if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
 | |
|         Literal.isLongLong)
 | |
|       Diag(Tok.getLocation(), diag::ext_longlong);
 | |
| 
 | |
|     // Get the value in the widest-possible width.
 | |
|     llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
 | |
| 
 | |
|     if (Literal.GetIntegerValue(ResultVal)) {
 | |
|       // If this value didn't fit into uintmax_t, warn and force to ull.
 | |
|       Diag(Tok.getLocation(), diag::warn_integer_too_large);
 | |
|       Ty = Context.UnsignedLongLongTy;
 | |
|       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
 | |
|              "long long is not intmax_t?");
 | |
|     } else {
 | |
|       // If this value fits into a ULL, try to figure out what else it fits into
 | |
|       // according to the rules of C99 6.4.4.1p5.
 | |
| 
 | |
|       // Octal, Hexadecimal, and integers with a U suffix are allowed to
 | |
|       // be an unsigned int.
 | |
|       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
 | |
| 
 | |
|       // Check from smallest to largest, picking the smallest type we can.
 | |
|       unsigned Width = 0;
 | |
|       if (!Literal.isLong && !Literal.isLongLong) {
 | |
|         // Are int/unsigned possibilities?
 | |
|         unsigned IntSize = Context.Target.getIntWidth();
 | |
| 
 | |
|         // Does it fit in a unsigned int?
 | |
|         if (ResultVal.isIntN(IntSize)) {
 | |
|           // Does it fit in a signed int?
 | |
|           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
 | |
|             Ty = Context.IntTy;
 | |
|           else if (AllowUnsigned)
 | |
|             Ty = Context.UnsignedIntTy;
 | |
|           Width = IntSize;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Are long/unsigned long possibilities?
 | |
|       if (Ty.isNull() && !Literal.isLongLong) {
 | |
|         unsigned LongSize = Context.Target.getLongWidth();
 | |
| 
 | |
|         // Does it fit in a unsigned long?
 | |
|         if (ResultVal.isIntN(LongSize)) {
 | |
|           // Does it fit in a signed long?
 | |
|           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
 | |
|             Ty = Context.LongTy;
 | |
|           else if (AllowUnsigned)
 | |
|             Ty = Context.UnsignedLongTy;
 | |
|           Width = LongSize;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Finally, check long long if needed.
 | |
|       if (Ty.isNull()) {
 | |
|         unsigned LongLongSize = Context.Target.getLongLongWidth();
 | |
| 
 | |
|         // Does it fit in a unsigned long long?
 | |
|         if (ResultVal.isIntN(LongLongSize)) {
 | |
|           // Does it fit in a signed long long?
 | |
|           // To be compatible with MSVC, hex integer literals ending with the
 | |
|           // LL or i64 suffix are always signed in Microsoft mode.
 | |
|           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
 | |
|               (getLangOptions().Microsoft && Literal.isLongLong)))
 | |
|             Ty = Context.LongLongTy;
 | |
|           else if (AllowUnsigned)
 | |
|             Ty = Context.UnsignedLongLongTy;
 | |
|           Width = LongLongSize;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we still couldn't decide a type, we probably have something that
 | |
|       // does not fit in a signed long long, but has no U suffix.
 | |
|       if (Ty.isNull()) {
 | |
|         Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
 | |
|         Ty = Context.UnsignedLongLongTy;
 | |
|         Width = Context.Target.getLongLongWidth();
 | |
|       }
 | |
| 
 | |
|       if (ResultVal.getBitWidth() != Width)
 | |
|         ResultVal = ResultVal.trunc(Width);
 | |
|     }
 | |
|     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
 | |
|   }
 | |
| 
 | |
|   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
 | |
|   if (Literal.isImaginary)
 | |
|     Res = new (Context) ImaginaryLiteral(Res,
 | |
|                                         Context.getComplexType(Res->getType()));
 | |
| 
 | |
|   return Owned(Res);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnParenExpr(SourceLocation L,
 | |
|                                               SourceLocation R, Expr *E) {
 | |
|   assert((E != 0) && "ActOnParenExpr() missing expr");
 | |
|   return Owned(new (Context) ParenExpr(L, R, E));
 | |
| }
 | |
| 
 | |
| /// The UsualUnaryConversions() function is *not* called by this routine.
 | |
| /// See C99 6.3.2.1p[2-4] for more details.
 | |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
 | |
|                                             SourceLocation OpLoc,
 | |
|                                             SourceRange ExprRange,
 | |
|                                             UnaryExprOrTypeTrait ExprKind) {
 | |
|   if (exprType->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
 | |
|   //   the result is the size of the referenced type."
 | |
|   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
 | |
|   //   result shall be the alignment of the referenced type."
 | |
|   if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
 | |
|     exprType = Ref->getPointeeType();
 | |
| 
 | |
|   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
 | |
|   // scalar or vector data type argument..."
 | |
|   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
 | |
|   // type (C99 6.2.5p18) or void.
 | |
|   if (ExprKind == UETT_VecStep) {
 | |
|     if (!(exprType->isArithmeticType() || exprType->isVoidType() ||
 | |
|           exprType->isVectorType())) {
 | |
|       Diag(OpLoc, diag::err_vecstep_non_scalar_vector_type)
 | |
|         << exprType << ExprRange;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C99 6.5.3.4p1:
 | |
|   if (exprType->isFunctionType()) {
 | |
|     // alignof(function) is allowed as an extension.
 | |
|     if (ExprKind == UETT_SizeOf)
 | |
|       Diag(OpLoc, diag::ext_sizeof_function_type) 
 | |
|         << ExprRange;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Allow sizeof(void)/alignof(void) as an extension.  vec_step(void) is not
 | |
|   // an extension, as void is a built-in scalar type (OpenCL 1.1 6.1.1).
 | |
|   if (exprType->isVoidType()) {
 | |
|     if (ExprKind != UETT_VecStep)
 | |
|       Diag(OpLoc, diag::ext_sizeof_void_type)
 | |
|         << ExprKind << ExprRange;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (RequireCompleteType(OpLoc, exprType,
 | |
|                           PDiag(diag::err_sizeof_alignof_incomplete_type)
 | |
|                           << ExprKind << ExprRange))
 | |
|     return true;
 | |
| 
 | |
|   // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
 | |
|   if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
 | |
|     Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
 | |
|       << exprType << (ExprKind == UETT_SizeOf)
 | |
|       << ExprRange;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
 | |
|                              SourceRange ExprRange) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // alignof decl is always ok.
 | |
|   if (isa<DeclRefExpr>(E))
 | |
|     return false;
 | |
| 
 | |
|   // Cannot know anything else if the expression is dependent.
 | |
|   if (E->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   if (E->getBitField()) {
 | |
|    S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Alignment of a field access is always okay, so long as it isn't a
 | |
|   // bit-field.
 | |
|   if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
 | |
|     if (isa<FieldDecl>(ME->getMemberDecl()))
 | |
|       return false;
 | |
| 
 | |
|   return S.CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange,
 | |
|                                             UETT_AlignOf);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckVecStepExpr(Expr *E, SourceLocation OpLoc,
 | |
|                             SourceRange ExprRange) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Cannot know anything else if the expression is dependent.
 | |
|   if (E->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   return CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, ExprRange,
 | |
|                                           UETT_VecStep);
 | |
| }
 | |
| 
 | |
| /// \brief Build a sizeof or alignof expression given a type operand.
 | |
| ExprResult
 | |
| Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
 | |
|                                      SourceLocation OpLoc,
 | |
|                                      UnaryExprOrTypeTrait ExprKind,
 | |
|                                      SourceRange R) {
 | |
|   if (!TInfo)
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType T = TInfo->getType();
 | |
| 
 | |
|   if (!T->isDependentType() &&
 | |
|       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
 | |
|     return ExprError();
 | |
| 
 | |
|   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
 | |
|   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
 | |
|                                                       Context.getSizeType(),
 | |
|                                                       OpLoc, R.getEnd()));
 | |
| }
 | |
| 
 | |
| /// \brief Build a sizeof or alignof expression given an expression
 | |
| /// operand.
 | |
| ExprResult
 | |
| Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
 | |
|                                      UnaryExprOrTypeTrait ExprKind,
 | |
|                                      SourceRange R) {
 | |
|   // Verify that the operand is valid.
 | |
|   bool isInvalid = false;
 | |
|   if (E->isTypeDependent()) {
 | |
|     // Delay type-checking for type-dependent expressions.
 | |
|   } else if (ExprKind == UETT_AlignOf) {
 | |
|     isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
 | |
|   } else if (ExprKind == UETT_VecStep) {
 | |
|     isInvalid = CheckVecStepExpr(E, OpLoc, R);
 | |
|   } else if (E->getBitField()) {  // C99 6.5.3.4p1.
 | |
|     Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
 | |
|     isInvalid = true;
 | |
|   } else if (E->getType()->isPlaceholderType()) {
 | |
|     ExprResult PE = CheckPlaceholderExpr(E);
 | |
|     if (PE.isInvalid()) return ExprError();
 | |
|     return CreateUnaryExprOrTypeTraitExpr(PE.take(), OpLoc, ExprKind, R);
 | |
|   } else {
 | |
|     isInvalid = CheckUnaryExprOrTypeTraitOperand(E->getType(), OpLoc, R,
 | |
|                                                  UETT_SizeOf);
 | |
|   }
 | |
| 
 | |
|   if (isInvalid)
 | |
|     return ExprError();
 | |
| 
 | |
|   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
 | |
|   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, E,
 | |
|                                                       Context.getSizeType(),
 | |
|                                                       OpLoc, R.getEnd()));
 | |
| }
 | |
| 
 | |
| /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
 | |
| /// expr and the same for @c alignof and @c __alignof
 | |
| /// Note that the ArgRange is invalid if isType is false.
 | |
| ExprResult
 | |
| Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
 | |
|                                     UnaryExprOrTypeTrait ExprKind, bool isType,
 | |
|                                     void *TyOrEx, const SourceRange &ArgRange) {
 | |
|   // If error parsing type, ignore.
 | |
|   if (TyOrEx == 0) return ExprError();
 | |
| 
 | |
|   if (isType) {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
 | |
|     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
 | |
|   }
 | |
| 
 | |
|   Expr *ArgEx = (Expr *)TyOrEx;
 | |
|   ExprResult Result
 | |
|     = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind,
 | |
|                                      ArgEx->getSourceRange());
 | |
| 
 | |
|   return move(Result);
 | |
| }
 | |
| 
 | |
| static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
 | |
|                                      bool isReal) {
 | |
|   if (V.get()->isTypeDependent())
 | |
|     return S.Context.DependentTy;
 | |
| 
 | |
|   // _Real and _Imag are only l-values for normal l-values.
 | |
|   if (V.get()->getObjectKind() != OK_Ordinary) {
 | |
|     V = S.DefaultLvalueConversion(V.take());
 | |
|     if (V.isInvalid())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // These operators return the element type of a complex type.
 | |
|   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
 | |
|     return CT->getElementType();
 | |
| 
 | |
|   // Otherwise they pass through real integer and floating point types here.
 | |
|   if (V.get()->getType()->isArithmeticType())
 | |
|     return V.get()->getType();
 | |
| 
 | |
|   // Test for placeholders.
 | |
|   ExprResult PR = S.CheckPlaceholderExpr(V.get());
 | |
|   if (PR.isInvalid()) return QualType();
 | |
|   if (PR.get() != V.get()) {
 | |
|     V = move(PR);
 | |
|     return CheckRealImagOperand(S, V, Loc, isReal);
 | |
|   }
 | |
| 
 | |
|   // Reject anything else.
 | |
|   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
 | |
|     << (isReal ? "__real" : "__imag");
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
 | |
|                           tok::TokenKind Kind, Expr *Input) {
 | |
|   UnaryOperatorKind Opc;
 | |
|   switch (Kind) {
 | |
|   default: assert(0 && "Unknown unary op!");
 | |
|   case tok::plusplus:   Opc = UO_PostInc; break;
 | |
|   case tok::minusminus: Opc = UO_PostDec; break;
 | |
|   }
 | |
| 
 | |
|   return BuildUnaryOp(S, OpLoc, Opc, Input);
 | |
| }
 | |
| 
 | |
| /// Expressions of certain arbitrary types are forbidden by C from
 | |
| /// having l-value type.  These are:
 | |
| ///   - 'void', but not qualified void
 | |
| ///   - function types
 | |
| ///
 | |
| /// The exact rule here is C99 6.3.2.1:
 | |
| ///   An lvalue is an expression with an object type or an incomplete
 | |
| ///   type other than void.
 | |
| static bool IsCForbiddenLValueType(ASTContext &C, QualType T) {
 | |
|   return ((T->isVoidType() && !T.hasQualifiers()) ||
 | |
|           T->isFunctionType());
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
 | |
|                               Expr *Idx, SourceLocation RLoc) {
 | |
|   // Since this might be a postfix expression, get rid of ParenListExprs.
 | |
|   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
|   Base = Result.take();
 | |
| 
 | |
|   Expr *LHSExp = Base, *RHSExp = Idx;
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus &&
 | |
|       (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
 | |
|     return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
 | |
|                                                   Context.DependentTy,
 | |
|                                                   VK_LValue, OK_Ordinary,
 | |
|                                                   RLoc));
 | |
|   }
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus &&
 | |
|       (LHSExp->getType()->isRecordType() ||
 | |
|        LHSExp->getType()->isEnumeralType() ||
 | |
|        RHSExp->getType()->isRecordType() ||
 | |
|        RHSExp->getType()->isEnumeralType())) {
 | |
|     return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
 | |
|   }
 | |
| 
 | |
|   return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
 | |
| }
 | |
| 
 | |
| 
 | |
| ExprResult
 | |
| Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
 | |
|                                      Expr *Idx, SourceLocation RLoc) {
 | |
|   Expr *LHSExp = Base;
 | |
|   Expr *RHSExp = Idx;
 | |
| 
 | |
|   // Perform default conversions.
 | |
|   if (!LHSExp->getType()->getAs<VectorType>()) {
 | |
|     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
|     LHSExp = Result.take();
 | |
|   }
 | |
|   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
 | |
|   if (Result.isInvalid())
 | |
|     return ExprError();
 | |
|   RHSExp = Result.take();
 | |
| 
 | |
|   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
 | |
|   ExprValueKind VK = VK_LValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
| 
 | |
|   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
 | |
|   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
 | |
|   // in the subscript position. As a result, we need to derive the array base
 | |
|   // and index from the expression types.
 | |
|   Expr *BaseExpr, *IndexExpr;
 | |
|   QualType ResultType;
 | |
|   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
 | |
|     BaseExpr = LHSExp;
 | |
|     IndexExpr = RHSExp;
 | |
|     ResultType = Context.DependentTy;
 | |
|   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
 | |
|     BaseExpr = LHSExp;
 | |
|     IndexExpr = RHSExp;
 | |
|     ResultType = PTy->getPointeeType();
 | |
|   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
 | |
|      // Handle the uncommon case of "123[Ptr]".
 | |
|     BaseExpr = RHSExp;
 | |
|     IndexExpr = LHSExp;
 | |
|     ResultType = PTy->getPointeeType();
 | |
|   } else if (const ObjCObjectPointerType *PTy =
 | |
|                LHSTy->getAs<ObjCObjectPointerType>()) {
 | |
|     BaseExpr = LHSExp;
 | |
|     IndexExpr = RHSExp;
 | |
|     ResultType = PTy->getPointeeType();
 | |
|   } else if (const ObjCObjectPointerType *PTy =
 | |
|                RHSTy->getAs<ObjCObjectPointerType>()) {
 | |
|      // Handle the uncommon case of "123[Ptr]".
 | |
|     BaseExpr = RHSExp;
 | |
|     IndexExpr = LHSExp;
 | |
|     ResultType = PTy->getPointeeType();
 | |
|   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
 | |
|     BaseExpr = LHSExp;    // vectors: V[123]
 | |
|     IndexExpr = RHSExp;
 | |
|     VK = LHSExp->getValueKind();
 | |
|     if (VK != VK_RValue)
 | |
|       OK = OK_VectorComponent;
 | |
| 
 | |
|     // FIXME: need to deal with const...
 | |
|     ResultType = VTy->getElementType();
 | |
|   } else if (LHSTy->isArrayType()) {
 | |
|     // If we see an array that wasn't promoted by
 | |
|     // DefaultFunctionArrayLvalueConversion, it must be an array that
 | |
|     // wasn't promoted because of the C90 rule that doesn't
 | |
|     // allow promoting non-lvalue arrays.  Warn, then
 | |
|     // force the promotion here.
 | |
|     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
 | |
|         LHSExp->getSourceRange();
 | |
|     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
 | |
|                                CK_ArrayToPointerDecay).take();
 | |
|     LHSTy = LHSExp->getType();
 | |
| 
 | |
|     BaseExpr = LHSExp;
 | |
|     IndexExpr = RHSExp;
 | |
|     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
 | |
|   } else if (RHSTy->isArrayType()) {
 | |
|     // Same as previous, except for 123[f().a] case
 | |
|     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
 | |
|         RHSExp->getSourceRange();
 | |
|     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
 | |
|                                CK_ArrayToPointerDecay).take();
 | |
|     RHSTy = RHSExp->getType();
 | |
| 
 | |
|     BaseExpr = RHSExp;
 | |
|     IndexExpr = LHSExp;
 | |
|     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
 | |
|   } else {
 | |
|     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
 | |
|        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
 | |
|   }
 | |
|   // C99 6.5.2.1p1
 | |
|   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
 | |
|     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
 | |
|                      << IndexExpr->getSourceRange());
 | |
| 
 | |
|   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
 | |
|        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
 | |
|          && !IndexExpr->isTypeDependent())
 | |
|     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
 | |
| 
 | |
|   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
 | |
|   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
 | |
|   // type. Note that Functions are not objects, and that (in C99 parlance)
 | |
|   // incomplete types are not object types.
 | |
|   if (ResultType->isFunctionType()) {
 | |
|     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
 | |
|       << ResultType << BaseExpr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
 | |
|     // GNU extension: subscripting on pointer to void
 | |
|     Diag(LLoc, diag::ext_gnu_void_ptr)
 | |
|       << BaseExpr->getSourceRange();
 | |
| 
 | |
|     // C forbids expressions of unqualified void type from being l-values.
 | |
|     // See IsCForbiddenLValueType.
 | |
|     if (!ResultType.hasQualifiers()) VK = VK_RValue;
 | |
|   } else if (!ResultType->isDependentType() &&
 | |
|       RequireCompleteType(LLoc, ResultType,
 | |
|                           PDiag(diag::err_subscript_incomplete_type)
 | |
|                             << BaseExpr->getSourceRange()))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Diagnose bad cases where we step over interface counts.
 | |
|   if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
 | |
|     Diag(LLoc, diag::err_subscript_nonfragile_interface)
 | |
|       << ResultType << BaseExpr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
 | |
|          !IsCForbiddenLValueType(Context, ResultType));
 | |
| 
 | |
|   return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
 | |
|                                                 ResultType, VK, OK, RLoc));
 | |
| }
 | |
| 
 | |
| /// Check an ext-vector component access expression.
 | |
| ///
 | |
| /// VK should be set in advance to the value kind of the base
 | |
| /// expression.
 | |
| static QualType
 | |
| CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
 | |
|                         SourceLocation OpLoc, const IdentifierInfo *CompName,
 | |
|                         SourceLocation CompLoc) {
 | |
|   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
 | |
|   // see FIXME there.
 | |
|   //
 | |
|   // FIXME: This logic can be greatly simplified by splitting it along
 | |
|   // halving/not halving and reworking the component checking.
 | |
|   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
 | |
| 
 | |
|   // The vector accessor can't exceed the number of elements.
 | |
|   const char *compStr = CompName->getNameStart();
 | |
| 
 | |
|   // This flag determines whether or not the component is one of the four
 | |
|   // special names that indicate a subset of exactly half the elements are
 | |
|   // to be selected.
 | |
|   bool HalvingSwizzle = false;
 | |
| 
 | |
|   // This flag determines whether or not CompName has an 's' char prefix,
 | |
|   // indicating that it is a string of hex values to be used as vector indices.
 | |
|   bool HexSwizzle = *compStr == 's' || *compStr == 'S';
 | |
| 
 | |
|   bool HasRepeated = false;
 | |
|   bool HasIndex[16] = {};
 | |
| 
 | |
|   int Idx;
 | |
| 
 | |
|   // Check that we've found one of the special components, or that the component
 | |
|   // names must come from the same set.
 | |
|   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
 | |
|       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
 | |
|     HalvingSwizzle = true;
 | |
|   } else if (!HexSwizzle &&
 | |
|              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
 | |
|     do {
 | |
|       if (HasIndex[Idx]) HasRepeated = true;
 | |
|       HasIndex[Idx] = true;
 | |
|       compStr++;
 | |
|     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
 | |
|   } else {
 | |
|     if (HexSwizzle) compStr++;
 | |
|     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
 | |
|       if (HasIndex[Idx]) HasRepeated = true;
 | |
|       HasIndex[Idx] = true;
 | |
|       compStr++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!HalvingSwizzle && *compStr) {
 | |
|     // We didn't get to the end of the string. This means the component names
 | |
|     // didn't come from the same set *or* we encountered an illegal name.
 | |
|     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
 | |
|       << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Ensure no component accessor exceeds the width of the vector type it
 | |
|   // operates on.
 | |
|   if (!HalvingSwizzle) {
 | |
|     compStr = CompName->getNameStart();
 | |
| 
 | |
|     if (HexSwizzle)
 | |
|       compStr++;
 | |
| 
 | |
|     while (*compStr) {
 | |
|       if (!vecType->isAccessorWithinNumElements(*compStr++)) {
 | |
|         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
 | |
|           << baseType << SourceRange(CompLoc);
 | |
|         return QualType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The component accessor looks fine - now we need to compute the actual type.
 | |
|   // The vector type is implied by the component accessor. For example,
 | |
|   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
 | |
|   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
 | |
|   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
 | |
|   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
 | |
|                                      : CompName->getLength();
 | |
|   if (HexSwizzle)
 | |
|     CompSize--;
 | |
| 
 | |
|   if (CompSize == 1)
 | |
|     return vecType->getElementType();
 | |
| 
 | |
|   if (HasRepeated) VK = VK_RValue;
 | |
| 
 | |
|   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
 | |
|   // Now look up the TypeDefDecl from the vector type. Without this,
 | |
|   // diagostics look bad. We want extended vector types to appear built-in.
 | |
|   for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
 | |
|     if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
 | |
|       return S.Context.getTypedefType(S.ExtVectorDecls[i]);
 | |
|   }
 | |
|   return VT; // should never get here (a typedef type should always be found).
 | |
| }
 | |
| 
 | |
| static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
 | |
|                                                 IdentifierInfo *Member,
 | |
|                                                 const Selector &Sel,
 | |
|                                                 ASTContext &Context) {
 | |
|   if (Member)
 | |
|     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
 | |
|       return PD;
 | |
|   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
 | |
|     return OMD;
 | |
| 
 | |
|   for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
 | |
|        E = PDecl->protocol_end(); I != E; ++I) {
 | |
|     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
 | |
|                                                            Context))
 | |
|       return D;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
 | |
|                                       IdentifierInfo *Member,
 | |
|                                       const Selector &Sel,
 | |
|                                       ASTContext &Context) {
 | |
|   // Check protocols on qualified interfaces.
 | |
|   Decl *GDecl = 0;
 | |
|   for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
 | |
|        E = QIdTy->qual_end(); I != E; ++I) {
 | |
|     if (Member)
 | |
|       if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
 | |
|         GDecl = PD;
 | |
|         break;
 | |
|       }
 | |
|     // Also must look for a getter or setter name which uses property syntax.
 | |
|     if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
 | |
|       GDecl = OMD;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!GDecl) {
 | |
|     for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
 | |
|          E = QIdTy->qual_end(); I != E; ++I) {
 | |
|       // Search in the protocol-qualifier list of current protocol.
 | |
|       GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel, 
 | |
|                                                        Context);
 | |
|       if (GDecl)
 | |
|         return GDecl;
 | |
|     }
 | |
|   }
 | |
|   return GDecl;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
 | |
|                                bool IsArrow, SourceLocation OpLoc,
 | |
|                                const CXXScopeSpec &SS,
 | |
|                                NamedDecl *FirstQualifierInScope,
 | |
|                                const DeclarationNameInfo &NameInfo,
 | |
|                                const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   // Even in dependent contexts, try to diagnose base expressions with
 | |
|   // obviously wrong types, e.g.:
 | |
|   //
 | |
|   // T* t;
 | |
|   // t.f;
 | |
|   //
 | |
|   // In Obj-C++, however, the above expression is valid, since it could be
 | |
|   // accessing the 'f' property if T is an Obj-C interface. The extra check
 | |
|   // allows this, while still reporting an error if T is a struct pointer.
 | |
|   if (!IsArrow) {
 | |
|     const PointerType *PT = BaseType->getAs<PointerType>();
 | |
|     if (PT && (!getLangOptions().ObjC1 ||
 | |
|                PT->getPointeeType()->isRecordType())) {
 | |
|       assert(BaseExpr && "cannot happen with implicit member accesses");
 | |
|       Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
 | |
|         << BaseType << BaseExpr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(BaseType->isDependentType() ||
 | |
|          NameInfo.getName().isDependentName() ||
 | |
|          isDependentScopeSpecifier(SS));
 | |
| 
 | |
|   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
 | |
|   // must have pointer type, and the accessed type is the pointee.
 | |
|   return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
 | |
|                                                    IsArrow, OpLoc,
 | |
|                                                SS.getWithLocInContext(Context),
 | |
|                                                    FirstQualifierInScope,
 | |
|                                                    NameInfo, TemplateArgs));
 | |
| }
 | |
| 
 | |
| /// We know that the given qualified member reference points only to
 | |
| /// declarations which do not belong to the static type of the base
 | |
| /// expression.  Diagnose the problem.
 | |
| static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
 | |
|                                              Expr *BaseExpr,
 | |
|                                              QualType BaseType,
 | |
|                                              const CXXScopeSpec &SS,
 | |
|                                              NamedDecl *rep,
 | |
|                                        const DeclarationNameInfo &nameInfo) {
 | |
|   // If this is an implicit member access, use a different set of
 | |
|   // diagnostics.
 | |
|   if (!BaseExpr)
 | |
|     return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
 | |
| 
 | |
|   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
 | |
|     << SS.getRange() << rep << BaseType;
 | |
| }
 | |
| 
 | |
| // Check whether the declarations we found through a nested-name
 | |
| // specifier in a member expression are actually members of the base
 | |
| // type.  The restriction here is:
 | |
| //
 | |
| //   C++ [expr.ref]p2:
 | |
| //     ... In these cases, the id-expression shall name a
 | |
| //     member of the class or of one of its base classes.
 | |
| //
 | |
| // So it's perfectly legitimate for the nested-name specifier to name
 | |
| // an unrelated class, and for us to find an overload set including
 | |
| // decls from classes which are not superclasses, as long as the decl
 | |
| // we actually pick through overload resolution is from a superclass.
 | |
| bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
 | |
|                                          QualType BaseType,
 | |
|                                          const CXXScopeSpec &SS,
 | |
|                                          const LookupResult &R) {
 | |
|   const RecordType *BaseRT = BaseType->getAs<RecordType>();
 | |
|   if (!BaseRT) {
 | |
|     // We can't check this yet because the base type is still
 | |
|     // dependent.
 | |
|     assert(BaseType->isDependentType());
 | |
|     return false;
 | |
|   }
 | |
|   CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
 | |
| 
 | |
|   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|     // If this is an implicit member reference and we find a
 | |
|     // non-instance member, it's not an error.
 | |
|     if (!BaseExpr && !(*I)->isCXXInstanceMember())
 | |
|       return false;
 | |
| 
 | |
|     // Note that we use the DC of the decl, not the underlying decl.
 | |
|     DeclContext *DC = (*I)->getDeclContext();
 | |
|     while (DC->isTransparentContext())
 | |
|       DC = DC->getParent();
 | |
| 
 | |
|     if (!DC->isRecord())
 | |
|       continue;
 | |
|     
 | |
|     llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
 | |
|     MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
 | |
| 
 | |
|     if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
 | |
|                                    R.getRepresentativeDecl(),
 | |
|                                    R.getLookupNameInfo());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
 | |
|                          SourceRange BaseRange, const RecordType *RTy,
 | |
|                          SourceLocation OpLoc, CXXScopeSpec &SS,
 | |
|                          bool HasTemplateArgs) {
 | |
|   RecordDecl *RDecl = RTy->getDecl();
 | |
|   if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
 | |
|                               SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
 | |
|                                     << BaseRange))
 | |
|     return true;
 | |
| 
 | |
|   if (HasTemplateArgs) {
 | |
|     // LookupTemplateName doesn't expect these both to exist simultaneously.
 | |
|     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
 | |
| 
 | |
|     bool MOUS;
 | |
|     SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DeclContext *DC = RDecl;
 | |
|   if (SS.isSet()) {
 | |
|     // If the member name was a qualified-id, look into the
 | |
|     // nested-name-specifier.
 | |
|     DC = SemaRef.computeDeclContext(SS, false);
 | |
| 
 | |
|     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
 | |
|       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
 | |
|         << SS.getRange() << DC;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
 | |
| 
 | |
|     if (!isa<TypeDecl>(DC)) {
 | |
|       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
 | |
|         << DC << SS.getRange();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The record definition is complete, now look up the member.
 | |
|   SemaRef.LookupQualifiedName(R, DC);
 | |
| 
 | |
|   if (!R.empty())
 | |
|     return false;
 | |
| 
 | |
|   // We didn't find anything with the given name, so try to correct
 | |
|   // for typos.
 | |
|   DeclarationName Name = R.getLookupName();
 | |
|   if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
 | |
|       !R.empty() &&
 | |
|       (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
 | |
|     SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | |
|       << Name << DC << R.getLookupName() << SS.getRange()
 | |
|       << FixItHint::CreateReplacement(R.getNameLoc(),
 | |
|                                       R.getLookupName().getAsString());
 | |
|     if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
 | |
|       SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
 | |
|         << ND->getDeclName();
 | |
|     return false;
 | |
|   } else {
 | |
|     R.clear();
 | |
|     R.setLookupName(Name);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
 | |
|                                SourceLocation OpLoc, bool IsArrow,
 | |
|                                CXXScopeSpec &SS,
 | |
|                                NamedDecl *FirstQualifierInScope,
 | |
|                                const DeclarationNameInfo &NameInfo,
 | |
|                                const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   if (BaseType->isDependentType() ||
 | |
|       (SS.isSet() && isDependentScopeSpecifier(SS)))
 | |
|     return ActOnDependentMemberExpr(Base, BaseType,
 | |
|                                     IsArrow, OpLoc,
 | |
|                                     SS, FirstQualifierInScope,
 | |
|                                     NameInfo, TemplateArgs);
 | |
| 
 | |
|   LookupResult R(*this, NameInfo, LookupMemberName);
 | |
| 
 | |
|   // Implicit member accesses.
 | |
|   if (!Base) {
 | |
|     QualType RecordTy = BaseType;
 | |
|     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
 | |
|     if (LookupMemberExprInRecord(*this, R, SourceRange(),
 | |
|                                  RecordTy->getAs<RecordType>(),
 | |
|                                  OpLoc, SS, TemplateArgs != 0))
 | |
|       return ExprError();
 | |
| 
 | |
|   // Explicit member accesses.
 | |
|   } else {
 | |
|     ExprResult BaseResult = Owned(Base);
 | |
|     ExprResult Result =
 | |
|       LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
 | |
|                        SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
 | |
| 
 | |
|     if (BaseResult.isInvalid())
 | |
|       return ExprError();
 | |
|     Base = BaseResult.take();
 | |
| 
 | |
|     if (Result.isInvalid()) {
 | |
|       Owned(Base);
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     if (Result.get())
 | |
|       return move(Result);
 | |
| 
 | |
|     // LookupMemberExpr can modify Base, and thus change BaseType
 | |
|     BaseType = Base->getType();
 | |
|   }
 | |
| 
 | |
|   return BuildMemberReferenceExpr(Base, BaseType,
 | |
|                                   OpLoc, IsArrow, SS, FirstQualifierInScope,
 | |
|                                   R, TemplateArgs);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
 | |
|                                SourceLocation OpLoc, bool IsArrow,
 | |
|                                const CXXScopeSpec &SS,
 | |
|                                NamedDecl *FirstQualifierInScope,
 | |
|                                LookupResult &R,
 | |
|                          const TemplateArgumentListInfo *TemplateArgs,
 | |
|                                bool SuppressQualifierCheck) {
 | |
|   QualType BaseType = BaseExprType;
 | |
|   if (IsArrow) {
 | |
|     assert(BaseType->isPointerType());
 | |
|     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
 | |
|   }
 | |
|   R.setBaseObjectType(BaseType);
 | |
| 
 | |
|   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
 | |
|   DeclarationName MemberName = MemberNameInfo.getName();
 | |
|   SourceLocation MemberLoc = MemberNameInfo.getLoc();
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     // Rederive where we looked up.
 | |
|     DeclContext *DC = (SS.isSet()
 | |
|                        ? computeDeclContext(SS, false)
 | |
|                        : BaseType->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     Diag(R.getNameLoc(), diag::err_no_member)
 | |
|       << MemberName << DC
 | |
|       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Diagnose lookups that find only declarations from a non-base
 | |
|   // type.  This is possible for either qualified lookups (which may
 | |
|   // have been qualified with an unrelated type) or implicit member
 | |
|   // expressions (which were found with unqualified lookup and thus
 | |
|   // may have come from an enclosing scope).  Note that it's okay for
 | |
|   // lookup to find declarations from a non-base type as long as those
 | |
|   // aren't the ones picked by overload resolution.
 | |
|   if ((SS.isSet() || !BaseExpr ||
 | |
|        (isa<CXXThisExpr>(BaseExpr) &&
 | |
|         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
 | |
|       !SuppressQualifierCheck &&
 | |
|       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Construct an unresolved result if we in fact got an unresolved
 | |
|   // result.
 | |
|   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
 | |
|     // Suppress any lookup-related diagnostics; we'll do these when we
 | |
|     // pick a member.
 | |
|     R.suppressDiagnostics();
 | |
| 
 | |
|     UnresolvedMemberExpr *MemExpr
 | |
|       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
 | |
|                                      BaseExpr, BaseExprType,
 | |
|                                      IsArrow, OpLoc,
 | |
|                                      SS.getWithLocInContext(Context),
 | |
|                                      MemberNameInfo,
 | |
|                                      TemplateArgs, R.begin(), R.end());
 | |
| 
 | |
|     return Owned(MemExpr);
 | |
|   }
 | |
| 
 | |
|   assert(R.isSingleResult());
 | |
|   DeclAccessPair FoundDecl = R.begin().getPair();
 | |
|   NamedDecl *MemberDecl = R.getFoundDecl();
 | |
| 
 | |
|   // FIXME: diagnose the presence of template arguments now.
 | |
| 
 | |
|   // If the decl being referenced had an error, return an error for this
 | |
|   // sub-expr without emitting another error, in order to avoid cascading
 | |
|   // error cases.
 | |
|   if (MemberDecl->isInvalidDecl())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Handle the implicit-member-access case.
 | |
|   if (!BaseExpr) {
 | |
|     // If this is not an instance member, convert to a non-member access.
 | |
|     if (!MemberDecl->isCXXInstanceMember())
 | |
|       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
 | |
| 
 | |
|     SourceLocation Loc = R.getNameLoc();
 | |
|     if (SS.getRange().isValid())
 | |
|       Loc = SS.getRange().getBegin();
 | |
|     BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
 | |
|   }
 | |
| 
 | |
|   bool ShouldCheckUse = true;
 | |
|   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
 | |
|     // Don't diagnose the use of a virtual member function unless it's
 | |
|     // explicitly qualified.
 | |
|     if (MD->isVirtual() && !SS.isSet())
 | |
|       ShouldCheckUse = false;
 | |
|   }
 | |
| 
 | |
|   // Check the use of this member.
 | |
|   if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
 | |
|     Owned(BaseExpr);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Perform a property load on the base regardless of whether we
 | |
|   // actually need it for the declaration.
 | |
|   if (BaseExpr->getObjectKind() == OK_ObjCProperty) {
 | |
|     ExprResult Result = ConvertPropertyForRValue(BaseExpr);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
|     BaseExpr = Result.take();
 | |
|   }
 | |
| 
 | |
|   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
 | |
|     return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
 | |
|                                    SS, FD, FoundDecl, MemberNameInfo);
 | |
| 
 | |
|   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
 | |
|     // We may have found a field within an anonymous union or struct
 | |
|     // (C++ [class.union]).
 | |
|     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
 | |
|                                                     BaseExpr, OpLoc);
 | |
| 
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
 | |
|     MarkDeclarationReferenced(MemberLoc, Var);
 | |
|     return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
 | |
|                                  Var, FoundDecl, MemberNameInfo,
 | |
|                                  Var->getType().getNonReferenceType(),
 | |
|                                  VK_LValue, OK_Ordinary));
 | |
|   }
 | |
| 
 | |
|   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
 | |
|     MarkDeclarationReferenced(MemberLoc, MemberDecl);
 | |
|     return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
 | |
|                                  MemberFn, FoundDecl, MemberNameInfo,
 | |
|                                  MemberFn->getType(),
 | |
|                                  MemberFn->isInstance() ? VK_RValue : VK_LValue,
 | |
|                                  OK_Ordinary));
 | |
|   }
 | |
|   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
 | |
| 
 | |
|   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
 | |
|     MarkDeclarationReferenced(MemberLoc, MemberDecl);
 | |
|     return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
 | |
|                                  Enum, FoundDecl, MemberNameInfo,
 | |
|                                  Enum->getType(), VK_RValue, OK_Ordinary));
 | |
|   }
 | |
| 
 | |
|   Owned(BaseExpr);
 | |
| 
 | |
|   // We found something that we didn't expect. Complain.
 | |
|   if (isa<TypeDecl>(MemberDecl))
 | |
|     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
 | |
|       << MemberName << BaseType << int(IsArrow);
 | |
|   else
 | |
|     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
 | |
|       << MemberName << BaseType << int(IsArrow);
 | |
| 
 | |
|   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
 | |
|     << MemberName;
 | |
|   R.suppressDiagnostics();
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// Given that normal member access failed on the given expression,
 | |
| /// and given that the expression's type involves builtin-id or
 | |
| /// builtin-Class, decide whether substituting in the redefinition
 | |
| /// types would be profitable.  The redefinition type is whatever
 | |
| /// this translation unit tried to typedef to id/Class;  we store
 | |
| /// it to the side and then re-use it in places like this.
 | |
| static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
 | |
|   const ObjCObjectPointerType *opty
 | |
|     = base.get()->getType()->getAs<ObjCObjectPointerType>();
 | |
|   if (!opty) return false;
 | |
| 
 | |
|   const ObjCObjectType *ty = opty->getObjectType();
 | |
| 
 | |
|   QualType redef;
 | |
|   if (ty->isObjCId()) {
 | |
|     redef = S.Context.ObjCIdRedefinitionType;
 | |
|   } else if (ty->isObjCClass()) {
 | |
|     redef = S.Context.ObjCClassRedefinitionType;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do the substitution as long as the redefinition type isn't just a
 | |
|   // possibly-qualified pointer to builtin-id or builtin-Class again.
 | |
|   opty = redef->getAs<ObjCObjectPointerType>();
 | |
|   if (opty && !opty->getObjectType()->getInterface() != 0)
 | |
|     return false;
 | |
| 
 | |
|   base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Look up the given member of the given non-type-dependent
 | |
| /// expression.  This can return in one of two ways:
 | |
| ///  * If it returns a sentinel null-but-valid result, the caller will
 | |
| ///    assume that lookup was performed and the results written into
 | |
| ///    the provided structure.  It will take over from there.
 | |
| ///  * Otherwise, the returned expression will be produced in place of
 | |
| ///    an ordinary member expression.
 | |
| ///
 | |
| /// The ObjCImpDecl bit is a gross hack that will need to be properly
 | |
| /// fixed for ObjC++.
 | |
| ExprResult
 | |
| Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
 | |
|                        bool &IsArrow, SourceLocation OpLoc,
 | |
|                        CXXScopeSpec &SS,
 | |
|                        Decl *ObjCImpDecl, bool HasTemplateArgs) {
 | |
|   assert(BaseExpr.get() && "no base expression");
 | |
| 
 | |
|   // Perform default conversions.
 | |
|   BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
 | |
| 
 | |
|   if (IsArrow) {
 | |
|     BaseExpr = DefaultLvalueConversion(BaseExpr.take());
 | |
|     if (BaseExpr.isInvalid())
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   QualType BaseType = BaseExpr.get()->getType();
 | |
|   assert(!BaseType->isDependentType());
 | |
| 
 | |
|   DeclarationName MemberName = R.getLookupName();
 | |
|   SourceLocation MemberLoc = R.getNameLoc();
 | |
| 
 | |
|   // For later type-checking purposes, turn arrow accesses into dot
 | |
|   // accesses.  The only access type we support that doesn't follow
 | |
|   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
 | |
|   // and those never use arrows, so this is unaffected.
 | |
|   if (IsArrow) {
 | |
|     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
 | |
|       BaseType = Ptr->getPointeeType();
 | |
|     else if (const ObjCObjectPointerType *Ptr
 | |
|                = BaseType->getAs<ObjCObjectPointerType>())
 | |
|       BaseType = Ptr->getPointeeType();
 | |
|     else if (BaseType->isRecordType()) {
 | |
|       // Recover from arrow accesses to records, e.g.:
 | |
|       //   struct MyRecord foo;
 | |
|       //   foo->bar
 | |
|       // This is actually well-formed in C++ if MyRecord has an
 | |
|       // overloaded operator->, but that should have been dealt with
 | |
|       // by now.
 | |
|       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
 | |
|         << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|       IsArrow = false;
 | |
|     } else {
 | |
|       Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
 | |
|         << BaseType << BaseExpr.get()->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle field access to simple records.
 | |
|   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
 | |
|     if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
 | |
|                                  RTy, OpLoc, SS, HasTemplateArgs))
 | |
|       return ExprError();
 | |
| 
 | |
|     // Returning valid-but-null is how we indicate to the caller that
 | |
|     // the lookup result was filled in.
 | |
|     return Owned((Expr*) 0);
 | |
|   }
 | |
| 
 | |
|   // Handle ivar access to Objective-C objects.
 | |
|   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
 | |
|     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | |
| 
 | |
|     // There are three cases for the base type:
 | |
|     //   - builtin id (qualified or unqualified)
 | |
|     //   - builtin Class (qualified or unqualified)
 | |
|     //   - an interface
 | |
|     ObjCInterfaceDecl *IDecl = OTy->getInterface();
 | |
|     if (!IDecl) {
 | |
|       // There's an implicit 'isa' ivar on all objects.
 | |
|       // But we only actually find it this way on objects of type 'id',
 | |
|       // apparently.
 | |
|       if (OTy->isObjCId() && Member->isStr("isa"))
 | |
|         return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
 | |
|                                                Context.getObjCClassType()));
 | |
| 
 | |
|       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
 | |
|         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                 ObjCImpDecl, HasTemplateArgs);
 | |
|       goto fail;
 | |
|     }
 | |
| 
 | |
|     ObjCInterfaceDecl *ClassDeclared;
 | |
|     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
 | |
| 
 | |
|     if (!IV) {
 | |
|       // Attempt to correct for typos in ivar names.
 | |
|       LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
 | |
|                        LookupMemberName);
 | |
|       if (CorrectTypo(Res, 0, 0, IDecl, false, 
 | |
|                       IsArrow ? CTC_ObjCIvarLookup
 | |
|                               : CTC_ObjCPropertyLookup) &&
 | |
|           (IV = Res.getAsSingle<ObjCIvarDecl>())) {
 | |
|         Diag(R.getNameLoc(),
 | |
|              diag::err_typecheck_member_reference_ivar_suggest)
 | |
|           << IDecl->getDeclName() << MemberName << IV->getDeclName()
 | |
|           << FixItHint::CreateReplacement(R.getNameLoc(),
 | |
|                                           IV->getNameAsString());
 | |
|         Diag(IV->getLocation(), diag::note_previous_decl)
 | |
|           << IV->getDeclName();
 | |
|       } else {
 | |
|         Res.clear();
 | |
|         Res.setLookupName(Member);
 | |
| 
 | |
|         Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
 | |
|           << IDecl->getDeclName() << MemberName
 | |
|           << BaseExpr.get()->getSourceRange();
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the decl being referenced had an error, return an error for this
 | |
|     // sub-expr without emitting another error, in order to avoid cascading
 | |
|     // error cases.
 | |
|     if (IV->isInvalidDecl())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Check whether we can reference this field.
 | |
|     if (DiagnoseUseOfDecl(IV, MemberLoc))
 | |
|       return ExprError();
 | |
|     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
 | |
|         IV->getAccessControl() != ObjCIvarDecl::Package) {
 | |
|       ObjCInterfaceDecl *ClassOfMethodDecl = 0;
 | |
|       if (ObjCMethodDecl *MD = getCurMethodDecl())
 | |
|         ClassOfMethodDecl =  MD->getClassInterface();
 | |
|       else if (ObjCImpDecl && getCurFunctionDecl()) {
 | |
|         // Case of a c-function declared inside an objc implementation.
 | |
|         // FIXME: For a c-style function nested inside an objc implementation
 | |
|         // class, there is no implementation context available, so we pass
 | |
|         // down the context as argument to this routine. Ideally, this context
 | |
|         // need be passed down in the AST node and somehow calculated from the
 | |
|         // AST for a function decl.
 | |
|         if (ObjCImplementationDecl *IMPD =
 | |
|               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
 | |
|           ClassOfMethodDecl = IMPD->getClassInterface();
 | |
|         else if (ObjCCategoryImplDecl* CatImplClass =
 | |
|                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
 | |
|           ClassOfMethodDecl = CatImplClass->getClassInterface();
 | |
|       }
 | |
| 
 | |
|       if (IV->getAccessControl() == ObjCIvarDecl::Private) {
 | |
|         if (ClassDeclared != IDecl ||
 | |
|             ClassOfMethodDecl != ClassDeclared)
 | |
|           Diag(MemberLoc, diag::error_private_ivar_access)
 | |
|             << IV->getDeclName();
 | |
|       } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
 | |
|         // @protected
 | |
|         Diag(MemberLoc, diag::error_protected_ivar_access)
 | |
|           << IV->getDeclName();
 | |
|     }
 | |
| 
 | |
|     return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
 | |
|                                                MemberLoc, BaseExpr.take(),
 | |
|                                                IsArrow));
 | |
|   }
 | |
| 
 | |
|   // Objective-C property access.
 | |
|   const ObjCObjectPointerType *OPT;
 | |
|   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
 | |
|     // This actually uses the base as an r-value.
 | |
|     BaseExpr = DefaultLvalueConversion(BaseExpr.take());
 | |
|     if (BaseExpr.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
 | |
| 
 | |
|     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | |
| 
 | |
|     const ObjCObjectType *OT = OPT->getObjectType();
 | |
| 
 | |
|     // id, with and without qualifiers.
 | |
|     if (OT->isObjCId()) {
 | |
|       // Check protocols on qualified interfaces.
 | |
|       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
 | |
|       if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
 | |
|         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
 | |
|           // Check the use of this declaration
 | |
|           if (DiagnoseUseOfDecl(PD, MemberLoc))
 | |
|             return ExprError();
 | |
| 
 | |
|           return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
 | |
|                                                          VK_LValue,
 | |
|                                                          OK_ObjCProperty,
 | |
|                                                          MemberLoc, 
 | |
|                                                          BaseExpr.take()));
 | |
|         }
 | |
| 
 | |
|         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
 | |
|           // Check the use of this method.
 | |
|           if (DiagnoseUseOfDecl(OMD, MemberLoc))
 | |
|             return ExprError();
 | |
|           Selector SetterSel =
 | |
|             SelectorTable::constructSetterName(PP.getIdentifierTable(),
 | |
|                                                PP.getSelectorTable(), Member);
 | |
|           ObjCMethodDecl *SMD = 0;
 | |
|           if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0, 
 | |
|                                                      SetterSel, Context))
 | |
|             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
 | |
|           QualType PType = OMD->getSendResultType();
 | |
|           
 | |
|           ExprValueKind VK = VK_LValue;
 | |
|           if (!getLangOptions().CPlusPlus &&
 | |
|               IsCForbiddenLValueType(Context, PType))
 | |
|             VK = VK_RValue;
 | |
|           ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
 | |
| 
 | |
|           return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
 | |
|                                                          VK, OK,
 | |
|                                                          MemberLoc, BaseExpr.take()));
 | |
|         }
 | |
|       }
 | |
|       // Use of id.member can only be for a property reference. Do not
 | |
|       // use the 'id' redefinition in this case.
 | |
|       if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
 | |
|         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                 ObjCImpDecl, HasTemplateArgs);
 | |
| 
 | |
|       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
 | |
|                          << MemberName << BaseType);
 | |
|     }
 | |
| 
 | |
|     // 'Class', unqualified only.
 | |
|     if (OT->isObjCClass()) {
 | |
|       // Only works in a method declaration (??!).
 | |
|       ObjCMethodDecl *MD = getCurMethodDecl();
 | |
|       if (!MD) {
 | |
|         if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
 | |
|           return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                   ObjCImpDecl, HasTemplateArgs);
 | |
| 
 | |
|         goto fail;
 | |
|       }
 | |
| 
 | |
|       // Also must look for a getter name which uses property syntax.
 | |
|       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
 | |
|       ObjCInterfaceDecl *IFace = MD->getClassInterface();
 | |
|       ObjCMethodDecl *Getter;
 | |
|       if ((Getter = IFace->lookupClassMethod(Sel))) {
 | |
|         // Check the use of this method.
 | |
|         if (DiagnoseUseOfDecl(Getter, MemberLoc))
 | |
|           return ExprError();
 | |
|       } else
 | |
|         Getter = IFace->lookupPrivateMethod(Sel, false);
 | |
|       // If we found a getter then this may be a valid dot-reference, we
 | |
|       // will look for the matching setter, in case it is needed.
 | |
|       Selector SetterSel =
 | |
|         SelectorTable::constructSetterName(PP.getIdentifierTable(),
 | |
|                                            PP.getSelectorTable(), Member);
 | |
|       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
 | |
|       if (!Setter) {
 | |
|         // If this reference is in an @implementation, also check for 'private'
 | |
|         // methods.
 | |
|         Setter = IFace->lookupPrivateMethod(SetterSel, false);
 | |
|       }
 | |
|       // Look through local category implementations associated with the class.
 | |
|       if (!Setter)
 | |
|         Setter = IFace->getCategoryClassMethod(SetterSel);
 | |
| 
 | |
|       if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
 | |
|         return ExprError();
 | |
| 
 | |
|       if (Getter || Setter) {
 | |
|         QualType PType;
 | |
| 
 | |
|         ExprValueKind VK = VK_LValue;
 | |
|         if (Getter) {
 | |
|           PType = Getter->getSendResultType();
 | |
|           if (!getLangOptions().CPlusPlus &&
 | |
|               IsCForbiddenLValueType(Context, PType))
 | |
|             VK = VK_RValue;
 | |
|         } else {
 | |
|           // Get the expression type from Setter's incoming parameter.
 | |
|           PType = (*(Setter->param_end() -1))->getType();
 | |
|         }
 | |
|         ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
 | |
| 
 | |
|         // FIXME: we must check that the setter has property type.
 | |
|         return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
 | |
|                                                        PType, VK, OK,
 | |
|                                                        MemberLoc, BaseExpr.take()));
 | |
|       }
 | |
| 
 | |
|       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
 | |
|         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                                 ObjCImpDecl, HasTemplateArgs);
 | |
| 
 | |
|       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
 | |
|                          << MemberName << BaseType);
 | |
|     }
 | |
| 
 | |
|     // Normal property access.
 | |
|     return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), MemberName, MemberLoc,
 | |
|                                      SourceLocation(), QualType(), false);
 | |
|   }
 | |
| 
 | |
|   // Handle 'field access' to vectors, such as 'V.xx'.
 | |
|   if (BaseType->isExtVectorType()) {
 | |
|     // FIXME: this expr should store IsArrow.
 | |
|     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
 | |
|     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
 | |
|     QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
 | |
|                                            Member, MemberLoc);
 | |
|     if (ret.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
 | |
|                                                     *Member, MemberLoc));
 | |
|   }
 | |
| 
 | |
|   // Adjust builtin-sel to the appropriate redefinition type if that's
 | |
|   // not just a pointer to builtin-sel again.
 | |
|   if (IsArrow &&
 | |
|       BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
 | |
|       !Context.ObjCSelRedefinitionType->isObjCSelType()) {
 | |
|     BaseExpr = ImpCastExprToType(BaseExpr.take(), Context.ObjCSelRedefinitionType,
 | |
|                                  CK_BitCast);
 | |
|     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                             ObjCImpDecl, HasTemplateArgs);
 | |
|   }
 | |
| 
 | |
|   // Failure cases.
 | |
|  fail:
 | |
| 
 | |
|   // Recover from dot accesses to pointers, e.g.:
 | |
|   //   type *foo;
 | |
|   //   foo.bar
 | |
|   // This is actually well-formed in two cases:
 | |
|   //   - 'type' is an Objective C type
 | |
|   //   - 'bar' is a pseudo-destructor name which happens to refer to
 | |
|   //     the appropriate pointer type
 | |
|   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
 | |
|     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
 | |
|         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
 | |
|       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
 | |
|           << FixItHint::CreateReplacement(OpLoc, "->");
 | |
| 
 | |
|       // Recurse as an -> access.
 | |
|       IsArrow = true;
 | |
|       return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                               ObjCImpDecl, HasTemplateArgs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the user is trying to apply -> or . to a function name, it's probably
 | |
|   // because they forgot parentheses to call that function.
 | |
|   bool TryCall = false;
 | |
|   bool Overloaded = false;
 | |
|   UnresolvedSet<8> AllOverloads;
 | |
|   if (const OverloadExpr *Overloads = dyn_cast<OverloadExpr>(BaseExpr.get())) {
 | |
|     AllOverloads.append(Overloads->decls_begin(), Overloads->decls_end());
 | |
|     TryCall = true;
 | |
|     Overloaded = true;
 | |
|   } else if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(BaseExpr.get())) {
 | |
|     if (FunctionDecl* Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
 | |
|       AllOverloads.addDecl(Fun);
 | |
|       TryCall = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TryCall) {
 | |
|     // Plunder the overload set for something that would make the member
 | |
|     // expression valid.
 | |
|     UnresolvedSet<4> ViableOverloads;
 | |
|     bool HasViableZeroArgOverload = false;
 | |
|     for (OverloadExpr::decls_iterator it = AllOverloads.begin(),
 | |
|          DeclsEnd = AllOverloads.end(); it != DeclsEnd; ++it) {
 | |
|       // Our overload set may include TemplateDecls, which we'll ignore for the
 | |
|       // purposes of determining whether we can issue a '()' fixit.
 | |
|       if (const FunctionDecl *OverloadDecl = dyn_cast<FunctionDecl>(*it)) {
 | |
|         QualType ResultTy = OverloadDecl->getResultType();
 | |
|         if ((!IsArrow && ResultTy->isRecordType()) ||
 | |
|             (IsArrow && ResultTy->isPointerType() &&
 | |
|              ResultTy->getPointeeType()->isRecordType())) {
 | |
|           ViableOverloads.addDecl(*it);
 | |
|           if (OverloadDecl->getMinRequiredArguments() == 0) {
 | |
|             HasViableZeroArgOverload = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!HasViableZeroArgOverload || ViableOverloads.size() != 1) {
 | |
|       Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
 | |
|           << (AllOverloads.size() > 1) << 0
 | |
|           << BaseExpr.get()->getSourceRange();
 | |
|       int ViableOverloadCount = ViableOverloads.size();
 | |
|       int I;
 | |
|       for (I = 0; I < ViableOverloadCount; ++I) {
 | |
|         // FIXME: Magic number for max shown overloads stolen from
 | |
|         // OverloadCandidateSet::NoteCandidates.
 | |
|         if (I >= 4 && Diags.getShowOverloads() == Diagnostic::Ovl_Best) {
 | |
|           break;
 | |
|         }
 | |
|         Diag(ViableOverloads[I].getDecl()->getSourceRange().getBegin(),
 | |
|              diag::note_member_ref_possible_intended_overload);
 | |
|       }
 | |
|       if (I != ViableOverloadCount) {
 | |
|         Diag(BaseExpr.get()->getExprLoc(), diag::note_ovl_too_many_candidates)
 | |
|             << int(ViableOverloadCount - I);
 | |
|       }
 | |
|       return ExprError();
 | |
|     }
 | |
|   } else {
 | |
|     // We don't have an expression that's convenient to get a Decl from, but we
 | |
|     // can at least check if the type is "function of 0 arguments which returns
 | |
|     // an acceptable type".
 | |
|     const FunctionType *Fun = NULL;
 | |
|     if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
 | |
|       if ((Fun = Ptr->getPointeeType()->getAs<FunctionType>())) {
 | |
|         TryCall = true;
 | |
|       }
 | |
|     } else if ((Fun = BaseType->getAs<FunctionType>())) {
 | |
|       TryCall = true;
 | |
|     }
 | |
| 
 | |
|     if (TryCall) {
 | |
|       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Fun)) {
 | |
|         if (FPT->getNumArgs() == 0) {
 | |
|           QualType ResultTy = Fun->getResultType();
 | |
|           TryCall = (!IsArrow && ResultTy->isRecordType()) ||
 | |
|               (IsArrow && ResultTy->isPointerType() &&
 | |
|                ResultTy->getPointeeType()->isRecordType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TryCall) {
 | |
|     // At this point, we know BaseExpr looks like it's potentially callable with
 | |
|     // 0 arguments, and that it returns something of a reasonable type, so we
 | |
|     // can emit a fixit and carry on pretending that BaseExpr was actually a
 | |
|     // CallExpr.
 | |
|     SourceLocation ParenInsertionLoc =
 | |
|         PP.getLocForEndOfToken(BaseExpr.get()->getLocEnd());
 | |
|     Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
 | |
|         << int(Overloaded) << 1
 | |
|         << BaseExpr.get()->getSourceRange()
 | |
|         << FixItHint::CreateInsertion(ParenInsertionLoc, "()");
 | |
|     ExprResult NewBase = ActOnCallExpr(0, BaseExpr.take(), ParenInsertionLoc,
 | |
|                                        MultiExprArg(*this, 0, 0),
 | |
|                                        ParenInsertionLoc);
 | |
|     if (NewBase.isInvalid())
 | |
|       return ExprError();
 | |
|     BaseExpr = NewBase;
 | |
|     BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
 | |
|     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
 | |
|                             ObjCImpDecl, HasTemplateArgs);
 | |
|   }
 | |
| 
 | |
|   Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
 | |
|     << BaseType << BaseExpr.get()->getSourceRange();
 | |
| 
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// The main callback when the parser finds something like
 | |
| ///   expression . [nested-name-specifier] identifier
 | |
| ///   expression -> [nested-name-specifier] identifier
 | |
| /// where 'identifier' encompasses a fairly broad spectrum of
 | |
| /// possibilities, including destructor and operator references.
 | |
| ///
 | |
| /// \param OpKind either tok::arrow or tok::period
 | |
| /// \param HasTrailingLParen whether the next token is '(', which
 | |
| ///   is used to diagnose mis-uses of special members that can
 | |
| ///   only be called
 | |
| /// \param ObjCImpDecl the current ObjC @implementation decl;
 | |
| ///   this is an ugly hack around the fact that ObjC @implementations
 | |
| ///   aren't properly put in the context chain
 | |
| ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
 | |
|                                        SourceLocation OpLoc,
 | |
|                                        tok::TokenKind OpKind,
 | |
|                                        CXXScopeSpec &SS,
 | |
|                                        UnqualifiedId &Id,
 | |
|                                        Decl *ObjCImpDecl,
 | |
|                                        bool HasTrailingLParen) {
 | |
|   if (SS.isSet() && SS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   // Warn about the explicit constructor calls Microsoft extension.
 | |
|   if (getLangOptions().Microsoft &&
 | |
|       Id.getKind() == UnqualifiedId::IK_ConstructorName)
 | |
|     Diag(Id.getSourceRange().getBegin(),
 | |
|          diag::ext_ms_explicit_constructor_call);
 | |
| 
 | |
|   TemplateArgumentListInfo TemplateArgsBuffer;
 | |
| 
 | |
|   // Decompose the name into its component parts.
 | |
|   DeclarationNameInfo NameInfo;
 | |
|   const TemplateArgumentListInfo *TemplateArgs;
 | |
|   DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
 | |
|                          NameInfo, TemplateArgs);
 | |
| 
 | |
|   DeclarationName Name = NameInfo.getName();
 | |
|   bool IsArrow = (OpKind == tok::arrow);
 | |
| 
 | |
|   NamedDecl *FirstQualifierInScope
 | |
|     = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
 | |
|                        static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
 | |
| 
 | |
|   // This is a postfix expression, so get rid of ParenListExprs.
 | |
|   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
|   Base = Result.take();
 | |
| 
 | |
|   if (Base->getType()->isDependentType() || Name.isDependentName() ||
 | |
|       isDependentScopeSpecifier(SS)) {
 | |
|     Result = ActOnDependentMemberExpr(Base, Base->getType(),
 | |
|                                       IsArrow, OpLoc,
 | |
|                                       SS, FirstQualifierInScope,
 | |
|                                       NameInfo, TemplateArgs);
 | |
|   } else {
 | |
|     LookupResult R(*this, NameInfo, LookupMemberName);
 | |
|     ExprResult BaseResult = Owned(Base);
 | |
|     Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
 | |
|                               SS, ObjCImpDecl, TemplateArgs != 0);
 | |
|     if (BaseResult.isInvalid())
 | |
|       return ExprError();
 | |
|     Base = BaseResult.take();
 | |
| 
 | |
|     if (Result.isInvalid()) {
 | |
|       Owned(Base);
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     if (Result.get()) {
 | |
|       // The only way a reference to a destructor can be used is to
 | |
|       // immediately call it, which falls into this case.  If the
 | |
|       // next token is not a '(', produce a diagnostic and build the
 | |
|       // call now.
 | |
|       if (!HasTrailingLParen &&
 | |
|           Id.getKind() == UnqualifiedId::IK_DestructorName)
 | |
|         return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
 | |
| 
 | |
|       return move(Result);
 | |
|     }
 | |
| 
 | |
|     Result = BuildMemberReferenceExpr(Base, Base->getType(),
 | |
|                                       OpLoc, IsArrow, SS, FirstQualifierInScope,
 | |
|                                       R, TemplateArgs);
 | |
|   }
 | |
| 
 | |
|   return move(Result);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
 | |
|                                         FunctionDecl *FD,
 | |
|                                         ParmVarDecl *Param) {
 | |
|   if (Param->hasUnparsedDefaultArg()) {
 | |
|     Diag(CallLoc,
 | |
|          diag::err_use_of_default_argument_to_function_declared_later) <<
 | |
|       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
 | |
|     Diag(UnparsedDefaultArgLocs[Param],
 | |
|          diag::note_default_argument_declared_here);
 | |
|     return ExprError();
 | |
|   }
 | |
|   
 | |
|   if (Param->hasUninstantiatedDefaultArg()) {
 | |
|     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
 | |
| 
 | |
|     // Instantiate the expression.
 | |
|     MultiLevelTemplateArgumentList ArgList
 | |
|       = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
 | |
| 
 | |
|     std::pair<const TemplateArgument *, unsigned> Innermost
 | |
|       = ArgList.getInnermost();
 | |
|     InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
 | |
|                                Innermost.second);
 | |
| 
 | |
|     ExprResult Result;
 | |
|     {
 | |
|       // C++ [dcl.fct.default]p5:
 | |
|       //   The names in the [default argument] expression are bound, and
 | |
|       //   the semantic constraints are checked, at the point where the
 | |
|       //   default argument expression appears.
 | |
|       ContextRAII SavedContext(*this, FD);
 | |
|       Result = SubstExpr(UninstExpr, ArgList);
 | |
|     }
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Check the expression as an initializer for the parameter.
 | |
|     InitializedEntity Entity
 | |
|       = InitializedEntity::InitializeParameter(Context, Param);
 | |
|     InitializationKind Kind
 | |
|       = InitializationKind::CreateCopy(Param->getLocation(),
 | |
|              /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
 | |
|     Expr *ResultE = Result.takeAs<Expr>();
 | |
| 
 | |
|     InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
 | |
|     Result = InitSeq.Perform(*this, Entity, Kind,
 | |
|                              MultiExprArg(*this, &ResultE, 1));
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Build the default argument expression.
 | |
|     return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
 | |
|                                            Result.takeAs<Expr>()));
 | |
|   }
 | |
| 
 | |
|   // If the default expression creates temporaries, we need to
 | |
|   // push them to the current stack of expression temporaries so they'll
 | |
|   // be properly destroyed.
 | |
|   // FIXME: We should really be rebuilding the default argument with new
 | |
|   // bound temporaries; see the comment in PR5810.
 | |
|   for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
 | |
|     CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
 | |
|     MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(), 
 | |
|                     const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
 | |
|     ExprTemporaries.push_back(Temporary);
 | |
|   }
 | |
| 
 | |
|   // We already type-checked the argument, so we know it works. 
 | |
|   // Just mark all of the declarations in this potentially-evaluated expression
 | |
|   // as being "referenced".
 | |
|   MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
 | |
|   return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
 | |
| }
 | |
| 
 | |
| /// ConvertArgumentsForCall - Converts the arguments specified in
 | |
| /// Args/NumArgs to the parameter types of the function FDecl with
 | |
| /// function prototype Proto. Call is the call expression itself, and
 | |
| /// Fn is the function expression. For a C++ member function, this
 | |
| /// routine does not attempt to convert the object argument. Returns
 | |
| /// true if the call is ill-formed.
 | |
| bool
 | |
| Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
 | |
|                               FunctionDecl *FDecl,
 | |
|                               const FunctionProtoType *Proto,
 | |
|                               Expr **Args, unsigned NumArgs,
 | |
|                               SourceLocation RParenLoc) {
 | |
|   // Bail out early if calling a builtin with custom typechecking.
 | |
|   // We don't need to do this in the 
 | |
|   if (FDecl)
 | |
|     if (unsigned ID = FDecl->getBuiltinID())
 | |
|       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
 | |
|         return false;
 | |
| 
 | |
|   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
 | |
|   // assignment, to the types of the corresponding parameter, ...
 | |
|   unsigned NumArgsInProto = Proto->getNumArgs();
 | |
|   bool Invalid = false;
 | |
| 
 | |
|   // If too few arguments are available (and we don't have default
 | |
|   // arguments for the remaining parameters), don't make the call.
 | |
|   if (NumArgs < NumArgsInProto) {
 | |
|     if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
 | |
|       return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
 | |
|         << Fn->getType()->isBlockPointerType()
 | |
|         << NumArgsInProto << NumArgs << Fn->getSourceRange();
 | |
|     Call->setNumArgs(Context, NumArgsInProto);
 | |
|   }
 | |
| 
 | |
|   // If too many are passed and not variadic, error on the extras and drop
 | |
|   // them.
 | |
|   if (NumArgs > NumArgsInProto) {
 | |
|     if (!Proto->isVariadic()) {
 | |
|       Diag(Args[NumArgsInProto]->getLocStart(),
 | |
|            diag::err_typecheck_call_too_many_args)
 | |
|         << Fn->getType()->isBlockPointerType()
 | |
|         << NumArgsInProto << NumArgs << Fn->getSourceRange()
 | |
|         << SourceRange(Args[NumArgsInProto]->getLocStart(),
 | |
|                        Args[NumArgs-1]->getLocEnd());
 | |
| 
 | |
|       // Emit the location of the prototype.
 | |
|       if (FDecl && !FDecl->getBuiltinID())
 | |
|         Diag(FDecl->getLocStart(),
 | |
|              diag::note_typecheck_call_too_many_args)
 | |
|              << FDecl;
 | |
|       
 | |
|       // This deletes the extra arguments.
 | |
|       Call->setNumArgs(Context, NumArgsInProto);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   llvm::SmallVector<Expr *, 8> AllArgs;
 | |
|   VariadicCallType CallType =
 | |
|     Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
 | |
|   if (Fn->getType()->isBlockPointerType())
 | |
|     CallType = VariadicBlock; // Block
 | |
|   else if (isa<MemberExpr>(Fn))
 | |
|     CallType = VariadicMethod;
 | |
|   Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
 | |
|                                    Proto, 0, Args, NumArgs, AllArgs, CallType);
 | |
|   if (Invalid)
 | |
|     return true;
 | |
|   unsigned TotalNumArgs = AllArgs.size();
 | |
|   for (unsigned i = 0; i < TotalNumArgs; ++i)
 | |
|     Call->setArg(i, AllArgs[i]);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
 | |
|                                   FunctionDecl *FDecl,
 | |
|                                   const FunctionProtoType *Proto,
 | |
|                                   unsigned FirstProtoArg,
 | |
|                                   Expr **Args, unsigned NumArgs,
 | |
|                                   llvm::SmallVector<Expr *, 8> &AllArgs,
 | |
|                                   VariadicCallType CallType) {
 | |
|   unsigned NumArgsInProto = Proto->getNumArgs();
 | |
|   unsigned NumArgsToCheck = NumArgs;
 | |
|   bool Invalid = false;
 | |
|   if (NumArgs != NumArgsInProto)
 | |
|     // Use default arguments for missing arguments
 | |
|     NumArgsToCheck = NumArgsInProto;
 | |
|   unsigned ArgIx = 0;
 | |
|   // Continue to check argument types (even if we have too few/many args).
 | |
|   for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
 | |
|     QualType ProtoArgType = Proto->getArgType(i);
 | |
| 
 | |
|     Expr *Arg;
 | |
|     if (ArgIx < NumArgs) {
 | |
|       Arg = Args[ArgIx++];
 | |
| 
 | |
|       if (RequireCompleteType(Arg->getSourceRange().getBegin(),
 | |
|                               ProtoArgType,
 | |
|                               PDiag(diag::err_call_incomplete_argument)
 | |
|                               << Arg->getSourceRange()))
 | |
|         return true;
 | |
| 
 | |
|       // Pass the argument
 | |
|       ParmVarDecl *Param = 0;
 | |
|       if (FDecl && i < FDecl->getNumParams())
 | |
|         Param = FDecl->getParamDecl(i);
 | |
| 
 | |
|       InitializedEntity Entity =
 | |
|         Param? InitializedEntity::InitializeParameter(Context, Param)
 | |
|              : InitializedEntity::InitializeParameter(Context, ProtoArgType);
 | |
|       ExprResult ArgE = PerformCopyInitialization(Entity,
 | |
|                                                   SourceLocation(),
 | |
|                                                   Owned(Arg));
 | |
|       if (ArgE.isInvalid())
 | |
|         return true;
 | |
| 
 | |
|       Arg = ArgE.takeAs<Expr>();
 | |
|     } else {
 | |
|       ParmVarDecl *Param = FDecl->getParamDecl(i);
 | |
| 
 | |
|       ExprResult ArgExpr =
 | |
|         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
 | |
|       if (ArgExpr.isInvalid())
 | |
|         return true;
 | |
| 
 | |
|       Arg = ArgExpr.takeAs<Expr>();
 | |
|     }
 | |
|     AllArgs.push_back(Arg);
 | |
|   }
 | |
| 
 | |
|   // If this is a variadic call, handle args passed through "...".
 | |
|   if (CallType != VariadicDoesNotApply) {
 | |
| 
 | |
|     // Assume that extern "C" functions with variadic arguments that
 | |
|     // return __unknown_anytype aren't *really* variadic.
 | |
|     if (Proto->getResultType() == Context.UnknownAnyTy &&
 | |
|         FDecl && FDecl->isExternC()) {
 | |
|       for (unsigned i = ArgIx; i != NumArgs; ++i) {
 | |
|         ExprResult arg;
 | |
|         if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
 | |
|           arg = DefaultFunctionArrayLvalueConversion(Args[i]);
 | |
|         else
 | |
|           arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
 | |
|         Invalid |= arg.isInvalid();
 | |
|         AllArgs.push_back(arg.take());
 | |
|       }
 | |
| 
 | |
|     // Otherwise do argument promotion, (C99 6.5.2.2p7).
 | |
|     } else {
 | |
|       for (unsigned i = ArgIx; i != NumArgs; ++i) {
 | |
|         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
 | |
|         Invalid |= Arg.isInvalid();
 | |
|         AllArgs.push_back(Arg.take());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Invalid;
 | |
| }
 | |
| 
 | |
| /// Given a function expression of unknown-any type, try to rebuild it
 | |
| /// to have a function type.
 | |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
 | |
| 
 | |
| /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
 | |
| /// This provides the location of the left/right parens and a list of comma
 | |
| /// locations.
 | |
| ExprResult
 | |
| Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
 | |
|                     MultiExprArg args, SourceLocation RParenLoc,
 | |
|                     Expr *ExecConfig) {
 | |
|   unsigned NumArgs = args.size();
 | |
| 
 | |
|   // Since this might be a postfix expression, get rid of ParenListExprs.
 | |
|   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
|   Fn = Result.take();
 | |
| 
 | |
|   Expr **Args = args.release();
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // If this is a pseudo-destructor expression, build the call immediately.
 | |
|     if (isa<CXXPseudoDestructorExpr>(Fn)) {
 | |
|       if (NumArgs > 0) {
 | |
|         // Pseudo-destructor calls should not have any arguments.
 | |
|         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
 | |
|           << FixItHint::CreateRemoval(
 | |
|                                     SourceRange(Args[0]->getLocStart(),
 | |
|                                                 Args[NumArgs-1]->getLocEnd()));
 | |
| 
 | |
|         NumArgs = 0;
 | |
|       }
 | |
| 
 | |
|       return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
 | |
|                                           VK_RValue, RParenLoc));
 | |
|     }
 | |
| 
 | |
|     // Determine whether this is a dependent call inside a C++ template,
 | |
|     // in which case we won't do any semantic analysis now.
 | |
|     // FIXME: Will need to cache the results of name lookup (including ADL) in
 | |
|     // Fn.
 | |
|     bool Dependent = false;
 | |
|     if (Fn->isTypeDependent())
 | |
|       Dependent = true;
 | |
|     else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
 | |
|       Dependent = true;
 | |
| 
 | |
|     if (Dependent) {
 | |
|       if (ExecConfig) {
 | |
|         return Owned(new (Context) CUDAKernelCallExpr(
 | |
|             Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
 | |
|             Context.DependentTy, VK_RValue, RParenLoc));
 | |
|       } else {
 | |
|         return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
 | |
|                                             Context.DependentTy, VK_RValue,
 | |
|                                             RParenLoc));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Determine whether this is a call to an object (C++ [over.call.object]).
 | |
|     if (Fn->getType()->isRecordType())
 | |
|       return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
 | |
|                                                 RParenLoc));
 | |
| 
 | |
|     if (Fn->getType() == Context.UnknownAnyTy) {
 | |
|       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
 | |
|       if (result.isInvalid()) return ExprError();
 | |
|       Fn = result.take();
 | |
|     }
 | |
| 
 | |
|     Expr *NakedFn = Fn->IgnoreParens();
 | |
| 
 | |
|     // Determine whether this is a call to an unresolved member function.
 | |
|     if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
 | |
|       // If lookup was unresolved but not dependent (i.e. didn't find
 | |
|       // an unresolved using declaration), it has to be an overloaded
 | |
|       // function set, which means it must contain either multiple
 | |
|       // declarations (all methods or method templates) or a single
 | |
|       // method template.
 | |
|       assert((MemE->getNumDecls() > 1) ||
 | |
|              isa<FunctionTemplateDecl>(
 | |
|                                  (*MemE->decls_begin())->getUnderlyingDecl()));
 | |
|       (void)MemE;
 | |
| 
 | |
|       return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
 | |
|                                        RParenLoc);
 | |
|     }
 | |
| 
 | |
|     // Determine whether this is a call to a member function.
 | |
|     if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
 | |
|       NamedDecl *MemDecl = MemExpr->getMemberDecl();
 | |
|       if (isa<CXXMethodDecl>(MemDecl))
 | |
|         return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
 | |
|                                          RParenLoc);
 | |
|     }
 | |
| 
 | |
|     // Determine whether this is a call to a pointer-to-member function.
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
 | |
|       if (BO->getOpcode() == BO_PtrMemD ||
 | |
|           BO->getOpcode() == BO_PtrMemI) {
 | |
|         if (const FunctionProtoType *FPT
 | |
|                                 = BO->getType()->getAs<FunctionProtoType>()) {
 | |
|           QualType ResultTy = FPT->getCallResultType(Context);
 | |
|           ExprValueKind VK = Expr::getValueKindForType(FPT->getResultType());
 | |
| 
 | |
|           // Check that the object type isn't more qualified than the
 | |
|           // member function we're calling.
 | |
|           Qualifiers FuncQuals = Qualifiers::fromCVRMask(FPT->getTypeQuals());
 | |
|           Qualifiers ObjectQuals 
 | |
|             = BO->getOpcode() == BO_PtrMemD
 | |
|                 ? BO->getLHS()->getType().getQualifiers()
 | |
|                 : BO->getLHS()->getType()->getAs<PointerType>()
 | |
|                                             ->getPointeeType().getQualifiers();
 | |
| 
 | |
|           Qualifiers Difference = ObjectQuals - FuncQuals;
 | |
|           Difference.removeObjCGCAttr();
 | |
|           Difference.removeAddressSpace();
 | |
|           if (Difference) {
 | |
|             std::string QualsString = Difference.getAsString();
 | |
|             Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
 | |
|               << BO->getType().getUnqualifiedType()
 | |
|               << QualsString
 | |
|               << (QualsString.find(' ') == std::string::npos? 1 : 2);
 | |
|           }
 | |
|               
 | |
|           CXXMemberCallExpr *TheCall
 | |
|             = new (Context) CXXMemberCallExpr(Context, Fn, Args,
 | |
|                                               NumArgs, ResultTy, VK,
 | |
|                                               RParenLoc);
 | |
| 
 | |
|           if (CheckCallReturnType(FPT->getResultType(),
 | |
|                                   BO->getRHS()->getSourceRange().getBegin(),
 | |
|                                   TheCall, 0))
 | |
|             return ExprError();
 | |
| 
 | |
|           if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
 | |
|                                       RParenLoc))
 | |
|             return ExprError();
 | |
| 
 | |
|           return MaybeBindToTemporary(TheCall);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we're directly calling a function, get the appropriate declaration.
 | |
|   // Also, in C++, keep track of whether we should perform argument-dependent
 | |
|   // lookup and whether there were any explicitly-specified template arguments.
 | |
| 
 | |
|   Expr *NakedFn = Fn->IgnoreParens();
 | |
|   if (isa<UnresolvedLookupExpr>(NakedFn)) {
 | |
|     UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
 | |
|     return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
 | |
|                                    RParenLoc, ExecConfig);
 | |
|   }
 | |
| 
 | |
|   NamedDecl *NDecl = 0;
 | |
|   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
 | |
|     if (UnOp->getOpcode() == UO_AddrOf)
 | |
|       NakedFn = UnOp->getSubExpr()->IgnoreParens();
 | |
|   
 | |
|   if (isa<DeclRefExpr>(NakedFn))
 | |
|     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
 | |
| 
 | |
|   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
 | |
|                                ExecConfig);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
 | |
|                               MultiExprArg execConfig, SourceLocation GGGLoc) {
 | |
|   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
 | |
|   if (!ConfigDecl)
 | |
|     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
 | |
|                           << "cudaConfigureCall");
 | |
|   QualType ConfigQTy = ConfigDecl->getType();
 | |
| 
 | |
|   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
 | |
|       ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
 | |
| 
 | |
|   return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
 | |
| }
 | |
| 
 | |
| /// BuildResolvedCallExpr - Build a call to a resolved expression,
 | |
| /// i.e. an expression not of \p OverloadTy.  The expression should
 | |
| /// unary-convert to an expression of function-pointer or
 | |
| /// block-pointer type.
 | |
| ///
 | |
| /// \param NDecl the declaration being called, if available
 | |
| ExprResult
 | |
| Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
 | |
|                             SourceLocation LParenLoc,
 | |
|                             Expr **Args, unsigned NumArgs,
 | |
|                             SourceLocation RParenLoc,
 | |
|                             Expr *Config) {
 | |
|   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
 | |
| 
 | |
|   // Promote the function operand.
 | |
|   ExprResult Result = UsualUnaryConversions(Fn);
 | |
|   if (Result.isInvalid())
 | |
|     return ExprError();
 | |
|   Fn = Result.take();
 | |
| 
 | |
|   // Make the call expr early, before semantic checks.  This guarantees cleanup
 | |
|   // of arguments and function on error.
 | |
|   CallExpr *TheCall;
 | |
|   if (Config) {
 | |
|     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
 | |
|                                                cast<CallExpr>(Config),
 | |
|                                                Args, NumArgs,
 | |
|                                                Context.BoolTy,
 | |
|                                                VK_RValue,
 | |
|                                                RParenLoc);
 | |
|   } else {
 | |
|     TheCall = new (Context) CallExpr(Context, Fn,
 | |
|                                      Args, NumArgs,
 | |
|                                      Context.BoolTy,
 | |
|                                      VK_RValue,
 | |
|                                      RParenLoc);
 | |
|   }
 | |
| 
 | |
|   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
 | |
| 
 | |
|   // Bail out early if calling a builtin with custom typechecking.
 | |
|   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
 | |
|     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
 | |
| 
 | |
|  retry:
 | |
|   const FunctionType *FuncT;
 | |
|   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
 | |
|     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
 | |
|     // have type pointer to function".
 | |
|     FuncT = PT->getPointeeType()->getAs<FunctionType>();
 | |
|     if (FuncT == 0)
 | |
|       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
 | |
|                          << Fn->getType() << Fn->getSourceRange());
 | |
|   } else if (const BlockPointerType *BPT =
 | |
|                Fn->getType()->getAs<BlockPointerType>()) {
 | |
|     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
 | |
|   } else {
 | |
|     // Handle calls to expressions of unknown-any type.
 | |
|     if (Fn->getType() == Context.UnknownAnyTy) {
 | |
|       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
 | |
|       if (rewrite.isInvalid()) return ExprError();
 | |
|       Fn = rewrite.take();
 | |
|       TheCall->setCallee(Fn);
 | |
|       goto retry;
 | |
|     }
 | |
| 
 | |
|     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
 | |
|       << Fn->getType() << Fn->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   if (getLangOptions().CUDA) {
 | |
|     if (Config) {
 | |
|       // CUDA: Kernel calls must be to global functions
 | |
|       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
 | |
|         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
 | |
|             << FDecl->getName() << Fn->getSourceRange());
 | |
| 
 | |
|       // CUDA: Kernel function must have 'void' return type
 | |
|       if (!FuncT->getResultType()->isVoidType())
 | |
|         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
 | |
|             << Fn->getType() << Fn->getSourceRange());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for a valid return type
 | |
|   if (CheckCallReturnType(FuncT->getResultType(),
 | |
|                           Fn->getSourceRange().getBegin(), TheCall,
 | |
|                           FDecl))
 | |
|     return ExprError();
 | |
| 
 | |
|   // We know the result type of the call, set it.
 | |
|   TheCall->setType(FuncT->getCallResultType(Context));
 | |
|   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
 | |
| 
 | |
|   if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
 | |
|     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
 | |
|                                 RParenLoc))
 | |
|       return ExprError();
 | |
|   } else {
 | |
|     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
 | |
| 
 | |
|     if (FDecl) {
 | |
|       // Check if we have too few/too many template arguments, based
 | |
|       // on our knowledge of the function definition.
 | |
|       const FunctionDecl *Def = 0;
 | |
|       if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
 | |
|         const FunctionProtoType *Proto 
 | |
|           = Def->getType()->getAs<FunctionProtoType>();
 | |
|         if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
 | |
|           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
 | |
|             << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
 | |
|       }
 | |
|       
 | |
|       // If the function we're calling isn't a function prototype, but we have
 | |
|       // a function prototype from a prior declaratiom, use that prototype.
 | |
|       if (!FDecl->hasPrototype())
 | |
|         Proto = FDecl->getType()->getAs<FunctionProtoType>();
 | |
|     }
 | |
| 
 | |
|     // Promote the arguments (C99 6.5.2.2p6).
 | |
|     for (unsigned i = 0; i != NumArgs; i++) {
 | |
|       Expr *Arg = Args[i];
 | |
| 
 | |
|       if (Proto && i < Proto->getNumArgs()) {
 | |
|         InitializedEntity Entity
 | |
|           = InitializedEntity::InitializeParameter(Context, 
 | |
|                                                    Proto->getArgType(i));
 | |
|         ExprResult ArgE = PerformCopyInitialization(Entity,
 | |
|                                                     SourceLocation(),
 | |
|                                                     Owned(Arg));
 | |
|         if (ArgE.isInvalid())
 | |
|           return true;
 | |
|         
 | |
|         Arg = ArgE.takeAs<Expr>();
 | |
| 
 | |
|       } else {
 | |
|         ExprResult ArgE = DefaultArgumentPromotion(Arg);
 | |
| 
 | |
|         if (ArgE.isInvalid())
 | |
|           return true;
 | |
| 
 | |
|         Arg = ArgE.takeAs<Expr>();
 | |
|       }
 | |
|       
 | |
|       if (RequireCompleteType(Arg->getSourceRange().getBegin(),
 | |
|                               Arg->getType(),
 | |
|                               PDiag(diag::err_call_incomplete_argument)
 | |
|                                 << Arg->getSourceRange()))
 | |
|         return ExprError();
 | |
| 
 | |
|       TheCall->setArg(i, Arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
 | |
|     if (!Method->isStatic())
 | |
|       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
 | |
|         << Fn->getSourceRange());
 | |
| 
 | |
|   // Check for sentinels
 | |
|   if (NDecl)
 | |
|     DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
 | |
| 
 | |
|   // Do special checking on direct calls to functions.
 | |
|   if (FDecl) {
 | |
|     if (CheckFunctionCall(FDecl, TheCall))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (BuiltinID)
 | |
|       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
 | |
|   } else if (NDecl) {
 | |
|     if (CheckBlockCall(NDecl, TheCall))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   return MaybeBindToTemporary(TheCall);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
 | |
|                            SourceLocation RParenLoc, Expr *InitExpr) {
 | |
|   assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
 | |
|   // FIXME: put back this assert when initializers are worked out.
 | |
|   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
 | |
| 
 | |
|   TypeSourceInfo *TInfo;
 | |
|   QualType literalType = GetTypeFromParser(Ty, &TInfo);
 | |
|   if (!TInfo)
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(literalType);
 | |
| 
 | |
|   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
 | |
|                                SourceLocation RParenLoc, Expr *literalExpr) {
 | |
|   QualType literalType = TInfo->getType();
 | |
| 
 | |
|   if (literalType->isArrayType()) {
 | |
|     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
 | |
|              PDiag(diag::err_illegal_decl_array_incomplete_type)
 | |
|                << SourceRange(LParenLoc,
 | |
|                               literalExpr->getSourceRange().getEnd())))
 | |
|       return ExprError();
 | |
|     if (literalType->isVariableArrayType())
 | |
|       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
 | |
|         << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
 | |
|   } else if (!literalType->isDependentType() &&
 | |
|              RequireCompleteType(LParenLoc, literalType,
 | |
|                       PDiag(diag::err_typecheck_decl_incomplete_type)
 | |
|                         << SourceRange(LParenLoc,
 | |
|                                        literalExpr->getSourceRange().getEnd())))
 | |
|     return ExprError();
 | |
| 
 | |
|   InitializedEntity Entity
 | |
|     = InitializedEntity::InitializeTemporary(literalType);
 | |
|   InitializationKind Kind
 | |
|     = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
 | |
|                                      /*IsCStyleCast=*/true);
 | |
|   InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
 | |
|   ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                        MultiExprArg(*this, &literalExpr, 1),
 | |
|                                             &literalType);
 | |
|   if (Result.isInvalid())
 | |
|     return ExprError();
 | |
|   literalExpr = Result.get();
 | |
| 
 | |
|   bool isFileScope = getCurFunctionOrMethodDecl() == 0;
 | |
|   if (isFileScope) { // 6.5.2.5p3
 | |
|     if (CheckForConstantInitializer(literalExpr, literalType))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // In C, compound literals are l-values for some reason.
 | |
|   ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
 | |
| 
 | |
|   return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
 | |
|                                                  VK, literalExpr, isFileScope));
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
 | |
|                     SourceLocation RBraceLoc) {
 | |
|   unsigned NumInit = initlist.size();
 | |
|   Expr **InitList = initlist.release();
 | |
| 
 | |
|   // Semantic analysis for initializers is done by ActOnDeclarator() and
 | |
|   // CheckInitializer() - it requires knowledge of the object being intialized.
 | |
| 
 | |
|   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
 | |
|                                                NumInit, RBraceLoc);
 | |
|   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| /// Prepares for a scalar cast, performing all the necessary stages
 | |
| /// except the final cast and returning the kind required.
 | |
| static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
 | |
|   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
 | |
|   // Also, callers should have filtered out the invalid cases with
 | |
|   // pointers.  Everything else should be possible.
 | |
| 
 | |
|   QualType SrcTy = Src.get()->getType();
 | |
|   if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
 | |
|     return CK_NoOp;
 | |
| 
 | |
|   switch (SrcTy->getScalarTypeKind()) {
 | |
|   case Type::STK_MemberPointer:
 | |
|     llvm_unreachable("member pointer type in C");
 | |
| 
 | |
|   case Type::STK_Pointer:
 | |
|     switch (DestTy->getScalarTypeKind()) {
 | |
|     case Type::STK_Pointer:
 | |
|       return DestTy->isObjCObjectPointerType() ?
 | |
|                 CK_AnyPointerToObjCPointerCast :
 | |
|                 CK_BitCast;
 | |
|     case Type::STK_Bool:
 | |
|       return CK_PointerToBoolean;
 | |
|     case Type::STK_Integral:
 | |
|       return CK_PointerToIntegral;
 | |
|     case Type::STK_Floating:
 | |
|     case Type::STK_FloatingComplex:
 | |
|     case Type::STK_IntegralComplex:
 | |
|     case Type::STK_MemberPointer:
 | |
|       llvm_unreachable("illegal cast from pointer");
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Type::STK_Bool: // casting from bool is like casting from an integer
 | |
|   case Type::STK_Integral:
 | |
|     switch (DestTy->getScalarTypeKind()) {
 | |
|     case Type::STK_Pointer:
 | |
|       if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
 | |
|         return CK_NullToPointer;
 | |
|       return CK_IntegralToPointer;
 | |
|     case Type::STK_Bool:
 | |
|       return CK_IntegralToBoolean;
 | |
|     case Type::STK_Integral:
 | |
|       return CK_IntegralCast;
 | |
|     case Type::STK_Floating:
 | |
|       return CK_IntegralToFloating;
 | |
|     case Type::STK_IntegralComplex:
 | |
|       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
 | |
|                                 CK_IntegralCast);
 | |
|       return CK_IntegralRealToComplex;
 | |
|     case Type::STK_FloatingComplex:
 | |
|       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
 | |
|                                 CK_IntegralToFloating);
 | |
|       return CK_FloatingRealToComplex;
 | |
|     case Type::STK_MemberPointer:
 | |
|       llvm_unreachable("member pointer type in C");
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Type::STK_Floating:
 | |
|     switch (DestTy->getScalarTypeKind()) {
 | |
|     case Type::STK_Floating:
 | |
|       return CK_FloatingCast;
 | |
|     case Type::STK_Bool:
 | |
|       return CK_FloatingToBoolean;
 | |
|     case Type::STK_Integral:
 | |
|       return CK_FloatingToIntegral;
 | |
|     case Type::STK_FloatingComplex:
 | |
|       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
 | |
|                                 CK_FloatingCast);
 | |
|       return CK_FloatingRealToComplex;
 | |
|     case Type::STK_IntegralComplex:
 | |
|       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
 | |
|                                 CK_FloatingToIntegral);
 | |
|       return CK_IntegralRealToComplex;
 | |
|     case Type::STK_Pointer:
 | |
|       llvm_unreachable("valid float->pointer cast?");
 | |
|     case Type::STK_MemberPointer:
 | |
|       llvm_unreachable("member pointer type in C");
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Type::STK_FloatingComplex:
 | |
|     switch (DestTy->getScalarTypeKind()) {
 | |
|     case Type::STK_FloatingComplex:
 | |
|       return CK_FloatingComplexCast;
 | |
|     case Type::STK_IntegralComplex:
 | |
|       return CK_FloatingComplexToIntegralComplex;
 | |
|     case Type::STK_Floating: {
 | |
|       QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
 | |
|       if (S.Context.hasSameType(ET, DestTy))
 | |
|         return CK_FloatingComplexToReal;
 | |
|       Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
 | |
|       return CK_FloatingCast;
 | |
|     }
 | |
|     case Type::STK_Bool:
 | |
|       return CK_FloatingComplexToBoolean;
 | |
|     case Type::STK_Integral:
 | |
|       Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
 | |
|                                 CK_FloatingComplexToReal);
 | |
|       return CK_FloatingToIntegral;
 | |
|     case Type::STK_Pointer:
 | |
|       llvm_unreachable("valid complex float->pointer cast?");
 | |
|     case Type::STK_MemberPointer:
 | |
|       llvm_unreachable("member pointer type in C");
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Type::STK_IntegralComplex:
 | |
|     switch (DestTy->getScalarTypeKind()) {
 | |
|     case Type::STK_FloatingComplex:
 | |
|       return CK_IntegralComplexToFloatingComplex;
 | |
|     case Type::STK_IntegralComplex:
 | |
|       return CK_IntegralComplexCast;
 | |
|     case Type::STK_Integral: {
 | |
|       QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
 | |
|       if (S.Context.hasSameType(ET, DestTy))
 | |
|         return CK_IntegralComplexToReal;
 | |
|       Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
 | |
|       return CK_IntegralCast;
 | |
|     }
 | |
|     case Type::STK_Bool:
 | |
|       return CK_IntegralComplexToBoolean;
 | |
|     case Type::STK_Floating:
 | |
|       Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
 | |
|                                 CK_IntegralComplexToReal);
 | |
|       return CK_IntegralToFloating;
 | |
|     case Type::STK_Pointer:
 | |
|       llvm_unreachable("valid complex int->pointer cast?");
 | |
|     case Type::STK_MemberPointer:
 | |
|       llvm_unreachable("member pointer type in C");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled scalar cast");
 | |
|   return CK_BitCast;
 | |
| }
 | |
| 
 | |
| /// CheckCastTypes - Check type constraints for casting between types.
 | |
| ExprResult Sema::CheckCastTypes(SourceRange TyR, QualType castType,
 | |
|                                 Expr *castExpr, CastKind& Kind, ExprValueKind &VK,
 | |
|                                 CXXCastPath &BasePath, bool FunctionalStyle) {
 | |
|   if (castExpr->getType() == Context.UnknownAnyTy)
 | |
|     return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus)
 | |
|     return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
 | |
|                                           castExpr->getLocEnd()), 
 | |
|                               castType, VK, castExpr, Kind, BasePath,
 | |
|                               FunctionalStyle);
 | |
| 
 | |
|   assert(!castExpr->getType()->isPlaceholderType());
 | |
| 
 | |
|   // We only support r-value casts in C.
 | |
|   VK = VK_RValue;
 | |
| 
 | |
|   // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
 | |
|   // type needs to be scalar.
 | |
|   if (castType->isVoidType()) {
 | |
|     // We don't necessarily do lvalue-to-rvalue conversions on this.
 | |
|     ExprResult castExprRes = IgnoredValueConversions(castExpr);
 | |
|     if (castExprRes.isInvalid())
 | |
|       return ExprError();
 | |
|     castExpr = castExprRes.take();
 | |
| 
 | |
|     // Cast to void allows any expr type.
 | |
|     Kind = CK_ToVoid;
 | |
|     return Owned(castExpr);
 | |
|   }
 | |
| 
 | |
|   ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
 | |
|   if (castExprRes.isInvalid())
 | |
|     return ExprError();
 | |
|   castExpr = castExprRes.take();
 | |
| 
 | |
|   if (RequireCompleteType(TyR.getBegin(), castType,
 | |
|                           diag::err_typecheck_cast_to_incomplete))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!castType->isScalarType() && !castType->isVectorType()) {
 | |
|     if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
 | |
|         (castType->isStructureType() || castType->isUnionType())) {
 | |
|       // GCC struct/union extension: allow cast to self.
 | |
|       // FIXME: Check that the cast destination type is complete.
 | |
|       Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
 | |
|         << castType << castExpr->getSourceRange();
 | |
|       Kind = CK_NoOp;
 | |
|       return Owned(castExpr);
 | |
|     }
 | |
| 
 | |
|     if (castType->isUnionType()) {
 | |
|       // GCC cast to union extension
 | |
|       RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
 | |
|       RecordDecl::field_iterator Field, FieldEnd;
 | |
|       for (Field = RD->field_begin(), FieldEnd = RD->field_end();
 | |
|            Field != FieldEnd; ++Field) {
 | |
|         if (Context.hasSameUnqualifiedType(Field->getType(),
 | |
|                                            castExpr->getType()) &&
 | |
|             !Field->isUnnamedBitfield()) {
 | |
|           Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
 | |
|             << castExpr->getSourceRange();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (Field == FieldEnd) {
 | |
|         Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
 | |
|           << castExpr->getType() << castExpr->getSourceRange();
 | |
|         return ExprError();
 | |
|       }
 | |
|       Kind = CK_ToUnion;
 | |
|       return Owned(castExpr);
 | |
|     }
 | |
| 
 | |
|     // Reject any other conversions to non-scalar types.
 | |
|     Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
 | |
|       << castType << castExpr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // The type we're casting to is known to be a scalar or vector.
 | |
| 
 | |
|   // Require the operand to be a scalar or vector.
 | |
|   if (!castExpr->getType()->isScalarType() &&
 | |
|       !castExpr->getType()->isVectorType()) {
 | |
|     Diag(castExpr->getLocStart(),
 | |
|                 diag::err_typecheck_expect_scalar_operand)
 | |
|       << castExpr->getType() << castExpr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (castType->isExtVectorType())
 | |
|     return CheckExtVectorCast(TyR, castType, castExpr, Kind);
 | |
| 
 | |
|   if (castType->isVectorType()) {
 | |
|     if (castType->getAs<VectorType>()->getVectorKind() ==
 | |
|         VectorType::AltiVecVector &&
 | |
|           (castExpr->getType()->isIntegerType() ||
 | |
|            castExpr->getType()->isFloatingType())) {
 | |
|       Kind = CK_VectorSplat;
 | |
|       return Owned(castExpr);
 | |
|     } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
 | |
|       return ExprError();
 | |
|     } else
 | |
|       return Owned(castExpr);
 | |
|   }
 | |
|   if (castExpr->getType()->isVectorType()) {
 | |
|     if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
 | |
|       return ExprError();
 | |
|     else
 | |
|       return Owned(castExpr);
 | |
|   }
 | |
| 
 | |
|   // The source and target types are both scalars, i.e.
 | |
|   //   - arithmetic types (fundamental, enum, and complex)
 | |
|   //   - all kinds of pointers
 | |
|   // Note that member pointers were filtered out with C++, above.
 | |
| 
 | |
|   if (isa<ObjCSelectorExpr>(castExpr)) {
 | |
|     Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // If either type is a pointer, the other type has to be either an
 | |
|   // integer or a pointer.
 | |
|   if (!castType->isArithmeticType()) {
 | |
|     QualType castExprType = castExpr->getType();
 | |
|     if (!castExprType->isIntegralType(Context) && 
 | |
|         castExprType->isArithmeticType()) {
 | |
|       Diag(castExpr->getLocStart(),
 | |
|            diag::err_cast_pointer_from_non_pointer_int)
 | |
|         << castExprType << castExpr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   } else if (!castExpr->getType()->isArithmeticType()) {
 | |
|     if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
 | |
|       Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
 | |
|         << castType << castExpr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   castExprRes = Owned(castExpr);
 | |
|   Kind = PrepareScalarCast(*this, castExprRes, castType);
 | |
|   if (castExprRes.isInvalid())
 | |
|     return ExprError();
 | |
|   castExpr = castExprRes.take();
 | |
| 
 | |
|   if (Kind == CK_BitCast)
 | |
|     CheckCastAlign(castExpr, castType, TyR);
 | |
| 
 | |
|   return Owned(castExpr);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
 | |
|                            CastKind &Kind) {
 | |
|   assert(VectorTy->isVectorType() && "Not a vector type!");
 | |
| 
 | |
|   if (Ty->isVectorType() || Ty->isIntegerType()) {
 | |
|     if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
 | |
|       return Diag(R.getBegin(),
 | |
|                   Ty->isVectorType() ?
 | |
|                   diag::err_invalid_conversion_between_vectors :
 | |
|                   diag::err_invalid_conversion_between_vector_and_integer)
 | |
|         << VectorTy << Ty << R;
 | |
|   } else
 | |
|     return Diag(R.getBegin(),
 | |
|                 diag::err_invalid_conversion_between_vector_and_scalar)
 | |
|       << VectorTy << Ty << R;
 | |
| 
 | |
|   Kind = CK_BitCast;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
 | |
|                                     Expr *CastExpr, CastKind &Kind) {
 | |
|   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
 | |
| 
 | |
|   QualType SrcTy = CastExpr->getType();
 | |
| 
 | |
|   // If SrcTy is a VectorType, the total size must match to explicitly cast to
 | |
|   // an ExtVectorType.
 | |
|   if (SrcTy->isVectorType()) {
 | |
|     if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
 | |
|       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
 | |
|         << DestTy << SrcTy << R;
 | |
|       return ExprError();
 | |
|     }
 | |
|     Kind = CK_BitCast;
 | |
|     return Owned(CastExpr);
 | |
|   }
 | |
| 
 | |
|   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
 | |
|   // conversion will take place first from scalar to elt type, and then
 | |
|   // splat from elt type to vector.
 | |
|   if (SrcTy->isPointerType())
 | |
|     return Diag(R.getBegin(),
 | |
|                 diag::err_invalid_conversion_between_vector_and_scalar)
 | |
|       << DestTy << SrcTy << R;
 | |
| 
 | |
|   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
 | |
|   ExprResult CastExprRes = Owned(CastExpr);
 | |
|   CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
 | |
|   if (CastExprRes.isInvalid())
 | |
|     return ExprError();
 | |
|   CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
 | |
| 
 | |
|   Kind = CK_VectorSplat;
 | |
|   return Owned(CastExpr);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
 | |
|                     SourceLocation RParenLoc, Expr *castExpr) {
 | |
|   assert((Ty != 0) && (castExpr != 0) &&
 | |
|          "ActOnCastExpr(): missing type or expr");
 | |
| 
 | |
|   TypeSourceInfo *castTInfo;
 | |
|   QualType castType = GetTypeFromParser(Ty, &castTInfo);
 | |
|   if (!castTInfo)
 | |
|     castTInfo = Context.getTrivialTypeSourceInfo(castType);
 | |
| 
 | |
|   // If the Expr being casted is a ParenListExpr, handle it specially.
 | |
|   if (isa<ParenListExpr>(castExpr))
 | |
|     return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
 | |
|                                     castTInfo);
 | |
| 
 | |
|   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
 | |
|                           SourceLocation RParenLoc, Expr *castExpr) {
 | |
|   CastKind Kind = CK_Invalid;
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   CXXCastPath BasePath;
 | |
|   ExprResult CastResult =
 | |
|     CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
 | |
|                    Kind, VK, BasePath);
 | |
|   if (CastResult.isInvalid())
 | |
|     return ExprError();
 | |
|   castExpr = CastResult.take();
 | |
| 
 | |
|   return Owned(CStyleCastExpr::Create(Context,
 | |
|                                       Ty->getType().getNonLValueExprType(Context),
 | |
|                                       VK, Kind, castExpr, &BasePath, Ty,
 | |
|                                       LParenLoc, RParenLoc));
 | |
| }
 | |
| 
 | |
| /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
 | |
| /// of comma binary operators.
 | |
| ExprResult
 | |
| Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
 | |
|   ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
 | |
|   if (!E)
 | |
|     return Owned(expr);
 | |
| 
 | |
|   ExprResult Result(E->getExpr(0));
 | |
| 
 | |
|   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
 | |
|     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
 | |
|                         E->getExpr(i));
 | |
| 
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
| 
 | |
|   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
 | |
|                                SourceLocation RParenLoc, Expr *Op,
 | |
|                                TypeSourceInfo *TInfo) {
 | |
|   ParenListExpr *PE = cast<ParenListExpr>(Op);
 | |
|   QualType Ty = TInfo->getType();
 | |
|   bool isVectorLiteral = false;
 | |
| 
 | |
|   // Check for an altivec or OpenCL literal,
 | |
|   // i.e. all the elements are integer constants.
 | |
|   if (getLangOptions().AltiVec && Ty->isVectorType()) {
 | |
|     if (PE->getNumExprs() == 0) {
 | |
|       Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
 | |
|       return ExprError();
 | |
|     }
 | |
|     if (PE->getNumExprs() == 1) {
 | |
|       if (!PE->getExpr(0)->getType()->isVectorType())
 | |
|         isVectorLiteral = true;
 | |
|     }
 | |
|     else
 | |
|       isVectorLiteral = true;
 | |
|   }
 | |
| 
 | |
|   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
 | |
|   // then handle it as such.
 | |
|   if (isVectorLiteral) {
 | |
|     llvm::SmallVector<Expr *, 8> initExprs;
 | |
|     // '(...)' form of vector initialization in AltiVec: the number of
 | |
|     // initializers must be one or must match the size of the vector.
 | |
|     // If a single value is specified in the initializer then it will be
 | |
|     // replicated to all the components of the vector
 | |
|     if (Ty->getAs<VectorType>()->getVectorKind() ==
 | |
|         VectorType::AltiVecVector) {
 | |
|       unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
 | |
|       // The number of initializers must be one or must match the size of the
 | |
|       // vector. If a single value is specified in the initializer then it will
 | |
|       // be replicated to all the components of the vector
 | |
|       if (PE->getNumExprs() == 1) {
 | |
|         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
 | |
|         ExprResult Literal = Owned(PE->getExpr(0));
 | |
|         Literal = ImpCastExprToType(Literal.take(), ElemTy,
 | |
|                                     PrepareScalarCast(*this, Literal, ElemTy));
 | |
|         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
 | |
|       }
 | |
|       else if (PE->getNumExprs() < numElems) {
 | |
|         Diag(PE->getExprLoc(),
 | |
|              diag::err_incorrect_number_of_vector_initializers);
 | |
|         return ExprError();
 | |
|       }
 | |
|       else
 | |
|         for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
 | |
|           initExprs.push_back(PE->getExpr(i));
 | |
|     }
 | |
|     else
 | |
|       for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
 | |
|         initExprs.push_back(PE->getExpr(i));
 | |
| 
 | |
|     // FIXME: This means that pretty-printing the final AST will produce curly
 | |
|     // braces instead of the original commas.
 | |
|     InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
 | |
|                                                  &initExprs[0],
 | |
|                                                  initExprs.size(), RParenLoc);
 | |
|     E->setType(Ty);
 | |
|     return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
 | |
|   } else {
 | |
|     // This is not an AltiVec-style cast, so turn the ParenListExpr into a
 | |
|     // sequence of BinOp comma operators.
 | |
|     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
 | |
|     if (Result.isInvalid()) return ExprError();
 | |
|     return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
 | |
|                                                   SourceLocation R,
 | |
|                                                   MultiExprArg Val,
 | |
|                                                   ParsedType TypeOfCast) {
 | |
|   unsigned nexprs = Val.size();
 | |
|   Expr **exprs = reinterpret_cast<Expr**>(Val.release());
 | |
|   assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
 | |
|   Expr *expr;
 | |
|   if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
 | |
|     expr = new (Context) ParenExpr(L, R, exprs[0]);
 | |
|   else
 | |
|     expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
 | |
|   return Owned(expr);
 | |
| }
 | |
| 
 | |
| /// \brief Emit a specialized diagnostic when one expression is a null pointer
 | |
| /// constant and the other is not a pointer.
 | |
| bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
 | |
|                                       SourceLocation QuestionLoc) {
 | |
|   Expr *NullExpr = LHS;
 | |
|   Expr *NonPointerExpr = RHS;
 | |
|   Expr::NullPointerConstantKind NullKind =
 | |
|       NullExpr->isNullPointerConstant(Context,
 | |
|                                       Expr::NPC_ValueDependentIsNotNull);
 | |
| 
 | |
|   if (NullKind == Expr::NPCK_NotNull) {
 | |
|     NullExpr = RHS;
 | |
|     NonPointerExpr = LHS;
 | |
|     NullKind =
 | |
|         NullExpr->isNullPointerConstant(Context,
 | |
|                                         Expr::NPC_ValueDependentIsNotNull);
 | |
|   }
 | |
| 
 | |
|   if (NullKind == Expr::NPCK_NotNull)
 | |
|     return false;
 | |
| 
 | |
|   if (NullKind == Expr::NPCK_ZeroInteger) {
 | |
|     // In this case, check to make sure that we got here from a "NULL"
 | |
|     // string in the source code.
 | |
|     NullExpr = NullExpr->IgnoreParenImpCasts();
 | |
|     SourceLocation loc = NullExpr->getExprLoc();
 | |
|     if (!findMacroSpelling(loc, "NULL"))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
 | |
|   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
 | |
|       << NonPointerExpr->getType() << DiagType
 | |
|       << NonPointerExpr->getSourceRange();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
 | |
| /// In that case, lhs = cond.
 | |
| /// C99 6.5.15
 | |
| QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
 | |
|                                         ExprValueKind &VK, ExprObjectKind &OK,
 | |
|                                         SourceLocation QuestionLoc) {
 | |
| 
 | |
|   ExprResult lhsResult = CheckPlaceholderExpr(LHS.get());
 | |
|   if (!lhsResult.isUsable()) return QualType();
 | |
|   LHS = move(lhsResult);
 | |
| 
 | |
|   ExprResult rhsResult = CheckPlaceholderExpr(RHS.get());
 | |
|   if (!rhsResult.isUsable()) return QualType();
 | |
|   RHS = move(rhsResult);
 | |
| 
 | |
|   // C++ is sufficiently different to merit its own checker.
 | |
|   if (getLangOptions().CPlusPlus)
 | |
|     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
 | |
| 
 | |
|   VK = VK_RValue;
 | |
|   OK = OK_Ordinary;
 | |
| 
 | |
|   Cond = UsualUnaryConversions(Cond.take());
 | |
|   if (Cond.isInvalid())
 | |
|     return QualType();
 | |
|   LHS = UsualUnaryConversions(LHS.take());
 | |
|   if (LHS.isInvalid())
 | |
|     return QualType();
 | |
|   RHS = UsualUnaryConversions(RHS.take());
 | |
|   if (RHS.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   QualType CondTy = Cond.get()->getType();
 | |
|   QualType LHSTy = LHS.get()->getType();
 | |
|   QualType RHSTy = RHS.get()->getType();
 | |
| 
 | |
|   // first, check the condition.
 | |
|   if (!CondTy->isScalarType()) { // C99 6.5.15p2
 | |
|     // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
 | |
|     // Throw an error if its not either.
 | |
|     if (getLangOptions().OpenCL) {
 | |
|       if (!CondTy->isVectorType()) {
 | |
|         Diag(Cond.get()->getLocStart(), 
 | |
|              diag::err_typecheck_cond_expect_scalar_or_vector)
 | |
|           << CondTy;
 | |
|         return QualType();
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
 | |
|         << CondTy;
 | |
|       return QualType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now check the two expressions.
 | |
|   if (LHSTy->isVectorType() || RHSTy->isVectorType())
 | |
|     return CheckVectorOperands(QuestionLoc, LHS, RHS);
 | |
| 
 | |
|   // OpenCL: If the condition is a vector, and both operands are scalar,
 | |
|   // attempt to implicity convert them to the vector type to act like the
 | |
|   // built in select.
 | |
|   if (getLangOptions().OpenCL && CondTy->isVectorType()) {
 | |
|     // Both operands should be of scalar type.
 | |
|     if (!LHSTy->isScalarType()) {
 | |
|       Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
 | |
|         << CondTy;
 | |
|       return QualType();
 | |
|     }
 | |
|     if (!RHSTy->isScalarType()) {
 | |
|       Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
 | |
|         << CondTy;
 | |
|       return QualType();
 | |
|     }
 | |
|     // Implicity convert these scalars to the type of the condition.
 | |
|     LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
 | |
|     RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
 | |
|   }
 | |
|   
 | |
|   // If both operands have arithmetic type, do the usual arithmetic conversions
 | |
|   // to find a common type: C99 6.5.15p3,5.
 | |
|   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
 | |
|     UsualArithmeticConversions(LHS, RHS);
 | |
|     if (LHS.isInvalid() || RHS.isInvalid())
 | |
|       return QualType();
 | |
|     return LHS.get()->getType();
 | |
|   }
 | |
| 
 | |
|   // If both operands are the same structure or union type, the result is that
 | |
|   // type.
 | |
|   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
 | |
|     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
 | |
|       if (LHSRT->getDecl() == RHSRT->getDecl())
 | |
|         // "If both the operands have structure or union type, the result has
 | |
|         // that type."  This implies that CV qualifiers are dropped.
 | |
|         return LHSTy.getUnqualifiedType();
 | |
|     // FIXME: Type of conditional expression must be complete in C mode.
 | |
|   }
 | |
| 
 | |
|   // C99 6.5.15p5: "If both operands have void type, the result has void type."
 | |
|   // The following || allows only one side to be void (a GCC-ism).
 | |
|   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
 | |
|     if (!LHSTy->isVoidType())
 | |
|       Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
 | |
|         << RHS.get()->getSourceRange();
 | |
|     if (!RHSTy->isVoidType())
 | |
|       Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
 | |
|         << LHS.get()->getSourceRange();
 | |
|     LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid);
 | |
|     RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid);
 | |
|     return Context.VoidTy;
 | |
|   }
 | |
|   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
 | |
|   // the type of the other operand."
 | |
|   if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
 | |
|       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|     // promote the null to a pointer.
 | |
|     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer);
 | |
|     return LHSTy;
 | |
|   }
 | |
|   if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
 | |
|       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer);
 | |
|     return RHSTy;
 | |
|   }
 | |
| 
 | |
|   // All objective-c pointer type analysis is done here.
 | |
|   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
 | |
|                                                         QuestionLoc);
 | |
|   if (LHS.isInvalid() || RHS.isInvalid())
 | |
|     return QualType();
 | |
|   if (!compositeType.isNull())
 | |
|     return compositeType;
 | |
| 
 | |
| 
 | |
|   // Handle block pointer types.
 | |
|   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
 | |
|     if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
 | |
|       if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
 | |
|         QualType destType = Context.getPointerType(Context.VoidTy);
 | |
|         LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
 | |
|         RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
 | |
|         return destType;
 | |
|       }
 | |
|       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | |
|       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
|     // We have 2 block pointer types.
 | |
|     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
 | |
|       // Two identical block pointer types are always compatible.
 | |
|       return LHSTy;
 | |
|     }
 | |
|     // The block pointer types aren't identical, continue checking.
 | |
|     QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
 | |
|     QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
 | |
| 
 | |
|     if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
 | |
|                                     rhptee.getUnqualifiedType())) {
 | |
|       Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
 | |
|       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       // In this situation, we assume void* type. No especially good
 | |
|       // reason, but this is what gcc does, and we do have to pick
 | |
|       // to get a consistent AST.
 | |
|       QualType incompatTy = Context.getPointerType(Context.VoidTy);
 | |
|       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
 | |
|       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
 | |
|       return incompatTy;
 | |
|     }
 | |
|     // The block pointer types are compatible.
 | |
|     LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
 | |
|     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | |
|     return LHSTy;
 | |
|   }
 | |
| 
 | |
|   // Check constraints for C object pointers types (C99 6.5.15p3,6).
 | |
|   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
 | |
|     // get the "pointed to" types
 | |
|     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
 | |
|     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|     // ignore qualifiers on void (C99 6.5.15p3, clause 6)
 | |
|     if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
 | |
|       // Figure out necessary qualifiers (C99 6.5.15p6)
 | |
|       QualType destPointee
 | |
|         = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
 | |
|       QualType destType = Context.getPointerType(destPointee);
 | |
|       // Add qualifiers if necessary.
 | |
|       LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
 | |
|       // Promote to void*.
 | |
|       RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
 | |
|       return destType;
 | |
|     }
 | |
|     if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
 | |
|       QualType destPointee
 | |
|         = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
 | |
|       QualType destType = Context.getPointerType(destPointee);
 | |
|       // Add qualifiers if necessary.
 | |
|       RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
 | |
|       // Promote to void*.
 | |
|       LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
 | |
|       return destType;
 | |
|     }
 | |
| 
 | |
|     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
 | |
|       // Two identical pointer types are always compatible.
 | |
|       return LHSTy;
 | |
|     }
 | |
|     if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
 | |
|                                     rhptee.getUnqualifiedType())) {
 | |
|       Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
 | |
|         << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       // In this situation, we assume void* type. No especially good
 | |
|       // reason, but this is what gcc does, and we do have to pick
 | |
|       // to get a consistent AST.
 | |
|       QualType incompatTy = Context.getPointerType(Context.VoidTy);
 | |
|       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
 | |
|       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
 | |
|       return incompatTy;
 | |
|     }
 | |
|     // The pointer types are compatible.
 | |
|     // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
 | |
|     // differently qualified versions of compatible types, the result type is
 | |
|     // a pointer to an appropriately qualified version of the *composite*
 | |
|     // type.
 | |
|     // FIXME: Need to calculate the composite type.
 | |
|     // FIXME: Need to add qualifiers
 | |
|     LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
 | |
|     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | |
|     return LHSTy;
 | |
|   }
 | |
| 
 | |
|   // GCC compatibility: soften pointer/integer mismatch.  Note that
 | |
|   // null pointers have been filtered out by this point.
 | |
|   if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
 | |
|     Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
 | |
|       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer);
 | |
|     return RHSTy;
 | |
|   }
 | |
|   if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
 | |
|     Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
 | |
|       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer);
 | |
|     return LHSTy;
 | |
|   }
 | |
| 
 | |
|   // Emit a better diagnostic if one of the expressions is a null pointer
 | |
|   // constant and the other is not a pointer type. In this case, the user most
 | |
|   // likely forgot to take the address of the other expression.
 | |
|   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | |
|     return QualType();
 | |
| 
 | |
|   // Otherwise, the operands are not compatible.
 | |
|   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | |
|     << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| /// FindCompositeObjCPointerType - Helper method to find composite type of
 | |
| /// two objective-c pointer types of the two input expressions.
 | |
| QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
 | |
|                                         SourceLocation QuestionLoc) {
 | |
|   QualType LHSTy = LHS.get()->getType();
 | |
|   QualType RHSTy = RHS.get()->getType();
 | |
| 
 | |
|   // Handle things like Class and struct objc_class*.  Here we case the result
 | |
|   // to the pseudo-builtin, because that will be implicitly cast back to the
 | |
|   // redefinition type if an attempt is made to access its fields.
 | |
|   if (LHSTy->isObjCClassType() &&
 | |
|       (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
 | |
|     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | |
|     return LHSTy;
 | |
|   }
 | |
|   if (RHSTy->isObjCClassType() &&
 | |
|       (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
 | |
|     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
 | |
|     return RHSTy;
 | |
|   }
 | |
|   // And the same for struct objc_object* / id
 | |
|   if (LHSTy->isObjCIdType() &&
 | |
|       (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
 | |
|     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | |
|     return LHSTy;
 | |
|   }
 | |
|   if (RHSTy->isObjCIdType() &&
 | |
|       (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
 | |
|     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
 | |
|     return RHSTy;
 | |
|   }
 | |
|   // And the same for struct objc_selector* / SEL
 | |
|   if (Context.isObjCSelType(LHSTy) &&
 | |
|       (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
 | |
|     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | |
|     return LHSTy;
 | |
|   }
 | |
|   if (Context.isObjCSelType(RHSTy) &&
 | |
|       (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
 | |
|     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
 | |
|     return RHSTy;
 | |
|   }
 | |
|   // Check constraints for Objective-C object pointers types.
 | |
|   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
 | |
| 
 | |
|     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
 | |
|       // Two identical object pointer types are always compatible.
 | |
|       return LHSTy;
 | |
|     }
 | |
|     const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
 | |
|     const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
 | |
|     QualType compositeType = LHSTy;
 | |
| 
 | |
|     // If both operands are interfaces and either operand can be
 | |
|     // assigned to the other, use that type as the composite
 | |
|     // type. This allows
 | |
|     //   xxx ? (A*) a : (B*) b
 | |
|     // where B is a subclass of A.
 | |
|     //
 | |
|     // Additionally, as for assignment, if either type is 'id'
 | |
|     // allow silent coercion. Finally, if the types are
 | |
|     // incompatible then make sure to use 'id' as the composite
 | |
|     // type so the result is acceptable for sending messages to.
 | |
| 
 | |
|     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
 | |
|     // It could return the composite type.
 | |
|     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
 | |
|       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
 | |
|     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
 | |
|       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
 | |
|     } else if ((LHSTy->isObjCQualifiedIdType() ||
 | |
|                 RHSTy->isObjCQualifiedIdType()) &&
 | |
|                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
 | |
|       // Need to handle "id<xx>" explicitly.
 | |
|       // GCC allows qualified id and any Objective-C type to devolve to
 | |
|       // id. Currently localizing to here until clear this should be
 | |
|       // part of ObjCQualifiedIdTypesAreCompatible.
 | |
|       compositeType = Context.getObjCIdType();
 | |
|     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
 | |
|       compositeType = Context.getObjCIdType();
 | |
|     } else if (!(compositeType =
 | |
|                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
 | |
|       ;
 | |
|     else {
 | |
|       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
 | |
|       << LHSTy << RHSTy
 | |
|       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       QualType incompatTy = Context.getObjCIdType();
 | |
|       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
 | |
|       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
 | |
|       return incompatTy;
 | |
|     }
 | |
|     // The object pointer types are compatible.
 | |
|     LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
 | |
|     RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
 | |
|     return compositeType;
 | |
|   }
 | |
|   // Check Objective-C object pointer types and 'void *'
 | |
|   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
 | |
|     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
 | |
|     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
 | |
|     QualType destPointee
 | |
|     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
 | |
|     QualType destType = Context.getPointerType(destPointee);
 | |
|     // Add qualifiers if necessary.
 | |
|     LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
 | |
|     // Promote to void*.
 | |
|     RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
 | |
|     return destType;
 | |
|   }
 | |
|   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
 | |
|     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
 | |
|     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
 | |
|     QualType destPointee
 | |
|     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
 | |
|     QualType destType = Context.getPointerType(destPointee);
 | |
|     // Add qualifiers if necessary.
 | |
|     RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
 | |
|     // Promote to void*.
 | |
|     LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
 | |
|     return destType;
 | |
|   }
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
 | |
| /// in the case of a the GNU conditional expr extension.
 | |
| ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
 | |
|                                     SourceLocation ColonLoc,
 | |
|                                     Expr *CondExpr, Expr *LHSExpr,
 | |
|                                     Expr *RHSExpr) {
 | |
|   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
 | |
|   // was the condition.
 | |
|   OpaqueValueExpr *opaqueValue = 0;
 | |
|   Expr *commonExpr = 0;
 | |
|   if (LHSExpr == 0) {
 | |
|     commonExpr = CondExpr;
 | |
| 
 | |
|     // We usually want to apply unary conversions *before* saving, except
 | |
|     // in the special case of a C++ l-value conditional.
 | |
|     if (!(getLangOptions().CPlusPlus
 | |
|           && !commonExpr->isTypeDependent()
 | |
|           && commonExpr->getValueKind() == RHSExpr->getValueKind()
 | |
|           && commonExpr->isGLValue()
 | |
|           && commonExpr->isOrdinaryOrBitFieldObject()
 | |
|           && RHSExpr->isOrdinaryOrBitFieldObject()
 | |
|           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
 | |
|       ExprResult commonRes = UsualUnaryConversions(commonExpr);
 | |
|       if (commonRes.isInvalid())
 | |
|         return ExprError();
 | |
|       commonExpr = commonRes.take();
 | |
|     }
 | |
| 
 | |
|     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
 | |
|                                                 commonExpr->getType(),
 | |
|                                                 commonExpr->getValueKind(),
 | |
|                                                 commonExpr->getObjectKind());
 | |
|     LHSExpr = CondExpr = opaqueValue;
 | |
|   }
 | |
| 
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
|   ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
 | |
|   QualType result = CheckConditionalOperands(Cond, LHS, RHS, 
 | |
|                                              VK, OK, QuestionLoc);
 | |
|   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
 | |
|       RHS.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!commonExpr)
 | |
|     return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
 | |
|                                                    LHS.take(), ColonLoc, 
 | |
|                                                    RHS.take(), result, VK, OK));
 | |
| 
 | |
|   return Owned(new (Context)
 | |
|     BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
 | |
|                               RHS.take(), QuestionLoc, ColonLoc, result, VK, OK));
 | |
| }
 | |
| 
 | |
| // checkPointerTypesForAssignment - This is a very tricky routine (despite
 | |
| // being closely modeled after the C99 spec:-). The odd characteristic of this
 | |
| // routine is it effectively iqnores the qualifiers on the top level pointee.
 | |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
 | |
| // FIXME: add a couple examples in this comment.
 | |
| static Sema::AssignConvertType
 | |
| checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
 | |
|   assert(lhsType.isCanonical() && "LHS not canonicalized!");
 | |
|   assert(rhsType.isCanonical() && "RHS not canonicalized!");
 | |
| 
 | |
|   // get the "pointed to" type (ignoring qualifiers at the top level)
 | |
|   const Type *lhptee, *rhptee;
 | |
|   Qualifiers lhq, rhq;
 | |
|   llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
 | |
|   llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
 | |
| 
 | |
|   Sema::AssignConvertType ConvTy = Sema::Compatible;
 | |
| 
 | |
|   // C99 6.5.16.1p1: This following citation is common to constraints
 | |
|   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
 | |
|   // qualifiers of the type *pointed to* by the right;
 | |
|   Qualifiers lq;
 | |
| 
 | |
|   if (!lhq.compatiblyIncludes(rhq)) {
 | |
|     // Treat address-space mismatches as fatal.  TODO: address subspaces
 | |
|     if (lhq.getAddressSpace() != rhq.getAddressSpace())
 | |
|       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
 | |
| 
 | |
|     // It's okay to add or remove GC qualifiers when converting to
 | |
|     // and from void*.
 | |
|     else if (lhq.withoutObjCGCAttr().compatiblyIncludes(rhq.withoutObjCGCAttr())
 | |
|              && (lhptee->isVoidType() || rhptee->isVoidType()))
 | |
|       ; // keep old
 | |
| 
 | |
|     // For GCC compatibility, other qualifier mismatches are treated
 | |
|     // as still compatible in C.
 | |
|     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
 | |
|   }
 | |
| 
 | |
|   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
 | |
|   // incomplete type and the other is a pointer to a qualified or unqualified
 | |
|   // version of void...
 | |
|   if (lhptee->isVoidType()) {
 | |
|     if (rhptee->isIncompleteOrObjectType())
 | |
|       return ConvTy;
 | |
| 
 | |
|     // As an extension, we allow cast to/from void* to function pointer.
 | |
|     assert(rhptee->isFunctionType());
 | |
|     return Sema::FunctionVoidPointer;
 | |
|   }
 | |
| 
 | |
|   if (rhptee->isVoidType()) {
 | |
|     if (lhptee->isIncompleteOrObjectType())
 | |
|       return ConvTy;
 | |
| 
 | |
|     // As an extension, we allow cast to/from void* to function pointer.
 | |
|     assert(lhptee->isFunctionType());
 | |
|     return Sema::FunctionVoidPointer;
 | |
|   }
 | |
| 
 | |
|   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
 | |
|   // unqualified versions of compatible types, ...
 | |
|   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
 | |
|   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
 | |
|     // Check if the pointee types are compatible ignoring the sign.
 | |
|     // We explicitly check for char so that we catch "char" vs
 | |
|     // "unsigned char" on systems where "char" is unsigned.
 | |
|     if (lhptee->isCharType())
 | |
|       ltrans = S.Context.UnsignedCharTy;
 | |
|     else if (lhptee->hasSignedIntegerRepresentation())
 | |
|       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
 | |
| 
 | |
|     if (rhptee->isCharType())
 | |
|       rtrans = S.Context.UnsignedCharTy;
 | |
|     else if (rhptee->hasSignedIntegerRepresentation())
 | |
|       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
 | |
| 
 | |
|     if (ltrans == rtrans) {
 | |
|       // Types are compatible ignoring the sign. Qualifier incompatibility
 | |
|       // takes priority over sign incompatibility because the sign
 | |
|       // warning can be disabled.
 | |
|       if (ConvTy != Sema::Compatible)
 | |
|         return ConvTy;
 | |
| 
 | |
|       return Sema::IncompatiblePointerSign;
 | |
|     }
 | |
| 
 | |
|     // If we are a multi-level pointer, it's possible that our issue is simply
 | |
|     // one of qualification - e.g. char ** -> const char ** is not allowed. If
 | |
|     // the eventual target type is the same and the pointers have the same
 | |
|     // level of indirection, this must be the issue.
 | |
|     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
 | |
|       do {
 | |
|         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
 | |
|         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
 | |
|       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
 | |
| 
 | |
|       if (lhptee == rhptee)
 | |
|         return Sema::IncompatibleNestedPointerQualifiers;
 | |
|     }
 | |
| 
 | |
|     // General pointer incompatibility takes priority over qualifiers.
 | |
|     return Sema::IncompatiblePointer;
 | |
|   }
 | |
|   return ConvTy;
 | |
| }
 | |
| 
 | |
| /// checkBlockPointerTypesForAssignment - This routine determines whether two
 | |
| /// block pointer types are compatible or whether a block and normal pointer
 | |
| /// are compatible. It is more restrict than comparing two function pointer
 | |
| // types.
 | |
| static Sema::AssignConvertType
 | |
| checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
 | |
|                                     QualType rhsType) {
 | |
|   assert(lhsType.isCanonical() && "LHS not canonicalized!");
 | |
|   assert(rhsType.isCanonical() && "RHS not canonicalized!");
 | |
| 
 | |
|   QualType lhptee, rhptee;
 | |
| 
 | |
|   // get the "pointed to" type (ignoring qualifiers at the top level)
 | |
|   lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
 | |
|   rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
 | |
| 
 | |
|   // In C++, the types have to match exactly.
 | |
|   if (S.getLangOptions().CPlusPlus)
 | |
|     return Sema::IncompatibleBlockPointer;
 | |
| 
 | |
|   Sema::AssignConvertType ConvTy = Sema::Compatible;
 | |
| 
 | |
|   // For blocks we enforce that qualifiers are identical.
 | |
|   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
 | |
|     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
 | |
| 
 | |
|   if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
 | |
|     return Sema::IncompatibleBlockPointer;
 | |
| 
 | |
|   return ConvTy;
 | |
| }
 | |
| 
 | |
| /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
 | |
| /// for assignment compatibility.
 | |
| static Sema::AssignConvertType
 | |
| checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
 | |
|   assert(lhsType.isCanonical() && "LHS was not canonicalized!");
 | |
|   assert(rhsType.isCanonical() && "RHS was not canonicalized!");
 | |
| 
 | |
|   if (lhsType->isObjCBuiltinType()) {
 | |
|     // Class is not compatible with ObjC object pointers.
 | |
|     if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
 | |
|         !rhsType->isObjCQualifiedClassType())
 | |
|       return Sema::IncompatiblePointer;
 | |
|     return Sema::Compatible;
 | |
|   }
 | |
|   if (rhsType->isObjCBuiltinType()) {
 | |
|     // Class is not compatible with ObjC object pointers.
 | |
|     if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
 | |
|         !lhsType->isObjCQualifiedClassType())
 | |
|       return Sema::IncompatiblePointer;
 | |
|     return Sema::Compatible;
 | |
|   }
 | |
|   QualType lhptee =
 | |
|   lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
 | |
|   QualType rhptee =
 | |
|   rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
 | |
| 
 | |
|   if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
 | |
|     return Sema::CompatiblePointerDiscardsQualifiers;
 | |
| 
 | |
|   if (S.Context.typesAreCompatible(lhsType, rhsType))
 | |
|     return Sema::Compatible;
 | |
|   if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
 | |
|     return Sema::IncompatibleObjCQualifiedId;
 | |
|   return Sema::IncompatiblePointer;
 | |
| }
 | |
| 
 | |
| Sema::AssignConvertType
 | |
| Sema::CheckAssignmentConstraints(SourceLocation Loc,
 | |
|                                  QualType lhsType, QualType rhsType) {
 | |
|   // Fake up an opaque expression.  We don't actually care about what
 | |
|   // cast operations are required, so if CheckAssignmentConstraints
 | |
|   // adds casts to this they'll be wasted, but fortunately that doesn't
 | |
|   // usually happen on valid code.
 | |
|   OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
 | |
|   ExprResult rhsPtr = &rhs;
 | |
|   CastKind K = CK_Invalid;
 | |
| 
 | |
|   return CheckAssignmentConstraints(lhsType, rhsPtr, K);
 | |
| }
 | |
| 
 | |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
 | |
| /// has code to accommodate several GCC extensions when type checking
 | |
| /// pointers. Here are some objectionable examples that GCC considers warnings:
 | |
| ///
 | |
| ///  int a, *pint;
 | |
| ///  short *pshort;
 | |
| ///  struct foo *pfoo;
 | |
| ///
 | |
| ///  pint = pshort; // warning: assignment from incompatible pointer type
 | |
| ///  a = pint; // warning: assignment makes integer from pointer without a cast
 | |
| ///  pint = a; // warning: assignment makes pointer from integer without a cast
 | |
| ///  pint = pfoo; // warning: assignment from incompatible pointer type
 | |
| ///
 | |
| /// As a result, the code for dealing with pointers is more complex than the
 | |
| /// C99 spec dictates.
 | |
| ///
 | |
| /// Sets 'Kind' for any result kind except Incompatible.
 | |
| Sema::AssignConvertType
 | |
| Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
 | |
|                                  CastKind &Kind) {
 | |
|   QualType rhsType = rhs.get()->getType();
 | |
| 
 | |
|   // Get canonical types.  We're not formatting these types, just comparing
 | |
|   // them.
 | |
|   lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
 | |
|   rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
 | |
| 
 | |
|   // Common case: no conversion required.
 | |
|   if (lhsType == rhsType) {
 | |
|     Kind = CK_NoOp;
 | |
|     return Compatible;
 | |
|   }
 | |
| 
 | |
|   // If the left-hand side is a reference type, then we are in a
 | |
|   // (rare!) case where we've allowed the use of references in C,
 | |
|   // e.g., as a parameter type in a built-in function. In this case,
 | |
|   // just make sure that the type referenced is compatible with the
 | |
|   // right-hand side type. The caller is responsible for adjusting
 | |
|   // lhsType so that the resulting expression does not have reference
 | |
|   // type.
 | |
|   if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
 | |
|     if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
 | |
|       Kind = CK_LValueBitCast;
 | |
|       return Compatible;
 | |
|     }
 | |
|     return Incompatible;
 | |
|   }
 | |
| 
 | |
|   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
 | |
|   // to the same ExtVector type.
 | |
|   if (lhsType->isExtVectorType()) {
 | |
|     if (rhsType->isExtVectorType())
 | |
|       return Incompatible;
 | |
|     if (rhsType->isArithmeticType()) {
 | |
|       // CK_VectorSplat does T -> vector T, so first cast to the
 | |
|       // element type.
 | |
|       QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
 | |
|       if (elType != rhsType) {
 | |
|         Kind = PrepareScalarCast(*this, rhs, elType);
 | |
|         rhs = ImpCastExprToType(rhs.take(), elType, Kind);
 | |
|       }
 | |
|       Kind = CK_VectorSplat;
 | |
|       return Compatible;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Conversions to or from vector type.
 | |
|   if (lhsType->isVectorType() || rhsType->isVectorType()) {
 | |
|     if (lhsType->isVectorType() && rhsType->isVectorType()) {
 | |
|       // Allow assignments of an AltiVec vector type to an equivalent GCC
 | |
|       // vector type and vice versa
 | |
|       if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
 | |
|         Kind = CK_BitCast;
 | |
|         return Compatible;
 | |
|       }
 | |
| 
 | |
|       // If we are allowing lax vector conversions, and LHS and RHS are both
 | |
|       // vectors, the total size only needs to be the same. This is a bitcast;
 | |
|       // no bits are changed but the result type is different.
 | |
|       if (getLangOptions().LaxVectorConversions &&
 | |
|           (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
 | |
|         Kind = CK_BitCast;
 | |
|         return IncompatibleVectors;
 | |
|       }
 | |
|     }
 | |
|     return Incompatible;
 | |
|   }
 | |
| 
 | |
|   // Arithmetic conversions.
 | |
|   if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
 | |
|       !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
 | |
|     Kind = PrepareScalarCast(*this, rhs, lhsType);
 | |
|     return Compatible;
 | |
|   }
 | |
| 
 | |
|   // Conversions to normal pointers.
 | |
|   if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
 | |
|     // U* -> T*
 | |
|     if (isa<PointerType>(rhsType)) {
 | |
|       Kind = CK_BitCast;
 | |
|       return checkPointerTypesForAssignment(*this, lhsType, rhsType);
 | |
|     }
 | |
| 
 | |
|     // int -> T*
 | |
|     if (rhsType->isIntegerType()) {
 | |
|       Kind = CK_IntegralToPointer; // FIXME: null?
 | |
|       return IntToPointer;
 | |
|     }
 | |
| 
 | |
|     // C pointers are not compatible with ObjC object pointers,
 | |
|     // with two exceptions:
 | |
|     if (isa<ObjCObjectPointerType>(rhsType)) {
 | |
|       //  - conversions to void*
 | |
|       if (lhsPointer->getPointeeType()->isVoidType()) {
 | |
|         Kind = CK_AnyPointerToObjCPointerCast;
 | |
|         return Compatible;
 | |
|       }
 | |
| 
 | |
|       //  - conversions from 'Class' to the redefinition type
 | |
|       if (rhsType->isObjCClassType() &&
 | |
|           Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
 | |
|         Kind = CK_BitCast;
 | |
|         return Compatible;
 | |
|       }
 | |
| 
 | |
|       Kind = CK_BitCast;
 | |
|       return IncompatiblePointer;
 | |
|     }
 | |
| 
 | |
|     // U^ -> void*
 | |
|     if (rhsType->getAs<BlockPointerType>()) {
 | |
|       if (lhsPointer->getPointeeType()->isVoidType()) {
 | |
|         Kind = CK_BitCast;
 | |
|         return Compatible;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Incompatible;
 | |
|   }
 | |
| 
 | |
|   // Conversions to block pointers.
 | |
|   if (isa<BlockPointerType>(lhsType)) {
 | |
|     // U^ -> T^
 | |
|     if (rhsType->isBlockPointerType()) {
 | |
|       Kind = CK_AnyPointerToBlockPointerCast;
 | |
|       return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
 | |
|     }
 | |
| 
 | |
|     // int or null -> T^
 | |
|     if (rhsType->isIntegerType()) {
 | |
|       Kind = CK_IntegralToPointer; // FIXME: null
 | |
|       return IntToBlockPointer;
 | |
|     }
 | |
| 
 | |
|     // id -> T^
 | |
|     if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
 | |
|       Kind = CK_AnyPointerToBlockPointerCast;
 | |
|       return Compatible;
 | |
|     }
 | |
| 
 | |
|     // void* -> T^
 | |
|     if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
 | |
|       if (RHSPT->getPointeeType()->isVoidType()) {
 | |
|         Kind = CK_AnyPointerToBlockPointerCast;
 | |
|         return Compatible;
 | |
|       }
 | |
| 
 | |
|     return Incompatible;
 | |
|   }
 | |
| 
 | |
|   // Conversions to Objective-C pointers.
 | |
|   if (isa<ObjCObjectPointerType>(lhsType)) {
 | |
|     // A* -> B*
 | |
|     if (rhsType->isObjCObjectPointerType()) {
 | |
|       Kind = CK_BitCast;
 | |
|       return checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
 | |
|     }
 | |
| 
 | |
|     // int or null -> A*
 | |
|     if (rhsType->isIntegerType()) {
 | |
|       Kind = CK_IntegralToPointer; // FIXME: null
 | |
|       return IntToPointer;
 | |
|     }
 | |
| 
 | |
|     // In general, C pointers are not compatible with ObjC object pointers,
 | |
|     // with two exceptions:
 | |
|     if (isa<PointerType>(rhsType)) {
 | |
|       //  - conversions from 'void*'
 | |
|       if (rhsType->isVoidPointerType()) {
 | |
|         Kind = CK_AnyPointerToObjCPointerCast;
 | |
|         return Compatible;
 | |
|       }
 | |
| 
 | |
|       //  - conversions to 'Class' from its redefinition type
 | |
|       if (lhsType->isObjCClassType() &&
 | |
|           Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
 | |
|         Kind = CK_BitCast;
 | |
|         return Compatible;
 | |
|       }
 | |
| 
 | |
|       Kind = CK_AnyPointerToObjCPointerCast;
 | |
|       return IncompatiblePointer;
 | |
|     }
 | |
| 
 | |
|     // T^ -> A*
 | |
|     if (rhsType->isBlockPointerType()) {
 | |
|       Kind = CK_AnyPointerToObjCPointerCast;
 | |
|       return Compatible;
 | |
|     }
 | |
| 
 | |
|     return Incompatible;
 | |
|   }
 | |
| 
 | |
|   // Conversions from pointers that are not covered by the above.
 | |
|   if (isa<PointerType>(rhsType)) {
 | |
|     // T* -> _Bool
 | |
|     if (lhsType == Context.BoolTy) {
 | |
|       Kind = CK_PointerToBoolean;
 | |
|       return Compatible;
 | |
|     }
 | |
| 
 | |
|     // T* -> int
 | |
|     if (lhsType->isIntegerType()) {
 | |
|       Kind = CK_PointerToIntegral;
 | |
|       return PointerToInt;
 | |
|     }
 | |
| 
 | |
|     return Incompatible;
 | |
|   }
 | |
| 
 | |
|   // Conversions from Objective-C pointers that are not covered by the above.
 | |
|   if (isa<ObjCObjectPointerType>(rhsType)) {
 | |
|     // T* -> _Bool
 | |
|     if (lhsType == Context.BoolTy) {
 | |
|       Kind = CK_PointerToBoolean;
 | |
|       return Compatible;
 | |
|     }
 | |
| 
 | |
|     // T* -> int
 | |
|     if (lhsType->isIntegerType()) {
 | |
|       Kind = CK_PointerToIntegral;
 | |
|       return PointerToInt;
 | |
|     }
 | |
| 
 | |
|     return Incompatible;
 | |
|   }
 | |
| 
 | |
|   // struct A -> struct B
 | |
|   if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
 | |
|     if (Context.typesAreCompatible(lhsType, rhsType)) {
 | |
|       Kind = CK_NoOp;
 | |
|       return Compatible;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Incompatible;
 | |
| }
 | |
| 
 | |
| /// \brief Constructs a transparent union from an expression that is
 | |
| /// used to initialize the transparent union.
 | |
| static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult,
 | |
|                                       QualType UnionType, FieldDecl *Field) {
 | |
|   // Build an initializer list that designates the appropriate member
 | |
|   // of the transparent union.
 | |
|   Expr *E = EResult.take();
 | |
|   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
 | |
|                                                    &E, 1,
 | |
|                                                    SourceLocation());
 | |
|   Initializer->setType(UnionType);
 | |
|   Initializer->setInitializedFieldInUnion(Field);
 | |
| 
 | |
|   // Build a compound literal constructing a value of the transparent
 | |
|   // union type from this initializer list.
 | |
|   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
 | |
|   EResult = S.Owned(
 | |
|     new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
 | |
|                                 VK_RValue, Initializer, false));
 | |
| }
 | |
| 
 | |
| Sema::AssignConvertType
 | |
| Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) {
 | |
|   QualType FromType = rExpr.get()->getType();
 | |
| 
 | |
|   // If the ArgType is a Union type, we want to handle a potential
 | |
|   // transparent_union GCC extension.
 | |
|   const RecordType *UT = ArgType->getAsUnionType();
 | |
|   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | |
|     return Incompatible;
 | |
| 
 | |
|   // The field to initialize within the transparent union.
 | |
|   RecordDecl *UD = UT->getDecl();
 | |
|   FieldDecl *InitField = 0;
 | |
|   // It's compatible if the expression matches any of the fields.
 | |
|   for (RecordDecl::field_iterator it = UD->field_begin(),
 | |
|          itend = UD->field_end();
 | |
|        it != itend; ++it) {
 | |
|     if (it->getType()->isPointerType()) {
 | |
|       // If the transparent union contains a pointer type, we allow:
 | |
|       // 1) void pointer
 | |
|       // 2) null pointer constant
 | |
|       if (FromType->isPointerType())
 | |
|         if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
 | |
|           rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
 | |
|           InitField = *it;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (rExpr.get()->isNullPointerConstant(Context,
 | |
|                                        Expr::NPC_ValueDependentIsNull)) {
 | |
|         rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer);
 | |
|         InitField = *it;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CastKind Kind = CK_Invalid;
 | |
|     if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
 | |
|           == Compatible) {
 | |
|       rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
 | |
|       InitField = *it;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!InitField)
 | |
|     return Incompatible;
 | |
| 
 | |
|   ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
 | |
|   return Compatible;
 | |
| }
 | |
| 
 | |
| Sema::AssignConvertType
 | |
| Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     if (!lhsType->isRecordType()) {
 | |
|       // C++ 5.17p3: If the left operand is not of class type, the
 | |
|       // expression is implicitly converted (C++ 4) to the
 | |
|       // cv-unqualified type of the left operand.
 | |
|       ExprResult Res = PerformImplicitConversion(rExpr.get(),
 | |
|                                                  lhsType.getUnqualifiedType(),
 | |
|                                                  AA_Assigning);
 | |
|       if (Res.isInvalid())
 | |
|         return Incompatible;
 | |
|       rExpr = move(Res);
 | |
|       return Compatible;
 | |
|     }
 | |
| 
 | |
|     // FIXME: Currently, we fall through and treat C++ classes like C
 | |
|     // structures.
 | |
|   }  
 | |
| 
 | |
|   // C99 6.5.16.1p1: the left operand is a pointer and the right is
 | |
|   // a null pointer constant.
 | |
|   if ((lhsType->isPointerType() ||
 | |
|        lhsType->isObjCObjectPointerType() ||
 | |
|        lhsType->isBlockPointerType())
 | |
|       && rExpr.get()->isNullPointerConstant(Context,
 | |
|                                       Expr::NPC_ValueDependentIsNull)) {
 | |
|     rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
 | |
|     return Compatible;
 | |
|   }
 | |
| 
 | |
|   // This check seems unnatural, however it is necessary to ensure the proper
 | |
|   // conversion of functions/arrays. If the conversion were done for all
 | |
|   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
 | |
|   // expressions that suppress this implicit conversion (&, sizeof).
 | |
|   //
 | |
|   // Suppress this for references: C++ 8.5.3p5.
 | |
|   if (!lhsType->isReferenceType()) {
 | |
|     rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
 | |
|     if (rExpr.isInvalid())
 | |
|       return Incompatible;
 | |
|   }
 | |
| 
 | |
|   CastKind Kind = CK_Invalid;
 | |
|   Sema::AssignConvertType result =
 | |
|     CheckAssignmentConstraints(lhsType, rExpr, Kind);
 | |
| 
 | |
|   // C99 6.5.16.1p2: The value of the right operand is converted to the
 | |
|   // type of the assignment expression.
 | |
|   // CheckAssignmentConstraints allows the left-hand side to be a reference,
 | |
|   // so that we can use references in built-in functions even in C.
 | |
|   // The getNonReferenceType() call makes sure that the resulting expression
 | |
|   // does not have reference type.
 | |
|   if (result != Incompatible && rExpr.get()->getType() != lhsType)
 | |
|     rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
 | |
|   Diag(Loc, diag::err_typecheck_invalid_operands)
 | |
|     << lex.get()->getType() << rex.get()->getType()
 | |
|     << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckVectorOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
 | |
|   // For conversion purposes, we ignore any qualifiers.
 | |
|   // For example, "const float" and "float" are equivalent.
 | |
|   QualType lhsType =
 | |
|     Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
 | |
|   QualType rhsType =
 | |
|     Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
 | |
| 
 | |
|   // If the vector types are identical, return.
 | |
|   if (lhsType == rhsType)
 | |
|     return lhsType;
 | |
| 
 | |
|   // Handle the case of a vector & extvector type of the same size and element
 | |
|   // type.  It would be nice if we only had one vector type someday.
 | |
|   if (getLangOptions().LaxVectorConversions) {
 | |
|     if (const VectorType *LV = lhsType->getAs<VectorType>()) {
 | |
|       if (const VectorType *RV = rhsType->getAs<VectorType>()) {
 | |
|         if (LV->getElementType() == RV->getElementType() &&
 | |
|             LV->getNumElements() == RV->getNumElements()) {
 | |
|           if (lhsType->isExtVectorType()) {
 | |
|             rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
 | |
|             return lhsType;
 | |
|           } 
 | |
| 
 | |
|           lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
 | |
|           return rhsType;
 | |
|         } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
 | |
|           // If we are allowing lax vector conversions, and LHS and RHS are both
 | |
|           // vectors, the total size only needs to be the same. This is a
 | |
|           // bitcast; no bits are changed but the result type is different.
 | |
|           rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
 | |
|           return lhsType;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle the case of equivalent AltiVec and GCC vector types
 | |
|   if (lhsType->isVectorType() && rhsType->isVectorType() &&
 | |
|       Context.areCompatibleVectorTypes(lhsType, rhsType)) {
 | |
|     lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
 | |
|     return rhsType;
 | |
|   }
 | |
| 
 | |
|   // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
 | |
|   // swap back (so that we don't reverse the inputs to a subtract, for instance.
 | |
|   bool swapped = false;
 | |
|   if (rhsType->isExtVectorType()) {
 | |
|     swapped = true;
 | |
|     std::swap(rex, lex);
 | |
|     std::swap(rhsType, lhsType);
 | |
|   }
 | |
| 
 | |
|   // Handle the case of an ext vector and scalar.
 | |
|   if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
 | |
|     QualType EltTy = LV->getElementType();
 | |
|     if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
 | |
|       int order = Context.getIntegerTypeOrder(EltTy, rhsType);
 | |
|       if (order > 0)
 | |
|         rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
 | |
|       if (order >= 0) {
 | |
|         rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
 | |
|         if (swapped) std::swap(rex, lex);
 | |
|         return lhsType;
 | |
|       }
 | |
|     }
 | |
|     if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
 | |
|         rhsType->isRealFloatingType()) {
 | |
|       int order = Context.getFloatingTypeOrder(EltTy, rhsType);
 | |
|       if (order > 0)
 | |
|         rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
 | |
|       if (order >= 0) {
 | |
|         rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
 | |
|         if (swapped) std::swap(rex, lex);
 | |
|         return lhsType;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Vectors of different size or scalar and non-ext-vector are errors.
 | |
|   Diag(Loc, diag::err_typecheck_vector_not_convertable)
 | |
|     << lex.get()->getType() << rex.get()->getType()
 | |
|     << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckMultiplyDivideOperands(
 | |
|   ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
 | |
|   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
 | |
|     return CheckVectorOperands(Loc, lex, rex);
 | |
| 
 | |
|   QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
 | |
|   if (lex.isInvalid() || rex.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   if (!lex.get()->getType()->isArithmeticType() ||
 | |
|       !rex.get()->getType()->isArithmeticType())
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
| 
 | |
|   // Check for division by zero.
 | |
|   if (isDiv &&
 | |
|       rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
 | |
|     DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
 | |
|                                      << rex.get()->getSourceRange());
 | |
| 
 | |
|   return compType;
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckRemainderOperands(
 | |
|   ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
 | |
|   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
 | |
|     if (lex.get()->getType()->hasIntegerRepresentation() && 
 | |
|         rex.get()->getType()->hasIntegerRepresentation())
 | |
|       return CheckVectorOperands(Loc, lex, rex);
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
|   }
 | |
| 
 | |
|   QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
 | |
|   if (lex.isInvalid() || rex.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType())
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
| 
 | |
|   // Check for remainder by zero.
 | |
|   if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
 | |
|     DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
 | |
|                                  << rex.get()->getSourceRange());
 | |
| 
 | |
|   return compType;
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckAdditionOperands( // C99 6.5.6
 | |
|   ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
 | |
|   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
 | |
|     QualType compType = CheckVectorOperands(Loc, lex, rex);
 | |
|     if (CompLHSTy) *CompLHSTy = compType;
 | |
|     return compType;
 | |
|   }
 | |
| 
 | |
|   QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
 | |
|   if (lex.isInvalid() || rex.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   // handle the common case first (both operands are arithmetic).
 | |
|   if (lex.get()->getType()->isArithmeticType() &&
 | |
|       rex.get()->getType()->isArithmeticType()) {
 | |
|     if (CompLHSTy) *CompLHSTy = compType;
 | |
|     return compType;
 | |
|   }
 | |
| 
 | |
|   // Put any potential pointer into PExp
 | |
|   Expr* PExp = lex.get(), *IExp = rex.get();
 | |
|   if (IExp->getType()->isAnyPointerType())
 | |
|     std::swap(PExp, IExp);
 | |
| 
 | |
|   if (PExp->getType()->isAnyPointerType()) {
 | |
| 
 | |
|     if (IExp->getType()->isIntegerType()) {
 | |
|       QualType PointeeTy = PExp->getType()->getPointeeType();
 | |
| 
 | |
|       // Check for arithmetic on pointers to incomplete types.
 | |
|       if (PointeeTy->isVoidType()) {
 | |
|         if (getLangOptions().CPlusPlus) {
 | |
|           Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
 | |
|             << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|           return QualType();
 | |
|         }
 | |
| 
 | |
|         // GNU extension: arithmetic on pointer to void
 | |
|         Diag(Loc, diag::ext_gnu_void_ptr)
 | |
|           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       } else if (PointeeTy->isFunctionType()) {
 | |
|         if (getLangOptions().CPlusPlus) {
 | |
|           Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
 | |
|             << lex.get()->getType() << lex.get()->getSourceRange();
 | |
|           return QualType();
 | |
|         }
 | |
| 
 | |
|         // GNU extension: arithmetic on pointer to function
 | |
|         Diag(Loc, diag::ext_gnu_ptr_func_arith)
 | |
|           << lex.get()->getType() << lex.get()->getSourceRange();
 | |
|       } else {
 | |
|         // Check if we require a complete type.
 | |
|         if (((PExp->getType()->isPointerType() &&
 | |
|               !PExp->getType()->isDependentType()) ||
 | |
|               PExp->getType()->isObjCObjectPointerType()) &&
 | |
|              RequireCompleteType(Loc, PointeeTy,
 | |
|                            PDiag(diag::err_typecheck_arithmetic_incomplete_type)
 | |
|                              << PExp->getSourceRange()
 | |
|                              << PExp->getType()))
 | |
|           return QualType();
 | |
|       }
 | |
|       // Diagnose bad cases where we step over interface counts.
 | |
|       if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
 | |
|         Diag(Loc, diag::err_arithmetic_nonfragile_interface)
 | |
|           << PointeeTy << PExp->getSourceRange();
 | |
|         return QualType();
 | |
|       }
 | |
| 
 | |
|       if (CompLHSTy) {
 | |
|         QualType LHSTy = Context.isPromotableBitField(lex.get());
 | |
|         if (LHSTy.isNull()) {
 | |
|           LHSTy = lex.get()->getType();
 | |
|           if (LHSTy->isPromotableIntegerType())
 | |
|             LHSTy = Context.getPromotedIntegerType(LHSTy);
 | |
|         }
 | |
|         *CompLHSTy = LHSTy;
 | |
|       }
 | |
|       return PExp->getType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return InvalidOperands(Loc, lex, rex);
 | |
| }
 | |
| 
 | |
| // C99 6.5.6
 | |
| QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
 | |
|                                         SourceLocation Loc, QualType* CompLHSTy) {
 | |
|   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
 | |
|     QualType compType = CheckVectorOperands(Loc, lex, rex);
 | |
|     if (CompLHSTy) *CompLHSTy = compType;
 | |
|     return compType;
 | |
|   }
 | |
| 
 | |
|   QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
 | |
|   if (lex.isInvalid() || rex.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   // Enforce type constraints: C99 6.5.6p3.
 | |
| 
 | |
|   // Handle the common case first (both operands are arithmetic).
 | |
|   if (lex.get()->getType()->isArithmeticType() &&
 | |
|       rex.get()->getType()->isArithmeticType()) {
 | |
|     if (CompLHSTy) *CompLHSTy = compType;
 | |
|     return compType;
 | |
|   }
 | |
| 
 | |
|   // Either ptr - int   or   ptr - ptr.
 | |
|   if (lex.get()->getType()->isAnyPointerType()) {
 | |
|     QualType lpointee = lex.get()->getType()->getPointeeType();
 | |
| 
 | |
|     // The LHS must be an completely-defined object type.
 | |
| 
 | |
|     bool ComplainAboutVoid = false;
 | |
|     Expr *ComplainAboutFunc = 0;
 | |
|     if (lpointee->isVoidType()) {
 | |
|       if (getLangOptions().CPlusPlus) {
 | |
|         Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
 | |
|           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|         return QualType();
 | |
|       }
 | |
| 
 | |
|       // GNU C extension: arithmetic on pointer to void
 | |
|       ComplainAboutVoid = true;
 | |
|     } else if (lpointee->isFunctionType()) {
 | |
|       if (getLangOptions().CPlusPlus) {
 | |
|         Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
 | |
|           << lex.get()->getType() << lex.get()->getSourceRange();
 | |
|         return QualType();
 | |
|       }
 | |
| 
 | |
|       // GNU C extension: arithmetic on pointer to function
 | |
|       ComplainAboutFunc = lex.get();
 | |
|     } else if (!lpointee->isDependentType() &&
 | |
|                RequireCompleteType(Loc, lpointee,
 | |
|                                    PDiag(diag::err_typecheck_sub_ptr_object)
 | |
|                                      << lex.get()->getSourceRange()
 | |
|                                      << lex.get()->getType()))
 | |
|       return QualType();
 | |
| 
 | |
|     // Diagnose bad cases where we step over interface counts.
 | |
|     if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
 | |
|       Diag(Loc, diag::err_arithmetic_nonfragile_interface)
 | |
|         << lpointee << lex.get()->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     // The result type of a pointer-int computation is the pointer type.
 | |
|     if (rex.get()->getType()->isIntegerType()) {
 | |
|       if (ComplainAboutVoid)
 | |
|         Diag(Loc, diag::ext_gnu_void_ptr)
 | |
|           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       if (ComplainAboutFunc)
 | |
|         Diag(Loc, diag::ext_gnu_ptr_func_arith)
 | |
|           << ComplainAboutFunc->getType()
 | |
|           << ComplainAboutFunc->getSourceRange();
 | |
| 
 | |
|       if (CompLHSTy) *CompLHSTy = lex.get()->getType();
 | |
|       return lex.get()->getType();
 | |
|     }
 | |
| 
 | |
|     // Handle pointer-pointer subtractions.
 | |
|     if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) {
 | |
|       QualType rpointee = RHSPTy->getPointeeType();
 | |
| 
 | |
|       // RHS must be a completely-type object type.
 | |
|       // Handle the GNU void* extension.
 | |
|       if (rpointee->isVoidType()) {
 | |
|         if (getLangOptions().CPlusPlus) {
 | |
|           Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
 | |
|             << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|           return QualType();
 | |
|         }
 | |
| 
 | |
|         ComplainAboutVoid = true;
 | |
|       } else if (rpointee->isFunctionType()) {
 | |
|         if (getLangOptions().CPlusPlus) {
 | |
|           Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
 | |
|             << rex.get()->getType() << rex.get()->getSourceRange();
 | |
|           return QualType();
 | |
|         }
 | |
| 
 | |
|         // GNU extension: arithmetic on pointer to function
 | |
|         if (!ComplainAboutFunc)
 | |
|           ComplainAboutFunc = rex.get();
 | |
|       } else if (!rpointee->isDependentType() &&
 | |
|                  RequireCompleteType(Loc, rpointee,
 | |
|                                      PDiag(diag::err_typecheck_sub_ptr_object)
 | |
|                                        << rex.get()->getSourceRange()
 | |
|                                        << rex.get()->getType()))
 | |
|         return QualType();
 | |
| 
 | |
|       if (getLangOptions().CPlusPlus) {
 | |
|         // Pointee types must be the same: C++ [expr.add]
 | |
|         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
 | |
|           Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
 | |
|             << lex.get()->getType() << rex.get()->getType()
 | |
|             << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|           return QualType();
 | |
|         }
 | |
|       } else {
 | |
|         // Pointee types must be compatible C99 6.5.6p3
 | |
|         if (!Context.typesAreCompatible(
 | |
|                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
 | |
|                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
 | |
|           Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
 | |
|             << lex.get()->getType() << rex.get()->getType()
 | |
|             << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|           return QualType();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ComplainAboutVoid)
 | |
|         Diag(Loc, diag::ext_gnu_void_ptr)
 | |
|           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       if (ComplainAboutFunc)
 | |
|         Diag(Loc, diag::ext_gnu_ptr_func_arith)
 | |
|           << ComplainAboutFunc->getType()
 | |
|           << ComplainAboutFunc->getSourceRange();
 | |
| 
 | |
|       if (CompLHSTy) *CompLHSTy = lex.get()->getType();
 | |
|       return Context.getPointerDiffType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return InvalidOperands(Loc, lex, rex);
 | |
| }
 | |
| 
 | |
| static bool isScopedEnumerationType(QualType T) {
 | |
|   if (const EnumType *ET = dyn_cast<EnumType>(T))
 | |
|     return ET->getDecl()->isScoped();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
 | |
|                                    SourceLocation Loc, unsigned Opc,
 | |
|                                    QualType LHSTy) {
 | |
|   llvm::APSInt Right;
 | |
|   // Check right/shifter operand
 | |
|   if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context))
 | |
|     return;
 | |
| 
 | |
|   if (Right.isNegative()) {
 | |
|     S.DiagRuntimeBehavior(Loc, rex.get(),
 | |
|                           S.PDiag(diag::warn_shift_negative)
 | |
|                             << rex.get()->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
|   llvm::APInt LeftBits(Right.getBitWidth(),
 | |
|                        S.Context.getTypeSize(lex.get()->getType()));
 | |
|   if (Right.uge(LeftBits)) {
 | |
|     S.DiagRuntimeBehavior(Loc, rex.get(),
 | |
|                           S.PDiag(diag::warn_shift_gt_typewidth)
 | |
|                             << rex.get()->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
|   if (Opc != BO_Shl)
 | |
|     return;
 | |
| 
 | |
|   // When left shifting an ICE which is signed, we can check for overflow which
 | |
|   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
 | |
|   // integers have defined behavior modulo one more than the maximum value
 | |
|   // representable in the result type, so never warn for those.
 | |
|   llvm::APSInt Left;
 | |
|   if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
 | |
|       LHSTy->hasUnsignedIntegerRepresentation())
 | |
|     return;
 | |
|   llvm::APInt ResultBits =
 | |
|       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
 | |
|   if (LeftBits.uge(ResultBits))
 | |
|     return;
 | |
|   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
 | |
|   Result = Result.shl(Right);
 | |
| 
 | |
|   // If we are only missing a sign bit, this is less likely to result in actual
 | |
|   // bugs -- if the result is cast back to an unsigned type, it will have the
 | |
|   // expected value. Thus we place this behind a different warning that can be
 | |
|   // turned off separately if needed.
 | |
|   if (LeftBits == ResultBits - 1) {
 | |
|     S.Diag(Loc, diag::warn_shift_result_overrides_sign_bit)
 | |
|         << Result.toString(10) << LHSTy
 | |
|         << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
 | |
|     << Result.toString(10) << Result.getMinSignedBits() << LHSTy
 | |
|     << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
| }
 | |
| 
 | |
| // C99 6.5.7
 | |
| QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
 | |
|                                   unsigned Opc, bool isCompAssign) {
 | |
|   // C99 6.5.7p2: Each of the operands shall have integer type.
 | |
|   if (!lex.get()->getType()->hasIntegerRepresentation() || 
 | |
|       !rex.get()->getType()->hasIntegerRepresentation())
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
| 
 | |
|   // C++0x: Don't allow scoped enums. FIXME: Use something better than
 | |
|   // hasIntegerRepresentation() above instead of this.
 | |
|   if (isScopedEnumerationType(lex.get()->getType()) ||
 | |
|       isScopedEnumerationType(rex.get()->getType())) {
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
|   }
 | |
| 
 | |
|   // Vector shifts promote their scalar inputs to vector type.
 | |
|   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
 | |
|     return CheckVectorOperands(Loc, lex, rex);
 | |
| 
 | |
|   // Shifts don't perform usual arithmetic conversions, they just do integer
 | |
|   // promotions on each operand. C99 6.5.7p3
 | |
| 
 | |
|   // For the LHS, do usual unary conversions, but then reset them away
 | |
|   // if this is a compound assignment.
 | |
|   ExprResult old_lex = lex;
 | |
|   lex = UsualUnaryConversions(lex.take());
 | |
|   if (lex.isInvalid())
 | |
|     return QualType();
 | |
|   QualType LHSTy = lex.get()->getType();
 | |
|   if (isCompAssign) lex = old_lex;
 | |
| 
 | |
|   // The RHS is simpler.
 | |
|   rex = UsualUnaryConversions(rex.take());
 | |
|   if (rex.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   // Sanity-check shift operands
 | |
|   DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
 | |
| 
 | |
|   // "The type of the result is that of the promoted left operand."
 | |
|   return LHSTy;
 | |
| }
 | |
| 
 | |
| static bool IsWithinTemplateSpecialization(Decl *D) {
 | |
|   if (DeclContext *DC = D->getDeclContext()) {
 | |
|     if (isa<ClassTemplateSpecializationDecl>(DC))
 | |
|       return true;
 | |
|     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
 | |
|       return FD->isFunctionTemplateSpecialization();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // C99 6.5.8, C++ [expr.rel]
 | |
| QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
 | |
|                                     unsigned OpaqueOpc, bool isRelational) {
 | |
|   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
 | |
| 
 | |
|   // Handle vector comparisons separately.
 | |
|   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
 | |
|     return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
 | |
| 
 | |
|   QualType lType = lex.get()->getType();
 | |
|   QualType rType = rex.get()->getType();
 | |
|  
 | |
|   Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
 | |
|   Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
 | |
|   QualType LHSStrippedType = LHSStripped->getType();
 | |
|   QualType RHSStrippedType = RHSStripped->getType();
 | |
| 
 | |
|   
 | |
| 
 | |
|   // Two different enums will raise a warning when compared.
 | |
|   if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
 | |
|     if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
 | |
|       if (LHSEnumType->getDecl()->getIdentifier() &&
 | |
|           RHSEnumType->getDecl()->getIdentifier() &&
 | |
|           !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
 | |
|         Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
 | |
|           << LHSStrippedType << RHSStrippedType
 | |
|           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!lType->hasFloatingRepresentation() &&
 | |
|       !(lType->isBlockPointerType() && isRelational) &&
 | |
|       !lex.get()->getLocStart().isMacroID() &&
 | |
|       !rex.get()->getLocStart().isMacroID()) {
 | |
|     // For non-floating point types, check for self-comparisons of the form
 | |
|     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
 | |
|     // often indicate logic errors in the program.
 | |
|     //
 | |
|     // NOTE: Don't warn about comparison expressions resulting from macro
 | |
|     // expansion. Also don't warn about comparisons which are only self
 | |
|     // comparisons within a template specialization. The warnings should catch
 | |
|     // obvious cases in the definition of the template anyways. The idea is to
 | |
|     // warn when the typed comparison operator will always evaluate to the same
 | |
|     // result.
 | |
|     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
 | |
|       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
 | |
|         if (DRL->getDecl() == DRR->getDecl() &&
 | |
|             !IsWithinTemplateSpecialization(DRL->getDecl())) {
 | |
|           DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
 | |
|                               << 0 // self-
 | |
|                               << (Opc == BO_EQ
 | |
|                                   || Opc == BO_LE
 | |
|                                   || Opc == BO_GE));
 | |
|         } else if (lType->isArrayType() && rType->isArrayType() &&
 | |
|                    !DRL->getDecl()->getType()->isReferenceType() &&
 | |
|                    !DRR->getDecl()->getType()->isReferenceType()) {
 | |
|             // what is it always going to eval to?
 | |
|             char always_evals_to;
 | |
|             switch(Opc) {
 | |
|             case BO_EQ: // e.g. array1 == array2
 | |
|               always_evals_to = 0; // false
 | |
|               break;
 | |
|             case BO_NE: // e.g. array1 != array2
 | |
|               always_evals_to = 1; // true
 | |
|               break;
 | |
|             default:
 | |
|               // best we can say is 'a constant'
 | |
|               always_evals_to = 2; // e.g. array1 <= array2
 | |
|               break;
 | |
|             }
 | |
|             DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
 | |
|                                 << 1 // array
 | |
|                                 << always_evals_to);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<CastExpr>(LHSStripped))
 | |
|       LHSStripped = LHSStripped->IgnoreParenCasts();
 | |
|     if (isa<CastExpr>(RHSStripped))
 | |
|       RHSStripped = RHSStripped->IgnoreParenCasts();
 | |
| 
 | |
|     // Warn about comparisons against a string constant (unless the other
 | |
|     // operand is null), the user probably wants strcmp.
 | |
|     Expr *literalString = 0;
 | |
|     Expr *literalStringStripped = 0;
 | |
|     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
 | |
|         !RHSStripped->isNullPointerConstant(Context,
 | |
|                                             Expr::NPC_ValueDependentIsNull)) {
 | |
|       literalString = lex.get();
 | |
|       literalStringStripped = LHSStripped;
 | |
|     } else if ((isa<StringLiteral>(RHSStripped) ||
 | |
|                 isa<ObjCEncodeExpr>(RHSStripped)) &&
 | |
|                !LHSStripped->isNullPointerConstant(Context,
 | |
|                                             Expr::NPC_ValueDependentIsNull)) {
 | |
|       literalString = rex.get();
 | |
|       literalStringStripped = RHSStripped;
 | |
|     }
 | |
| 
 | |
|     if (literalString) {
 | |
|       std::string resultComparison;
 | |
|       switch (Opc) {
 | |
|       case BO_LT: resultComparison = ") < 0"; break;
 | |
|       case BO_GT: resultComparison = ") > 0"; break;
 | |
|       case BO_LE: resultComparison = ") <= 0"; break;
 | |
|       case BO_GE: resultComparison = ") >= 0"; break;
 | |
|       case BO_EQ: resultComparison = ") == 0"; break;
 | |
|       case BO_NE: resultComparison = ") != 0"; break;
 | |
|       default: assert(false && "Invalid comparison operator");
 | |
|       }
 | |
| 
 | |
|       DiagRuntimeBehavior(Loc, 0,
 | |
|         PDiag(diag::warn_stringcompare)
 | |
|           << isa<ObjCEncodeExpr>(literalStringStripped)
 | |
|           << literalString->getSourceRange());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C99 6.5.8p3 / C99 6.5.9p4
 | |
|   if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) {
 | |
|     UsualArithmeticConversions(lex, rex);
 | |
|     if (lex.isInvalid() || rex.isInvalid())
 | |
|       return QualType();
 | |
|   }
 | |
|   else {
 | |
|     lex = UsualUnaryConversions(lex.take());
 | |
|     if (lex.isInvalid())
 | |
|       return QualType();
 | |
| 
 | |
|     rex = UsualUnaryConversions(rex.take());
 | |
|     if (rex.isInvalid())
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   lType = lex.get()->getType();
 | |
|   rType = rex.get()->getType();
 | |
| 
 | |
|   // The result of comparisons is 'bool' in C++, 'int' in C.
 | |
|   QualType ResultTy = Context.getLogicalOperationType();
 | |
| 
 | |
|   if (isRelational) {
 | |
|     if (lType->isRealType() && rType->isRealType())
 | |
|       return ResultTy;
 | |
|   } else {
 | |
|     // Check for comparisons of floating point operands using != and ==.
 | |
|     if (lType->hasFloatingRepresentation())
 | |
|       CheckFloatComparison(Loc, lex.get(), rex.get());
 | |
| 
 | |
|     if (lType->isArithmeticType() && rType->isArithmeticType())
 | |
|       return ResultTy;
 | |
|   }
 | |
| 
 | |
|   bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
 | |
|                                               Expr::NPC_ValueDependentIsNull);
 | |
|   bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
 | |
|                                               Expr::NPC_ValueDependentIsNull);
 | |
| 
 | |
|   // All of the following pointer-related warnings are GCC extensions, except
 | |
|   // when handling null pointer constants. 
 | |
|   if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
 | |
|     QualType LCanPointeeTy =
 | |
|       Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
 | |
|     QualType RCanPointeeTy =
 | |
|       Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
 | |
| 
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       if (LCanPointeeTy == RCanPointeeTy)
 | |
|         return ResultTy;
 | |
|       if (!isRelational &&
 | |
|           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
 | |
|         // Valid unless comparison between non-null pointer and function pointer
 | |
|         // This is a gcc extension compatibility comparison.
 | |
|         // In a SFINAE context, we treat this as a hard error to maintain
 | |
|         // conformance with the C++ standard.
 | |
|         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
 | |
|             && !LHSIsNull && !RHSIsNull) {
 | |
|           Diag(Loc, 
 | |
|                isSFINAEContext()? 
 | |
|                    diag::err_typecheck_comparison_of_fptr_to_void
 | |
|                  : diag::ext_typecheck_comparison_of_fptr_to_void)
 | |
|             << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|           
 | |
|           if (isSFINAEContext())
 | |
|             return QualType();
 | |
|           
 | |
|           rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | |
|           return ResultTy;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // C++ [expr.rel]p2:
 | |
|       //   [...] Pointer conversions (4.10) and qualification
 | |
|       //   conversions (4.4) are performed on pointer operands (or on
 | |
|       //   a pointer operand and a null pointer constant) to bring
 | |
|       //   them to their composite pointer type. [...]
 | |
|       //
 | |
|       // C++ [expr.eq]p1 uses the same notion for (in)equality
 | |
|       // comparisons of pointers.
 | |
|       bool NonStandardCompositeType = false;
 | |
|       QualType T = FindCompositePointerType(Loc, lex, rex,
 | |
|                               isSFINAEContext()? 0 : &NonStandardCompositeType);
 | |
|       if (T.isNull()) {
 | |
|         Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
 | |
|           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|         return QualType();
 | |
|       } else if (NonStandardCompositeType) {
 | |
|         Diag(Loc,
 | |
|              diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
 | |
|           << lType << rType << T
 | |
|           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       }
 | |
| 
 | |
|       lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
 | |
|       rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
 | |
|       return ResultTy;
 | |
|     }
 | |
|     // C99 6.5.9p2 and C99 6.5.8p2
 | |
|     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
 | |
|                                    RCanPointeeTy.getUnqualifiedType())) {
 | |
|       // Valid unless a relational comparison of function pointers
 | |
|       if (isRelational && LCanPointeeTy->isFunctionType()) {
 | |
|         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
 | |
|           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       }
 | |
|     } else if (!isRelational &&
 | |
|                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
 | |
|       // Valid unless comparison between non-null pointer and function pointer
 | |
|       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
 | |
|           && !LHSIsNull && !RHSIsNull) {
 | |
|         Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
 | |
|           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       }
 | |
|     } else {
 | |
|       // Invalid
 | |
|       Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
 | |
|         << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|     }
 | |
|     if (LCanPointeeTy != RCanPointeeTy) {
 | |
|       if (LHSIsNull && !RHSIsNull)
 | |
|         lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | |
|       else
 | |
|         rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | |
|     }
 | |
|     return ResultTy;
 | |
|   }
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     // Comparison of nullptr_t with itself.
 | |
|     if (lType->isNullPtrType() && rType->isNullPtrType())
 | |
|       return ResultTy;
 | |
|     
 | |
|     // Comparison of pointers with null pointer constants and equality
 | |
|     // comparisons of member pointers to null pointer constants.
 | |
|     if (RHSIsNull &&
 | |
|         ((lType->isPointerType() || lType->isNullPtrType()) ||
 | |
|          (!isRelational && lType->isMemberPointerType()))) {
 | |
|       rex = ImpCastExprToType(rex.take(), lType, 
 | |
|                         lType->isMemberPointerType()
 | |
|                           ? CK_NullToMemberPointer
 | |
|                           : CK_NullToPointer);
 | |
|       return ResultTy;
 | |
|     }
 | |
|     if (LHSIsNull &&
 | |
|         ((rType->isPointerType() || rType->isNullPtrType()) ||
 | |
|          (!isRelational && rType->isMemberPointerType()))) {
 | |
|       lex = ImpCastExprToType(lex.take(), rType, 
 | |
|                         rType->isMemberPointerType()
 | |
|                           ? CK_NullToMemberPointer
 | |
|                           : CK_NullToPointer);
 | |
|       return ResultTy;
 | |
|     }
 | |
| 
 | |
|     // Comparison of member pointers.
 | |
|     if (!isRelational &&
 | |
|         lType->isMemberPointerType() && rType->isMemberPointerType()) {
 | |
|       // C++ [expr.eq]p2:
 | |
|       //   In addition, pointers to members can be compared, or a pointer to
 | |
|       //   member and a null pointer constant. Pointer to member conversions
 | |
|       //   (4.11) and qualification conversions (4.4) are performed to bring
 | |
|       //   them to a common type. If one operand is a null pointer constant,
 | |
|       //   the common type is the type of the other operand. Otherwise, the
 | |
|       //   common type is a pointer to member type similar (4.4) to the type
 | |
|       //   of one of the operands, with a cv-qualification signature (4.4)
 | |
|       //   that is the union of the cv-qualification signatures of the operand
 | |
|       //   types.
 | |
|       bool NonStandardCompositeType = false;
 | |
|       QualType T = FindCompositePointerType(Loc, lex, rex,
 | |
|                               isSFINAEContext()? 0 : &NonStandardCompositeType);
 | |
|       if (T.isNull()) {
 | |
|         Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
 | |
|           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|         return QualType();
 | |
|       } else if (NonStandardCompositeType) {
 | |
|         Diag(Loc,
 | |
|              diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
 | |
|           << lType << rType << T
 | |
|           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       }
 | |
| 
 | |
|       lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
 | |
|       rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
 | |
|       return ResultTy;
 | |
|     }
 | |
| 
 | |
|     // Handle scoped enumeration types specifically, since they don't promote
 | |
|     // to integers.
 | |
|     if (lex.get()->getType()->isEnumeralType() &&
 | |
|         Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType()))
 | |
|       return ResultTy;
 | |
|   }
 | |
| 
 | |
|   // Handle block pointer types.
 | |
|   if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
 | |
|     QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
 | |
|     QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
 | |
| 
 | |
|     if (!LHSIsNull && !RHSIsNull &&
 | |
|         !Context.typesAreCompatible(lpointee, rpointee)) {
 | |
|       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
 | |
|         << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|     }
 | |
|     rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | |
|     return ResultTy;
 | |
|   }
 | |
| 
 | |
|   // Allow block pointers to be compared with null pointer constants.
 | |
|   if (!isRelational
 | |
|       && ((lType->isBlockPointerType() && rType->isPointerType())
 | |
|           || (lType->isPointerType() && rType->isBlockPointerType()))) {
 | |
|     if (!LHSIsNull && !RHSIsNull) {
 | |
|       if (!((rType->isPointerType() && rType->castAs<PointerType>()
 | |
|              ->getPointeeType()->isVoidType())
 | |
|             || (lType->isPointerType() && lType->castAs<PointerType>()
 | |
|                 ->getPointeeType()->isVoidType())))
 | |
|         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
 | |
|           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|     }
 | |
|     if (LHSIsNull && !RHSIsNull)
 | |
|       lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | |
|     else
 | |
|       rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | |
|     return ResultTy;
 | |
|   }
 | |
| 
 | |
|   if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
 | |
|     const PointerType *LPT = lType->getAs<PointerType>();
 | |
|     const PointerType *RPT = rType->getAs<PointerType>();
 | |
|     if (LPT || RPT) {
 | |
|       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
 | |
|       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
 | |
| 
 | |
|       if (!LPtrToVoid && !RPtrToVoid &&
 | |
|           !Context.typesAreCompatible(lType, rType)) {
 | |
|         Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
 | |
|           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       }
 | |
|       if (LHSIsNull && !RHSIsNull)
 | |
|         lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | |
|       else
 | |
|         rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | |
|       return ResultTy;
 | |
|     }
 | |
|     if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
 | |
|       if (!Context.areComparableObjCPointerTypes(lType, rType))
 | |
|         Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
 | |
|           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       if (LHSIsNull && !RHSIsNull)
 | |
|         lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | |
|       else
 | |
|         rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | |
|       return ResultTy;
 | |
|     }
 | |
|   }
 | |
|   if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
 | |
|       (lType->isIntegerType() && rType->isAnyPointerType())) {
 | |
|     unsigned DiagID = 0;
 | |
|     bool isError = false;
 | |
|     if ((LHSIsNull && lType->isIntegerType()) ||
 | |
|         (RHSIsNull && rType->isIntegerType())) {
 | |
|       if (isRelational && !getLangOptions().CPlusPlus)
 | |
|         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
 | |
|     } else if (isRelational && !getLangOptions().CPlusPlus)
 | |
|       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
 | |
|     else if (getLangOptions().CPlusPlus) {
 | |
|       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
 | |
|       isError = true;
 | |
|     } else
 | |
|       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
 | |
| 
 | |
|     if (DiagID) {
 | |
|       Diag(Loc, DiagID)
 | |
|         << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | |
|       if (isError)
 | |
|         return QualType();
 | |
|     }
 | |
|     
 | |
|     if (lType->isIntegerType())
 | |
|       lex = ImpCastExprToType(lex.take(), rType,
 | |
|                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
 | |
|     else
 | |
|       rex = ImpCastExprToType(rex.take(), lType,
 | |
|                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
 | |
|     return ResultTy;
 | |
|   }
 | |
|   
 | |
|   // Handle block pointers.
 | |
|   if (!isRelational && RHSIsNull
 | |
|       && lType->isBlockPointerType() && rType->isIntegerType()) {
 | |
|     rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
 | |
|     return ResultTy;
 | |
|   }
 | |
|   if (!isRelational && LHSIsNull
 | |
|       && lType->isIntegerType() && rType->isBlockPointerType()) {
 | |
|     lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
 | |
|     return ResultTy;
 | |
|   }
 | |
| 
 | |
|   return InvalidOperands(Loc, lex, rex);
 | |
| }
 | |
| 
 | |
| /// CheckVectorCompareOperands - vector comparisons are a clang extension that
 | |
| /// operates on extended vector types.  Instead of producing an IntTy result,
 | |
| /// like a scalar comparison, a vector comparison produces a vector of integer
 | |
| /// types.
 | |
| QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
 | |
|                                           SourceLocation Loc,
 | |
|                                           bool isRelational) {
 | |
|   // Check to make sure we're operating on vectors of the same type and width,
 | |
|   // Allowing one side to be a scalar of element type.
 | |
|   QualType vType = CheckVectorOperands(Loc, lex, rex);
 | |
|   if (vType.isNull())
 | |
|     return vType;
 | |
| 
 | |
|   QualType lType = lex.get()->getType();
 | |
|   QualType rType = rex.get()->getType();
 | |
| 
 | |
|   // If AltiVec, the comparison results in a numeric type, i.e.
 | |
|   // bool for C++, int for C
 | |
|   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
 | |
|     return Context.getLogicalOperationType();
 | |
| 
 | |
|   // For non-floating point types, check for self-comparisons of the form
 | |
|   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
 | |
|   // often indicate logic errors in the program.
 | |
|   if (!lType->hasFloatingRepresentation()) {
 | |
|     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
 | |
|       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
 | |
|         if (DRL->getDecl() == DRR->getDecl())
 | |
|           DiagRuntimeBehavior(Loc, 0,
 | |
|                               PDiag(diag::warn_comparison_always)
 | |
|                                 << 0 // self-
 | |
|                                 << 2 // "a constant"
 | |
|                               );
 | |
|   }
 | |
| 
 | |
|   // Check for comparisons of floating point operands using != and ==.
 | |
|   if (!isRelational && lType->hasFloatingRepresentation()) {
 | |
|     assert (rType->hasFloatingRepresentation());
 | |
|     CheckFloatComparison(Loc, lex.get(), rex.get());
 | |
|   }
 | |
| 
 | |
|   // Return the type for the comparison, which is the same as vector type for
 | |
|   // integer vectors, or an integer type of identical size and number of
 | |
|   // elements for floating point vectors.
 | |
|   if (lType->hasIntegerRepresentation())
 | |
|     return lType;
 | |
| 
 | |
|   const VectorType *VTy = lType->getAs<VectorType>();
 | |
|   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
 | |
|   if (TypeSize == Context.getTypeSize(Context.IntTy))
 | |
|     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
 | |
|   if (TypeSize == Context.getTypeSize(Context.LongTy))
 | |
|     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
 | |
| 
 | |
|   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
 | |
|          "Unhandled vector element size in vector compare");
 | |
|   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
 | |
| }
 | |
| 
 | |
| inline QualType Sema::CheckBitwiseOperands(
 | |
|   ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
 | |
|   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
 | |
|     if (lex.get()->getType()->hasIntegerRepresentation() &&
 | |
|         rex.get()->getType()->hasIntegerRepresentation())
 | |
|       return CheckVectorOperands(Loc, lex, rex);
 | |
|     
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
|   }
 | |
| 
 | |
|   ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
 | |
|   QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign);
 | |
|   if (lexResult.isInvalid() || rexResult.isInvalid())
 | |
|     return QualType();
 | |
|   lex = lexResult.take();
 | |
|   rex = rexResult.take();
 | |
| 
 | |
|   if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
 | |
|       rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
 | |
|     return compType;
 | |
|   return InvalidOperands(Loc, lex, rex);
 | |
| }
 | |
| 
 | |
| inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
 | |
|   ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
 | |
|   
 | |
|   // Diagnose cases where the user write a logical and/or but probably meant a
 | |
|   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
 | |
|   // is a constant.
 | |
|   if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() &&
 | |
|       rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
 | |
|       // Don't warn in macros.
 | |
|       !Loc.isMacroID()) {
 | |
|     // If the RHS can be constant folded, and if it constant folds to something
 | |
|     // that isn't 0 or 1 (which indicate a potential logical operation that
 | |
|     // happened to fold to true/false) then warn.
 | |
|     Expr::EvalResult Result;
 | |
|     if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects &&
 | |
|         Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
 | |
|       Diag(Loc, diag::warn_logical_instead_of_bitwise)
 | |
|        << rex.get()->getSourceRange()
 | |
|         << (Opc == BO_LAnd ? "&&" : "||")
 | |
|         << (Opc == BO_LAnd ? "&" : "|");
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!Context.getLangOptions().CPlusPlus) {
 | |
|     lex = UsualUnaryConversions(lex.take());
 | |
|     if (lex.isInvalid())
 | |
|       return QualType();
 | |
| 
 | |
|     rex = UsualUnaryConversions(rex.take());
 | |
|     if (rex.isInvalid())
 | |
|       return QualType();
 | |
| 
 | |
|     if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType())
 | |
|       return InvalidOperands(Loc, lex, rex);
 | |
| 
 | |
|     return Context.IntTy;
 | |
|   }
 | |
| 
 | |
|   // The following is safe because we only use this method for
 | |
|   // non-overloadable operands.
 | |
| 
 | |
|   // C++ [expr.log.and]p1
 | |
|   // C++ [expr.log.or]p1
 | |
|   // The operands are both contextually converted to type bool.
 | |
|   ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
 | |
|   if (lexRes.isInvalid())
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
|   lex = move(lexRes);
 | |
| 
 | |
|   ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
 | |
|   if (rexRes.isInvalid())
 | |
|     return InvalidOperands(Loc, lex, rex);
 | |
|   rex = move(rexRes);
 | |
| 
 | |
|   // C++ [expr.log.and]p2
 | |
|   // C++ [expr.log.or]p2
 | |
|   // The result is a bool.
 | |
|   return Context.BoolTy;
 | |
| }
 | |
| 
 | |
| /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
 | |
| /// is a read-only property; return true if so. A readonly property expression
 | |
| /// depends on various declarations and thus must be treated specially.
 | |
| ///
 | |
| static bool IsReadonlyProperty(Expr *E, Sema &S) {
 | |
|   if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
 | |
|     const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
 | |
|     if (PropExpr->isImplicitProperty()) return false;
 | |
| 
 | |
|     ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
 | |
|     QualType BaseType = PropExpr->isSuperReceiver() ? 
 | |
|                             PropExpr->getSuperReceiverType() :  
 | |
|                             PropExpr->getBase()->getType();
 | |
|       
 | |
|     if (const ObjCObjectPointerType *OPT =
 | |
|           BaseType->getAsObjCInterfacePointerType())
 | |
|       if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
 | |
|         if (S.isPropertyReadonly(PDecl, IFace))
 | |
|           return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool IsConstProperty(Expr *E, Sema &S) {
 | |
|   if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
 | |
|     const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
 | |
|     if (PropExpr->isImplicitProperty()) return false;
 | |
|     
 | |
|     ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
 | |
|     QualType T = PDecl->getType();
 | |
|     if (T->isReferenceType())
 | |
|       T = T->getAs<ReferenceType>()->getPointeeType();
 | |
|     CanQualType CT = S.Context.getCanonicalType(T);
 | |
|     return CT.isConstQualified();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool IsReadonlyMessage(Expr *E, Sema &S) {
 | |
|   if (E->getStmtClass() != Expr::MemberExprClass) 
 | |
|     return false;
 | |
|   const MemberExpr *ME = cast<MemberExpr>(E);
 | |
|   NamedDecl *Member = ME->getMemberDecl();
 | |
|   if (isa<FieldDecl>(Member)) {
 | |
|     Expr *Base = ME->getBase()->IgnoreParenImpCasts();
 | |
|     if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
 | |
|       return false;
 | |
|     return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
 | |
| /// emit an error and return true.  If so, return false.
 | |
| static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
 | |
|   SourceLocation OrigLoc = Loc;
 | |
|   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
 | |
|                                                               &Loc);
 | |
|   if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
 | |
|     IsLV = Expr::MLV_ReadonlyProperty;
 | |
|   else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
 | |
|     IsLV = Expr::MLV_Valid;
 | |
|   else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
 | |
|     IsLV = Expr::MLV_InvalidMessageExpression;
 | |
|   if (IsLV == Expr::MLV_Valid)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Diag = 0;
 | |
|   bool NeedType = false;
 | |
|   switch (IsLV) { // C99 6.5.16p2
 | |
|   case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
 | |
|   case Expr::MLV_ArrayType:
 | |
|     Diag = diag::err_typecheck_array_not_modifiable_lvalue;
 | |
|     NeedType = true;
 | |
|     break;
 | |
|   case Expr::MLV_NotObjectType:
 | |
|     Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
 | |
|     NeedType = true;
 | |
|     break;
 | |
|   case Expr::MLV_LValueCast:
 | |
|     Diag = diag::err_typecheck_lvalue_casts_not_supported;
 | |
|     break;
 | |
|   case Expr::MLV_Valid:
 | |
|     llvm_unreachable("did not take early return for MLV_Valid");
 | |
|   case Expr::MLV_InvalidExpression:
 | |
|   case Expr::MLV_MemberFunction:
 | |
|   case Expr::MLV_ClassTemporary:
 | |
|     Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
 | |
|     break;
 | |
|   case Expr::MLV_IncompleteType:
 | |
|   case Expr::MLV_IncompleteVoidType:
 | |
|     return S.RequireCompleteType(Loc, E->getType(),
 | |
|               S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
 | |
|                   << E->getSourceRange());
 | |
|   case Expr::MLV_DuplicateVectorComponents:
 | |
|     Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
 | |
|     break;
 | |
|   case Expr::MLV_NotBlockQualified:
 | |
|     Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
 | |
|     break;
 | |
|   case Expr::MLV_ReadonlyProperty:
 | |
|     Diag = diag::error_readonly_property_assignment;
 | |
|     break;
 | |
|   case Expr::MLV_NoSetterProperty:
 | |
|     Diag = diag::error_nosetter_property_assignment;
 | |
|     break;
 | |
|   case Expr::MLV_InvalidMessageExpression:
 | |
|     Diag = diag::error_readonly_message_assignment;
 | |
|     break;
 | |
|   case Expr::MLV_SubObjCPropertySetting:
 | |
|     Diag = diag::error_no_subobject_property_setting;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SourceRange Assign;
 | |
|   if (Loc != OrigLoc)
 | |
|     Assign = SourceRange(OrigLoc, OrigLoc);
 | |
|   if (NeedType)
 | |
|     S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
 | |
|   else
 | |
|     S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // C99 6.5.16.1
 | |
| QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
 | |
|                                        SourceLocation Loc,
 | |
|                                        QualType CompoundType) {
 | |
|   // Verify that LHS is a modifiable lvalue, and emit error if not.
 | |
|   if (CheckForModifiableLvalue(LHS, Loc, *this))
 | |
|     return QualType();
 | |
| 
 | |
|   QualType LHSType = LHS->getType();
 | |
|   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType;
 | |
|   AssignConvertType ConvTy;
 | |
|   if (CompoundType.isNull()) {
 | |
|     QualType LHSTy(LHSType);
 | |
|     // Simple assignment "x = y".
 | |
|     if (LHS->getObjectKind() == OK_ObjCProperty) {
 | |
|       ExprResult LHSResult = Owned(LHS);
 | |
|       ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
 | |
|       if (LHSResult.isInvalid())
 | |
|         return QualType();
 | |
|       LHS = LHSResult.take();
 | |
|     }
 | |
|     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
 | |
|     if (RHS.isInvalid())
 | |
|       return QualType();
 | |
|     // Special case of NSObject attributes on c-style pointer types.
 | |
|     if (ConvTy == IncompatiblePointer &&
 | |
|         ((Context.isObjCNSObjectType(LHSType) &&
 | |
|           RHSType->isObjCObjectPointerType()) ||
 | |
|          (Context.isObjCNSObjectType(RHSType) &&
 | |
|           LHSType->isObjCObjectPointerType())))
 | |
|       ConvTy = Compatible;
 | |
| 
 | |
|     if (ConvTy == Compatible &&
 | |
|         getLangOptions().ObjCNonFragileABI &&
 | |
|         LHSType->isObjCObjectType())
 | |
|       Diag(Loc, diag::err_assignment_requires_nonfragile_object)
 | |
|         << LHSType;
 | |
| 
 | |
|     // If the RHS is a unary plus or minus, check to see if they = and + are
 | |
|     // right next to each other.  If so, the user may have typo'd "x =+ 4"
 | |
|     // instead of "x += 4".
 | |
|     Expr *RHSCheck = RHS.get();
 | |
|     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
 | |
|       RHSCheck = ICE->getSubExpr();
 | |
|     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
 | |
|       if ((UO->getOpcode() == UO_Plus ||
 | |
|            UO->getOpcode() == UO_Minus) &&
 | |
|           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
 | |
|           // Only if the two operators are exactly adjacent.
 | |
|           Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
 | |
|           // And there is a space or other character before the subexpr of the
 | |
|           // unary +/-.  We don't want to warn on "x=-1".
 | |
|           Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
 | |
|           UO->getSubExpr()->getLocStart().isFileID()) {
 | |
|         Diag(Loc, diag::warn_not_compound_assign)
 | |
|           << (UO->getOpcode() == UO_Plus ? "+" : "-")
 | |
|           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Compound assignment "x += y"
 | |
|     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
 | |
|   }
 | |
| 
 | |
|   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
 | |
|                                RHS.get(), AA_Assigning))
 | |
|     return QualType();
 | |
| 
 | |
|   
 | |
|   // Check to see if the destination operand is a dereferenced null pointer.  If
 | |
|   // so, and if not volatile-qualified, this is undefined behavior that the
 | |
|   // optimizer will delete, so warn about it.  People sometimes try to use this
 | |
|   // to get a deterministic trap and are surprised by clang's behavior.  This
 | |
|   // only handles the pattern "*null = whatever", which is a very syntactic
 | |
|   // check.
 | |
|   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
 | |
|     if (UO->getOpcode() == UO_Deref &&
 | |
|         UO->getSubExpr()->IgnoreParenCasts()->
 | |
|           isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
 | |
|         !UO->getType().isVolatileQualified()) {
 | |
|     DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
 | |
|                         PDiag(diag::warn_indirection_through_null)
 | |
|                           << UO->getSubExpr()->getSourceRange());
 | |
|     DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
 | |
|                         PDiag(diag::note_indirection_through_null));
 | |
|   }
 | |
|   
 | |
|   // Check for trivial buffer overflows.
 | |
|   CheckArrayAccess(LHS->IgnoreParenCasts());
 | |
|   
 | |
|   // C99 6.5.16p3: The type of an assignment expression is the type of the
 | |
|   // left operand unless the left operand has qualified type, in which case
 | |
|   // it is the unqualified version of the type of the left operand.
 | |
|   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
 | |
|   // is converted to the type of the assignment expression (above).
 | |
|   // C++ 5.17p1: the type of the assignment expression is that of its left
 | |
|   // operand.
 | |
|   return (getLangOptions().CPlusPlus
 | |
|           ? LHSType : LHSType.getUnqualifiedType());
 | |
| }
 | |
| 
 | |
| // C99 6.5.17
 | |
| static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
 | |
|                                    SourceLocation Loc) {
 | |
|   S.DiagnoseUnusedExprResult(LHS.get());
 | |
| 
 | |
|   LHS = S.CheckPlaceholderExpr(LHS.take());
 | |
|   RHS = S.CheckPlaceholderExpr(RHS.take());
 | |
|   if (LHS.isInvalid() || RHS.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
 | |
|   // operands, but not unary promotions.
 | |
|   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
 | |
| 
 | |
|   // So we treat the LHS as a ignored value, and in C++ we allow the
 | |
|   // containing site to determine what should be done with the RHS.
 | |
|   LHS = S.IgnoredValueConversions(LHS.take());
 | |
|   if (LHS.isInvalid())
 | |
|     return QualType();
 | |
| 
 | |
|   if (!S.getLangOptions().CPlusPlus) {
 | |
|     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
 | |
|     if (RHS.isInvalid())
 | |
|       return QualType();
 | |
|     if (!RHS.get()->getType()->isVoidType())
 | |
|       S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type);
 | |
|   }
 | |
| 
 | |
|   return RHS.get()->getType();
 | |
| }
 | |
| 
 | |
| /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
 | |
| /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
 | |
| static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
 | |
|                                                ExprValueKind &VK,
 | |
|                                                SourceLocation OpLoc,
 | |
|                                                bool isInc, bool isPrefix) {
 | |
|   if (Op->isTypeDependent())
 | |
|     return S.Context.DependentTy;
 | |
| 
 | |
|   QualType ResType = Op->getType();
 | |
|   assert(!ResType.isNull() && "no type for increment/decrement expression");
 | |
| 
 | |
|   if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
 | |
|     // Decrement of bool is not allowed.
 | |
|     if (!isInc) {
 | |
|       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
|     // Increment of bool sets it to true, but is deprecated.
 | |
|     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
 | |
|   } else if (ResType->isRealType()) {
 | |
|     // OK!
 | |
|   } else if (ResType->isAnyPointerType()) {
 | |
|     QualType PointeeTy = ResType->getPointeeType();
 | |
| 
 | |
|     // C99 6.5.2.4p2, 6.5.6p2
 | |
|     if (PointeeTy->isVoidType()) {
 | |
|       if (S.getLangOptions().CPlusPlus) {
 | |
|         S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
 | |
|           << Op->getSourceRange();
 | |
|         return QualType();
 | |
|       }
 | |
| 
 | |
|       // Pointer to void is a GNU extension in C.
 | |
|       S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
 | |
|     } else if (PointeeTy->isFunctionType()) {
 | |
|       if (S.getLangOptions().CPlusPlus) {
 | |
|         S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
 | |
|           << Op->getType() << Op->getSourceRange();
 | |
|         return QualType();
 | |
|       }
 | |
| 
 | |
|       S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
 | |
|         << ResType << Op->getSourceRange();
 | |
|     } else if (S.RequireCompleteType(OpLoc, PointeeTy,
 | |
|                  S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
 | |
|                              << Op->getSourceRange()
 | |
|                              << ResType))
 | |
|       return QualType();
 | |
|     // Diagnose bad cases where we step over interface counts.
 | |
|     else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
 | |
|       S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
 | |
|         << PointeeTy << Op->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
|   } else if (ResType->isAnyComplexType()) {
 | |
|     // C99 does not support ++/-- on complex types, we allow as an extension.
 | |
|     S.Diag(OpLoc, diag::ext_integer_increment_complex)
 | |
|       << ResType << Op->getSourceRange();
 | |
|   } else if (ResType->isPlaceholderType()) {
 | |
|     ExprResult PR = S.CheckPlaceholderExpr(Op);
 | |
|     if (PR.isInvalid()) return QualType();
 | |
|     return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
 | |
|                                           isInc, isPrefix);
 | |
|   } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
 | |
|     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
 | |
|   } else {
 | |
|     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
 | |
|       << ResType << int(isInc) << Op->getSourceRange();
 | |
|     return QualType();
 | |
|   }
 | |
|   // At this point, we know we have a real, complex or pointer type.
 | |
|   // Now make sure the operand is a modifiable lvalue.
 | |
|   if (CheckForModifiableLvalue(Op, OpLoc, S))
 | |
|     return QualType();
 | |
|   // In C++, a prefix increment is the same type as the operand. Otherwise
 | |
|   // (in C or with postfix), the increment is the unqualified type of the
 | |
|   // operand.
 | |
|   if (isPrefix && S.getLangOptions().CPlusPlus) {
 | |
|     VK = VK_LValue;
 | |
|     return ResType;
 | |
|   } else {
 | |
|     VK = VK_RValue;
 | |
|     return ResType.getUnqualifiedType();
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
 | |
|   assert(E->getValueKind() == VK_LValue &&
 | |
|          E->getObjectKind() == OK_ObjCProperty);
 | |
|   const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
 | |
| 
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   if (PRE->isImplicitProperty()) {
 | |
|     if (const ObjCMethodDecl *GetterMethod = 
 | |
|           PRE->getImplicitPropertyGetter()) {
 | |
|       QualType Result = GetterMethod->getResultType();
 | |
|       VK = Expr::getValueKindForType(Result);
 | |
|     }
 | |
|     else {
 | |
|       Diag(PRE->getLocation(), diag::err_getter_not_found)
 | |
|             << PRE->getBase()->getType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty,
 | |
|                                E, 0, VK);
 | |
|   
 | |
|   ExprResult Result = MaybeBindToTemporary(E);
 | |
|   if (!Result.isInvalid())
 | |
|     E = Result.take();
 | |
| 
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) {
 | |
|   assert(LHS.get()->getValueKind() == VK_LValue &&
 | |
|          LHS.get()->getObjectKind() == OK_ObjCProperty);
 | |
|   const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
 | |
| 
 | |
|   if (PropRef->isImplicitProperty()) {
 | |
|     // If using property-dot syntax notation for assignment, and there is a
 | |
|     // setter, RHS expression is being passed to the setter argument. So,
 | |
|     // type conversion (and comparison) is RHS to setter's argument type.
 | |
|     if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
 | |
|       ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
 | |
|       LHSTy = (*P)->getType();
 | |
| 
 | |
|     // Otherwise, if the getter returns an l-value, just call that.
 | |
|     } else {
 | |
|       QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
 | |
|       ExprValueKind VK = Expr::getValueKindForType(Result);
 | |
|       if (VK == VK_LValue) {
 | |
|         LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
 | |
|                                         CK_GetObjCProperty, LHS.take(), 0, VK);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) {
 | |
|     InitializedEntity Entity = 
 | |
|     InitializedEntity::InitializeParameter(Context, LHSTy);
 | |
|     ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
 | |
|     if (!ArgE.isInvalid())
 | |
|       RHS = ArgE;
 | |
|   }
 | |
| }
 | |
|   
 | |
| 
 | |
| /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
 | |
| /// This routine allows us to typecheck complex/recursive expressions
 | |
| /// where the declaration is needed for type checking. We only need to
 | |
| /// handle cases when the expression references a function designator
 | |
| /// or is an lvalue. Here are some examples:
 | |
| ///  - &(x) => x
 | |
| ///  - &*****f => f for f a function designator.
 | |
| ///  - &s.xx => s
 | |
| ///  - &s.zz[1].yy -> s, if zz is an array
 | |
| ///  - *(x + 1) -> x, if x is an array
 | |
| ///  - &"123"[2] -> 0
 | |
| ///  - & __real__ x -> x
 | |
| static ValueDecl *getPrimaryDecl(Expr *E) {
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::DeclRefExprClass:
 | |
|     return cast<DeclRefExpr>(E)->getDecl();
 | |
|   case Stmt::MemberExprClass:
 | |
|     // If this is an arrow operator, the address is an offset from
 | |
|     // the base's value, so the object the base refers to is
 | |
|     // irrelevant.
 | |
|     if (cast<MemberExpr>(E)->isArrow())
 | |
|       return 0;
 | |
|     // Otherwise, the expression refers to a part of the base
 | |
|     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
 | |
|   case Stmt::ArraySubscriptExprClass: {
 | |
|     // FIXME: This code shouldn't be necessary!  We should catch the implicit
 | |
|     // promotion of register arrays earlier.
 | |
|     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
 | |
|     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
 | |
|       if (ICE->getSubExpr()->getType()->isArrayType())
 | |
|         return getPrimaryDecl(ICE->getSubExpr());
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     UnaryOperator *UO = cast<UnaryOperator>(E);
 | |
| 
 | |
|     switch(UO->getOpcode()) {
 | |
|     case UO_Real:
 | |
|     case UO_Imag:
 | |
|     case UO_Extension:
 | |
|       return getPrimaryDecl(UO->getSubExpr());
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   case Stmt::ParenExprClass:
 | |
|     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
 | |
|   case Stmt::ImplicitCastExprClass:
 | |
|     // If the result of an implicit cast is an l-value, we care about
 | |
|     // the sub-expression; otherwise, the result here doesn't matter.
 | |
|     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
 | |
|   default:
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckAddressOfOperand - The operand of & must be either a function
 | |
| /// designator or an lvalue designating an object. If it is an lvalue, the
 | |
| /// object cannot be declared with storage class register or be a bit field.
 | |
| /// Note: The usual conversions are *not* applied to the operand of the &
 | |
| /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
 | |
| /// In C++, the operand might be an overloaded function name, in which case
 | |
| /// we allow the '&' but retain the overloaded-function type.
 | |
| static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
 | |
|                                       SourceLocation OpLoc) {
 | |
|   if (OrigOp->isTypeDependent())
 | |
|     return S.Context.DependentTy;
 | |
|   if (OrigOp->getType() == S.Context.OverloadTy)
 | |
|     return S.Context.OverloadTy;
 | |
|   if (OrigOp->getType() == S.Context.UnknownAnyTy)
 | |
|     return S.Context.UnknownAnyTy;
 | |
| 
 | |
|   assert(!OrigOp->getType()->isPlaceholderType());
 | |
| 
 | |
|   // Make sure to ignore parentheses in subsequent checks
 | |
|   Expr *op = OrigOp->IgnoreParens();
 | |
| 
 | |
|   if (S.getLangOptions().C99) {
 | |
|     // Implement C99-only parts of addressof rules.
 | |
|     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
 | |
|       if (uOp->getOpcode() == UO_Deref)
 | |
|         // Per C99 6.5.3.2, the address of a deref always returns a valid result
 | |
|         // (assuming the deref expression is valid).
 | |
|         return uOp->getSubExpr()->getType();
 | |
|     }
 | |
|     // Technically, there should be a check for array subscript
 | |
|     // expressions here, but the result of one is always an lvalue anyway.
 | |
|   }
 | |
|   ValueDecl *dcl = getPrimaryDecl(op);
 | |
|   Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
 | |
| 
 | |
|   if (lval == Expr::LV_ClassTemporary) { 
 | |
|     bool sfinae = S.isSFINAEContext();
 | |
|     S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
 | |
|                          : diag::ext_typecheck_addrof_class_temporary)
 | |
|       << op->getType() << op->getSourceRange();
 | |
|     if (sfinae)
 | |
|       return QualType();
 | |
|   } else if (isa<ObjCSelectorExpr>(op)) {
 | |
|     return S.Context.getPointerType(op->getType());
 | |
|   } else if (lval == Expr::LV_MemberFunction) {
 | |
|     // If it's an instance method, make a member pointer.
 | |
|     // The expression must have exactly the form &A::foo.
 | |
| 
 | |
|     // If the underlying expression isn't a decl ref, give up.
 | |
|     if (!isa<DeclRefExpr>(op)) {
 | |
|       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
 | |
|         << OrigOp->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
|     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
 | |
|     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
 | |
| 
 | |
|     // The id-expression was parenthesized.
 | |
|     if (OrigOp != DRE) {
 | |
|       S.Diag(OpLoc, diag::err_parens_pointer_member_function)
 | |
|         << OrigOp->getSourceRange();
 | |
| 
 | |
|     // The method was named without a qualifier.
 | |
|     } else if (!DRE->getQualifier()) {
 | |
|       S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
 | |
|         << op->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     return S.Context.getMemberPointerType(op->getType(),
 | |
|               S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
 | |
|   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
 | |
|     // C99 6.5.3.2p1
 | |
|     // The operand must be either an l-value or a function designator
 | |
|     if (!op->getType()->isFunctionType()) {
 | |
|       // FIXME: emit more specific diag...
 | |
|       S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
 | |
|         << op->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
|   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
 | |
|     // The operand cannot be a bit-field
 | |
|     S.Diag(OpLoc, diag::err_typecheck_address_of)
 | |
|       << "bit-field" << op->getSourceRange();
 | |
|         return QualType();
 | |
|   } else if (op->getObjectKind() == OK_VectorComponent) {
 | |
|     // The operand cannot be an element of a vector
 | |
|     S.Diag(OpLoc, diag::err_typecheck_address_of)
 | |
|       << "vector element" << op->getSourceRange();
 | |
|     return QualType();
 | |
|   } else if (op->getObjectKind() == OK_ObjCProperty) {
 | |
|     // cannot take address of a property expression.
 | |
|     S.Diag(OpLoc, diag::err_typecheck_address_of)
 | |
|       << "property expression" << op->getSourceRange();
 | |
|     return QualType();
 | |
|   } else if (dcl) { // C99 6.5.3.2p1
 | |
|     // We have an lvalue with a decl. Make sure the decl is not declared
 | |
|     // with the register storage-class specifier.
 | |
|     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
 | |
|       // in C++ it is not error to take address of a register
 | |
|       // variable (c++03 7.1.1P3)
 | |
|       if (vd->getStorageClass() == SC_Register &&
 | |
|           !S.getLangOptions().CPlusPlus) {
 | |
|         S.Diag(OpLoc, diag::err_typecheck_address_of)
 | |
|           << "register variable" << op->getSourceRange();
 | |
|         return QualType();
 | |
|       }
 | |
|     } else if (isa<FunctionTemplateDecl>(dcl)) {
 | |
|       return S.Context.OverloadTy;
 | |
|     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
 | |
|       // Okay: we can take the address of a field.
 | |
|       // Could be a pointer to member, though, if there is an explicit
 | |
|       // scope qualifier for the class.
 | |
|       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
 | |
|         DeclContext *Ctx = dcl->getDeclContext();
 | |
|         if (Ctx && Ctx->isRecord()) {
 | |
|           if (dcl->getType()->isReferenceType()) {
 | |
|             S.Diag(OpLoc,
 | |
|                    diag::err_cannot_form_pointer_to_member_of_reference_type)
 | |
|               << dcl->getDeclName() << dcl->getType();
 | |
|             return QualType();
 | |
|           }
 | |
| 
 | |
|           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
 | |
|             Ctx = Ctx->getParent();
 | |
|           return S.Context.getMemberPointerType(op->getType(),
 | |
|                 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
 | |
|         }
 | |
|       }
 | |
|     } else if (!isa<FunctionDecl>(dcl))
 | |
|       assert(0 && "Unknown/unexpected decl type");
 | |
|   }
 | |
| 
 | |
|   if (lval == Expr::LV_IncompleteVoidType) {
 | |
|     // Taking the address of a void variable is technically illegal, but we
 | |
|     // allow it in cases which are otherwise valid.
 | |
|     // Example: "extern void x; void* y = &x;".
 | |
|     S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // If the operand has type "type", the result has type "pointer to type".
 | |
|   if (op->getType()->isObjCObjectType())
 | |
|     return S.Context.getObjCObjectPointerType(op->getType());
 | |
|   return S.Context.getPointerType(op->getType());
 | |
| }
 | |
| 
 | |
| /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
 | |
| static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
 | |
|                                         SourceLocation OpLoc) {
 | |
|   if (Op->isTypeDependent())
 | |
|     return S.Context.DependentTy;
 | |
| 
 | |
|   ExprResult ConvResult = S.UsualUnaryConversions(Op);
 | |
|   if (ConvResult.isInvalid())
 | |
|     return QualType();
 | |
|   Op = ConvResult.take();
 | |
|   QualType OpTy = Op->getType();
 | |
|   QualType Result;
 | |
|   
 | |
|   // Note that per both C89 and C99, indirection is always legal, even if OpTy
 | |
|   // is an incomplete type or void.  It would be possible to warn about
 | |
|   // dereferencing a void pointer, but it's completely well-defined, and such a
 | |
|   // warning is unlikely to catch any mistakes.
 | |
|   if (const PointerType *PT = OpTy->getAs<PointerType>())
 | |
|     Result = PT->getPointeeType();
 | |
|   else if (const ObjCObjectPointerType *OPT =
 | |
|              OpTy->getAs<ObjCObjectPointerType>())
 | |
|     Result = OPT->getPointeeType();
 | |
|   else {
 | |
|     ExprResult PR = S.CheckPlaceholderExpr(Op);
 | |
|     if (PR.isInvalid()) return QualType();
 | |
|     if (PR.take() != Op)
 | |
|       return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
 | |
|   }
 | |
| 
 | |
|   if (Result.isNull()) {
 | |
|     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
 | |
|       << OpTy << Op->getSourceRange();
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Dereferences are usually l-values...
 | |
|   VK = VK_LValue;
 | |
| 
 | |
|   // ...except that certain expressions are never l-values in C.
 | |
|   if (!S.getLangOptions().CPlusPlus &&
 | |
|       IsCForbiddenLValueType(S.Context, Result))
 | |
|     VK = VK_RValue;
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
 | |
|   tok::TokenKind Kind) {
 | |
|   BinaryOperatorKind Opc;
 | |
|   switch (Kind) {
 | |
|   default: assert(0 && "Unknown binop!");
 | |
|   case tok::periodstar:           Opc = BO_PtrMemD; break;
 | |
|   case tok::arrowstar:            Opc = BO_PtrMemI; break;
 | |
|   case tok::star:                 Opc = BO_Mul; break;
 | |
|   case tok::slash:                Opc = BO_Div; break;
 | |
|   case tok::percent:              Opc = BO_Rem; break;
 | |
|   case tok::plus:                 Opc = BO_Add; break;
 | |
|   case tok::minus:                Opc = BO_Sub; break;
 | |
|   case tok::lessless:             Opc = BO_Shl; break;
 | |
|   case tok::greatergreater:       Opc = BO_Shr; break;
 | |
|   case tok::lessequal:            Opc = BO_LE; break;
 | |
|   case tok::less:                 Opc = BO_LT; break;
 | |
|   case tok::greaterequal:         Opc = BO_GE; break;
 | |
|   case tok::greater:              Opc = BO_GT; break;
 | |
|   case tok::exclaimequal:         Opc = BO_NE; break;
 | |
|   case tok::equalequal:           Opc = BO_EQ; break;
 | |
|   case tok::amp:                  Opc = BO_And; break;
 | |
|   case tok::caret:                Opc = BO_Xor; break;
 | |
|   case tok::pipe:                 Opc = BO_Or; break;
 | |
|   case tok::ampamp:               Opc = BO_LAnd; break;
 | |
|   case tok::pipepipe:             Opc = BO_LOr; break;
 | |
|   case tok::equal:                Opc = BO_Assign; break;
 | |
|   case tok::starequal:            Opc = BO_MulAssign; break;
 | |
|   case tok::slashequal:           Opc = BO_DivAssign; break;
 | |
|   case tok::percentequal:         Opc = BO_RemAssign; break;
 | |
|   case tok::plusequal:            Opc = BO_AddAssign; break;
 | |
|   case tok::minusequal:           Opc = BO_SubAssign; break;
 | |
|   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
 | |
|   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
 | |
|   case tok::ampequal:             Opc = BO_AndAssign; break;
 | |
|   case tok::caretequal:           Opc = BO_XorAssign; break;
 | |
|   case tok::pipeequal:            Opc = BO_OrAssign; break;
 | |
|   case tok::comma:                Opc = BO_Comma; break;
 | |
|   }
 | |
|   return Opc;
 | |
| }
 | |
| 
 | |
| static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
 | |
|   tok::TokenKind Kind) {
 | |
|   UnaryOperatorKind Opc;
 | |
|   switch (Kind) {
 | |
|   default: assert(0 && "Unknown unary op!");
 | |
|   case tok::plusplus:     Opc = UO_PreInc; break;
 | |
|   case tok::minusminus:   Opc = UO_PreDec; break;
 | |
|   case tok::amp:          Opc = UO_AddrOf; break;
 | |
|   case tok::star:         Opc = UO_Deref; break;
 | |
|   case tok::plus:         Opc = UO_Plus; break;
 | |
|   case tok::minus:        Opc = UO_Minus; break;
 | |
|   case tok::tilde:        Opc = UO_Not; break;
 | |
|   case tok::exclaim:      Opc = UO_LNot; break;
 | |
|   case tok::kw___real:    Opc = UO_Real; break;
 | |
|   case tok::kw___imag:    Opc = UO_Imag; break;
 | |
|   case tok::kw___extension__: Opc = UO_Extension; break;
 | |
|   }
 | |
|   return Opc;
 | |
| }
 | |
| 
 | |
| /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
 | |
| /// This warning is only emitted for builtin assignment operations. It is also
 | |
| /// suppressed in the event of macro expansions.
 | |
| static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
 | |
|                                    SourceLocation OpLoc) {
 | |
|   if (!S.ActiveTemplateInstantiations.empty())
 | |
|     return;
 | |
|   if (OpLoc.isInvalid() || OpLoc.isMacroID())
 | |
|     return;
 | |
|   lhs = lhs->IgnoreParenImpCasts();
 | |
|   rhs = rhs->IgnoreParenImpCasts();
 | |
|   const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
 | |
|   const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
 | |
|   if (!LeftDeclRef || !RightDeclRef ||
 | |
|       LeftDeclRef->getLocation().isMacroID() ||
 | |
|       RightDeclRef->getLocation().isMacroID())
 | |
|     return;
 | |
|   const ValueDecl *LeftDecl =
 | |
|     cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
 | |
|   const ValueDecl *RightDecl =
 | |
|     cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
 | |
|   if (LeftDecl != RightDecl)
 | |
|     return;
 | |
|   if (LeftDecl->getType().isVolatileQualified())
 | |
|     return;
 | |
|   if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
 | |
|     if (RefTy->getPointeeType().isVolatileQualified())
 | |
|       return;
 | |
| 
 | |
|   S.Diag(OpLoc, diag::warn_self_assignment)
 | |
|       << LeftDeclRef->getType()
 | |
|       << lhs->getSourceRange() << rhs->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// CreateBuiltinBinOp - Creates a new built-in binary operation with
 | |
| /// operator @p Opc at location @c TokLoc. This routine only supports
 | |
| /// built-in operations; ActOnBinOp handles overloaded operators.
 | |
| ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
 | |
|                                     BinaryOperatorKind Opc,
 | |
|                                     Expr *lhsExpr, Expr *rhsExpr) {
 | |
|   ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
 | |
|   QualType ResultTy;     // Result type of the binary operator.
 | |
|   // The following two variables are used for compound assignment operators
 | |
|   QualType CompLHSTy;    // Type of LHS after promotions for computation
 | |
|   QualType CompResultTy; // Type of computation result
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
| 
 | |
|   // Check if a 'foo<int>' involved in a binary op, identifies a single 
 | |
|   // function unambiguously (i.e. an lvalue ala 13.4)
 | |
|   // But since an assignment can trigger target based overload, exclude it in 
 | |
|   // our blind search. i.e:
 | |
|   // template<class T> void f(); template<class T, class U> void f(U);
 | |
|   // f<int> == 0;  // resolve f<int> blindly
 | |
|   // void (*p)(int); p = f<int>;  // resolve f<int> using target
 | |
|   if (Opc != BO_Assign) { 
 | |
|     ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
 | |
|     if (!resolvedLHS.isUsable()) return ExprError();
 | |
|     lhs = move(resolvedLHS);
 | |
| 
 | |
|     ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
 | |
|     if (!resolvedRHS.isUsable()) return ExprError();
 | |
|     rhs = move(resolvedRHS);
 | |
|   }
 | |
| 
 | |
|   switch (Opc) {
 | |
|   case BO_Assign:
 | |
|     ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
 | |
|     if (getLangOptions().CPlusPlus &&
 | |
|         lhs.get()->getObjectKind() != OK_ObjCProperty) {
 | |
|       VK = lhs.get()->getValueKind();
 | |
|       OK = lhs.get()->getObjectKind();
 | |
|     }
 | |
|     if (!ResultTy.isNull())
 | |
|       DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
 | |
|     break;
 | |
|   case BO_PtrMemD:
 | |
|   case BO_PtrMemI:
 | |
|     ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
 | |
|                                             Opc == BO_PtrMemI);
 | |
|     break;
 | |
|   case BO_Mul:
 | |
|   case BO_Div:
 | |
|     ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
 | |
|                                            Opc == BO_Div);
 | |
|     break;
 | |
|   case BO_Rem:
 | |
|     ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
 | |
|     break;
 | |
|   case BO_Add:
 | |
|     ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
 | |
|     break;
 | |
|   case BO_Sub:
 | |
|     ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
 | |
|     break;
 | |
|   case BO_Shl:
 | |
|   case BO_Shr:
 | |
|     ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
 | |
|     break;
 | |
|   case BO_LE:
 | |
|   case BO_LT:
 | |
|   case BO_GE:
 | |
|   case BO_GT:
 | |
|     ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
 | |
|     break;
 | |
|   case BO_EQ:
 | |
|   case BO_NE:
 | |
|     ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
 | |
|     break;
 | |
|   case BO_And:
 | |
|   case BO_Xor:
 | |
|   case BO_Or:
 | |
|     ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
 | |
|     break;
 | |
|   case BO_LAnd:
 | |
|   case BO_LOr:
 | |
|     ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
 | |
|     break;
 | |
|   case BO_MulAssign:
 | |
|   case BO_DivAssign:
 | |
|     CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
 | |
|                                                Opc == BO_DivAssign);
 | |
|     CompLHSTy = CompResultTy;
 | |
|     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | |
|       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | |
|     break;
 | |
|   case BO_RemAssign:
 | |
|     CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
 | |
|     CompLHSTy = CompResultTy;
 | |
|     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | |
|       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | |
|     break;
 | |
|   case BO_AddAssign:
 | |
|     CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
 | |
|     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | |
|       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | |
|     break;
 | |
|   case BO_SubAssign:
 | |
|     CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
 | |
|     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | |
|       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | |
|     break;
 | |
|   case BO_ShlAssign:
 | |
|   case BO_ShrAssign:
 | |
|     CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
 | |
|     CompLHSTy = CompResultTy;
 | |
|     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | |
|       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | |
|     break;
 | |
|   case BO_AndAssign:
 | |
|   case BO_XorAssign:
 | |
|   case BO_OrAssign:
 | |
|     CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
 | |
|     CompLHSTy = CompResultTy;
 | |
|     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | |
|       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | |
|     break;
 | |
|   case BO_Comma:
 | |
|     ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
 | |
|     if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
 | |
|       VK = rhs.get()->getValueKind();
 | |
|       OK = rhs.get()->getObjectKind();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
 | |
|     return ExprError();
 | |
|   if (CompResultTy.isNull())
 | |
|     return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
 | |
|                                               ResultTy, VK, OK, OpLoc));
 | |
|   if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) {
 | |
|     VK = VK_LValue;
 | |
|     OK = lhs.get()->getObjectKind();
 | |
|   }
 | |
|   return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
 | |
|                                                     ResultTy, VK, OK, CompLHSTy,
 | |
|                                                     CompResultTy, OpLoc));
 | |
| }
 | |
| 
 | |
| /// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
 | |
| /// ParenRange in parentheses.
 | |
| static void SuggestParentheses(Sema &Self, SourceLocation Loc,
 | |
|                                const PartialDiagnostic &PD,
 | |
|                                const PartialDiagnostic &FirstNote,
 | |
|                                SourceRange FirstParenRange,
 | |
|                                const PartialDiagnostic &SecondNote,
 | |
|                                SourceRange SecondParenRange) {
 | |
|   Self.Diag(Loc, PD);
 | |
| 
 | |
|   if (!FirstNote.getDiagID())
 | |
|     return;
 | |
| 
 | |
|   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
 | |
|   if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
 | |
|     // We can't display the parentheses, so just return.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Self.Diag(Loc, FirstNote)
 | |
|     << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
 | |
|     << FixItHint::CreateInsertion(EndLoc, ")");
 | |
| 
 | |
|   if (!SecondNote.getDiagID())
 | |
|     return;
 | |
| 
 | |
|   EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
 | |
|   if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
 | |
|     // We can't display the parentheses, so just dig the
 | |
|     // warning/error and return.
 | |
|     Self.Diag(Loc, SecondNote);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Self.Diag(Loc, SecondNote)
 | |
|     << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
 | |
|     << FixItHint::CreateInsertion(EndLoc, ")");
 | |
| }
 | |
| 
 | |
| /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
 | |
| /// operators are mixed in a way that suggests that the programmer forgot that
 | |
| /// comparison operators have higher precedence. The most typical example of
 | |
| /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
 | |
| static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
 | |
|                                       SourceLocation OpLoc,Expr *lhs,Expr *rhs){
 | |
|   typedef BinaryOperator BinOp;
 | |
|   BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
 | |
|                 rhsopc = static_cast<BinOp::Opcode>(-1);
 | |
|   if (BinOp *BO = dyn_cast<BinOp>(lhs))
 | |
|     lhsopc = BO->getOpcode();
 | |
|   if (BinOp *BO = dyn_cast<BinOp>(rhs))
 | |
|     rhsopc = BO->getOpcode();
 | |
| 
 | |
|   // Subs are not binary operators.
 | |
|   if (lhsopc == -1 && rhsopc == -1)
 | |
|     return;
 | |
| 
 | |
|   // Bitwise operations are sometimes used as eager logical ops.
 | |
|   // Don't diagnose this.
 | |
|   if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
 | |
|       (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
 | |
|     return;
 | |
| 
 | |
|   if (BinOp::isComparisonOp(lhsopc))
 | |
|     SuggestParentheses(Self, OpLoc,
 | |
|       Self.PDiag(diag::warn_precedence_bitwise_rel)
 | |
|           << SourceRange(lhs->getLocStart(), OpLoc)
 | |
|           << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
 | |
|       Self.PDiag(diag::note_precedence_bitwise_silence)
 | |
|           << BinOp::getOpcodeStr(lhsopc),
 | |
|       lhs->getSourceRange(),
 | |
|       Self.PDiag(diag::note_precedence_bitwise_first)
 | |
|           << BinOp::getOpcodeStr(Opc),
 | |
|       SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
 | |
|   else if (BinOp::isComparisonOp(rhsopc))
 | |
|     SuggestParentheses(Self, OpLoc,
 | |
|       Self.PDiag(diag::warn_precedence_bitwise_rel)
 | |
|           << SourceRange(OpLoc, rhs->getLocEnd())
 | |
|           << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
 | |
|       Self.PDiag(diag::note_precedence_bitwise_silence)
 | |
|           << BinOp::getOpcodeStr(rhsopc),
 | |
|       rhs->getSourceRange(),
 | |
|       Self.PDiag(diag::note_precedence_bitwise_first)
 | |
|         << BinOp::getOpcodeStr(Opc),
 | |
|       SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
 | |
| }
 | |
| 
 | |
| /// \brief It accepts a '&&' expr that is inside a '||' one.
 | |
| /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
 | |
| /// in parentheses.
 | |
| static void
 | |
| EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
 | |
|                                        BinaryOperator *Bop) {
 | |
|   assert(Bop->getOpcode() == BO_LAnd);
 | |
|   SuggestParentheses(Self, Bop->getOperatorLoc(),
 | |
|     Self.PDiag(diag::warn_logical_and_in_logical_or)
 | |
|         << Bop->getSourceRange() << OpLoc,
 | |
|     Self.PDiag(diag::note_logical_and_in_logical_or_silence),
 | |
|     Bop->getSourceRange(),
 | |
|     Self.PDiag(0), SourceRange());
 | |
| }
 | |
| 
 | |
| /// \brief Returns true if the given expression can be evaluated as a constant
 | |
| /// 'true'.
 | |
| static bool EvaluatesAsTrue(Sema &S, Expr *E) {
 | |
|   bool Res;
 | |
|   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
 | |
| }
 | |
| 
 | |
| /// \brief Returns true if the given expression can be evaluated as a constant
 | |
| /// 'false'.
 | |
| static bool EvaluatesAsFalse(Sema &S, Expr *E) {
 | |
|   bool Res;
 | |
|   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
 | |
| }
 | |
| 
 | |
| /// \brief Look for '&&' in the left hand of a '||' expr.
 | |
| static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
 | |
|                                              Expr *OrLHS, Expr *OrRHS) {
 | |
|   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
 | |
|     if (Bop->getOpcode() == BO_LAnd) {
 | |
|       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
 | |
|       if (EvaluatesAsFalse(S, OrRHS))
 | |
|         return;
 | |
|       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
 | |
|       if (!EvaluatesAsTrue(S, Bop->getLHS()))
 | |
|         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
 | |
|     } else if (Bop->getOpcode() == BO_LOr) {
 | |
|       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
 | |
|         // If it's "a || b && 1 || c" we didn't warn earlier for
 | |
|         // "a || b && 1", but warn now.
 | |
|         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
 | |
|           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Look for '&&' in the right hand of a '||' expr.
 | |
| static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
 | |
|                                              Expr *OrLHS, Expr *OrRHS) {
 | |
|   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
 | |
|     if (Bop->getOpcode() == BO_LAnd) {
 | |
|       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
 | |
|       if (EvaluatesAsFalse(S, OrLHS))
 | |
|         return;
 | |
|       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
 | |
|       if (!EvaluatesAsTrue(S, Bop->getRHS()))
 | |
|         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
 | |
| /// precedence.
 | |
| static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
 | |
|                                     SourceLocation OpLoc, Expr *lhs, Expr *rhs){
 | |
|   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
 | |
|   if (BinaryOperator::isBitwiseOp(Opc))
 | |
|     return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
 | |
| 
 | |
|   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
 | |
|   // We don't warn for 'assert(a || b && "bad")' since this is safe.
 | |
|   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
 | |
|     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
 | |
|     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Binary Operators.  'Tok' is the token for the operator.
 | |
| ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
 | |
|                             tok::TokenKind Kind,
 | |
|                             Expr *lhs, Expr *rhs) {
 | |
|   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
 | |
|   assert((lhs != 0) && "ActOnBinOp(): missing left expression");
 | |
|   assert((rhs != 0) && "ActOnBinOp(): missing right expression");
 | |
| 
 | |
|   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
 | |
|   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
 | |
| 
 | |
|   return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
 | |
|                             BinaryOperatorKind Opc,
 | |
|                             Expr *lhs, Expr *rhs) {
 | |
|   if (getLangOptions().CPlusPlus) {
 | |
|     bool UseBuiltinOperator;
 | |
| 
 | |
|     if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
 | |
|       UseBuiltinOperator = false;
 | |
|     } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
 | |
|       UseBuiltinOperator = true;
 | |
|     } else {
 | |
|       UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
 | |
|                            !rhs->getType()->isOverloadableType();
 | |
|     }
 | |
| 
 | |
|     if (!UseBuiltinOperator) {
 | |
|       // Find all of the overloaded operators visible from this
 | |
|       // point. We perform both an operator-name lookup from the local
 | |
|       // scope and an argument-dependent lookup based on the types of
 | |
|       // the arguments.
 | |
|       UnresolvedSet<16> Functions;
 | |
|       OverloadedOperatorKind OverOp
 | |
|         = BinaryOperator::getOverloadedOperator(Opc);
 | |
|       if (S && OverOp != OO_None)
 | |
|         LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
 | |
|                                      Functions);
 | |
| 
 | |
|       // Build the (potentially-overloaded, potentially-dependent)
 | |
|       // binary operation.
 | |
|       return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Build a built-in binary operation.
 | |
|   return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
 | |
|                                       UnaryOperatorKind Opc,
 | |
|                                       Expr *InputExpr) {
 | |
|   ExprResult Input = Owned(InputExpr);
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
|   QualType resultType;
 | |
|   switch (Opc) {
 | |
|   case UO_PreInc:
 | |
|   case UO_PreDec:
 | |
|   case UO_PostInc:
 | |
|   case UO_PostDec:
 | |
|     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
 | |
|                                                 Opc == UO_PreInc ||
 | |
|                                                 Opc == UO_PostInc,
 | |
|                                                 Opc == UO_PreInc ||
 | |
|                                                 Opc == UO_PreDec);
 | |
|     break;
 | |
|   case UO_AddrOf:
 | |
|     resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
 | |
|     break;
 | |
|   case UO_Deref: {
 | |
|     ExprResult resolved = CheckPlaceholderExpr(Input.get());
 | |
|     if (!resolved.isUsable()) return ExprError();
 | |
|     Input = move(resolved);
 | |
|     Input = DefaultFunctionArrayLvalueConversion(Input.take());
 | |
|     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
 | |
|     break;
 | |
|   }
 | |
|   case UO_Plus:
 | |
|   case UO_Minus:
 | |
|     Input = UsualUnaryConversions(Input.take());
 | |
|     if (Input.isInvalid()) return ExprError();
 | |
|     resultType = Input.get()->getType();
 | |
|     if (resultType->isDependentType())
 | |
|       break;
 | |
|     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
 | |
|         resultType->isVectorType()) 
 | |
|       break;
 | |
|     else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
 | |
|              resultType->isEnumeralType())
 | |
|       break;
 | |
|     else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
 | |
|              Opc == UO_Plus &&
 | |
|              resultType->isPointerType())
 | |
|       break;
 | |
|     else if (resultType->isPlaceholderType()) {
 | |
|       Input = CheckPlaceholderExpr(Input.take());
 | |
|       if (Input.isInvalid()) return ExprError();
 | |
|       return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
 | |
|     }
 | |
| 
 | |
|     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
 | |
|       << resultType << Input.get()->getSourceRange());
 | |
| 
 | |
|   case UO_Not: // bitwise complement
 | |
|     Input = UsualUnaryConversions(Input.take());
 | |
|     if (Input.isInvalid()) return ExprError();
 | |
|     resultType = Input.get()->getType();
 | |
|     if (resultType->isDependentType())
 | |
|       break;
 | |
|     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
 | |
|     if (resultType->isComplexType() || resultType->isComplexIntegerType())
 | |
|       // C99 does not support '~' for complex conjugation.
 | |
|       Diag(OpLoc, diag::ext_integer_complement_complex)
 | |
|         << resultType << Input.get()->getSourceRange();
 | |
|     else if (resultType->hasIntegerRepresentation())
 | |
|       break;
 | |
|     else if (resultType->isPlaceholderType()) {
 | |
|       Input = CheckPlaceholderExpr(Input.take());
 | |
|       if (Input.isInvalid()) return ExprError();
 | |
|       return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
 | |
|     } else {
 | |
|       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
 | |
|         << resultType << Input.get()->getSourceRange());
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case UO_LNot: // logical negation
 | |
|     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
 | |
|     Input = DefaultFunctionArrayLvalueConversion(Input.take());
 | |
|     if (Input.isInvalid()) return ExprError();
 | |
|     resultType = Input.get()->getType();
 | |
|     if (resultType->isDependentType())
 | |
|       break;
 | |
|     if (resultType->isScalarType()) {
 | |
|       // C99 6.5.3.3p1: ok, fallthrough;
 | |
|       if (Context.getLangOptions().CPlusPlus) {
 | |
|         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
 | |
|         // operand contextually converted to bool.
 | |
|         Input = ImpCastExprToType(Input.take(), Context.BoolTy,
 | |
|                                   ScalarTypeToBooleanCastKind(resultType));
 | |
|       }
 | |
|     } else if (resultType->isPlaceholderType()) {
 | |
|       Input = CheckPlaceholderExpr(Input.take());
 | |
|       if (Input.isInvalid()) return ExprError();
 | |
|       return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
 | |
|     } else {
 | |
|       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
 | |
|         << resultType << Input.get()->getSourceRange());
 | |
|     }
 | |
|     
 | |
|     // LNot always has type int. C99 6.5.3.3p5.
 | |
|     // In C++, it's bool. C++ 5.3.1p8
 | |
|     resultType = Context.getLogicalOperationType();
 | |
|     break;
 | |
|   case UO_Real:
 | |
|   case UO_Imag:
 | |
|     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
 | |
|     // _Real and _Imag map ordinary l-values into ordinary l-values.
 | |
|     if (Input.isInvalid()) return ExprError();
 | |
|     if (Input.get()->getValueKind() != VK_RValue &&
 | |
|         Input.get()->getObjectKind() == OK_Ordinary)
 | |
|       VK = Input.get()->getValueKind();
 | |
|     break;
 | |
|   case UO_Extension:
 | |
|     resultType = Input.get()->getType();
 | |
|     VK = Input.get()->getValueKind();
 | |
|     OK = Input.get()->getObjectKind();
 | |
|     break;
 | |
|   }
 | |
|   if (resultType.isNull() || Input.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
 | |
|                                            VK, OK, OpLoc));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
 | |
|                               UnaryOperatorKind Opc,
 | |
|                               Expr *Input) {
 | |
|   if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
 | |
|       UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
 | |
|     // Find all of the overloaded operators visible from this
 | |
|     // point. We perform both an operator-name lookup from the local
 | |
|     // scope and an argument-dependent lookup based on the types of
 | |
|     // the arguments.
 | |
|     UnresolvedSet<16> Functions;
 | |
|     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
 | |
|     if (S && OverOp != OO_None)
 | |
|       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
 | |
|                                    Functions);
 | |
| 
 | |
|     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
 | |
|   }
 | |
| 
 | |
|   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
 | |
| }
 | |
| 
 | |
| // Unary Operators.  'Tok' is the token for the operator.
 | |
| ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
 | |
|                               tok::TokenKind Op, Expr *Input) {
 | |
|   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
 | |
| }
 | |
| 
 | |
| /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
 | |
| ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
 | |
|                                 LabelDecl *TheDecl) {
 | |
|   TheDecl->setUsed();
 | |
|   // Create the AST node.  The address of a label always has type 'void*'.
 | |
|   return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
 | |
|                                        Context.getPointerType(Context.VoidTy)));
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
 | |
|                     SourceLocation RPLoc) { // "({..})"
 | |
|   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
 | |
|   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
 | |
| 
 | |
|   bool isFileScope
 | |
|     = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
 | |
|   if (isFileScope)
 | |
|     return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
 | |
| 
 | |
|   // FIXME: there are a variety of strange constraints to enforce here, for
 | |
|   // example, it is not possible to goto into a stmt expression apparently.
 | |
|   // More semantic analysis is needed.
 | |
| 
 | |
|   // If there are sub stmts in the compound stmt, take the type of the last one
 | |
|   // as the type of the stmtexpr.
 | |
|   QualType Ty = Context.VoidTy;
 | |
|   bool StmtExprMayBindToTemp = false;
 | |
|   if (!Compound->body_empty()) {
 | |
|     Stmt *LastStmt = Compound->body_back();
 | |
|     LabelStmt *LastLabelStmt = 0;
 | |
|     // If LastStmt is a label, skip down through into the body.
 | |
|     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
 | |
|       LastLabelStmt = Label;
 | |
|       LastStmt = Label->getSubStmt();
 | |
|     }
 | |
|     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
 | |
|       // Do function/array conversion on the last expression, but not
 | |
|       // lvalue-to-rvalue.  However, initialize an unqualified type.
 | |
|       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
 | |
|       if (LastExpr.isInvalid())
 | |
|         return ExprError();
 | |
|       Ty = LastExpr.get()->getType().getUnqualifiedType();
 | |
| 
 | |
|       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
 | |
|         LastExpr = PerformCopyInitialization(
 | |
|                             InitializedEntity::InitializeResult(LPLoc, 
 | |
|                                                                 Ty,
 | |
|                                                                 false),
 | |
|                                                    SourceLocation(),
 | |
|                                              LastExpr);
 | |
|         if (LastExpr.isInvalid())
 | |
|           return ExprError();
 | |
|         if (LastExpr.get() != 0) {
 | |
|           if (!LastLabelStmt)
 | |
|             Compound->setLastStmt(LastExpr.take());
 | |
|           else
 | |
|             LastLabelStmt->setSubStmt(LastExpr.take());
 | |
|           StmtExprMayBindToTemp = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Check that expression type is complete/non-abstract; statement
 | |
|   // expressions are not lvalues.
 | |
|   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
 | |
|   if (StmtExprMayBindToTemp)
 | |
|     return MaybeBindToTemporary(ResStmtExpr);
 | |
|   return Owned(ResStmtExpr);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
 | |
|                                       TypeSourceInfo *TInfo,
 | |
|                                       OffsetOfComponent *CompPtr,
 | |
|                                       unsigned NumComponents,
 | |
|                                       SourceLocation RParenLoc) {
 | |
|   QualType ArgTy = TInfo->getType();
 | |
|   bool Dependent = ArgTy->isDependentType();
 | |
|   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
 | |
|   
 | |
|   // We must have at least one component that refers to the type, and the first
 | |
|   // one is known to be a field designator.  Verify that the ArgTy represents
 | |
|   // a struct/union/class.
 | |
|   if (!Dependent && !ArgTy->isRecordType())
 | |
|     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) 
 | |
|                        << ArgTy << TypeRange);
 | |
|   
 | |
|   // Type must be complete per C99 7.17p3 because a declaring a variable
 | |
|   // with an incomplete type would be ill-formed.
 | |
|   if (!Dependent 
 | |
|       && RequireCompleteType(BuiltinLoc, ArgTy,
 | |
|                              PDiag(diag::err_offsetof_incomplete_type)
 | |
|                                << TypeRange))
 | |
|     return ExprError();
 | |
|   
 | |
|   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
 | |
|   // GCC extension, diagnose them.
 | |
|   // FIXME: This diagnostic isn't actually visible because the location is in
 | |
|   // a system header!
 | |
|   if (NumComponents != 1)
 | |
|     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
 | |
|       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
 | |
|   
 | |
|   bool DidWarnAboutNonPOD = false;
 | |
|   QualType CurrentType = ArgTy;
 | |
|   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
 | |
|   llvm::SmallVector<OffsetOfNode, 4> Comps;
 | |
|   llvm::SmallVector<Expr*, 4> Exprs;
 | |
|   for (unsigned i = 0; i != NumComponents; ++i) {
 | |
|     const OffsetOfComponent &OC = CompPtr[i];
 | |
|     if (OC.isBrackets) {
 | |
|       // Offset of an array sub-field.  TODO: Should we allow vector elements?
 | |
|       if (!CurrentType->isDependentType()) {
 | |
|         const ArrayType *AT = Context.getAsArrayType(CurrentType);
 | |
|         if(!AT)
 | |
|           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
 | |
|                            << CurrentType);
 | |
|         CurrentType = AT->getElementType();
 | |
|       } else
 | |
|         CurrentType = Context.DependentTy;
 | |
|       
 | |
|       // The expression must be an integral expression.
 | |
|       // FIXME: An integral constant expression?
 | |
|       Expr *Idx = static_cast<Expr*>(OC.U.E);
 | |
|       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
 | |
|           !Idx->getType()->isIntegerType())
 | |
|         return ExprError(Diag(Idx->getLocStart(),
 | |
|                               diag::err_typecheck_subscript_not_integer)
 | |
|                          << Idx->getSourceRange());
 | |
|       
 | |
|       // Record this array index.
 | |
|       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
 | |
|       Exprs.push_back(Idx);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Offset of a field.
 | |
|     if (CurrentType->isDependentType()) {
 | |
|       // We have the offset of a field, but we can't look into the dependent
 | |
|       // type. Just record the identifier of the field.
 | |
|       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
 | |
|       CurrentType = Context.DependentTy;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // We need to have a complete type to look into.
 | |
|     if (RequireCompleteType(OC.LocStart, CurrentType,
 | |
|                             diag::err_offsetof_incomplete_type))
 | |
|       return ExprError();
 | |
|     
 | |
|     // Look for the designated field.
 | |
|     const RecordType *RC = CurrentType->getAs<RecordType>();
 | |
|     if (!RC) 
 | |
|       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
 | |
|                        << CurrentType);
 | |
|     RecordDecl *RD = RC->getDecl();
 | |
|     
 | |
|     // C++ [lib.support.types]p5:
 | |
|     //   The macro offsetof accepts a restricted set of type arguments in this
 | |
|     //   International Standard. type shall be a POD structure or a POD union
 | |
|     //   (clause 9).
 | |
|     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
 | |
|           DiagRuntimeBehavior(BuiltinLoc, 0,
 | |
|                               PDiag(diag::warn_offsetof_non_pod_type)
 | |
|                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
 | |
|                               << CurrentType))
 | |
|         DidWarnAboutNonPOD = true;
 | |
|     }
 | |
|     
 | |
|     // Look for the field.
 | |
|     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
 | |
|     LookupQualifiedName(R, RD);
 | |
|     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
 | |
|     IndirectFieldDecl *IndirectMemberDecl = 0;
 | |
|     if (!MemberDecl) {
 | |
|       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
 | |
|         MemberDecl = IndirectMemberDecl->getAnonField();
 | |
|     }
 | |
| 
 | |
|     if (!MemberDecl)
 | |
|       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
 | |
|                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, 
 | |
|                                                               OC.LocEnd));
 | |
|     
 | |
|     // C99 7.17p3:
 | |
|     //   (If the specified member is a bit-field, the behavior is undefined.)
 | |
|     //
 | |
|     // We diagnose this as an error.
 | |
|     if (MemberDecl->getBitWidth()) {
 | |
|       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
 | |
|         << MemberDecl->getDeclName()
 | |
|         << SourceRange(BuiltinLoc, RParenLoc);
 | |
|       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     RecordDecl *Parent = MemberDecl->getParent();
 | |
|     if (IndirectMemberDecl)
 | |
|       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
 | |
| 
 | |
|     // If the member was found in a base class, introduce OffsetOfNodes for
 | |
|     // the base class indirections.
 | |
|     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                        /*DetectVirtual=*/false);
 | |
|     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
 | |
|       CXXBasePath &Path = Paths.front();
 | |
|       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
 | |
|            B != BEnd; ++B)
 | |
|         Comps.push_back(OffsetOfNode(B->Base));
 | |
|     }
 | |
| 
 | |
|     if (IndirectMemberDecl) {
 | |
|       for (IndirectFieldDecl::chain_iterator FI =
 | |
|            IndirectMemberDecl->chain_begin(),
 | |
|            FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
 | |
|         assert(isa<FieldDecl>(*FI));
 | |
|         Comps.push_back(OffsetOfNode(OC.LocStart,
 | |
|                                      cast<FieldDecl>(*FI), OC.LocEnd));
 | |
|       }
 | |
|     } else
 | |
|       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
 | |
| 
 | |
|     CurrentType = MemberDecl->getType().getNonReferenceType(); 
 | |
|   }
 | |
|   
 | |
|   return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, 
 | |
|                                     TInfo, Comps.data(), Comps.size(),
 | |
|                                     Exprs.data(), Exprs.size(), RParenLoc));  
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
 | |
|                                       SourceLocation BuiltinLoc,
 | |
|                                       SourceLocation TypeLoc,
 | |
|                                       ParsedType argty,
 | |
|                                       OffsetOfComponent *CompPtr,
 | |
|                                       unsigned NumComponents,
 | |
|                                       SourceLocation RPLoc) {
 | |
|   
 | |
|   TypeSourceInfo *ArgTInfo;
 | |
|   QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
 | |
|   if (ArgTy.isNull())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!ArgTInfo)
 | |
|     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
 | |
| 
 | |
|   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, 
 | |
|                               RPLoc);
 | |
| }
 | |
| 
 | |
| 
 | |
| ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
 | |
|                                  Expr *CondExpr,
 | |
|                                  Expr *LHSExpr, Expr *RHSExpr,
 | |
|                                  SourceLocation RPLoc) {
 | |
|   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
 | |
| 
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
|   QualType resType;
 | |
|   bool ValueDependent = false;
 | |
|   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
 | |
|     resType = Context.DependentTy;
 | |
|     ValueDependent = true;
 | |
|   } else {
 | |
|     // The conditional expression is required to be a constant expression.
 | |
|     llvm::APSInt condEval(32);
 | |
|     SourceLocation ExpLoc;
 | |
|     if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
 | |
|       return ExprError(Diag(ExpLoc,
 | |
|                        diag::err_typecheck_choose_expr_requires_constant)
 | |
|         << CondExpr->getSourceRange());
 | |
| 
 | |
|     // If the condition is > zero, then the AST type is the same as the LSHExpr.
 | |
|     Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
 | |
| 
 | |
|     resType = ActiveExpr->getType();
 | |
|     ValueDependent = ActiveExpr->isValueDependent();
 | |
|     VK = ActiveExpr->getValueKind();
 | |
|     OK = ActiveExpr->getObjectKind();
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
 | |
|                                         resType, VK, OK, RPLoc,
 | |
|                                         resType->isDependentType(),
 | |
|                                         ValueDependent));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Clang Extensions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ActOnBlockStart - This callback is invoked when a block literal is started.
 | |
| void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
 | |
|   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
 | |
|   PushBlockScope(BlockScope, Block);
 | |
|   CurContext->addDecl(Block);
 | |
|   if (BlockScope)
 | |
|     PushDeclContext(BlockScope, Block);
 | |
|   else
 | |
|     CurContext = Block;
 | |
| }
 | |
| 
 | |
| void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
 | |
|   assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
 | |
|   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
 | |
|   BlockScopeInfo *CurBlock = getCurBlock();
 | |
| 
 | |
|   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
 | |
|   QualType T = Sig->getType();
 | |
| 
 | |
|   // GetTypeForDeclarator always produces a function type for a block
 | |
|   // literal signature.  Furthermore, it is always a FunctionProtoType
 | |
|   // unless the function was written with a typedef.
 | |
|   assert(T->isFunctionType() &&
 | |
|          "GetTypeForDeclarator made a non-function block signature");
 | |
| 
 | |
|   // Look for an explicit signature in that function type.
 | |
|   FunctionProtoTypeLoc ExplicitSignature;
 | |
| 
 | |
|   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
 | |
|   if (isa<FunctionProtoTypeLoc>(tmp)) {
 | |
|     ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
 | |
| 
 | |
|     // Check whether that explicit signature was synthesized by
 | |
|     // GetTypeForDeclarator.  If so, don't save that as part of the
 | |
|     // written signature.
 | |
|     if (ExplicitSignature.getLocalRangeBegin() ==
 | |
|         ExplicitSignature.getLocalRangeEnd()) {
 | |
|       // This would be much cheaper if we stored TypeLocs instead of
 | |
|       // TypeSourceInfos.
 | |
|       TypeLoc Result = ExplicitSignature.getResultLoc();
 | |
|       unsigned Size = Result.getFullDataSize();
 | |
|       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
 | |
|       Sig->getTypeLoc().initializeFullCopy(Result, Size);
 | |
| 
 | |
|       ExplicitSignature = FunctionProtoTypeLoc();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CurBlock->TheDecl->setSignatureAsWritten(Sig);
 | |
|   CurBlock->FunctionType = T;
 | |
| 
 | |
|   const FunctionType *Fn = T->getAs<FunctionType>();
 | |
|   QualType RetTy = Fn->getResultType();
 | |
|   bool isVariadic =
 | |
|     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
 | |
| 
 | |
|   CurBlock->TheDecl->setIsVariadic(isVariadic);
 | |
| 
 | |
|   // Don't allow returning a objc interface by value.
 | |
|   if (RetTy->isObjCObjectType()) {
 | |
|     Diag(ParamInfo.getSourceRange().getBegin(),
 | |
|          diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Context.DependentTy is used as a placeholder for a missing block
 | |
|   // return type.  TODO:  what should we do with declarators like:
 | |
|   //   ^ * { ... }
 | |
|   // If the answer is "apply template argument deduction"....
 | |
|   if (RetTy != Context.DependentTy)
 | |
|     CurBlock->ReturnType = RetTy;
 | |
| 
 | |
|   // Push block parameters from the declarator if we had them.
 | |
|   llvm::SmallVector<ParmVarDecl*, 8> Params;
 | |
|   if (ExplicitSignature) {
 | |
|     for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
 | |
|       ParmVarDecl *Param = ExplicitSignature.getArg(I);
 | |
|       if (Param->getIdentifier() == 0 &&
 | |
|           !Param->isImplicit() &&
 | |
|           !Param->isInvalidDecl() &&
 | |
|           !getLangOptions().CPlusPlus)
 | |
|         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
 | |
|       Params.push_back(Param);
 | |
|     }
 | |
| 
 | |
|   // Fake up parameter variables if we have a typedef, like
 | |
|   //   ^ fntype { ... }
 | |
|   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
 | |
|     for (FunctionProtoType::arg_type_iterator
 | |
|            I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
 | |
|       ParmVarDecl *Param =
 | |
|         BuildParmVarDeclForTypedef(CurBlock->TheDecl,
 | |
|                                    ParamInfo.getSourceRange().getBegin(),
 | |
|                                    *I);
 | |
|       Params.push_back(Param);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Set the parameters on the block decl.
 | |
|   if (!Params.empty()) {
 | |
|     CurBlock->TheDecl->setParams(Params.data(), Params.size());
 | |
|     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
 | |
|                              CurBlock->TheDecl->param_end(),
 | |
|                              /*CheckParameterNames=*/false);
 | |
|   }
 | |
|   
 | |
|   // Finally we can process decl attributes.
 | |
|   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
 | |
| 
 | |
|   if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
 | |
|     Diag(ParamInfo.getAttributes()->getLoc(),
 | |
|          diag::warn_attribute_sentinel_not_variadic) << 1;
 | |
|     // FIXME: remove the attribute.
 | |
|   }
 | |
| 
 | |
|   // Put the parameter variables in scope.  We can bail out immediately
 | |
|   // if we don't have any.
 | |
|   if (Params.empty())
 | |
|     return;
 | |
| 
 | |
|   for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
 | |
|          E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
 | |
|     (*AI)->setOwningFunction(CurBlock->TheDecl);
 | |
| 
 | |
|     // If this has an identifier, add it to the scope stack.
 | |
|     if ((*AI)->getIdentifier()) {
 | |
|       CheckShadow(CurBlock->TheScope, *AI);
 | |
| 
 | |
|       PushOnScopeChains(*AI, CurBlock->TheScope);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnBlockError - If there is an error parsing a block, this callback
 | |
| /// is invoked to pop the information about the block from the action impl.
 | |
| void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
 | |
|   // Pop off CurBlock, handle nested blocks.
 | |
|   PopDeclContext();
 | |
|   PopFunctionOrBlockScope();
 | |
| }
 | |
| 
 | |
| /// ActOnBlockStmtExpr - This is called when the body of a block statement
 | |
| /// literal was successfully completed.  ^(int x){...}
 | |
| ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
 | |
|                                     Stmt *Body, Scope *CurScope) {
 | |
|   // If blocks are disabled, emit an error.
 | |
|   if (!LangOpts.Blocks)
 | |
|     Diag(CaretLoc, diag::err_blocks_disable);
 | |
| 
 | |
|   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
 | |
|   
 | |
|   PopDeclContext();
 | |
| 
 | |
|   QualType RetTy = Context.VoidTy;
 | |
|   if (!BSI->ReturnType.isNull())
 | |
|     RetTy = BSI->ReturnType;
 | |
| 
 | |
|   bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
 | |
|   QualType BlockTy;
 | |
| 
 | |
|   // Set the captured variables on the block.
 | |
|   BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
 | |
|                             BSI->CapturesCXXThis);
 | |
| 
 | |
|   // If the user wrote a function type in some form, try to use that.
 | |
|   if (!BSI->FunctionType.isNull()) {
 | |
|     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
 | |
| 
 | |
|     FunctionType::ExtInfo Ext = FTy->getExtInfo();
 | |
|     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
 | |
|     
 | |
|     // Turn protoless block types into nullary block types.
 | |
|     if (isa<FunctionNoProtoType>(FTy)) {
 | |
|       FunctionProtoType::ExtProtoInfo EPI;
 | |
|       EPI.ExtInfo = Ext;
 | |
|       BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
 | |
| 
 | |
|     // Otherwise, if we don't need to change anything about the function type,
 | |
|     // preserve its sugar structure.
 | |
|     } else if (FTy->getResultType() == RetTy &&
 | |
|                (!NoReturn || FTy->getNoReturnAttr())) {
 | |
|       BlockTy = BSI->FunctionType;
 | |
| 
 | |
|     // Otherwise, make the minimal modifications to the function type.
 | |
|     } else {
 | |
|       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
 | |
|       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|       EPI.TypeQuals = 0; // FIXME: silently?
 | |
|       EPI.ExtInfo = Ext;
 | |
|       BlockTy = Context.getFunctionType(RetTy,
 | |
|                                         FPT->arg_type_begin(),
 | |
|                                         FPT->getNumArgs(),
 | |
|                                         EPI);
 | |
|     }
 | |
| 
 | |
|   // If we don't have a function type, just build one from nothing.
 | |
|   } else {
 | |
|     FunctionProtoType::ExtProtoInfo EPI;
 | |
|     EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, false, 0, CC_Default);
 | |
|     BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
 | |
|   }
 | |
| 
 | |
|   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
 | |
|                            BSI->TheDecl->param_end());
 | |
|   BlockTy = Context.getBlockPointerType(BlockTy);
 | |
| 
 | |
|   // If needed, diagnose invalid gotos and switches in the block.
 | |
|   if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
 | |
|     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
 | |
| 
 | |
|   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
 | |
| 
 | |
|   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
 | |
| 
 | |
|   const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
 | |
|   PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
 | |
|   return Owned(Result);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
 | |
|                                         Expr *expr, ParsedType type,
 | |
|                                         SourceLocation RPLoc) {
 | |
|   TypeSourceInfo *TInfo;
 | |
|   GetTypeFromParser(type, &TInfo);
 | |
|   return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
 | |
|                                 Expr *E, TypeSourceInfo *TInfo,
 | |
|                                 SourceLocation RPLoc) {
 | |
|   Expr *OrigExpr = E;
 | |
| 
 | |
|   // Get the va_list type
 | |
|   QualType VaListType = Context.getBuiltinVaListType();
 | |
|   if (VaListType->isArrayType()) {
 | |
|     // Deal with implicit array decay; for example, on x86-64,
 | |
|     // va_list is an array, but it's supposed to decay to
 | |
|     // a pointer for va_arg.
 | |
|     VaListType = Context.getArrayDecayedType(VaListType);
 | |
|     // Make sure the input expression also decays appropriately.
 | |
|     ExprResult Result = UsualUnaryConversions(E);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
|     E = Result.take();
 | |
|   } else {
 | |
|     // Otherwise, the va_list argument must be an l-value because
 | |
|     // it is modified by va_arg.
 | |
|     if (!E->isTypeDependent() &&
 | |
|         CheckForModifiableLvalue(E, BuiltinLoc, *this))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!E->isTypeDependent() &&
 | |
|       !Context.hasSameType(VaListType, E->getType())) {
 | |
|     return ExprError(Diag(E->getLocStart(),
 | |
|                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
 | |
|       << OrigExpr->getType() << E->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   // FIXME: Check that type is complete/non-abstract
 | |
|   // FIXME: Warn if a non-POD type is passed in.
 | |
| 
 | |
|   QualType T = TInfo->getType().getNonLValueExprType(Context);
 | |
|   return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
 | |
|   // The type of __null will be int or long, depending on the size of
 | |
|   // pointers on the target.
 | |
|   QualType Ty;
 | |
|   unsigned pw = Context.Target.getPointerWidth(0);
 | |
|   if (pw == Context.Target.getIntWidth())
 | |
|     Ty = Context.IntTy;
 | |
|   else if (pw == Context.Target.getLongWidth())
 | |
|     Ty = Context.LongTy;
 | |
|   else if (pw == Context.Target.getLongLongWidth())
 | |
|     Ty = Context.LongLongTy;
 | |
|   else {
 | |
|     assert(!"I don't know size of pointer!");
 | |
|     Ty = Context.IntTy;
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
 | |
| }
 | |
| 
 | |
| static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
 | |
|                                            Expr *SrcExpr, FixItHint &Hint) {
 | |
|   if (!SemaRef.getLangOptions().ObjC1)
 | |
|     return;
 | |
| 
 | |
|   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
 | |
|   if (!PT)
 | |
|     return;
 | |
| 
 | |
|   // Check if the destination is of type 'id'.
 | |
|   if (!PT->isObjCIdType()) {
 | |
|     // Check if the destination is the 'NSString' interface.
 | |
|     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
 | |
|     if (!ID || !ID->getIdentifier()->isStr("NSString"))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Strip off any parens and casts.
 | |
|   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
 | |
|   if (!SL || SL->isWide())
 | |
|     return;
 | |
| 
 | |
|   Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
 | |
| }
 | |
| 
 | |
| bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
 | |
|                                     SourceLocation Loc,
 | |
|                                     QualType DstType, QualType SrcType,
 | |
|                                     Expr *SrcExpr, AssignmentAction Action,
 | |
|                                     bool *Complained) {
 | |
|   if (Complained)
 | |
|     *Complained = false;
 | |
| 
 | |
|   // Decode the result (notice that AST's are still created for extensions).
 | |
|   bool isInvalid = false;
 | |
|   unsigned DiagKind;
 | |
|   FixItHint Hint;
 | |
| 
 | |
|   switch (ConvTy) {
 | |
|   default: assert(0 && "Unknown conversion type");
 | |
|   case Compatible: return false;
 | |
|   case PointerToInt:
 | |
|     DiagKind = diag::ext_typecheck_convert_pointer_int;
 | |
|     break;
 | |
|   case IntToPointer:
 | |
|     DiagKind = diag::ext_typecheck_convert_int_pointer;
 | |
|     break;
 | |
|   case IncompatiblePointer:
 | |
|     MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
 | |
|     DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
 | |
|     break;
 | |
|   case IncompatiblePointerSign:
 | |
|     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
 | |
|     break;
 | |
|   case FunctionVoidPointer:
 | |
|     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
 | |
|     break;
 | |
|   case IncompatiblePointerDiscardsQualifiers: {
 | |
|     // Perform array-to-pointer decay if necessary.
 | |
|     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
 | |
| 
 | |
|     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
 | |
|     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
 | |
|     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
 | |
|       DiagKind = diag::err_typecheck_incompatible_address_space;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("unknown error case for discarding qualifiers!");
 | |
|     // fallthrough
 | |
|   }
 | |
|   case CompatiblePointerDiscardsQualifiers:
 | |
|     // If the qualifiers lost were because we were applying the
 | |
|     // (deprecated) C++ conversion from a string literal to a char*
 | |
|     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
 | |
|     // Ideally, this check would be performed in
 | |
|     // checkPointerTypesForAssignment. However, that would require a
 | |
|     // bit of refactoring (so that the second argument is an
 | |
|     // expression, rather than a type), which should be done as part
 | |
|     // of a larger effort to fix checkPointerTypesForAssignment for
 | |
|     // C++ semantics.
 | |
|     if (getLangOptions().CPlusPlus &&
 | |
|         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
 | |
|       return false;
 | |
|     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
 | |
|     break;
 | |
|   case IncompatibleNestedPointerQualifiers:
 | |
|     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
 | |
|     break;
 | |
|   case IntToBlockPointer:
 | |
|     DiagKind = diag::err_int_to_block_pointer;
 | |
|     break;
 | |
|   case IncompatibleBlockPointer:
 | |
|     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
 | |
|     break;
 | |
|   case IncompatibleObjCQualifiedId:
 | |
|     // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
 | |
|     // it can give a more specific diagnostic.
 | |
|     DiagKind = diag::warn_incompatible_qualified_id;
 | |
|     break;
 | |
|   case IncompatibleVectors:
 | |
|     DiagKind = diag::warn_incompatible_vectors;
 | |
|     break;
 | |
|   case Incompatible:
 | |
|     DiagKind = diag::err_typecheck_convert_incompatible;
 | |
|     isInvalid = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   QualType FirstType, SecondType;
 | |
|   switch (Action) {
 | |
|   case AA_Assigning:
 | |
|   case AA_Initializing:
 | |
|     // The destination type comes first.
 | |
|     FirstType = DstType;
 | |
|     SecondType = SrcType;
 | |
|     break;
 | |
| 
 | |
|   case AA_Returning:
 | |
|   case AA_Passing:
 | |
|   case AA_Converting:
 | |
|   case AA_Sending:
 | |
|   case AA_Casting:
 | |
|     // The source type comes first.
 | |
|     FirstType = SrcType;
 | |
|     SecondType = DstType;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Diag(Loc, DiagKind) << FirstType << SecondType << Action
 | |
|     << SrcExpr->getSourceRange() << Hint;
 | |
|   if (Complained)
 | |
|     *Complained = true;
 | |
|   return isInvalid;
 | |
| }
 | |
| 
 | |
| bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
 | |
|   llvm::APSInt ICEResult;
 | |
|   if (E->isIntegerConstantExpr(ICEResult, Context)) {
 | |
|     if (Result)
 | |
|       *Result = ICEResult;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Expr::EvalResult EvalResult;
 | |
| 
 | |
|   if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
 | |
|       EvalResult.HasSideEffects) {
 | |
|     Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
 | |
| 
 | |
|     if (EvalResult.Diag) {
 | |
|       // We only show the note if it's not the usual "invalid subexpression"
 | |
|       // or if it's actually in a subexpression.
 | |
|       if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
 | |
|           E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
 | |
|         Diag(EvalResult.DiagLoc, EvalResult.Diag);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
 | |
|     E->getSourceRange();
 | |
| 
 | |
|   if (EvalResult.Diag &&
 | |
|       Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
 | |
|           != Diagnostic::Ignored)
 | |
|     Diag(EvalResult.DiagLoc, EvalResult.Diag);
 | |
| 
 | |
|   if (Result)
 | |
|     *Result = EvalResult.Val.getInt();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
 | |
|   ExprEvalContexts.push_back(
 | |
|         ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::PopExpressionEvaluationContext() {
 | |
|   // Pop the current expression evaluation context off the stack.
 | |
|   ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
 | |
|   ExprEvalContexts.pop_back();
 | |
| 
 | |
|   if (Rec.Context == PotentiallyPotentiallyEvaluated) {
 | |
|     if (Rec.PotentiallyReferenced) {
 | |
|       // Mark any remaining declarations in the current position of the stack
 | |
|       // as "referenced". If they were not meant to be referenced, semantic
 | |
|       // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
 | |
|       for (PotentiallyReferencedDecls::iterator
 | |
|              I = Rec.PotentiallyReferenced->begin(),
 | |
|              IEnd = Rec.PotentiallyReferenced->end();
 | |
|            I != IEnd; ++I)
 | |
|         MarkDeclarationReferenced(I->first, I->second);
 | |
|     }
 | |
| 
 | |
|     if (Rec.PotentiallyDiagnosed) {
 | |
|       // Emit any pending diagnostics.
 | |
|       for (PotentiallyEmittedDiagnostics::iterator
 | |
|                 I = Rec.PotentiallyDiagnosed->begin(),
 | |
|              IEnd = Rec.PotentiallyDiagnosed->end();
 | |
|            I != IEnd; ++I)
 | |
|         Diag(I->first, I->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // When are coming out of an unevaluated context, clear out any
 | |
|   // temporaries that we may have created as part of the evaluation of
 | |
|   // the expression in that context: they aren't relevant because they
 | |
|   // will never be constructed.
 | |
|   if (Rec.Context == Unevaluated &&
 | |
|       ExprTemporaries.size() > Rec.NumTemporaries)
 | |
|     ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
 | |
|                           ExprTemporaries.end());
 | |
| 
 | |
|   // Destroy the popped expression evaluation record.
 | |
|   Rec.Destroy();
 | |
| }
 | |
| 
 | |
| /// \brief Note that the given declaration was referenced in the source code.
 | |
| ///
 | |
| /// This routine should be invoke whenever a given declaration is referenced
 | |
| /// in the source code, and where that reference occurred. If this declaration
 | |
| /// reference means that the the declaration is used (C++ [basic.def.odr]p2,
 | |
| /// C99 6.9p3), then the declaration will be marked as used.
 | |
| ///
 | |
| /// \param Loc the location where the declaration was referenced.
 | |
| ///
 | |
| /// \param D the declaration that has been referenced by the source code.
 | |
| void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
 | |
|   assert(D && "No declaration?");
 | |
| 
 | |
|   D->setReferenced();
 | |
| 
 | |
|   if (D->isUsed(false))
 | |
|     return;
 | |
| 
 | |
|   // Mark a parameter or variable declaration "used", regardless of whether we're in a
 | |
|   // template or not. The reason for this is that unevaluated expressions
 | |
|   // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
 | |
|   // -Wunused-parameters)
 | |
|   if (isa<ParmVarDecl>(D) ||
 | |
|       (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
 | |
|     D->setUsed();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
 | |
|     return;
 | |
| 
 | |
|   // Do not mark anything as "used" within a dependent context; wait for
 | |
|   // an instantiation.
 | |
|   if (CurContext->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   switch (ExprEvalContexts.back().Context) {
 | |
|     case Unevaluated:
 | |
|       // We are in an expression that is not potentially evaluated; do nothing.
 | |
|       return;
 | |
| 
 | |
|     case PotentiallyEvaluated:
 | |
|       // We are in a potentially-evaluated expression, so this declaration is
 | |
|       // "used"; handle this below.
 | |
|       break;
 | |
| 
 | |
|     case PotentiallyPotentiallyEvaluated:
 | |
|       // We are in an expression that may be potentially evaluated; queue this
 | |
|       // declaration reference until we know whether the expression is
 | |
|       // potentially evaluated.
 | |
|       ExprEvalContexts.back().addReferencedDecl(Loc, D);
 | |
|       return;
 | |
|       
 | |
|     case PotentiallyEvaluatedIfUsed:
 | |
|       // Referenced declarations will only be used if the construct in the
 | |
|       // containing expression is used.
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Note that this declaration has been used.
 | |
|   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | |
|     unsigned TypeQuals;
 | |
|     if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
 | |
|       if (Constructor->getParent()->hasTrivialConstructor())
 | |
|         return;
 | |
|       if (!Constructor->isUsed(false))
 | |
|         DefineImplicitDefaultConstructor(Loc, Constructor);
 | |
|     } else if (Constructor->isImplicit() &&
 | |
|                Constructor->isCopyConstructor(TypeQuals)) {
 | |
|       if (!Constructor->isUsed(false))
 | |
|         DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
 | |
|     }
 | |
| 
 | |
|     MarkVTableUsed(Loc, Constructor->getParent());
 | |
|   } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
 | |
|     if (Destructor->isImplicit() && !Destructor->isUsed(false))
 | |
|       DefineImplicitDestructor(Loc, Destructor);
 | |
|     if (Destructor->isVirtual())
 | |
|       MarkVTableUsed(Loc, Destructor->getParent());
 | |
|   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
 | |
|     if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
 | |
|         MethodDecl->getOverloadedOperator() == OO_Equal) {
 | |
|       if (!MethodDecl->isUsed(false))
 | |
|         DefineImplicitCopyAssignment(Loc, MethodDecl);
 | |
|     } else if (MethodDecl->isVirtual())
 | |
|       MarkVTableUsed(Loc, MethodDecl->getParent());
 | |
|   }
 | |
|   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
 | |
|     // Recursive functions should be marked when used from another function.
 | |
|     if (CurContext == Function) return;
 | |
| 
 | |
|     // Implicit instantiation of function templates and member functions of
 | |
|     // class templates.
 | |
|     if (Function->isImplicitlyInstantiable()) {
 | |
|       bool AlreadyInstantiated = false;
 | |
|       if (FunctionTemplateSpecializationInfo *SpecInfo
 | |
|                                 = Function->getTemplateSpecializationInfo()) {
 | |
|         if (SpecInfo->getPointOfInstantiation().isInvalid())
 | |
|           SpecInfo->setPointOfInstantiation(Loc);
 | |
|         else if (SpecInfo->getTemplateSpecializationKind()
 | |
|                    == TSK_ImplicitInstantiation)
 | |
|           AlreadyInstantiated = true;
 | |
|       } else if (MemberSpecializationInfo *MSInfo
 | |
|                                   = Function->getMemberSpecializationInfo()) {
 | |
|         if (MSInfo->getPointOfInstantiation().isInvalid())
 | |
|           MSInfo->setPointOfInstantiation(Loc);
 | |
|         else if (MSInfo->getTemplateSpecializationKind()
 | |
|                    == TSK_ImplicitInstantiation)
 | |
|           AlreadyInstantiated = true;
 | |
|       }
 | |
| 
 | |
|       if (!AlreadyInstantiated) {
 | |
|         if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
 | |
|             cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
 | |
|           PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
 | |
|                                                                       Loc));
 | |
|         else
 | |
|           PendingInstantiations.push_back(std::make_pair(Function, Loc));
 | |
|       }
 | |
|     } else {
 | |
|       // Walk redefinitions, as some of them may be instantiable.
 | |
|       for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
 | |
|            e(Function->redecls_end()); i != e; ++i) {
 | |
|         if (!i->isUsed(false) && i->isImplicitlyInstantiable())
 | |
|           MarkDeclarationReferenced(Loc, *i);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Keep track of used but undefined functions.
 | |
|     if (!Function->isPure() && !Function->hasBody() &&
 | |
|         Function->getLinkage() != ExternalLinkage) {
 | |
|       SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
 | |
|       if (old.isInvalid()) old = Loc;
 | |
|     }
 | |
| 
 | |
|     Function->setUsed(true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | |
|     // Implicit instantiation of static data members of class templates.
 | |
|     if (Var->isStaticDataMember() &&
 | |
|         Var->getInstantiatedFromStaticDataMember()) {
 | |
|       MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
 | |
|       assert(MSInfo && "Missing member specialization information?");
 | |
|       if (MSInfo->getPointOfInstantiation().isInvalid() &&
 | |
|           MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
 | |
|         MSInfo->setPointOfInstantiation(Loc);
 | |
|         PendingInstantiations.push_back(std::make_pair(Var, Loc));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Keep track of used but undefined variables.  We make a hole in
 | |
|     // the warning for static const data members with in-line
 | |
|     // initializers.
 | |
|     if (Var->hasDefinition() == VarDecl::DeclarationOnly
 | |
|         && Var->getLinkage() != ExternalLinkage
 | |
|         && !(Var->isStaticDataMember() && Var->hasInit())) {
 | |
|       SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
 | |
|       if (old.isInvalid()) old = Loc;
 | |
|     }
 | |
| 
 | |
|     D->setUsed(true);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Mark all of the declarations referenced
 | |
|   // FIXME: Not fully implemented yet! We need to have a better understanding
 | |
|   // of when we're entering
 | |
|   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
 | |
|     Sema &S;
 | |
|     SourceLocation Loc;
 | |
| 
 | |
|   public:
 | |
|     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
 | |
| 
 | |
|     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
 | |
| 
 | |
|     bool TraverseTemplateArgument(const TemplateArgument &Arg);
 | |
|     bool TraverseRecordType(RecordType *T);
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool MarkReferencedDecls::TraverseTemplateArgument(
 | |
|   const TemplateArgument &Arg) {
 | |
|   if (Arg.getKind() == TemplateArgument::Declaration) {
 | |
|     S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
 | |
|   }
 | |
| 
 | |
|   return Inherited::TraverseTemplateArgument(Arg);
 | |
| }
 | |
| 
 | |
| bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
 | |
|   if (ClassTemplateSpecializationDecl *Spec
 | |
|                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
 | |
|     const TemplateArgumentList &Args = Spec->getTemplateArgs();
 | |
|     return TraverseTemplateArguments(Args.data(), Args.size());
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
 | |
|   MarkReferencedDecls Marker(*this, Loc);
 | |
|   Marker.TraverseType(Context.getCanonicalType(T));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief Helper class that marks all of the declarations referenced by
 | |
|   /// potentially-evaluated subexpressions as "referenced".
 | |
|   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
 | |
|     Sema &S;
 | |
|     
 | |
|   public:
 | |
|     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
 | |
|     
 | |
|     explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
 | |
|     
 | |
|     void VisitDeclRefExpr(DeclRefExpr *E) {
 | |
|       S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
 | |
|     }
 | |
|     
 | |
|     void VisitMemberExpr(MemberExpr *E) {
 | |
|       S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
 | |
|       Inherited::VisitMemberExpr(E);
 | |
|     }
 | |
|     
 | |
|     void VisitCXXNewExpr(CXXNewExpr *E) {
 | |
|       if (E->getConstructor())
 | |
|         S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
 | |
|       if (E->getOperatorNew())
 | |
|         S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
 | |
|       if (E->getOperatorDelete())
 | |
|         S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
 | |
|       Inherited::VisitCXXNewExpr(E);
 | |
|     }
 | |
|     
 | |
|     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
 | |
|       if (E->getOperatorDelete())
 | |
|         S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
 | |
|       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
 | |
|       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
 | |
|         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
 | |
|         S.MarkDeclarationReferenced(E->getLocStart(), 
 | |
|                                     S.LookupDestructor(Record));
 | |
|       }
 | |
|       
 | |
|       Inherited::VisitCXXDeleteExpr(E);
 | |
|     }
 | |
|     
 | |
|     void VisitCXXConstructExpr(CXXConstructExpr *E) {
 | |
|       S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
 | |
|       Inherited::VisitCXXConstructExpr(E);
 | |
|     }
 | |
|     
 | |
|     void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
 | |
|       S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
 | |
|     }
 | |
|     
 | |
|     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
 | |
|       Visit(E->getExpr());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// \brief Mark any declarations that appear within this expression or any
 | |
| /// potentially-evaluated subexpressions as "referenced".
 | |
| void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
 | |
|   EvaluatedExprMarker(*this).Visit(E);
 | |
| }
 | |
| 
 | |
| /// \brief Emit a diagnostic that describes an effect on the run-time behavior
 | |
| /// of the program being compiled.
 | |
| ///
 | |
| /// This routine emits the given diagnostic when the code currently being
 | |
| /// type-checked is "potentially evaluated", meaning that there is a
 | |
| /// possibility that the code will actually be executable. Code in sizeof()
 | |
| /// expressions, code used only during overload resolution, etc., are not
 | |
| /// potentially evaluated. This routine will suppress such diagnostics or,
 | |
| /// in the absolutely nutty case of potentially potentially evaluated
 | |
| /// expressions (C++ typeid), queue the diagnostic to potentially emit it
 | |
| /// later.
 | |
| ///
 | |
| /// This routine should be used for all diagnostics that describe the run-time
 | |
| /// behavior of a program, such as passing a non-POD value through an ellipsis.
 | |
| /// Failure to do so will likely result in spurious diagnostics or failures
 | |
| /// during overload resolution or within sizeof/alignof/typeof/typeid.
 | |
| bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
 | |
|                                const PartialDiagnostic &PD) {
 | |
|   switch (ExprEvalContexts.back().Context ) {
 | |
|   case Unevaluated:
 | |
|     // The argument will never be evaluated, so don't complain.
 | |
|     break;
 | |
| 
 | |
|   case PotentiallyEvaluated:
 | |
|   case PotentiallyEvaluatedIfUsed:
 | |
|     if (stmt && getCurFunctionOrMethodDecl()) {
 | |
|       FunctionScopes.back()->PossiblyUnreachableDiags.
 | |
|         push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
 | |
|     }
 | |
|     else
 | |
|       Diag(Loc, PD);
 | |
|       
 | |
|     return true;
 | |
| 
 | |
|   case PotentiallyPotentiallyEvaluated:
 | |
|     ExprEvalContexts.back().addDiagnostic(Loc, PD);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
 | |
|                                CallExpr *CE, FunctionDecl *FD) {
 | |
|   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
 | |
|     return false;
 | |
| 
 | |
|   PartialDiagnostic Note =
 | |
|     FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
 | |
|     << FD->getDeclName() : PDiag();
 | |
|   SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
 | |
| 
 | |
|   if (RequireCompleteType(Loc, ReturnType,
 | |
|                           FD ?
 | |
|                           PDiag(diag::err_call_function_incomplete_return)
 | |
|                             << CE->getSourceRange() << FD->getDeclName() :
 | |
|                           PDiag(diag::err_call_incomplete_return)
 | |
|                             << CE->getSourceRange(),
 | |
|                           std::make_pair(NoteLoc, Note)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
 | |
| // will prevent this condition from triggering, which is what we want.
 | |
| void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
 | |
|   SourceLocation Loc;
 | |
| 
 | |
|   unsigned diagnostic = diag::warn_condition_is_assignment;
 | |
|   bool IsOrAssign = false;
 | |
| 
 | |
|   if (isa<BinaryOperator>(E)) {
 | |
|     BinaryOperator *Op = cast<BinaryOperator>(E);
 | |
|     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
 | |
|       return;
 | |
| 
 | |
|     IsOrAssign = Op->getOpcode() == BO_OrAssign;
 | |
| 
 | |
|     // Greylist some idioms by putting them into a warning subcategory.
 | |
|     if (ObjCMessageExpr *ME
 | |
|           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
 | |
|       Selector Sel = ME->getSelector();
 | |
| 
 | |
|       // self = [<foo> init...]
 | |
|       if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
 | |
|         diagnostic = diag::warn_condition_is_idiomatic_assignment;
 | |
| 
 | |
|       // <foo> = [<bar> nextObject]
 | |
|       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
 | |
|         diagnostic = diag::warn_condition_is_idiomatic_assignment;
 | |
|     }
 | |
| 
 | |
|     Loc = Op->getOperatorLoc();
 | |
|   } else if (isa<CXXOperatorCallExpr>(E)) {
 | |
|     CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
 | |
|     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
 | |
|       return;
 | |
| 
 | |
|     IsOrAssign = Op->getOperator() == OO_PipeEqual;
 | |
|     Loc = Op->getOperatorLoc();
 | |
|   } else {
 | |
|     // Not an assignment.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Diag(Loc, diagnostic) << E->getSourceRange();
 | |
| 
 | |
|   SourceLocation Open = E->getSourceRange().getBegin();
 | |
|   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
 | |
|   Diag(Loc, diag::note_condition_assign_silence)
 | |
|         << FixItHint::CreateInsertion(Open, "(")
 | |
|         << FixItHint::CreateInsertion(Close, ")");
 | |
| 
 | |
|   if (IsOrAssign)
 | |
|     Diag(Loc, diag::note_condition_or_assign_to_comparison)
 | |
|       << FixItHint::CreateReplacement(Loc, "!=");
 | |
|   else
 | |
|     Diag(Loc, diag::note_condition_assign_to_comparison)
 | |
|       << FixItHint::CreateReplacement(Loc, "==");
 | |
| }
 | |
| 
 | |
| /// \brief Redundant parentheses over an equality comparison can indicate
 | |
| /// that the user intended an assignment used as condition.
 | |
| void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
 | |
|   // Don't warn if the parens came from a macro.
 | |
|   SourceLocation parenLoc = parenE->getLocStart();
 | |
|   if (parenLoc.isInvalid() || parenLoc.isMacroID())
 | |
|     return;
 | |
|   // Don't warn for dependent expressions.
 | |
|   if (parenE->isTypeDependent())
 | |
|     return;
 | |
| 
 | |
|   Expr *E = parenE->IgnoreParens();
 | |
| 
 | |
|   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
 | |
|     if (opE->getOpcode() == BO_EQ &&
 | |
|         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
 | |
|                                                            == Expr::MLV_Valid) {
 | |
|       SourceLocation Loc = opE->getOperatorLoc();
 | |
|       
 | |
|       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
 | |
|       Diag(Loc, diag::note_equality_comparison_silence)
 | |
|         << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
 | |
|         << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
 | |
|       Diag(Loc, diag::note_equality_comparison_to_assign)
 | |
|         << FixItHint::CreateReplacement(Loc, "=");
 | |
|     }
 | |
| }
 | |
| 
 | |
| ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
 | |
|   DiagnoseAssignmentAsCondition(E);
 | |
|   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
 | |
|     DiagnoseEqualityWithExtraParens(parenE);
 | |
| 
 | |
|   if (!E->isTypeDependent()) {
 | |
|     if (E->isBoundMemberFunction(Context)) {
 | |
|       Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
 | |
|         << E->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     if (getLangOptions().CPlusPlus)
 | |
|       return CheckCXXBooleanCondition(E); // C++ 6.4p4
 | |
| 
 | |
|     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
 | |
|     if (ERes.isInvalid())
 | |
|       return ExprError();
 | |
|     E = ERes.take();
 | |
| 
 | |
|     QualType T = E->getType();
 | |
|     if (!T->isScalarType()) { // C99 6.8.4.1p1
 | |
|       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
 | |
|         << T << E->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
 | |
|                                        Expr *Sub) {
 | |
|   if (!Sub)
 | |
|     return ExprError();
 | |
| 
 | |
|   return CheckBooleanCondition(Sub, Loc);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A visitor for rebuilding a call to an __unknown_any expression
 | |
|   /// to have an appropriate type.
 | |
|   struct RebuildUnknownAnyFunction
 | |
|     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
 | |
| 
 | |
|     Sema &S;
 | |
| 
 | |
|     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
 | |
| 
 | |
|     ExprResult VisitStmt(Stmt *S) {
 | |
|       llvm_unreachable("unexpected statement!");
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitExpr(Expr *expr) {
 | |
|       S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
 | |
|         << expr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     /// Rebuild an expression which simply semantically wraps another
 | |
|     /// expression which it shares the type and value kind of.
 | |
|     template <class T> ExprResult rebuildSugarExpr(T *expr) {
 | |
|       ExprResult subResult = Visit(expr->getSubExpr());
 | |
|       if (subResult.isInvalid()) return ExprError();
 | |
| 
 | |
|       Expr *subExpr = subResult.take();
 | |
|       expr->setSubExpr(subExpr);
 | |
|       expr->setType(subExpr->getType());
 | |
|       expr->setValueKind(subExpr->getValueKind());
 | |
|       assert(expr->getObjectKind() == OK_Ordinary);
 | |
|       return expr;
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitParenExpr(ParenExpr *paren) {
 | |
|       return rebuildSugarExpr(paren);
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitUnaryExtension(UnaryOperator *op) {
 | |
|       return rebuildSugarExpr(op);
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
 | |
|       ExprResult subResult = Visit(op->getSubExpr());
 | |
|       if (subResult.isInvalid()) return ExprError();
 | |
| 
 | |
|       Expr *subExpr = subResult.take();
 | |
|       op->setSubExpr(subExpr);
 | |
|       op->setType(S.Context.getPointerType(subExpr->getType()));
 | |
|       assert(op->getValueKind() == VK_RValue);
 | |
|       assert(op->getObjectKind() == OK_Ordinary);
 | |
|       return op;
 | |
|     }
 | |
| 
 | |
|     ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
 | |
|       if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
 | |
| 
 | |
|       expr->setType(decl->getType());
 | |
| 
 | |
|       assert(expr->getValueKind() == VK_RValue);
 | |
|       if (S.getLangOptions().CPlusPlus &&
 | |
|           !(isa<CXXMethodDecl>(decl) &&
 | |
|             cast<CXXMethodDecl>(decl)->isInstance()))
 | |
|         expr->setValueKind(VK_LValue);
 | |
| 
 | |
|       return expr;
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitMemberExpr(MemberExpr *mem) {
 | |
|       return resolveDecl(mem, mem->getMemberDecl());
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
 | |
|       return resolveDecl(ref, ref->getDecl());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Given a function expression of unknown-any type, try to rebuild it
 | |
| /// to have a function type.
 | |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
 | |
|   ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
 | |
|   if (result.isInvalid()) return ExprError();
 | |
|   return S.DefaultFunctionArrayConversion(result.take());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A visitor for rebuilding an expression of type __unknown_anytype
 | |
|   /// into one which resolves the type directly on the referring
 | |
|   /// expression.  Strict preservation of the original source
 | |
|   /// structure is not a goal.
 | |
|   struct RebuildUnknownAnyExpr
 | |
|     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
 | |
| 
 | |
|     Sema &S;
 | |
| 
 | |
|     /// The current destination type.
 | |
|     QualType DestType;
 | |
| 
 | |
|     RebuildUnknownAnyExpr(Sema &S, QualType castType)
 | |
|       : S(S), DestType(castType) {}
 | |
| 
 | |
|     ExprResult VisitStmt(Stmt *S) {
 | |
|       llvm_unreachable("unexpected statement!");
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitExpr(Expr *expr) {
 | |
|       S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
 | |
|         << expr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitCallExpr(CallExpr *call);
 | |
|     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
 | |
| 
 | |
|     /// Rebuild an expression which simply semantically wraps another
 | |
|     /// expression which it shares the type and value kind of.
 | |
|     template <class T> ExprResult rebuildSugarExpr(T *expr) {
 | |
|       ExprResult subResult = Visit(expr->getSubExpr());
 | |
|       if (subResult.isInvalid()) return ExprError();
 | |
|       Expr *subExpr = subResult.take();
 | |
|       expr->setSubExpr(subExpr);
 | |
|       expr->setType(subExpr->getType());
 | |
|       expr->setValueKind(subExpr->getValueKind());
 | |
|       assert(expr->getObjectKind() == OK_Ordinary);
 | |
|       return expr;
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitParenExpr(ParenExpr *paren) {
 | |
|       return rebuildSugarExpr(paren);
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitUnaryExtension(UnaryOperator *op) {
 | |
|       return rebuildSugarExpr(op);
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
 | |
|       const PointerType *ptr = DestType->getAs<PointerType>();
 | |
|       if (!ptr) {
 | |
|         S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
 | |
|           << op->getSourceRange();
 | |
|         return ExprError();
 | |
|       }
 | |
|       assert(op->getValueKind() == VK_RValue);
 | |
|       assert(op->getObjectKind() == OK_Ordinary);
 | |
|       op->setType(DestType);
 | |
| 
 | |
|       // Build the sub-expression as if it were an object of the pointee type.
 | |
|       DestType = ptr->getPointeeType();
 | |
|       ExprResult subResult = Visit(op->getSubExpr());
 | |
|       if (subResult.isInvalid()) return ExprError();
 | |
|       op->setSubExpr(subResult.take());
 | |
|       return op;
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
 | |
| 
 | |
|     ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
 | |
| 
 | |
|     ExprResult VisitMemberExpr(MemberExpr *mem) {
 | |
|       return resolveDecl(mem, mem->getMemberDecl());
 | |
|     }
 | |
| 
 | |
|     ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
 | |
|       return resolveDecl(ref, ref->getDecl());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Rebuilds a call expression which yielded __unknown_anytype.
 | |
| ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
 | |
|   Expr *callee = call->getCallee();
 | |
| 
 | |
|   enum FnKind {
 | |
|     FK_Function,
 | |
|     FK_FunctionPointer,
 | |
|     FK_BlockPointer
 | |
|   };
 | |
| 
 | |
|   FnKind kind;
 | |
|   QualType type = callee->getType();
 | |
|   if (type->isFunctionType()) {
 | |
|     assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
 | |
|     kind = FK_Function;
 | |
|   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
 | |
|     type = ptr->getPointeeType();
 | |
|     kind = FK_FunctionPointer;
 | |
|   } else {
 | |
|     type = type->castAs<BlockPointerType>()->getPointeeType();
 | |
|     kind = FK_BlockPointer;
 | |
|   }
 | |
|   const FunctionType *fnType = type->castAs<FunctionType>();
 | |
| 
 | |
|   // Verify that this is a legal result type of a function.
 | |
|   if (DestType->isArrayType() || DestType->isFunctionType()) {
 | |
|     unsigned diagID = diag::err_func_returning_array_function;
 | |
|     if (kind == FK_BlockPointer)
 | |
|       diagID = diag::err_block_returning_array_function;
 | |
| 
 | |
|     S.Diag(call->getExprLoc(), diagID)
 | |
|       << DestType->isFunctionType() << DestType;
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Otherwise, go ahead and set DestType as the call's result.
 | |
|   call->setType(DestType.getNonLValueExprType(S.Context));
 | |
|   call->setValueKind(Expr::getValueKindForType(DestType));
 | |
|   assert(call->getObjectKind() == OK_Ordinary);
 | |
| 
 | |
|   // Rebuild the function type, replacing the result type with DestType.
 | |
|   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
 | |
|     DestType = S.Context.getFunctionType(DestType,
 | |
|                                          proto->arg_type_begin(),
 | |
|                                          proto->getNumArgs(),
 | |
|                                          proto->getExtProtoInfo());
 | |
|   else
 | |
|     DestType = S.Context.getFunctionNoProtoType(DestType,
 | |
|                                                 fnType->getExtInfo());
 | |
| 
 | |
|   // Rebuild the appropriate pointer-to-function type.
 | |
|   switch (kind) {
 | |
|   case FK_Function:
 | |
|     // Nothing to do.
 | |
|     break;
 | |
| 
 | |
|   case FK_FunctionPointer:
 | |
|     DestType = S.Context.getPointerType(DestType);
 | |
|     break;
 | |
| 
 | |
|   case FK_BlockPointer:
 | |
|     DestType = S.Context.getBlockPointerType(DestType);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Finally, we can recurse.
 | |
|   ExprResult calleeResult = Visit(callee);
 | |
|   if (!calleeResult.isUsable()) return ExprError();
 | |
|   call->setCallee(calleeResult.take());
 | |
| 
 | |
|   // Bind a temporary if necessary.
 | |
|   return S.MaybeBindToTemporary(call);
 | |
| }
 | |
| 
 | |
| ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
 | |
|   ObjCMethodDecl *method = msg->getMethodDecl();
 | |
|   assert(method && "__unknown_anytype message without result type?");
 | |
| 
 | |
|   // Verify that this is a legal result type of a call.
 | |
|   if (DestType->isArrayType() || DestType->isFunctionType()) {
 | |
|     S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
 | |
|       << DestType->isFunctionType() << DestType;
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   assert(method->getResultType() == S.Context.UnknownAnyTy);
 | |
|   method->setResultType(DestType);
 | |
| 
 | |
|   // Change the type of the message.
 | |
|   msg->setType(DestType.getNonReferenceType());
 | |
|   msg->setValueKind(Expr::getValueKindForType(DestType));
 | |
| 
 | |
|   return S.MaybeBindToTemporary(msg);
 | |
| }
 | |
| 
 | |
| ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
 | |
|   // The only case we should ever see here is a function-to-pointer decay.
 | |
|   assert(ice->getCastKind() == CK_FunctionToPointerDecay);
 | |
|   assert(ice->getValueKind() == VK_RValue);
 | |
|   assert(ice->getObjectKind() == OK_Ordinary);
 | |
| 
 | |
|   ice->setType(DestType);
 | |
| 
 | |
|   // Rebuild the sub-expression as the pointee (function) type.
 | |
|   DestType = DestType->castAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|   ExprResult result = Visit(ice->getSubExpr());
 | |
|   if (!result.isUsable()) return ExprError();
 | |
| 
 | |
|   ice->setSubExpr(result.take());
 | |
|   return S.Owned(ice);
 | |
| }
 | |
| 
 | |
| ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
 | |
|   ExprValueKind valueKind = VK_LValue;
 | |
|   QualType type = DestType;
 | |
| 
 | |
|   // We know how to make this work for certain kinds of decls:
 | |
| 
 | |
|   //  - functions
 | |
|   if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
 | |
|     if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
 | |
|       if (method->isInstance()) valueKind = VK_RValue;
 | |
| 
 | |
|     // This is true because FunctionDecls must always have function
 | |
|     // type, so we can't be resolving the entire thing at once.
 | |
|     assert(type->isFunctionType());
 | |
| 
 | |
|     // Function references aren't l-values in C.
 | |
|     if (!S.getLangOptions().CPlusPlus)
 | |
|       valueKind = VK_RValue;
 | |
| 
 | |
|   //  - variables
 | |
|   } else if (isa<VarDecl>(decl)) {
 | |
|     if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
 | |
|       type = refTy->getPointeeType();
 | |
|     } else if (type->isFunctionType()) {
 | |
|       S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
 | |
|         << decl << expr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
| 
 | |
|   //  - nothing else
 | |
|   } else {
 | |
|     S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
 | |
|       << decl << expr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   decl->setType(DestType);
 | |
|   expr->setType(type);
 | |
|   expr->setValueKind(valueKind);
 | |
|   return S.Owned(expr);
 | |
| }
 | |
| 
 | |
| /// Check a cast of an unknown-any type.  We intentionally only
 | |
| /// trigger this for C-style casts.
 | |
| ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
 | |
|                                      Expr *castExpr, CastKind &castKind,
 | |
|                                      ExprValueKind &VK, CXXCastPath &path) {
 | |
|   // Rewrite the casted expression from scratch.
 | |
|   ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
 | |
|   if (!result.isUsable()) return ExprError();
 | |
| 
 | |
|   castExpr = result.take();
 | |
|   VK = castExpr->getValueKind();
 | |
|   castKind = CK_NoOp;
 | |
| 
 | |
|   return castExpr;
 | |
| }
 | |
| 
 | |
| static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
 | |
|   Expr *orig = e;
 | |
|   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
 | |
|   while (true) {
 | |
|     e = e->IgnoreParenImpCasts();
 | |
|     if (CallExpr *call = dyn_cast<CallExpr>(e)) {
 | |
|       e = call->getCallee();
 | |
|       diagID = diag::err_uncasted_call_of_unknown_any;
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SourceLocation loc;
 | |
|   NamedDecl *d;
 | |
|   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
 | |
|     loc = ref->getLocation();
 | |
|     d = ref->getDecl();
 | |
|   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
 | |
|     loc = mem->getMemberLoc();
 | |
|     d = mem->getMemberDecl();
 | |
|   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
 | |
|     diagID = diag::err_uncasted_call_of_unknown_any;
 | |
|     loc = msg->getSelectorLoc();
 | |
|     d = msg->getMethodDecl();
 | |
|     assert(d && "unknown method returning __unknown_any?");
 | |
|   } else {
 | |
|     S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
 | |
|       << e->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   S.Diag(loc, diagID) << d << orig->getSourceRange();
 | |
| 
 | |
|   // Never recoverable.
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// Check for operands with placeholder types and complain if found.
 | |
| /// Returns true if there was an error and no recovery was possible.
 | |
| ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
 | |
|   // Placeholder types are always *exactly* the appropriate builtin type.
 | |
|   QualType type = E->getType();
 | |
| 
 | |
|   // Overloaded expressions.
 | |
|   if (type == Context.OverloadTy)
 | |
|     return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
 | |
|                                                            E->getSourceRange(),
 | |
|                                                              QualType(),
 | |
|                                                    diag::err_ovl_unresolvable);
 | |
| 
 | |
|   // Expressions of unknown type.
 | |
|   if (type == Context.UnknownAnyTy)
 | |
|     return diagnoseUnknownAnyExpr(*this, E);
 | |
| 
 | |
|   assert(!type->isPlaceholderType());
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckCaseExpression(Expr *expr) {
 | |
|   if (expr->isTypeDependent())
 | |
|     return true;
 | |
|   if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
 | |
|     return expr->getType()->isIntegralOrEnumerationType();
 | |
|   return false;
 | |
| }
 |