forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4053 lines
		
	
	
		
			159 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4053 lines
		
	
	
		
			159 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for C++ expressions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
 | |
|                                    IdentifierInfo &II,
 | |
|                                    SourceLocation NameLoc,
 | |
|                                    Scope *S, CXXScopeSpec &SS,
 | |
|                                    ParsedType ObjectTypePtr,
 | |
|                                    bool EnteringContext) {
 | |
|   // Determine where to perform name lookup.
 | |
| 
 | |
|   // FIXME: This area of the standard is very messy, and the current
 | |
|   // wording is rather unclear about which scopes we search for the
 | |
|   // destructor name; see core issues 399 and 555. Issue 399 in
 | |
|   // particular shows where the current description of destructor name
 | |
|   // lookup is completely out of line with existing practice, e.g.,
 | |
|   // this appears to be ill-formed:
 | |
|   //
 | |
|   //   namespace N {
 | |
|   //     template <typename T> struct S {
 | |
|   //       ~S();
 | |
|   //     };
 | |
|   //   }
 | |
|   //
 | |
|   //   void f(N::S<int>* s) {
 | |
|   //     s->N::S<int>::~S();
 | |
|   //   }
 | |
|   //
 | |
|   // See also PR6358 and PR6359.
 | |
|   // For this reason, we're currently only doing the C++03 version of this
 | |
|   // code; the C++0x version has to wait until we get a proper spec.
 | |
|   QualType SearchType;
 | |
|   DeclContext *LookupCtx = 0;
 | |
|   bool isDependent = false;
 | |
|   bool LookInScope = false;
 | |
| 
 | |
|   // If we have an object type, it's because we are in a
 | |
|   // pseudo-destructor-expression or a member access expression, and
 | |
|   // we know what type we're looking for.
 | |
|   if (ObjectTypePtr)
 | |
|     SearchType = GetTypeFromParser(ObjectTypePtr);
 | |
| 
 | |
|   if (SS.isSet()) {
 | |
|     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
 | |
| 
 | |
|     bool AlreadySearched = false;
 | |
|     bool LookAtPrefix = true;
 | |
|     // C++ [basic.lookup.qual]p6:
 | |
|     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
 | |
|     //   the type-names are looked up as types in the scope designated by the
 | |
|     //   nested-name-specifier. In a qualified-id of the form:
 | |
|     //
 | |
|     //     ::[opt] nested-name-specifier  ~ class-name
 | |
|     //
 | |
|     //   where the nested-name-specifier designates a namespace scope, and in
 | |
|     //   a qualified-id of the form:
 | |
|     //
 | |
|     //     ::opt nested-name-specifier class-name ::  ~ class-name
 | |
|     //
 | |
|     //   the class-names are looked up as types in the scope designated by
 | |
|     //   the nested-name-specifier.
 | |
|     //
 | |
|     // Here, we check the first case (completely) and determine whether the
 | |
|     // code below is permitted to look at the prefix of the
 | |
|     // nested-name-specifier.
 | |
|     DeclContext *DC = computeDeclContext(SS, EnteringContext);
 | |
|     if (DC && DC->isFileContext()) {
 | |
|       AlreadySearched = true;
 | |
|       LookupCtx = DC;
 | |
|       isDependent = false;
 | |
|     } else if (DC && isa<CXXRecordDecl>(DC))
 | |
|       LookAtPrefix = false;
 | |
| 
 | |
|     // The second case from the C++03 rules quoted further above.
 | |
|     NestedNameSpecifier *Prefix = 0;
 | |
|     if (AlreadySearched) {
 | |
|       // Nothing left to do.
 | |
|     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
 | |
|       CXXScopeSpec PrefixSS;
 | |
|       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
 | |
|       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
 | |
|       isDependent = isDependentScopeSpecifier(PrefixSS);
 | |
|     } else if (ObjectTypePtr) {
 | |
|       LookupCtx = computeDeclContext(SearchType);
 | |
|       isDependent = SearchType->isDependentType();
 | |
|     } else {
 | |
|       LookupCtx = computeDeclContext(SS, EnteringContext);
 | |
|       isDependent = LookupCtx && LookupCtx->isDependentContext();
 | |
|     }
 | |
| 
 | |
|     LookInScope = false;
 | |
|   } else if (ObjectTypePtr) {
 | |
|     // C++ [basic.lookup.classref]p3:
 | |
|     //   If the unqualified-id is ~type-name, the type-name is looked up
 | |
|     //   in the context of the entire postfix-expression. If the type T
 | |
|     //   of the object expression is of a class type C, the type-name is
 | |
|     //   also looked up in the scope of class C. At least one of the
 | |
|     //   lookups shall find a name that refers to (possibly
 | |
|     //   cv-qualified) T.
 | |
|     LookupCtx = computeDeclContext(SearchType);
 | |
|     isDependent = SearchType->isDependentType();
 | |
|     assert((isDependent || !SearchType->isIncompleteType()) &&
 | |
|            "Caller should have completed object type");
 | |
| 
 | |
|     LookInScope = true;
 | |
|   } else {
 | |
|     // Perform lookup into the current scope (only).
 | |
|     LookInScope = true;
 | |
|   }
 | |
| 
 | |
|   TypeDecl *NonMatchingTypeDecl = 0;
 | |
|   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
 | |
|   for (unsigned Step = 0; Step != 2; ++Step) {
 | |
|     // Look for the name first in the computed lookup context (if we
 | |
|     // have one) and, if that fails to find a match, in the scope (if
 | |
|     // we're allowed to look there).
 | |
|     Found.clear();
 | |
|     if (Step == 0 && LookupCtx)
 | |
|       LookupQualifiedName(Found, LookupCtx);
 | |
|     else if (Step == 1 && LookInScope && S)
 | |
|       LookupName(Found, S);
 | |
|     else
 | |
|       continue;
 | |
| 
 | |
|     // FIXME: Should we be suppressing ambiguities here?
 | |
|     if (Found.isAmbiguous())
 | |
|       return ParsedType();
 | |
| 
 | |
|     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
 | |
|       QualType T = Context.getTypeDeclType(Type);
 | |
| 
 | |
|       if (SearchType.isNull() || SearchType->isDependentType() ||
 | |
|           Context.hasSameUnqualifiedType(T, SearchType)) {
 | |
|         // We found our type!
 | |
| 
 | |
|         return ParsedType::make(T);
 | |
|       }
 | |
| 
 | |
|       if (!SearchType.isNull())
 | |
|         NonMatchingTypeDecl = Type;
 | |
|     }
 | |
| 
 | |
|     // If the name that we found is a class template name, and it is
 | |
|     // the same name as the template name in the last part of the
 | |
|     // nested-name-specifier (if present) or the object type, then
 | |
|     // this is the destructor for that class.
 | |
|     // FIXME: This is a workaround until we get real drafting for core
 | |
|     // issue 399, for which there isn't even an obvious direction.
 | |
|     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
 | |
|       QualType MemberOfType;
 | |
|       if (SS.isSet()) {
 | |
|         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
 | |
|           // Figure out the type of the context, if it has one.
 | |
|           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|             MemberOfType = Context.getTypeDeclType(Record);
 | |
|         }
 | |
|       }
 | |
|       if (MemberOfType.isNull())
 | |
|         MemberOfType = SearchType;
 | |
| 
 | |
|       if (MemberOfType.isNull())
 | |
|         continue;
 | |
| 
 | |
|       // We're referring into a class template specialization. If the
 | |
|       // class template we found is the same as the template being
 | |
|       // specialized, we found what we are looking for.
 | |
|       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
 | |
|         if (ClassTemplateSpecializationDecl *Spec
 | |
|               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
 | |
|           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
 | |
|                 Template->getCanonicalDecl())
 | |
|             return ParsedType::make(MemberOfType);
 | |
|         }
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We're referring to an unresolved class template
 | |
|       // specialization. Determine whether we class template we found
 | |
|       // is the same as the template being specialized or, if we don't
 | |
|       // know which template is being specialized, that it at least
 | |
|       // has the same name.
 | |
|       if (const TemplateSpecializationType *SpecType
 | |
|             = MemberOfType->getAs<TemplateSpecializationType>()) {
 | |
|         TemplateName SpecName = SpecType->getTemplateName();
 | |
| 
 | |
|         // The class template we found is the same template being
 | |
|         // specialized.
 | |
|         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
 | |
|           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
 | |
|             return ParsedType::make(MemberOfType);
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // The class template we found has the same name as the
 | |
|         // (dependent) template name being specialized.
 | |
|         if (DependentTemplateName *DepTemplate
 | |
|                                     = SpecName.getAsDependentTemplateName()) {
 | |
|           if (DepTemplate->isIdentifier() &&
 | |
|               DepTemplate->getIdentifier() == Template->getIdentifier())
 | |
|             return ParsedType::make(MemberOfType);
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isDependent) {
 | |
|     // We didn't find our type, but that's okay: it's dependent
 | |
|     // anyway.
 | |
|     
 | |
|     // FIXME: What if we have no nested-name-specifier?
 | |
|     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
 | |
|                                    SS.getWithLocInContext(Context),
 | |
|                                    II, NameLoc);
 | |
|     return ParsedType::make(T);
 | |
|   }
 | |
| 
 | |
|   if (NonMatchingTypeDecl) {
 | |
|     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
 | |
|     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
 | |
|       << T << SearchType;
 | |
|     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
 | |
|       << T;
 | |
|   } else if (ObjectTypePtr)
 | |
|     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
 | |
|       << &II;
 | |
|   else
 | |
|     Diag(NameLoc, diag::err_destructor_class_name);
 | |
| 
 | |
|   return ParsedType();
 | |
| }
 | |
| 
 | |
| /// \brief Build a C++ typeid expression with a type operand.
 | |
| ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 TypeSourceInfo *Operand,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   // C++ [expr.typeid]p4:
 | |
|   //   The top-level cv-qualifiers of the lvalue expression or the type-id
 | |
|   //   that is the operand of typeid are always ignored.
 | |
|   //   If the type of the type-id is a class type or a reference to a class
 | |
|   //   type, the class shall be completely-defined.
 | |
|   Qualifiers Quals;
 | |
|   QualType T
 | |
|     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
 | |
|                                       Quals);
 | |
|   if (T->getAs<RecordType>() &&
 | |
|       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
 | |
|     return ExprError();
 | |
| 
 | |
|   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
 | |
|                                            Operand,
 | |
|                                            SourceRange(TypeidLoc, RParenLoc)));
 | |
| }
 | |
| 
 | |
| /// \brief Build a C++ typeid expression with an expression operand.
 | |
| ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 Expr *E,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   bool isUnevaluatedOperand = true;
 | |
|   if (E && !E->isTypeDependent()) {
 | |
|     QualType T = E->getType();
 | |
|     if (const RecordType *RecordT = T->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
 | |
|       // C++ [expr.typeid]p3:
 | |
|       //   [...] If the type of the expression is a class type, the class
 | |
|       //   shall be completely-defined.
 | |
|       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
 | |
|         return ExprError();
 | |
| 
 | |
|       // C++ [expr.typeid]p3:
 | |
|       //   When typeid is applied to an expression other than an glvalue of a
 | |
|       //   polymorphic class type [...] [the] expression is an unevaluated
 | |
|       //   operand. [...]
 | |
|       if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
 | |
|         isUnevaluatedOperand = false;
 | |
| 
 | |
|         // We require a vtable to query the type at run time.
 | |
|         MarkVTableUsed(TypeidLoc, RecordD);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // C++ [expr.typeid]p4:
 | |
|     //   [...] If the type of the type-id is a reference to a possibly
 | |
|     //   cv-qualified type, the result of the typeid expression refers to a
 | |
|     //   std::type_info object representing the cv-unqualified referenced
 | |
|     //   type.
 | |
|     Qualifiers Quals;
 | |
|     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
 | |
|     if (!Context.hasSameType(T, UnqualT)) {
 | |
|       T = UnqualT;
 | |
|       E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is an unevaluated operand, clear out the set of
 | |
|   // declaration references we have been computing and eliminate any
 | |
|   // temporaries introduced in its computation.
 | |
|   if (isUnevaluatedOperand)
 | |
|     ExprEvalContexts.back().Context = Unevaluated;
 | |
| 
 | |
|   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
 | |
|                                            E,
 | |
|                                            SourceRange(TypeidLoc, RParenLoc)));
 | |
| }
 | |
| 
 | |
| /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
 | |
| ExprResult
 | |
| Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
 | |
|                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
 | |
|   // Find the std::type_info type.
 | |
|   if (!getStdNamespace())
 | |
|     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | |
| 
 | |
|   if (!CXXTypeInfoDecl) {
 | |
|     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
 | |
|     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
 | |
|     LookupQualifiedName(R, getStdNamespace());
 | |
|     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
 | |
|     if (!CXXTypeInfoDecl)
 | |
|       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | |
|   }
 | |
| 
 | |
|   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
 | |
| 
 | |
|   if (isType) {
 | |
|     // The operand is a type; handle it as such.
 | |
|     TypeSourceInfo *TInfo = 0;
 | |
|     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
 | |
|                                    &TInfo);
 | |
|     if (T.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!TInfo)
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
 | |
| 
 | |
|     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   // The operand is an expression.
 | |
|   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
 | |
| }
 | |
| 
 | |
| /// Retrieve the UuidAttr associated with QT.
 | |
| static UuidAttr *GetUuidAttrOfType(QualType QT) {
 | |
|   // Optionally remove one level of pointer, reference or array indirection.
 | |
|   const Type *Ty = QT.getTypePtr();;
 | |
|   if (QT->isPointerType() || QT->isReferenceType())
 | |
|     Ty = QT->getPointeeType().getTypePtr();
 | |
|   else if (QT->isArrayType())
 | |
|     Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
 | |
| 
 | |
|   // Loop all class definition and declaration looking for an uuid attribute.
 | |
|   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | |
|   while (RD) {
 | |
|     if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
 | |
|       return Uuid;
 | |
|     RD = RD->getPreviousDeclaration();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Build a Microsoft __uuidof expression with a type operand.
 | |
| ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 TypeSourceInfo *Operand,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   if (!Operand->getType()->isDependentType()) {
 | |
|     if (!GetUuidAttrOfType(Operand->getType()))
 | |
|       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
 | |
|   }
 | |
| 
 | |
|   // FIXME: add __uuidof semantic analysis for type operand.
 | |
|   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
 | |
|                                            Operand,
 | |
|                                            SourceRange(TypeidLoc, RParenLoc)));
 | |
| }
 | |
| 
 | |
| /// \brief Build a Microsoft __uuidof expression with an expression operand.
 | |
| ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 Expr *E,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   if (!E->getType()->isDependentType()) {
 | |
|     if (!GetUuidAttrOfType(E->getType()) &&
 | |
|         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
 | |
|       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
 | |
|   }
 | |
|   // FIXME: add __uuidof semantic analysis for type operand.
 | |
|   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
 | |
|                                            E,
 | |
|                                            SourceRange(TypeidLoc, RParenLoc)));
 | |
| }
 | |
| 
 | |
| /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
 | |
| ExprResult
 | |
| Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
 | |
|                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
 | |
|   // If MSVCGuidDecl has not been cached, do the lookup.
 | |
|   if (!MSVCGuidDecl) {
 | |
|     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
 | |
|     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
 | |
|     LookupQualifiedName(R, Context.getTranslationUnitDecl());
 | |
|     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
 | |
|     if (!MSVCGuidDecl)
 | |
|       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
 | |
|   }
 | |
| 
 | |
|   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
 | |
| 
 | |
|   if (isType) {
 | |
|     // The operand is a type; handle it as such.
 | |
|     TypeSourceInfo *TInfo = 0;
 | |
|     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
 | |
|                                    &TInfo);
 | |
|     if (T.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!TInfo)
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
 | |
| 
 | |
|     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   // The operand is an expression.
 | |
|   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXBoolLiteral - Parse {true,false} literals.
 | |
| ExprResult
 | |
| Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
 | |
|   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
 | |
|          "Unknown C++ Boolean value!");
 | |
|   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
 | |
|                                                 Context.BoolTy, OpLoc));
 | |
| }
 | |
| 
 | |
| /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
 | |
| ExprResult
 | |
| Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
 | |
|   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
 | |
| }
 | |
| 
 | |
| /// ActOnCXXThrow - Parse throw expressions.
 | |
| ExprResult
 | |
| Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
 | |
|   // Don't report an error if 'throw' is used in system headers.
 | |
|   if (!getLangOptions().CXXExceptions &&
 | |
|       !getSourceManager().isInSystemHeader(OpLoc))
 | |
|     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
 | |
| 
 | |
|   if (Ex && !Ex->isTypeDependent()) {
 | |
|     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex);
 | |
|     if (ExRes.isInvalid())
 | |
|       return ExprError();
 | |
|     Ex = ExRes.take();
 | |
|   }
 | |
|   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
 | |
| }
 | |
| 
 | |
| /// CheckCXXThrowOperand - Validate the operand of a throw.
 | |
| ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E) {
 | |
|   // C++ [except.throw]p3:
 | |
|   //   A throw-expression initializes a temporary object, called the exception
 | |
|   //   object, the type of which is determined by removing any top-level
 | |
|   //   cv-qualifiers from the static type of the operand of throw and adjusting
 | |
|   //   the type from "array of T" or "function returning T" to "pointer to T"
 | |
|   //   or "pointer to function returning T", [...]
 | |
|   if (E->getType().hasQualifiers())
 | |
|     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
 | |
|                       CastCategory(E)).take();
 | |
| 
 | |
|   ExprResult Res = DefaultFunctionArrayConversion(E);
 | |
|   if (Res.isInvalid())
 | |
|     return ExprError();
 | |
|   E = Res.take();
 | |
| 
 | |
|   //   If the type of the exception would be an incomplete type or a pointer
 | |
|   //   to an incomplete type other than (cv) void the program is ill-formed.
 | |
|   QualType Ty = E->getType();
 | |
|   bool isPointer = false;
 | |
|   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
 | |
|     Ty = Ptr->getPointeeType();
 | |
|     isPointer = true;
 | |
|   }
 | |
|   if (!isPointer || !Ty->isVoidType()) {
 | |
|     if (RequireCompleteType(ThrowLoc, Ty,
 | |
|                             PDiag(isPointer ? diag::err_throw_incomplete_ptr
 | |
|                                             : diag::err_throw_incomplete)
 | |
|                               << E->getSourceRange()))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (RequireNonAbstractType(ThrowLoc, E->getType(),
 | |
|                                PDiag(diag::err_throw_abstract_type)
 | |
|                                  << E->getSourceRange()))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Initialize the exception result.  This implicitly weeds out
 | |
|   // abstract types or types with inaccessible copy constructors.
 | |
|   const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
 | |
| 
 | |
|   // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
 | |
|   InitializedEntity Entity =
 | |
|       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
 | |
|                                              /*NRVO=*/false);
 | |
|   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
 | |
|                                         QualType(), E);
 | |
|   if (Res.isInvalid())
 | |
|     return ExprError();
 | |
|   E = Res.take();
 | |
| 
 | |
|   // If the exception has class type, we need additional handling.
 | |
|   const RecordType *RecordTy = Ty->getAs<RecordType>();
 | |
|   if (!RecordTy)
 | |
|     return Owned(E);
 | |
|   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
| 
 | |
|   // If we are throwing a polymorphic class type or pointer thereof,
 | |
|   // exception handling will make use of the vtable.
 | |
|   MarkVTableUsed(ThrowLoc, RD);
 | |
| 
 | |
|   // If a pointer is thrown, the referenced object will not be destroyed.
 | |
|   if (isPointer)
 | |
|     return Owned(E);
 | |
| 
 | |
|   // If the class has a non-trivial destructor, we must be able to call it.
 | |
|   if (RD->hasTrivialDestructor())
 | |
|     return Owned(E);
 | |
| 
 | |
|   CXXDestructorDecl *Destructor
 | |
|     = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
 | |
|   if (!Destructor)
 | |
|     return Owned(E);
 | |
| 
 | |
|   MarkDeclarationReferenced(E->getExprLoc(), Destructor);
 | |
|   CheckDestructorAccess(E->getExprLoc(), Destructor,
 | |
|                         PDiag(diag::err_access_dtor_exception) << Ty);
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *Sema::tryCaptureCXXThis() {
 | |
|   // Ignore block scopes: we can capture through them.
 | |
|   // Ignore nested enum scopes: we'll diagnose non-constant expressions
 | |
|   // where they're invalid, and other uses are legitimate.
 | |
|   // Don't ignore nested class scopes: you can't use 'this' in a local class.
 | |
|   DeclContext *DC = CurContext;
 | |
|   while (true) {
 | |
|     if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
 | |
|     else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
 | |
|     else break;
 | |
|   }
 | |
| 
 | |
|   // If we're not in an instance method, error out.
 | |
|   CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
 | |
|   if (!method || !method->isInstance())
 | |
|     return 0;
 | |
| 
 | |
|   // Mark that we're closing on 'this' in all the block scopes, if applicable.
 | |
|   for (unsigned idx = FunctionScopes.size() - 1;
 | |
|        isa<BlockScopeInfo>(FunctionScopes[idx]);
 | |
|        --idx)
 | |
|     cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
 | |
| 
 | |
|   return method;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
 | |
|   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
 | |
|   /// is a non-lvalue expression whose value is the address of the object for
 | |
|   /// which the function is called.
 | |
| 
 | |
|   CXXMethodDecl *method = tryCaptureCXXThis();
 | |
|   if (!method) return Diag(loc, diag::err_invalid_this_use);
 | |
| 
 | |
|   return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
 | |
|                                          /*isImplicit=*/false));
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
 | |
|                                 SourceLocation LParenLoc,
 | |
|                                 MultiExprArg exprs,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   if (!TypeRep)
 | |
|     return ExprError();
 | |
| 
 | |
|   TypeSourceInfo *TInfo;
 | |
|   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
 | |
|   if (!TInfo)
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
 | |
| 
 | |
|   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
 | |
| /// Can be interpreted either as function-style casting ("int(x)")
 | |
| /// or class type construction ("ClassType(x,y,z)")
 | |
| /// or creation of a value-initialized type ("int()").
 | |
| ExprResult
 | |
| Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
 | |
|                                 SourceLocation LParenLoc,
 | |
|                                 MultiExprArg exprs,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   QualType Ty = TInfo->getType();
 | |
|   unsigned NumExprs = exprs.size();
 | |
|   Expr **Exprs = (Expr**)exprs.get();
 | |
|   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
 | |
|   SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
 | |
| 
 | |
|   if (Ty->isDependentType() ||
 | |
|       CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
 | |
|     exprs.release();
 | |
| 
 | |
|     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
 | |
|                                                     LParenLoc,
 | |
|                                                     Exprs, NumExprs,
 | |
|                                                     RParenLoc));
 | |
|   }
 | |
| 
 | |
|   if (Ty->isArrayType())
 | |
|     return ExprError(Diag(TyBeginLoc,
 | |
|                           diag::err_value_init_for_array_type) << FullRange);
 | |
|   if (!Ty->isVoidType() &&
 | |
|       RequireCompleteType(TyBeginLoc, Ty,
 | |
|                           PDiag(diag::err_invalid_incomplete_type_use)
 | |
|                             << FullRange))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (RequireNonAbstractType(TyBeginLoc, Ty,
 | |
|                              diag::err_allocation_of_abstract_type))
 | |
|     return ExprError();
 | |
| 
 | |
| 
 | |
|   // C++ [expr.type.conv]p1:
 | |
|   // If the expression list is a single expression, the type conversion
 | |
|   // expression is equivalent (in definedness, and if defined in meaning) to the
 | |
|   // corresponding cast expression.
 | |
|   //
 | |
|   if (NumExprs == 1) {
 | |
|     CastKind Kind = CK_Invalid;
 | |
|     ExprValueKind VK = VK_RValue;
 | |
|     CXXCastPath BasePath;
 | |
|     ExprResult CastExpr =
 | |
|       CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
 | |
|                      Kind, VK, BasePath,
 | |
|                      /*FunctionalStyle=*/true);
 | |
|     if (CastExpr.isInvalid())
 | |
|       return ExprError();
 | |
|     Exprs[0] = CastExpr.take();
 | |
| 
 | |
|     exprs.release();
 | |
| 
 | |
|     return Owned(CXXFunctionalCastExpr::Create(Context,
 | |
|                                                Ty.getNonLValueExprType(Context),
 | |
|                                                VK, TInfo, TyBeginLoc, Kind,
 | |
|                                                Exprs[0], &BasePath,
 | |
|                                                RParenLoc));
 | |
|   }
 | |
| 
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
 | |
|   InitializationKind Kind
 | |
|     = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
 | |
|                                                   LParenLoc, RParenLoc)
 | |
|                : InitializationKind::CreateValue(TyBeginLoc,
 | |
|                                                  LParenLoc, RParenLoc);
 | |
|   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
 | |
|   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
 | |
| 
 | |
|   // FIXME: Improve AST representation?
 | |
|   return move(Result);
 | |
| }
 | |
| 
 | |
| /// doesUsualArrayDeleteWantSize - Answers whether the usual
 | |
| /// operator delete[] for the given type has a size_t parameter.
 | |
| static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
 | |
|                                          QualType allocType) {
 | |
|   const RecordType *record =
 | |
|     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
 | |
|   if (!record) return false;
 | |
| 
 | |
|   // Try to find an operator delete[] in class scope.
 | |
| 
 | |
|   DeclarationName deleteName =
 | |
|     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
 | |
|   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
 | |
|   S.LookupQualifiedName(ops, record->getDecl());
 | |
| 
 | |
|   // We're just doing this for information.
 | |
|   ops.suppressDiagnostics();
 | |
| 
 | |
|   // Very likely: there's no operator delete[].
 | |
|   if (ops.empty()) return false;
 | |
| 
 | |
|   // If it's ambiguous, it should be illegal to call operator delete[]
 | |
|   // on this thing, so it doesn't matter if we allocate extra space or not.
 | |
|   if (ops.isAmbiguous()) return false;
 | |
| 
 | |
|   LookupResult::Filter filter = ops.makeFilter();
 | |
|   while (filter.hasNext()) {
 | |
|     NamedDecl *del = filter.next()->getUnderlyingDecl();
 | |
| 
 | |
|     // C++0x [basic.stc.dynamic.deallocation]p2:
 | |
|     //   A template instance is never a usual deallocation function,
 | |
|     //   regardless of its signature.
 | |
|     if (isa<FunctionTemplateDecl>(del)) {
 | |
|       filter.erase();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++0x [basic.stc.dynamic.deallocation]p2:
 | |
|     //   If class T does not declare [an operator delete[] with one
 | |
|     //   parameter] but does declare a member deallocation function
 | |
|     //   named operator delete[] with exactly two parameters, the
 | |
|     //   second of which has type std::size_t, then this function
 | |
|     //   is a usual deallocation function.
 | |
|     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
 | |
|       filter.erase();
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
|   filter.done();
 | |
| 
 | |
|   if (!ops.isSingleResult()) return false;
 | |
| 
 | |
|   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
 | |
|   return (del->getNumParams() == 2);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
 | |
| /// @code new (memory) int[size][4] @endcode
 | |
| /// or
 | |
| /// @code ::new Foo(23, "hello") @endcode
 | |
| /// For the interpretation of this heap of arguments, consult the base version.
 | |
| ExprResult
 | |
| Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
 | |
|                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
 | |
|                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
 | |
|                   Declarator &D, SourceLocation ConstructorLParen,
 | |
|                   MultiExprArg ConstructorArgs,
 | |
|                   SourceLocation ConstructorRParen) {
 | |
|   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
 | |
| 
 | |
|   Expr *ArraySize = 0;
 | |
|   // If the specified type is an array, unwrap it and save the expression.
 | |
|   if (D.getNumTypeObjects() > 0 &&
 | |
|       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
 | |
|     DeclaratorChunk &Chunk = D.getTypeObject(0);
 | |
|     if (TypeContainsAuto)
 | |
|       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
 | |
|         << D.getSourceRange());
 | |
|     if (Chunk.Arr.hasStatic)
 | |
|       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
 | |
|         << D.getSourceRange());
 | |
|     if (!Chunk.Arr.NumElts)
 | |
|       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
 | |
|         << D.getSourceRange());
 | |
| 
 | |
|     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
 | |
|     D.DropFirstTypeObject();
 | |
|   }
 | |
| 
 | |
|   // Every dimension shall be of constant size.
 | |
|   if (ArraySize) {
 | |
|     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
 | |
|       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
 | |
|         break;
 | |
| 
 | |
|       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
 | |
|       if (Expr *NumElts = (Expr *)Array.NumElts) {
 | |
|         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
 | |
|             !NumElts->isIntegerConstantExpr(Context)) {
 | |
|           Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
 | |
|             << NumElts->getSourceRange();
 | |
|           return ExprError();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
 | |
|                                                /*AllowAuto=*/true);
 | |
|   QualType AllocType = TInfo->getType();
 | |
|   if (D.isInvalidType())
 | |
|     return ExprError();
 | |
| 
 | |
|   return BuildCXXNew(StartLoc, UseGlobal,
 | |
|                      PlacementLParen,
 | |
|                      move(PlacementArgs),
 | |
|                      PlacementRParen,
 | |
|                      TypeIdParens,
 | |
|                      AllocType,
 | |
|                      TInfo,
 | |
|                      ArraySize,
 | |
|                      ConstructorLParen,
 | |
|                      move(ConstructorArgs),
 | |
|                      ConstructorRParen,
 | |
|                      TypeContainsAuto);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
 | |
|                   SourceLocation PlacementLParen,
 | |
|                   MultiExprArg PlacementArgs,
 | |
|                   SourceLocation PlacementRParen,
 | |
|                   SourceRange TypeIdParens,
 | |
|                   QualType AllocType,
 | |
|                   TypeSourceInfo *AllocTypeInfo,
 | |
|                   Expr *ArraySize,
 | |
|                   SourceLocation ConstructorLParen,
 | |
|                   MultiExprArg ConstructorArgs,
 | |
|                   SourceLocation ConstructorRParen,
 | |
|                   bool TypeMayContainAuto) {
 | |
|   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
 | |
| 
 | |
|   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | |
|   if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
 | |
|     if (ConstructorArgs.size() == 0)
 | |
|       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
 | |
|                        << AllocType << TypeRange);
 | |
|     if (ConstructorArgs.size() != 1) {
 | |
|       Expr *FirstBad = ConstructorArgs.get()[1];
 | |
|       return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
 | |
|                             diag::err_auto_new_ctor_multiple_expressions)
 | |
|                        << AllocType << TypeRange);
 | |
|     }
 | |
|     TypeSourceInfo *DeducedType = 0;
 | |
|     if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
 | |
|       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
 | |
|                        << AllocType
 | |
|                        << ConstructorArgs.get()[0]->getType()
 | |
|                        << TypeRange
 | |
|                        << ConstructorArgs.get()[0]->getSourceRange());
 | |
|     if (!DeducedType)
 | |
|       return ExprError();
 | |
| 
 | |
|     AllocTypeInfo = DeducedType;
 | |
|     AllocType = AllocTypeInfo->getType();
 | |
|   }
 | |
|   
 | |
|   // Per C++0x [expr.new]p5, the type being constructed may be a
 | |
|   // typedef of an array type.
 | |
|   if (!ArraySize) {
 | |
|     if (const ConstantArrayType *Array
 | |
|                               = Context.getAsConstantArrayType(AllocType)) {
 | |
|       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
 | |
|                                          Context.getSizeType(),
 | |
|                                          TypeRange.getEnd());
 | |
|       AllocType = Array->getElementType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType ResultType = Context.getPointerType(AllocType);
 | |
| 
 | |
|   // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
 | |
|   //   or enumeration type with a non-negative value."
 | |
|   if (ArraySize && !ArraySize->isTypeDependent()) {
 | |
| 
 | |
|     QualType SizeType = ArraySize->getType();
 | |
| 
 | |
|     ExprResult ConvertedSize
 | |
|       = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
 | |
|                                        PDiag(diag::err_array_size_not_integral),
 | |
|                                      PDiag(diag::err_array_size_incomplete_type)
 | |
|                                        << ArraySize->getSourceRange(),
 | |
|                                PDiag(diag::err_array_size_explicit_conversion),
 | |
|                                        PDiag(diag::note_array_size_conversion),
 | |
|                                PDiag(diag::err_array_size_ambiguous_conversion),
 | |
|                                        PDiag(diag::note_array_size_conversion),
 | |
|                           PDiag(getLangOptions().CPlusPlus0x? 0
 | |
|                                             : diag::ext_array_size_conversion));
 | |
|     if (ConvertedSize.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     ArraySize = ConvertedSize.take();
 | |
|     SizeType = ArraySize->getType();
 | |
|     if (!SizeType->isIntegralOrUnscopedEnumerationType())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Let's see if this is a constant < 0. If so, we reject it out of hand.
 | |
|     // We don't care about special rules, so we tell the machinery it's not
 | |
|     // evaluated - it gives us a result in more cases.
 | |
|     if (!ArraySize->isValueDependent()) {
 | |
|       llvm::APSInt Value;
 | |
|       if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
 | |
|         if (Value < llvm::APSInt(
 | |
|                         llvm::APInt::getNullValue(Value.getBitWidth()),
 | |
|                                  Value.isUnsigned()))
 | |
|           return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
 | |
|                                 diag::err_typecheck_negative_array_size)
 | |
|             << ArraySize->getSourceRange());
 | |
| 
 | |
|         if (!AllocType->isDependentType()) {
 | |
|           unsigned ActiveSizeBits
 | |
|             = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
 | |
|           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
 | |
|             Diag(ArraySize->getSourceRange().getBegin(),
 | |
|                  diag::err_array_too_large)
 | |
|               << Value.toString(10)
 | |
|               << ArraySize->getSourceRange();
 | |
|             return ExprError();
 | |
|           }
 | |
|         }
 | |
|       } else if (TypeIdParens.isValid()) {
 | |
|         // Can't have dynamic array size when the type-id is in parentheses.
 | |
|         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
 | |
|           << ArraySize->getSourceRange()
 | |
|           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
 | |
|           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
 | |
| 
 | |
|         TypeIdParens = SourceRange();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ArraySize = ImpCastExprToType(ArraySize, Context.getSizeType(),
 | |
|                       CK_IntegralCast).take();
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *OperatorNew = 0;
 | |
|   FunctionDecl *OperatorDelete = 0;
 | |
|   Expr **PlaceArgs = (Expr**)PlacementArgs.get();
 | |
|   unsigned NumPlaceArgs = PlacementArgs.size();
 | |
| 
 | |
|   if (!AllocType->isDependentType() &&
 | |
|       !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
 | |
|       FindAllocationFunctions(StartLoc,
 | |
|                               SourceRange(PlacementLParen, PlacementRParen),
 | |
|                               UseGlobal, AllocType, ArraySize, PlaceArgs,
 | |
|                               NumPlaceArgs, OperatorNew, OperatorDelete))
 | |
|     return ExprError();
 | |
| 
 | |
|   // If this is an array allocation, compute whether the usual array
 | |
|   // deallocation function for the type has a size_t parameter.
 | |
|   bool UsualArrayDeleteWantsSize = false;
 | |
|   if (ArraySize && !AllocType->isDependentType())
 | |
|     UsualArrayDeleteWantsSize
 | |
|       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
 | |
| 
 | |
|   llvm::SmallVector<Expr *, 8> AllPlaceArgs;
 | |
|   if (OperatorNew) {
 | |
|     // Add default arguments, if any.
 | |
|     const FunctionProtoType *Proto =
 | |
|       OperatorNew->getType()->getAs<FunctionProtoType>();
 | |
|     VariadicCallType CallType =
 | |
|       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
 | |
| 
 | |
|     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
 | |
|                                Proto, 1, PlaceArgs, NumPlaceArgs,
 | |
|                                AllPlaceArgs, CallType))
 | |
|       return ExprError();
 | |
| 
 | |
|     NumPlaceArgs = AllPlaceArgs.size();
 | |
|     if (NumPlaceArgs > 0)
 | |
|       PlaceArgs = &AllPlaceArgs[0];
 | |
|   }
 | |
| 
 | |
|   bool Init = ConstructorLParen.isValid();
 | |
|   // --- Choosing a constructor ---
 | |
|   CXXConstructorDecl *Constructor = 0;
 | |
|   Expr **ConsArgs = (Expr**)ConstructorArgs.get();
 | |
|   unsigned NumConsArgs = ConstructorArgs.size();
 | |
|   ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
 | |
| 
 | |
|   // Array 'new' can't have any initializers.
 | |
|   if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
 | |
|     SourceRange InitRange(ConsArgs[0]->getLocStart(),
 | |
|                           ConsArgs[NumConsArgs - 1]->getLocEnd());
 | |
| 
 | |
|     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!AllocType->isDependentType() &&
 | |
|       !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
 | |
|     // C++0x [expr.new]p15:
 | |
|     //   A new-expression that creates an object of type T initializes that
 | |
|     //   object as follows:
 | |
|     InitializationKind Kind
 | |
|     //     - If the new-initializer is omitted, the object is default-
 | |
|     //       initialized (8.5); if no initialization is performed,
 | |
|     //       the object has indeterminate value
 | |
|       = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
 | |
|     //     - Otherwise, the new-initializer is interpreted according to the
 | |
|     //       initialization rules of 8.5 for direct-initialization.
 | |
|              : InitializationKind::CreateDirect(TypeRange.getBegin(),
 | |
|                                                 ConstructorLParen,
 | |
|                                                 ConstructorRParen);
 | |
| 
 | |
|     InitializedEntity Entity
 | |
|       = InitializedEntity::InitializeNew(StartLoc, AllocType);
 | |
|     InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
 | |
|     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                                 move(ConstructorArgs));
 | |
|     if (FullInit.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // FullInit is our initializer; walk through it to determine if it's a
 | |
|     // constructor call, which CXXNewExpr handles directly.
 | |
|     if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
 | |
|       if (CXXBindTemporaryExpr *Binder
 | |
|             = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
 | |
|         FullInitExpr = Binder->getSubExpr();
 | |
|       if (CXXConstructExpr *Construct
 | |
|                     = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
 | |
|         Constructor = Construct->getConstructor();
 | |
|         for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
 | |
|                                          AEnd = Construct->arg_end();
 | |
|              A != AEnd; ++A)
 | |
|           ConvertedConstructorArgs.push_back(*A);
 | |
|       } else {
 | |
|         // Take the converted initializer.
 | |
|         ConvertedConstructorArgs.push_back(FullInit.release());
 | |
|       }
 | |
|     } else {
 | |
|       // No initialization required.
 | |
|     }
 | |
| 
 | |
|     // Take the converted arguments and use them for the new expression.
 | |
|     NumConsArgs = ConvertedConstructorArgs.size();
 | |
|     ConsArgs = (Expr **)ConvertedConstructorArgs.take();
 | |
|   }
 | |
| 
 | |
|   // Mark the new and delete operators as referenced.
 | |
|   if (OperatorNew)
 | |
|     MarkDeclarationReferenced(StartLoc, OperatorNew);
 | |
|   if (OperatorDelete)
 | |
|     MarkDeclarationReferenced(StartLoc, OperatorDelete);
 | |
| 
 | |
|   // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
 | |
| 
 | |
|   PlacementArgs.release();
 | |
|   ConstructorArgs.release();
 | |
| 
 | |
|   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
 | |
|                                         PlaceArgs, NumPlaceArgs, TypeIdParens,
 | |
|                                         ArraySize, Constructor, Init,
 | |
|                                         ConsArgs, NumConsArgs, OperatorDelete,
 | |
|                                         UsualArrayDeleteWantsSize,
 | |
|                                         ResultType, AllocTypeInfo,
 | |
|                                         StartLoc,
 | |
|                                         Init ? ConstructorRParen :
 | |
|                                                TypeRange.getEnd(),
 | |
|                                         ConstructorLParen, ConstructorRParen));
 | |
| }
 | |
| 
 | |
| /// CheckAllocatedType - Checks that a type is suitable as the allocated type
 | |
| /// in a new-expression.
 | |
| /// dimension off and stores the size expression in ArraySize.
 | |
| bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
 | |
|                               SourceRange R) {
 | |
|   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
 | |
|   //   abstract class type or array thereof.
 | |
|   if (AllocType->isFunctionType())
 | |
|     return Diag(Loc, diag::err_bad_new_type)
 | |
|       << AllocType << 0 << R;
 | |
|   else if (AllocType->isReferenceType())
 | |
|     return Diag(Loc, diag::err_bad_new_type)
 | |
|       << AllocType << 1 << R;
 | |
|   else if (!AllocType->isDependentType() &&
 | |
|            RequireCompleteType(Loc, AllocType,
 | |
|                                PDiag(diag::err_new_incomplete_type)
 | |
|                                  << R))
 | |
|     return true;
 | |
|   else if (RequireNonAbstractType(Loc, AllocType,
 | |
|                                   diag::err_allocation_of_abstract_type))
 | |
|     return true;
 | |
|   else if (AllocType->isVariablyModifiedType())
 | |
|     return Diag(Loc, diag::err_variably_modified_new_type)
 | |
|              << AllocType;
 | |
|   else if (unsigned AddressSpace = AllocType.getAddressSpace())
 | |
|     return Diag(Loc, diag::err_address_space_qualified_new)
 | |
|       << AllocType.getUnqualifiedType() << AddressSpace;
 | |
|            
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given function is a non-placement
 | |
| /// deallocation function.
 | |
| static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
 | |
|   if (FD->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
 | |
|     return Method->isUsualDeallocationFunction();
 | |
| 
 | |
|   return ((FD->getOverloadedOperator() == OO_Delete ||
 | |
|            FD->getOverloadedOperator() == OO_Array_Delete) &&
 | |
|           FD->getNumParams() == 1);
 | |
| }
 | |
| 
 | |
| /// FindAllocationFunctions - Finds the overloads of operator new and delete
 | |
| /// that are appropriate for the allocation.
 | |
| bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
 | |
|                                    bool UseGlobal, QualType AllocType,
 | |
|                                    bool IsArray, Expr **PlaceArgs,
 | |
|                                    unsigned NumPlaceArgs,
 | |
|                                    FunctionDecl *&OperatorNew,
 | |
|                                    FunctionDecl *&OperatorDelete) {
 | |
|   // --- Choosing an allocation function ---
 | |
|   // C++ 5.3.4p8 - 14 & 18
 | |
|   // 1) If UseGlobal is true, only look in the global scope. Else, also look
 | |
|   //   in the scope of the allocated class.
 | |
|   // 2) If an array size is given, look for operator new[], else look for
 | |
|   //   operator new.
 | |
|   // 3) The first argument is always size_t. Append the arguments from the
 | |
|   //   placement form.
 | |
| 
 | |
|   llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
 | |
|   // We don't care about the actual value of this argument.
 | |
|   // FIXME: Should the Sema create the expression and embed it in the syntax
 | |
|   // tree? Or should the consumer just recalculate the value?
 | |
|   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
 | |
|                       Context.Target.getPointerWidth(0)),
 | |
|                       Context.getSizeType(),
 | |
|                       SourceLocation());
 | |
|   AllocArgs[0] = &Size;
 | |
|   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
 | |
| 
 | |
|   // C++ [expr.new]p8:
 | |
|   //   If the allocated type is a non-array type, the allocation
 | |
|   //   function's name is operator new and the deallocation function's
 | |
|   //   name is operator delete. If the allocated type is an array
 | |
|   //   type, the allocation function's name is operator new[] and the
 | |
|   //   deallocation function's name is operator delete[].
 | |
|   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
 | |
|                                         IsArray ? OO_Array_New : OO_New);
 | |
|   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
 | |
|                                         IsArray ? OO_Array_Delete : OO_Delete);
 | |
| 
 | |
|   QualType AllocElemType = Context.getBaseElementType(AllocType);
 | |
| 
 | |
|   if (AllocElemType->isRecordType() && !UseGlobal) {
 | |
|     CXXRecordDecl *Record
 | |
|       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
 | |
|     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
 | |
|                           AllocArgs.size(), Record, /*AllowMissing=*/true,
 | |
|                           OperatorNew))
 | |
|       return true;
 | |
|   }
 | |
|   if (!OperatorNew) {
 | |
|     // Didn't find a member overload. Look for a global one.
 | |
|     DeclareGlobalNewDelete();
 | |
|     DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | |
|     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
 | |
|                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
 | |
|                           OperatorNew))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // We don't need an operator delete if we're running under
 | |
|   // -fno-exceptions.
 | |
|   if (!getLangOptions().Exceptions) {
 | |
|     OperatorDelete = 0;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // FindAllocationOverload can change the passed in arguments, so we need to
 | |
|   // copy them back.
 | |
|   if (NumPlaceArgs > 0)
 | |
|     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
 | |
| 
 | |
|   // C++ [expr.new]p19:
 | |
|   //
 | |
|   //   If the new-expression begins with a unary :: operator, the
 | |
|   //   deallocation function's name is looked up in the global
 | |
|   //   scope. Otherwise, if the allocated type is a class type T or an
 | |
|   //   array thereof, the deallocation function's name is looked up in
 | |
|   //   the scope of T. If this lookup fails to find the name, or if
 | |
|   //   the allocated type is not a class type or array thereof, the
 | |
|   //   deallocation function's name is looked up in the global scope.
 | |
|   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
 | |
|   if (AllocElemType->isRecordType() && !UseGlobal) {
 | |
|     CXXRecordDecl *RD
 | |
|       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
 | |
|     LookupQualifiedName(FoundDelete, RD);
 | |
|   }
 | |
|   if (FoundDelete.isAmbiguous())
 | |
|     return true; // FIXME: clean up expressions?
 | |
| 
 | |
|   if (FoundDelete.empty()) {
 | |
|     DeclareGlobalNewDelete();
 | |
|     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
 | |
|   }
 | |
| 
 | |
|   FoundDelete.suppressDiagnostics();
 | |
| 
 | |
|   llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
 | |
| 
 | |
|   // Whether we're looking for a placement operator delete is dictated
 | |
|   // by whether we selected a placement operator new, not by whether
 | |
|   // we had explicit placement arguments.  This matters for things like
 | |
|   //   struct A { void *operator new(size_t, int = 0); ... };
 | |
|   //   A *a = new A()
 | |
|   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
 | |
| 
 | |
|   if (isPlacementNew) {
 | |
|     // C++ [expr.new]p20:
 | |
|     //   A declaration of a placement deallocation function matches the
 | |
|     //   declaration of a placement allocation function if it has the
 | |
|     //   same number of parameters and, after parameter transformations
 | |
|     //   (8.3.5), all parameter types except the first are
 | |
|     //   identical. [...]
 | |
|     //
 | |
|     // To perform this comparison, we compute the function type that
 | |
|     // the deallocation function should have, and use that type both
 | |
|     // for template argument deduction and for comparison purposes.
 | |
|     //
 | |
|     // FIXME: this comparison should ignore CC and the like.
 | |
|     QualType ExpectedFunctionType;
 | |
|     {
 | |
|       const FunctionProtoType *Proto
 | |
|         = OperatorNew->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|       llvm::SmallVector<QualType, 4> ArgTypes;
 | |
|       ArgTypes.push_back(Context.VoidPtrTy);
 | |
|       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
 | |
|         ArgTypes.push_back(Proto->getArgType(I));
 | |
| 
 | |
|       FunctionProtoType::ExtProtoInfo EPI;
 | |
|       EPI.Variadic = Proto->isVariadic();
 | |
| 
 | |
|       ExpectedFunctionType
 | |
|         = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
 | |
|                                   ArgTypes.size(), EPI);
 | |
|     }
 | |
| 
 | |
|     for (LookupResult::iterator D = FoundDelete.begin(),
 | |
|                              DEnd = FoundDelete.end();
 | |
|          D != DEnd; ++D) {
 | |
|       FunctionDecl *Fn = 0;
 | |
|       if (FunctionTemplateDecl *FnTmpl
 | |
|             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
 | |
|         // Perform template argument deduction to try to match the
 | |
|         // expected function type.
 | |
|         TemplateDeductionInfo Info(Context, StartLoc);
 | |
|         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
 | |
|           continue;
 | |
|       } else
 | |
|         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
 | |
| 
 | |
|       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
 | |
|         Matches.push_back(std::make_pair(D.getPair(), Fn));
 | |
|     }
 | |
|   } else {
 | |
|     // C++ [expr.new]p20:
 | |
|     //   [...] Any non-placement deallocation function matches a
 | |
|     //   non-placement allocation function. [...]
 | |
|     for (LookupResult::iterator D = FoundDelete.begin(),
 | |
|                              DEnd = FoundDelete.end();
 | |
|          D != DEnd; ++D) {
 | |
|       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
 | |
|         if (isNonPlacementDeallocationFunction(Fn))
 | |
|           Matches.push_back(std::make_pair(D.getPair(), Fn));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.new]p20:
 | |
|   //   [...] If the lookup finds a single matching deallocation
 | |
|   //   function, that function will be called; otherwise, no
 | |
|   //   deallocation function will be called.
 | |
|   if (Matches.size() == 1) {
 | |
|     OperatorDelete = Matches[0].second;
 | |
| 
 | |
|     // C++0x [expr.new]p20:
 | |
|     //   If the lookup finds the two-parameter form of a usual
 | |
|     //   deallocation function (3.7.4.2) and that function, considered
 | |
|     //   as a placement deallocation function, would have been
 | |
|     //   selected as a match for the allocation function, the program
 | |
|     //   is ill-formed.
 | |
|     if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
 | |
|         isNonPlacementDeallocationFunction(OperatorDelete)) {
 | |
|       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
 | |
|         << SourceRange(PlaceArgs[0]->getLocStart(),
 | |
|                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
 | |
|       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
 | |
|         << DeleteName;
 | |
|     } else {
 | |
|       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
 | |
|                             Matches[0].first);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindAllocationOverload - Find an fitting overload for the allocation
 | |
| /// function in the specified scope.
 | |
| bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
 | |
|                                   DeclarationName Name, Expr** Args,
 | |
|                                   unsigned NumArgs, DeclContext *Ctx,
 | |
|                                   bool AllowMissing, FunctionDecl *&Operator) {
 | |
|   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
 | |
|   LookupQualifiedName(R, Ctx);
 | |
|   if (R.empty()) {
 | |
|     if (AllowMissing)
 | |
|       return false;
 | |
|     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | |
|       << Name << Range;
 | |
|   }
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return true;
 | |
| 
 | |
|   R.suppressDiagnostics();
 | |
| 
 | |
|   OverloadCandidateSet Candidates(StartLoc);
 | |
|   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
 | |
|        Alloc != AllocEnd; ++Alloc) {
 | |
|     // Even member operator new/delete are implicitly treated as
 | |
|     // static, so don't use AddMemberCandidate.
 | |
|     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
 | |
| 
 | |
|     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
 | |
|       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
 | |
|                                    /*ExplicitTemplateArgs=*/0, Args, NumArgs,
 | |
|                                    Candidates,
 | |
|                                    /*SuppressUserConversions=*/false);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     FunctionDecl *Fn = cast<FunctionDecl>(D);
 | |
|     AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
 | |
|                          /*SuppressUserConversions=*/false);
 | |
|   }
 | |
| 
 | |
|   // Do the resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
 | |
|   case OR_Success: {
 | |
|     // Got one!
 | |
|     FunctionDecl *FnDecl = Best->Function;
 | |
|     MarkDeclarationReferenced(StartLoc, FnDecl);
 | |
|     // The first argument is size_t, and the first parameter must be size_t,
 | |
|     // too. This is checked on declaration and can be assumed. (It can't be
 | |
|     // asserted on, though, since invalid decls are left in there.)
 | |
|     // Watch out for variadic allocator function.
 | |
|     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
 | |
|     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
 | |
|       ExprResult Result
 | |
|         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | |
|                                                        Context,
 | |
|                                                        FnDecl->getParamDecl(i)),
 | |
|                                     SourceLocation(),
 | |
|                                     Owned(Args[i]));
 | |
|       if (Result.isInvalid())
 | |
|         return true;
 | |
| 
 | |
|       Args[i] = Result.takeAs<Expr>();
 | |
|     }
 | |
|     Operator = FnDecl;
 | |
|     CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | |
|       << Name << Range;
 | |
|     Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
 | |
|     return true;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     Diag(StartLoc, diag::err_ovl_ambiguous_call)
 | |
|       << Name << Range;
 | |
|     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
 | |
|     return true;
 | |
| 
 | |
|   case OR_Deleted: {
 | |
|     Diag(StartLoc, diag::err_ovl_deleted_call)
 | |
|       << Best->Function->isDeleted()
 | |
|       << Name 
 | |
|       << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|       << Range;
 | |
|     Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   assert(false && "Unreachable, bad result from BestViableFunction");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DeclareGlobalNewDelete - Declare the global forms of operator new and
 | |
| /// delete. These are:
 | |
| /// @code
 | |
| ///   // C++03:
 | |
| ///   void* operator new(std::size_t) throw(std::bad_alloc);
 | |
| ///   void* operator new[](std::size_t) throw(std::bad_alloc);
 | |
| ///   void operator delete(void *) throw();
 | |
| ///   void operator delete[](void *) throw();
 | |
| ///   // C++0x:
 | |
| ///   void* operator new(std::size_t);
 | |
| ///   void* operator new[](std::size_t);
 | |
| ///   void operator delete(void *);
 | |
| ///   void operator delete[](void *);
 | |
| /// @endcode
 | |
| /// C++0x operator delete is implicitly noexcept.
 | |
| /// Note that the placement and nothrow forms of new are *not* implicitly
 | |
| /// declared. Their use requires including \<new\>.
 | |
| void Sema::DeclareGlobalNewDelete() {
 | |
|   if (GlobalNewDeleteDeclared)
 | |
|     return;
 | |
| 
 | |
|   // C++ [basic.std.dynamic]p2:
 | |
|   //   [...] The following allocation and deallocation functions (18.4) are
 | |
|   //   implicitly declared in global scope in each translation unit of a
 | |
|   //   program
 | |
|   //
 | |
|   //     C++03:
 | |
|   //     void* operator new(std::size_t) throw(std::bad_alloc);
 | |
|   //     void* operator new[](std::size_t) throw(std::bad_alloc);
 | |
|   //     void  operator delete(void*) throw();
 | |
|   //     void  operator delete[](void*) throw();
 | |
|   //     C++0x:
 | |
|   //     void* operator new(std::size_t);
 | |
|   //     void* operator new[](std::size_t);
 | |
|   //     void  operator delete(void*);
 | |
|   //     void  operator delete[](void*);
 | |
|   //
 | |
|   //   These implicit declarations introduce only the function names operator
 | |
|   //   new, operator new[], operator delete, operator delete[].
 | |
|   //
 | |
|   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
 | |
|   // "std" or "bad_alloc" as necessary to form the exception specification.
 | |
|   // However, we do not make these implicit declarations visible to name
 | |
|   // lookup.
 | |
|   // Note that the C++0x versions of operator delete are deallocation functions,
 | |
|   // and thus are implicitly noexcept.
 | |
|   if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
 | |
|     // The "std::bad_alloc" class has not yet been declared, so build it
 | |
|     // implicitly.
 | |
|     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
 | |
|                                         getOrCreateStdNamespace(),
 | |
|                                         SourceLocation(), SourceLocation(),
 | |
|                                       &PP.getIdentifierTable().get("bad_alloc"),
 | |
|                                         0);
 | |
|     getStdBadAlloc()->setImplicit(true);
 | |
|   }
 | |
| 
 | |
|   GlobalNewDeleteDeclared = true;
 | |
| 
 | |
|   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
 | |
|   QualType SizeT = Context.getSizeType();
 | |
|   bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
 | |
| 
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_New),
 | |
|       VoidPtr, SizeT, AssumeSaneOperatorNew);
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
 | |
|       VoidPtr, SizeT, AssumeSaneOperatorNew);
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
 | |
|       Context.VoidTy, VoidPtr);
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
 | |
|       Context.VoidTy, VoidPtr);
 | |
| }
 | |
| 
 | |
| /// DeclareGlobalAllocationFunction - Declares a single implicit global
 | |
| /// allocation function if it doesn't already exist.
 | |
| void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
 | |
|                                            QualType Return, QualType Argument,
 | |
|                                            bool AddMallocAttr) {
 | |
|   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
 | |
| 
 | |
|   // Check if this function is already declared.
 | |
|   {
 | |
|     DeclContext::lookup_iterator Alloc, AllocEnd;
 | |
|     for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
 | |
|          Alloc != AllocEnd; ++Alloc) {
 | |
|       // Only look at non-template functions, as it is the predefined,
 | |
|       // non-templated allocation function we are trying to declare here.
 | |
|       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
 | |
|         QualType InitialParamType =
 | |
|           Context.getCanonicalType(
 | |
|             Func->getParamDecl(0)->getType().getUnqualifiedType());
 | |
|         // FIXME: Do we need to check for default arguments here?
 | |
|         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
 | |
|           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
 | |
|             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   QualType BadAllocType;
 | |
|   bool HasBadAllocExceptionSpec
 | |
|     = (Name.getCXXOverloadedOperator() == OO_New ||
 | |
|        Name.getCXXOverloadedOperator() == OO_Array_New);
 | |
|   if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
 | |
|     assert(StdBadAlloc && "Must have std::bad_alloc declared");
 | |
|     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
 | |
|   }
 | |
| 
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   if (HasBadAllocExceptionSpec) {
 | |
|     if (!getLangOptions().CPlusPlus0x) {
 | |
|       EPI.ExceptionSpecType = EST_Dynamic;
 | |
|       EPI.NumExceptions = 1;
 | |
|       EPI.Exceptions = &BadAllocType;
 | |
|     }
 | |
|   } else {
 | |
|     EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
 | |
|                                 EST_BasicNoexcept : EST_DynamicNone;
 | |
|   }
 | |
| 
 | |
|   QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
 | |
|   FunctionDecl *Alloc =
 | |
|     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
 | |
|                          SourceLocation(), Name,
 | |
|                          FnType, /*TInfo=*/0, SC_None,
 | |
|                          SC_None, false, true);
 | |
|   Alloc->setImplicit();
 | |
| 
 | |
|   if (AddMallocAttr)
 | |
|     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
 | |
| 
 | |
|   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
 | |
|                                            SourceLocation(), 0,
 | |
|                                            Argument, /*TInfo=*/0,
 | |
|                                            SC_None, SC_None, 0);
 | |
|   Alloc->setParams(&Param, 1);
 | |
| 
 | |
|   // FIXME: Also add this declaration to the IdentifierResolver, but
 | |
|   // make sure it is at the end of the chain to coincide with the
 | |
|   // global scope.
 | |
|   Context.getTranslationUnitDecl()->addDecl(Alloc);
 | |
| }
 | |
| 
 | |
| bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
 | |
|                                     DeclarationName Name,
 | |
|                                     FunctionDecl* &Operator) {
 | |
|   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
 | |
|   // Try to find operator delete/operator delete[] in class scope.
 | |
|   LookupQualifiedName(Found, RD);
 | |
| 
 | |
|   if (Found.isAmbiguous())
 | |
|     return true;
 | |
| 
 | |
|   Found.suppressDiagnostics();
 | |
| 
 | |
|   llvm::SmallVector<DeclAccessPair,4> Matches;
 | |
|   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | |
|        F != FEnd; ++F) {
 | |
|     NamedDecl *ND = (*F)->getUnderlyingDecl();
 | |
| 
 | |
|     // Ignore template operator delete members from the check for a usual
 | |
|     // deallocation function.
 | |
|     if (isa<FunctionTemplateDecl>(ND))
 | |
|       continue;
 | |
| 
 | |
|     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
 | |
|       Matches.push_back(F.getPair());
 | |
|   }
 | |
| 
 | |
|   // There's exactly one suitable operator;  pick it.
 | |
|   if (Matches.size() == 1) {
 | |
|     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
 | |
|     CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
 | |
|                           Matches[0]);
 | |
|     return false;
 | |
| 
 | |
|   // We found multiple suitable operators;  complain about the ambiguity.
 | |
|   } else if (!Matches.empty()) {
 | |
|     Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
 | |
|       << Name << RD;
 | |
| 
 | |
|     for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
 | |
|            F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
 | |
|       Diag((*F)->getUnderlyingDecl()->getLocation(),
 | |
|            diag::note_member_declared_here) << Name;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We did find operator delete/operator delete[] declarations, but
 | |
|   // none of them were suitable.
 | |
|   if (!Found.empty()) {
 | |
|     Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
 | |
|       << Name << RD;
 | |
| 
 | |
|     for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | |
|          F != FEnd; ++F)
 | |
|       Diag((*F)->getUnderlyingDecl()->getLocation(),
 | |
|            diag::note_member_declared_here) << Name;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Look for a global declaration.
 | |
|   DeclareGlobalNewDelete();
 | |
|   DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | |
| 
 | |
|   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
 | |
|   Expr* DeallocArgs[1];
 | |
|   DeallocArgs[0] = &Null;
 | |
|   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
 | |
|                              DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
 | |
|                              Operator))
 | |
|     return true;
 | |
| 
 | |
|   assert(Operator && "Did not find a deallocation function!");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
 | |
| /// @code ::delete ptr; @endcode
 | |
| /// or
 | |
| /// @code delete [] ptr; @endcode
 | |
| ExprResult
 | |
| Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
 | |
|                      bool ArrayForm, Expr *ExE) {
 | |
|   // C++ [expr.delete]p1:
 | |
|   //   The operand shall have a pointer type, or a class type having a single
 | |
|   //   conversion function to a pointer type. The result has type void.
 | |
|   //
 | |
|   // DR599 amends "pointer type" to "pointer to object type" in both cases.
 | |
| 
 | |
|   ExprResult Ex = Owned(ExE);
 | |
|   FunctionDecl *OperatorDelete = 0;
 | |
|   bool ArrayFormAsWritten = ArrayForm;
 | |
|   bool UsualArrayDeleteWantsSize = false;
 | |
| 
 | |
|   if (!Ex.get()->isTypeDependent()) {
 | |
|     QualType Type = Ex.get()->getType();
 | |
| 
 | |
|     if (const RecordType *Record = Type->getAs<RecordType>()) {
 | |
|       if (RequireCompleteType(StartLoc, Type,
 | |
|                               PDiag(diag::err_delete_incomplete_class_type)))
 | |
|         return ExprError();
 | |
| 
 | |
|       llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
 | |
| 
 | |
|       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | |
|       const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
 | |
|       for (UnresolvedSetImpl::iterator I = Conversions->begin(),
 | |
|              E = Conversions->end(); I != E; ++I) {
 | |
|         NamedDecl *D = I.getDecl();
 | |
|         if (isa<UsingShadowDecl>(D))
 | |
|           D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|         // Skip over templated conversion functions; they aren't considered.
 | |
|         if (isa<FunctionTemplateDecl>(D))
 | |
|           continue;
 | |
| 
 | |
|         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
 | |
| 
 | |
|         QualType ConvType = Conv->getConversionType().getNonReferenceType();
 | |
|         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | |
|           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
 | |
|             ObjectPtrConversions.push_back(Conv);
 | |
|       }
 | |
|       if (ObjectPtrConversions.size() == 1) {
 | |
|         // We have a single conversion to a pointer-to-object type. Perform
 | |
|         // that conversion.
 | |
|         // TODO: don't redo the conversion calculation.
 | |
|         ExprResult Res =
 | |
|           PerformImplicitConversion(Ex.get(),
 | |
|                             ObjectPtrConversions.front()->getConversionType(),
 | |
|                                     AA_Converting);
 | |
|         if (Res.isUsable()) {
 | |
|           Ex = move(Res);
 | |
|           Type = Ex.get()->getType();
 | |
|         }
 | |
|       }
 | |
|       else if (ObjectPtrConversions.size() > 1) {
 | |
|         Diag(StartLoc, diag::err_ambiguous_delete_operand)
 | |
|               << Type << Ex.get()->getSourceRange();
 | |
|         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
 | |
|           NoteOverloadCandidate(ObjectPtrConversions[i]);
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Type->isPointerType())
 | |
|       return ExprError(Diag(StartLoc, diag::err_delete_operand)
 | |
|         << Type << Ex.get()->getSourceRange());
 | |
| 
 | |
|     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
 | |
|     if (Pointee->isVoidType() && !isSFINAEContext()) {
 | |
|       // The C++ standard bans deleting a pointer to a non-object type, which
 | |
|       // effectively bans deletion of "void*". However, most compilers support
 | |
|       // this, so we treat it as a warning unless we're in a SFINAE context.
 | |
|       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
 | |
|         << Type << Ex.get()->getSourceRange();
 | |
|     } else if (Pointee->isFunctionType() || Pointee->isVoidType())
 | |
|       return ExprError(Diag(StartLoc, diag::err_delete_operand)
 | |
|         << Type << Ex.get()->getSourceRange());
 | |
|     else if (!Pointee->isDependentType() &&
 | |
|              RequireCompleteType(StartLoc, Pointee,
 | |
|                                  PDiag(diag::warn_delete_incomplete)
 | |
|                                    << Ex.get()->getSourceRange()))
 | |
|       return ExprError();
 | |
|     else if (unsigned AddressSpace = Pointee.getAddressSpace())
 | |
|       return Diag(Ex.get()->getLocStart(), 
 | |
|                   diag::err_address_space_qualified_delete)
 | |
|                << Pointee.getUnqualifiedType() << AddressSpace;
 | |
|     // C++ [expr.delete]p2:
 | |
|     //   [Note: a pointer to a const type can be the operand of a
 | |
|     //   delete-expression; it is not necessary to cast away the constness
 | |
|     //   (5.2.11) of the pointer expression before it is used as the operand
 | |
|     //   of the delete-expression. ]
 | |
|     Ex = ImpCastExprToType(Ex.take(), Context.getPointerType(Context.VoidTy),
 | |
|                       CK_NoOp);
 | |
| 
 | |
|     if (Pointee->isArrayType() && !ArrayForm) {
 | |
|       Diag(StartLoc, diag::warn_delete_array_type)
 | |
|           << Type << Ex.get()->getSourceRange()
 | |
|           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
 | |
|       ArrayForm = true;
 | |
|     }
 | |
| 
 | |
|     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
 | |
|                                       ArrayForm ? OO_Array_Delete : OO_Delete);
 | |
| 
 | |
|     QualType PointeeElem = Context.getBaseElementType(Pointee);
 | |
|     if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
| 
 | |
|       if (!UseGlobal &&
 | |
|           FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
 | |
|         return ExprError();
 | |
| 
 | |
|       // If we're allocating an array of records, check whether the
 | |
|       // usual operator delete[] has a size_t parameter.
 | |
|       if (ArrayForm) {
 | |
|         // If the user specifically asked to use the global allocator,
 | |
|         // we'll need to do the lookup into the class.
 | |
|         if (UseGlobal)
 | |
|           UsualArrayDeleteWantsSize =
 | |
|             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
 | |
| 
 | |
|         // Otherwise, the usual operator delete[] should be the
 | |
|         // function we just found.
 | |
|         else if (isa<CXXMethodDecl>(OperatorDelete))
 | |
|           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
 | |
|       }
 | |
| 
 | |
|       if (!RD->hasTrivialDestructor())
 | |
|         if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
 | |
|           MarkDeclarationReferenced(StartLoc,
 | |
|                                     const_cast<CXXDestructorDecl*>(Dtor));
 | |
|           DiagnoseUseOfDecl(Dtor, StartLoc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!OperatorDelete) {
 | |
|       // Look for a global declaration.
 | |
|       DeclareGlobalNewDelete();
 | |
|       DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | |
|       Expr *Arg = Ex.get();
 | |
|       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
 | |
|                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
 | |
|                                  OperatorDelete))
 | |
|         return ExprError();
 | |
|     }
 | |
| 
 | |
|     MarkDeclarationReferenced(StartLoc, OperatorDelete);
 | |
|     
 | |
|     // Check access and ambiguity of operator delete and destructor.
 | |
|     if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
 | |
|           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 
 | |
|                       PDiag(diag::err_access_dtor) << PointeeElem);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
 | |
|                                            ArrayFormAsWritten,
 | |
|                                            UsualArrayDeleteWantsSize,
 | |
|                                            OperatorDelete, Ex.take(), StartLoc));
 | |
| }
 | |
| 
 | |
| /// \brief Check the use of the given variable as a C++ condition in an if,
 | |
| /// while, do-while, or switch statement.
 | |
| ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
 | |
|                                         SourceLocation StmtLoc,
 | |
|                                         bool ConvertToBoolean) {
 | |
|   QualType T = ConditionVar->getType();
 | |
| 
 | |
|   // C++ [stmt.select]p2:
 | |
|   //   The declarator shall not specify a function or an array.
 | |
|   if (T->isFunctionType())
 | |
|     return ExprError(Diag(ConditionVar->getLocation(),
 | |
|                           diag::err_invalid_use_of_function_type)
 | |
|                        << ConditionVar->getSourceRange());
 | |
|   else if (T->isArrayType())
 | |
|     return ExprError(Diag(ConditionVar->getLocation(),
 | |
|                           diag::err_invalid_use_of_array_type)
 | |
|                      << ConditionVar->getSourceRange());
 | |
| 
 | |
|   ExprResult Condition =
 | |
|     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(), 
 | |
|                                         ConditionVar,
 | |
|                                         ConditionVar->getLocation(),
 | |
|                             ConditionVar->getType().getNonReferenceType(),
 | |
|                               VK_LValue));
 | |
|   if (ConvertToBoolean) {
 | |
|     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
 | |
|     if (Condition.isInvalid())
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   return move(Condition);
 | |
| }
 | |
| 
 | |
| /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
 | |
| ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
 | |
|   // C++ 6.4p4:
 | |
|   // The value of a condition that is an initialized declaration in a statement
 | |
|   // other than a switch statement is the value of the declared variable
 | |
|   // implicitly converted to type bool. If that conversion is ill-formed, the
 | |
|   // program is ill-formed.
 | |
|   // The value of a condition that is an expression is the value of the
 | |
|   // expression, implicitly converted to bool.
 | |
|   //
 | |
|   return PerformContextuallyConvertToBool(CondExpr);
 | |
| }
 | |
| 
 | |
| /// Helper function to determine whether this is the (deprecated) C++
 | |
| /// conversion from a string literal to a pointer to non-const char or
 | |
| /// non-const wchar_t (for narrow and wide string literals,
 | |
| /// respectively).
 | |
| bool
 | |
| Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
 | |
|   // Look inside the implicit cast, if it exists.
 | |
|   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
 | |
|     From = Cast->getSubExpr();
 | |
| 
 | |
|   // A string literal (2.13.4) that is not a wide string literal can
 | |
|   // be converted to an rvalue of type "pointer to char"; a wide
 | |
|   // string literal can be converted to an rvalue of type "pointer
 | |
|   // to wchar_t" (C++ 4.2p2).
 | |
|   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
 | |
|     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
 | |
|       if (const BuiltinType *ToPointeeType
 | |
|           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
 | |
|         // This conversion is considered only when there is an
 | |
|         // explicit appropriate pointer target type (C++ 4.2p2).
 | |
|         if (!ToPtrType->getPointeeType().hasQualifiers() &&
 | |
|             ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
 | |
|              (!StrLit->isWide() &&
 | |
|               (ToPointeeType->getKind() == BuiltinType::Char_U ||
 | |
|                ToPointeeType->getKind() == BuiltinType::Char_S))))
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static ExprResult BuildCXXCastArgument(Sema &S,
 | |
|                                        SourceLocation CastLoc,
 | |
|                                        QualType Ty,
 | |
|                                        CastKind Kind,
 | |
|                                        CXXMethodDecl *Method,
 | |
|                                        NamedDecl *FoundDecl,
 | |
|                                        Expr *From) {
 | |
|   switch (Kind) {
 | |
|   default: assert(0 && "Unhandled cast kind!");
 | |
|   case CK_ConstructorConversion: {
 | |
|     ASTOwningVector<Expr*> ConstructorArgs(S);
 | |
| 
 | |
|     if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
 | |
|                                   MultiExprArg(&From, 1),
 | |
|                                   CastLoc, ConstructorArgs))
 | |
|       return ExprError();
 | |
| 
 | |
|     ExprResult Result =
 | |
|     S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
 | |
|                             move_arg(ConstructorArgs),
 | |
|                             /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
 | |
|                             SourceRange());
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
 | |
|   }
 | |
| 
 | |
|   case CK_UserDefinedConversion: {
 | |
|     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
 | |
| 
 | |
|     // Create an implicit call expr that calls it.
 | |
|     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     return S.MaybeBindToTemporary(Result.get());
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PerformImplicitConversion - Perform an implicit conversion of the
 | |
| /// expression From to the type ToType using the pre-computed implicit
 | |
| /// conversion sequence ICS. Returns the converted
 | |
| /// expression. Action is the kind of conversion we're performing,
 | |
| /// used in the error message.
 | |
| ExprResult
 | |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | |
|                                 const ImplicitConversionSequence &ICS,
 | |
|                                 AssignmentAction Action, bool CStyle) {
 | |
|   switch (ICS.getKind()) {
 | |
|   case ImplicitConversionSequence::StandardConversion: {
 | |
|     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
 | |
|                                                Action, CStyle);
 | |
|     if (Res.isInvalid())
 | |
|       return ExprError();
 | |
|     From = Res.take();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ImplicitConversionSequence::UserDefinedConversion: {
 | |
| 
 | |
|       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
 | |
|       CastKind CastKind;
 | |
|       QualType BeforeToType;
 | |
|       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
 | |
|         CastKind = CK_UserDefinedConversion;
 | |
| 
 | |
|         // If the user-defined conversion is specified by a conversion function,
 | |
|         // the initial standard conversion sequence converts the source type to
 | |
|         // the implicit object parameter of the conversion function.
 | |
|         BeforeToType = Context.getTagDeclType(Conv->getParent());
 | |
|       } else {
 | |
|         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
 | |
|         CastKind = CK_ConstructorConversion;
 | |
|         // Do no conversion if dealing with ... for the first conversion.
 | |
|         if (!ICS.UserDefined.EllipsisConversion) {
 | |
|           // If the user-defined conversion is specified by a constructor, the
 | |
|           // initial standard conversion sequence converts the source type to the
 | |
|           // type required by the argument of the constructor
 | |
|           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
 | |
|         }
 | |
|       }
 | |
|       // Watch out for elipsis conversion.
 | |
|       if (!ICS.UserDefined.EllipsisConversion) {
 | |
|         ExprResult Res =
 | |
|           PerformImplicitConversion(From, BeforeToType,
 | |
|                                     ICS.UserDefined.Before, AA_Converting,
 | |
|                                     CStyle);
 | |
|         if (Res.isInvalid())
 | |
|           return ExprError();
 | |
|         From = Res.take();
 | |
|       }
 | |
| 
 | |
|       ExprResult CastArg
 | |
|         = BuildCXXCastArgument(*this,
 | |
|                                From->getLocStart(),
 | |
|                                ToType.getNonReferenceType(),
 | |
|                                CastKind, cast<CXXMethodDecl>(FD),
 | |
|                                ICS.UserDefined.FoundConversionFunction,
 | |
|                                From);
 | |
| 
 | |
|       if (CastArg.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       From = CastArg.take();
 | |
| 
 | |
|       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
 | |
|                                        AA_Converting, CStyle);
 | |
|   }
 | |
| 
 | |
|   case ImplicitConversionSequence::AmbiguousConversion:
 | |
|     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
 | |
|                           PDiag(diag::err_typecheck_ambiguous_condition)
 | |
|                             << From->getSourceRange());
 | |
|      return ExprError();
 | |
| 
 | |
|   case ImplicitConversionSequence::EllipsisConversion:
 | |
|     assert(false && "Cannot perform an ellipsis conversion");
 | |
|     return Owned(From);
 | |
| 
 | |
|   case ImplicitConversionSequence::BadConversion:
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Everything went well.
 | |
|   return Owned(From);
 | |
| }
 | |
| 
 | |
| /// PerformImplicitConversion - Perform an implicit conversion of the
 | |
| /// expression From to the type ToType by following the standard
 | |
| /// conversion sequence SCS. Returns the converted
 | |
| /// expression. Flavor is the context in which we're performing this
 | |
| /// conversion, for use in error messages.
 | |
| ExprResult
 | |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | |
|                                 const StandardConversionSequence& SCS,
 | |
|                                 AssignmentAction Action, bool CStyle) {
 | |
|   // Overall FIXME: we are recomputing too many types here and doing far too
 | |
|   // much extra work. What this means is that we need to keep track of more
 | |
|   // information that is computed when we try the implicit conversion initially,
 | |
|   // so that we don't need to recompute anything here.
 | |
|   QualType FromType = From->getType();
 | |
| 
 | |
|   if (SCS.CopyConstructor) {
 | |
|     // FIXME: When can ToType be a reference type?
 | |
|     assert(!ToType->isReferenceType());
 | |
|     if (SCS.Second == ICK_Derived_To_Base) {
 | |
|       ASTOwningVector<Expr*> ConstructorArgs(*this);
 | |
|       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
 | |
|                                   MultiExprArg(*this, &From, 1),
 | |
|                                   /*FIXME:ConstructLoc*/SourceLocation(),
 | |
|                                   ConstructorArgs))
 | |
|         return ExprError();
 | |
|       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
 | |
|                                    ToType, SCS.CopyConstructor,
 | |
|                                    move_arg(ConstructorArgs),
 | |
|                                    /*ZeroInit*/ false,
 | |
|                                    CXXConstructExpr::CK_Complete,
 | |
|                                    SourceRange());
 | |
|     }
 | |
|     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
 | |
|                                  ToType, SCS.CopyConstructor,
 | |
|                                  MultiExprArg(*this, &From, 1),
 | |
|                                  /*ZeroInit*/ false,
 | |
|                                  CXXConstructExpr::CK_Complete,
 | |
|                                  SourceRange());
 | |
|   }
 | |
| 
 | |
|   // Resolve overloaded function references.
 | |
|   if (Context.hasSameType(FromType, Context.OverloadTy)) {
 | |
|     DeclAccessPair Found;
 | |
|     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
 | |
|                                                           true, Found);
 | |
|     if (!Fn)
 | |
|       return ExprError();
 | |
| 
 | |
|     if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
 | |
|       return ExprError();
 | |
| 
 | |
|     From = FixOverloadedFunctionReference(From, Found, Fn);
 | |
|     FromType = From->getType();
 | |
|   }
 | |
| 
 | |
|   // Perform the first implicit conversion.
 | |
|   switch (SCS.First) {
 | |
|   case ICK_Identity:
 | |
|     // Nothing to do.
 | |
|     break;
 | |
| 
 | |
|   case ICK_Lvalue_To_Rvalue:
 | |
|     // Should this get its own ICK?
 | |
|     if (From->getObjectKind() == OK_ObjCProperty) {
 | |
|       ExprResult FromRes = ConvertPropertyForRValue(From);
 | |
|       if (FromRes.isInvalid())
 | |
|         return ExprError();
 | |
|       From = FromRes.take();
 | |
|       if (!From->isGLValue()) break;
 | |
|     }
 | |
| 
 | |
|     // Check for trivial buffer overflows.
 | |
|     CheckArrayAccess(From);
 | |
| 
 | |
|     FromType = FromType.getUnqualifiedType();
 | |
|     From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
 | |
|                                     From, 0, VK_RValue);
 | |
|     break;
 | |
| 
 | |
|   case ICK_Array_To_Pointer:
 | |
|     FromType = Context.getArrayDecayedType(FromType);
 | |
|     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Function_To_Pointer:
 | |
|     FromType = Context.getPointerType(FromType);
 | |
|     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay).take();
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     assert(false && "Improper first standard conversion");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Perform the second implicit conversion
 | |
|   switch (SCS.Second) {
 | |
|   case ICK_Identity:
 | |
|     // If both sides are functions (or pointers/references to them), there could
 | |
|     // be incompatible exception declarations.
 | |
|     if (CheckExceptionSpecCompatibility(From, ToType))
 | |
|       return ExprError();
 | |
|     // Nothing else to do.
 | |
|     break;
 | |
| 
 | |
|   case ICK_NoReturn_Adjustment:
 | |
|     // If both sides are functions (or pointers/references to them), there could
 | |
|     // be incompatible exception declarations.
 | |
|     if (CheckExceptionSpecCompatibility(From, ToType))
 | |
|       return ExprError();
 | |
| 
 | |
|     From = ImpCastExprToType(From, ToType, CK_NoOp).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Integral_Promotion:
 | |
|   case ICK_Integral_Conversion:
 | |
|     From = ImpCastExprToType(From, ToType, CK_IntegralCast).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Floating_Promotion:
 | |
|   case ICK_Floating_Conversion:
 | |
|     From = ImpCastExprToType(From, ToType, CK_FloatingCast).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Complex_Promotion:
 | |
|   case ICK_Complex_Conversion: {
 | |
|     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
 | |
|     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
 | |
|     CastKind CK;
 | |
|     if (FromEl->isRealFloatingType()) {
 | |
|       if (ToEl->isRealFloatingType())
 | |
|         CK = CK_FloatingComplexCast;
 | |
|       else
 | |
|         CK = CK_FloatingComplexToIntegralComplex;
 | |
|     } else if (ToEl->isRealFloatingType()) {
 | |
|       CK = CK_IntegralComplexToFloatingComplex;
 | |
|     } else {
 | |
|       CK = CK_IntegralComplexCast;
 | |
|     }
 | |
|     From = ImpCastExprToType(From, ToType, CK).take();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Floating_Integral:
 | |
|     if (ToType->isRealFloatingType())
 | |
|       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating).take();
 | |
|     else
 | |
|       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Compatible_Conversion:
 | |
|     From = ImpCastExprToType(From, ToType, CK_NoOp).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Pointer_Conversion: {
 | |
|     if (SCS.IncompatibleObjC && Action != AA_Casting) {
 | |
|       // Diagnose incompatible Objective-C conversions
 | |
|       if (Action == AA_Initializing)
 | |
|         Diag(From->getSourceRange().getBegin(),
 | |
|              diag::ext_typecheck_convert_incompatible_pointer)
 | |
|           << ToType << From->getType() << Action
 | |
|           << From->getSourceRange();
 | |
|       else
 | |
|         Diag(From->getSourceRange().getBegin(),
 | |
|              diag::ext_typecheck_convert_incompatible_pointer)
 | |
|           << From->getType() << ToType << Action
 | |
|           << From->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     CastKind Kind = CK_Invalid;
 | |
|     CXXCastPath BasePath;
 | |
|     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
 | |
|       return ExprError();
 | |
|     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath).take();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Pointer_Member: {
 | |
|     CastKind Kind = CK_Invalid;
 | |
|     CXXCastPath BasePath;
 | |
|     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
 | |
|       return ExprError();
 | |
|     if (CheckExceptionSpecCompatibility(From, ToType))
 | |
|       return ExprError();
 | |
|     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath).take();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Boolean_Conversion:
 | |
|     From = ImpCastExprToType(From, Context.BoolTy,
 | |
|                              ScalarTypeToBooleanCastKind(FromType)).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Derived_To_Base: {
 | |
|     CXXCastPath BasePath;
 | |
|     if (CheckDerivedToBaseConversion(From->getType(),
 | |
|                                      ToType.getNonReferenceType(),
 | |
|                                      From->getLocStart(),
 | |
|                                      From->getSourceRange(),
 | |
|                                      &BasePath,
 | |
|                                      CStyle))
 | |
|       return ExprError();
 | |
| 
 | |
|     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
 | |
|                       CK_DerivedToBase, CastCategory(From),
 | |
|                       &BasePath).take();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Vector_Conversion:
 | |
|     From = ImpCastExprToType(From, ToType, CK_BitCast).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Vector_Splat:
 | |
|     From = ImpCastExprToType(From, ToType, CK_VectorSplat).take();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Complex_Real:
 | |
|     // Case 1.  x -> _Complex y
 | |
|     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
 | |
|       QualType ElType = ToComplex->getElementType();
 | |
|       bool isFloatingComplex = ElType->isRealFloatingType();
 | |
| 
 | |
|       // x -> y
 | |
|       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
 | |
|         // do nothing
 | |
|       } else if (From->getType()->isRealFloatingType()) {
 | |
|         From = ImpCastExprToType(From, ElType,
 | |
|                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
 | |
|       } else {
 | |
|         assert(From->getType()->isIntegerType());
 | |
|         From = ImpCastExprToType(From, ElType,
 | |
|                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
 | |
|       }
 | |
|       // y -> _Complex y
 | |
|       From = ImpCastExprToType(From, ToType,
 | |
|                    isFloatingComplex ? CK_FloatingRealToComplex
 | |
|                                      : CK_IntegralRealToComplex).take();
 | |
| 
 | |
|     // Case 2.  _Complex x -> y
 | |
|     } else {
 | |
|       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
 | |
|       assert(FromComplex);
 | |
| 
 | |
|       QualType ElType = FromComplex->getElementType();
 | |
|       bool isFloatingComplex = ElType->isRealFloatingType();
 | |
| 
 | |
|       // _Complex x -> x
 | |
|       From = ImpCastExprToType(From, ElType,
 | |
|                    isFloatingComplex ? CK_FloatingComplexToReal
 | |
|                                      : CK_IntegralComplexToReal).take();
 | |
| 
 | |
|       // x -> y
 | |
|       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
 | |
|         // do nothing
 | |
|       } else if (ToType->isRealFloatingType()) {
 | |
|         From = ImpCastExprToType(From, ToType,
 | |
|                 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating).take();
 | |
|       } else {
 | |
|         assert(ToType->isIntegerType());
 | |
|         From = ImpCastExprToType(From, ToType,
 | |
|                 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast).take();
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   
 | |
|   case ICK_Block_Pointer_Conversion: {
 | |
|       From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
 | |
|                                VK_RValue).take();
 | |
|       break;
 | |
|     }
 | |
|       
 | |
|   case ICK_TransparentUnionConversion: {
 | |
|     ExprResult FromRes = Owned(From);
 | |
|     Sema::AssignConvertType ConvTy =
 | |
|       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
 | |
|     if (FromRes.isInvalid())
 | |
|       return ExprError();
 | |
|     From = FromRes.take();
 | |
|     assert ((ConvTy == Sema::Compatible) &&
 | |
|             "Improper transparent union conversion");
 | |
|     (void)ConvTy;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Lvalue_To_Rvalue:
 | |
|   case ICK_Array_To_Pointer:
 | |
|   case ICK_Function_To_Pointer:
 | |
|   case ICK_Qualification:
 | |
|   case ICK_Num_Conversion_Kinds:
 | |
|     assert(false && "Improper second standard conversion");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (SCS.Third) {
 | |
|   case ICK_Identity:
 | |
|     // Nothing to do.
 | |
|     break;
 | |
| 
 | |
|   case ICK_Qualification: {
 | |
|     // The qualification keeps the category of the inner expression, unless the
 | |
|     // target type isn't a reference.
 | |
|     ExprValueKind VK = ToType->isReferenceType() ?
 | |
|                                   CastCategory(From) : VK_RValue;
 | |
|     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
 | |
|                              CK_NoOp, VK).take();
 | |
| 
 | |
|     if (SCS.DeprecatedStringLiteralToCharPtr &&
 | |
|         !getLangOptions().WritableStrings)
 | |
|       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
 | |
|         << ToType.getNonReferenceType();
 | |
| 
 | |
|     break;
 | |
|     }
 | |
| 
 | |
|   default:
 | |
|     assert(false && "Improper third standard conversion");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return Owned(From);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
 | |
|                                      SourceLocation KWLoc,
 | |
|                                      ParsedType Ty,
 | |
|                                      SourceLocation RParen) {
 | |
|   TypeSourceInfo *TSInfo;
 | |
|   QualType T = GetTypeFromParser(Ty, &TSInfo);
 | |
| 
 | |
|   if (!TSInfo)
 | |
|     TSInfo = Context.getTrivialTypeSourceInfo(T);
 | |
|   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
 | |
| }
 | |
| 
 | |
| static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
 | |
|                                    SourceLocation KeyLoc) {
 | |
|   // FIXME: For many of these traits, we need a complete type before we can 
 | |
|   // check these properties.
 | |
|   assert(!T->isDependentType() &&
 | |
|          "Cannot evaluate traits for dependent types.");
 | |
|   ASTContext &C = Self.Context;
 | |
|   switch(UTT) {
 | |
|   default: assert(false && "Unknown type trait or not implemented");
 | |
|   case UTT_IsPOD: return T->isPODType();
 | |
|   case UTT_IsLiteral: return T->isLiteralType();
 | |
|   case UTT_IsTrivial: return T->isTrivialType();
 | |
|   case UTT_IsClass: // Fallthrough
 | |
|   case UTT_IsUnion:
 | |
|     if (const RecordType *Record = T->getAs<RecordType>()) {
 | |
|       bool Union = Record->getDecl()->isUnion();
 | |
|       return UTT == UTT_IsUnion ? Union : !Union;
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_IsEnum: return T->isEnumeralType();
 | |
|   case UTT_IsPolymorphic:
 | |
|     if (const RecordType *Record = T->getAs<RecordType>()) {
 | |
|       // Type traits are only parsed in C++, so we've got CXXRecords.
 | |
|       return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_IsAbstract:
 | |
|     if (const RecordType *RT = T->getAs<RecordType>())
 | |
|       return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
 | |
|     return false;
 | |
|   case UTT_IsEmpty:
 | |
|     if (const RecordType *Record = T->getAs<RecordType>()) {
 | |
|       return !Record->getDecl()->isUnion()
 | |
|           && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_HasTrivialConstructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __is_pod (type) is true then the trait is true, else if type is
 | |
|     //   a cv class or union type (or array thereof) with a trivial default
 | |
|     //   constructor ([class.ctor]) then the trait is true, else it is false.
 | |
|     if (T->isPODType())
 | |
|       return true;
 | |
|     if (const RecordType *RT =
 | |
|           C.getBaseElementType(T)->getAs<RecordType>())
 | |
|       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
 | |
|     return false;
 | |
|   case UTT_HasTrivialCopy:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __is_pod (type) is true or type is a reference type then
 | |
|     //   the trait is true, else if type is a cv class or union type
 | |
|     //   with a trivial copy constructor ([class.copy]) then the trait
 | |
|     //   is true, else it is false.
 | |
|     if (T->isPODType() || T->isReferenceType())
 | |
|       return true;
 | |
|     if (const RecordType *RT = T->getAs<RecordType>())
 | |
|       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
 | |
|     return false;
 | |
|   case UTT_HasTrivialAssign:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If type is const qualified or is a reference type then the
 | |
|     //   trait is false. Otherwise if __is_pod (type) is true then the
 | |
|     //   trait is true, else if type is a cv class or union type with
 | |
|     //   a trivial copy assignment ([class.copy]) then the trait is
 | |
|     //   true, else it is false.
 | |
|     // Note: the const and reference restrictions are interesting,
 | |
|     // given that const and reference members don't prevent a class
 | |
|     // from having a trivial copy assignment operator (but do cause
 | |
|     // errors if the copy assignment operator is actually used, q.v.
 | |
|     // [class.copy]p12).
 | |
| 
 | |
|     if (C.getBaseElementType(T).isConstQualified())
 | |
|       return false;
 | |
|     if (T->isPODType())
 | |
|       return true;
 | |
|     if (const RecordType *RT = T->getAs<RecordType>())
 | |
|       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
 | |
|     return false;
 | |
|   case UTT_HasTrivialDestructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __is_pod (type) is true or type is a reference type
 | |
|     //   then the trait is true, else if type is a cv class or union
 | |
|     //   type (or array thereof) with a trivial destructor
 | |
|     //   ([class.dtor]) then the trait is true, else it is
 | |
|     //   false.
 | |
|     if (T->isPODType() || T->isReferenceType())
 | |
|       return true;
 | |
|     if (const RecordType *RT =
 | |
|           C.getBaseElementType(T)->getAs<RecordType>())
 | |
|       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
 | |
|     return false;
 | |
|   // TODO: Propagate nothrowness for implicitly declared special members.
 | |
|   case UTT_HasNothrowAssign:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If type is const qualified or is a reference type then the
 | |
|     //   trait is false. Otherwise if __has_trivial_assign (type)
 | |
|     //   is true then the trait is true, else if type is a cv class
 | |
|     //   or union type with copy assignment operators that are known
 | |
|     //   not to throw an exception then the trait is true, else it is
 | |
|     //   false.
 | |
|     if (C.getBaseElementType(T).isConstQualified())
 | |
|       return false;
 | |
|     if (T->isReferenceType())
 | |
|       return false;
 | |
|     if (T->isPODType())
 | |
|       return true;
 | |
|     if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|       CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       if (RD->hasTrivialCopyAssignment())
 | |
|         return true;
 | |
| 
 | |
|       bool FoundAssign = false;
 | |
|       bool AllNoThrow = true;
 | |
|       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
 | |
|                        Sema::LookupOrdinaryName);
 | |
|       if (Self.LookupQualifiedName(Res, RD)) {
 | |
|         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
 | |
|              Op != OpEnd; ++Op) {
 | |
|           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
 | |
|           if (Operator->isCopyAssignmentOperator()) {
 | |
|             FoundAssign = true;
 | |
|             const FunctionProtoType *CPT
 | |
|                 = Operator->getType()->getAs<FunctionProtoType>();
 | |
|             if (!CPT->isNothrow(Self.Context)) {
 | |
|               AllNoThrow = false;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return FoundAssign && AllNoThrow;
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_HasNothrowCopy:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __has_trivial_copy (type) is true then the trait is true, else
 | |
|     //   if type is a cv class or union type with copy constructors that are
 | |
|     //   known not to throw an exception then the trait is true, else it is
 | |
|     //   false.
 | |
|     if (T->isPODType() || T->isReferenceType())
 | |
|       return true;
 | |
|     if (const RecordType *RT = T->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       if (RD->hasTrivialCopyConstructor())
 | |
|         return true;
 | |
| 
 | |
|       bool FoundConstructor = false;
 | |
|       bool AllNoThrow = true;
 | |
|       unsigned FoundTQs;
 | |
|       DeclContext::lookup_const_iterator Con, ConEnd;
 | |
|       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
 | |
|            Con != ConEnd; ++Con) {
 | |
|         // A template constructor is never a copy constructor.
 | |
|         // FIXME: However, it may actually be selected at the actual overload
 | |
|         // resolution point.
 | |
|         if (isa<FunctionTemplateDecl>(*Con))
 | |
|           continue;
 | |
|         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
 | |
|         if (Constructor->isCopyConstructor(FoundTQs)) {
 | |
|           FoundConstructor = true;
 | |
|           const FunctionProtoType *CPT
 | |
|               = Constructor->getType()->getAs<FunctionProtoType>();
 | |
|           // FIXME: check whether evaluating default arguments can throw.
 | |
|           // For now, we'll be conservative and assume that they can throw.
 | |
|           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) {
 | |
|             AllNoThrow = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return FoundConstructor && AllNoThrow;
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_HasNothrowConstructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __has_trivial_constructor (type) is true then the trait is
 | |
|     //   true, else if type is a cv class or union type (or array
 | |
|     //   thereof) with a default constructor that is known not to
 | |
|     //   throw an exception then the trait is true, else it is false.
 | |
|     if (T->isPODType())
 | |
|       return true;
 | |
|     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       if (RD->hasTrivialConstructor())
 | |
|         return true;
 | |
| 
 | |
|       DeclContext::lookup_const_iterator Con, ConEnd;
 | |
|       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
 | |
|            Con != ConEnd; ++Con) {
 | |
|         // FIXME: In C++0x, a constructor template can be a default constructor.
 | |
|         if (isa<FunctionTemplateDecl>(*Con))
 | |
|           continue;
 | |
|         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
 | |
|         if (Constructor->isDefaultConstructor()) {
 | |
|           const FunctionProtoType *CPT
 | |
|               = Constructor->getType()->getAs<FunctionProtoType>();
 | |
|           // TODO: check whether evaluating default arguments can throw.
 | |
|           // For now, we'll be conservative and assume that they can throw.
 | |
|           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_HasVirtualDestructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If type is a class type with a virtual destructor ([class.dtor])
 | |
|     //   then the trait is true, else it is false.
 | |
|     if (const RecordType *Record = T->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | |
|       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
 | |
|         return Destructor->isVirtual();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
 | |
|                                      SourceLocation KWLoc,
 | |
|                                      TypeSourceInfo *TSInfo,
 | |
|                                      SourceLocation RParen) {
 | |
|   QualType T = TSInfo->getType();
 | |
| 
 | |
|   // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
 | |
|   // all traits except __is_class, __is_enum and __is_union require a the type
 | |
|   // to be complete, an array of unknown bound, or void.
 | |
|   if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
 | |
|     QualType E = T;
 | |
|     if (T->isIncompleteArrayType())
 | |
|       E = Context.getAsArrayType(T)->getElementType();
 | |
|     if (!T->isVoidType() &&
 | |
|         RequireCompleteType(KWLoc, E,
 | |
|                             diag::err_incomplete_type_used_in_type_trait_expr))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   bool Value = false;
 | |
|   if (!T->isDependentType())
 | |
|     Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
 | |
| 
 | |
|   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
 | |
|                                                 RParen, Context.BoolTy));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
 | |
|                                       SourceLocation KWLoc,
 | |
|                                       ParsedType LhsTy,
 | |
|                                       ParsedType RhsTy,
 | |
|                                       SourceLocation RParen) {
 | |
|   TypeSourceInfo *LhsTSInfo;
 | |
|   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
 | |
|   if (!LhsTSInfo)
 | |
|     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
 | |
| 
 | |
|   TypeSourceInfo *RhsTSInfo;
 | |
|   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
 | |
|   if (!RhsTSInfo)
 | |
|     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
 | |
| 
 | |
|   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
 | |
| }
 | |
| 
 | |
| static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
 | |
|                                     QualType LhsT, QualType RhsT,
 | |
|                                     SourceLocation KeyLoc) {
 | |
|   assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
 | |
|          "Cannot evaluate traits for dependent types.");
 | |
| 
 | |
|   switch(BTT) {
 | |
|   case BTT_IsBaseOf: {
 | |
|     // C++0x [meta.rel]p2
 | |
|     // Base is a base class of Derived without regard to cv-qualifiers or
 | |
|     // Base and Derived are not unions and name the same class type without
 | |
|     // regard to cv-qualifiers.
 | |
| 
 | |
|     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
 | |
|     if (!lhsRecord) return false;
 | |
| 
 | |
|     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
 | |
|     if (!rhsRecord) return false;
 | |
| 
 | |
|     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
 | |
|              == (lhsRecord == rhsRecord));
 | |
| 
 | |
|     if (lhsRecord == rhsRecord)
 | |
|       return !lhsRecord->getDecl()->isUnion();
 | |
| 
 | |
|     // C++0x [meta.rel]p2:
 | |
|     //   If Base and Derived are class types and are different types
 | |
|     //   (ignoring possible cv-qualifiers) then Derived shall be a
 | |
|     //   complete type.
 | |
|     if (Self.RequireCompleteType(KeyLoc, RhsT, 
 | |
|                           diag::err_incomplete_type_used_in_type_trait_expr))
 | |
|       return false;
 | |
| 
 | |
|     return cast<CXXRecordDecl>(rhsRecord->getDecl())
 | |
|       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
 | |
|   }
 | |
| 
 | |
|   case BTT_TypeCompatible:
 | |
|     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
 | |
|                                            RhsT.getUnqualifiedType());
 | |
|       
 | |
|   case BTT_IsConvertibleTo: {
 | |
|     // C++0x [meta.rel]p4:
 | |
|     //   Given the following function prototype:
 | |
|     //
 | |
|     //     template <class T> 
 | |
|     //       typename add_rvalue_reference<T>::type create();
 | |
|     //
 | |
|     //   the predicate condition for a template specialization 
 | |
|     //   is_convertible<From, To> shall be satisfied if and only if 
 | |
|     //   the return expression in the following code would be 
 | |
|     //   well-formed, including any implicit conversions to the return
 | |
|     //   type of the function:
 | |
|     //
 | |
|     //     To test() { 
 | |
|     //       return create<From>();
 | |
|     //     }
 | |
|     //
 | |
|     //   Access checking is performed as if in a context unrelated to To and 
 | |
|     //   From. Only the validity of the immediate context of the expression 
 | |
|     //   of the return-statement (including conversions to the return type)
 | |
|     //   is considered.
 | |
|     //
 | |
|     // We model the initialization as a copy-initialization of a temporary
 | |
|     // of the appropriate type, which for this expression is identical to the
 | |
|     // return statement (since NRVO doesn't apply).
 | |
|     if (LhsT->isObjectType() || LhsT->isFunctionType())
 | |
|       LhsT = Self.Context.getRValueReferenceType(LhsT);
 | |
|     
 | |
|     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
 | |
|     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
 | |
|                          Expr::getValueKindForType(LhsT));
 | |
|     Expr *FromPtr = &From;
 | |
|     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 
 | |
|                                                            SourceLocation()));
 | |
|     
 | |
|     // Perform the initialization within a SFINAE trap at translation unit 
 | |
|     // scope.
 | |
|     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
 | |
|     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
 | |
|     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
 | |
|     if (Init.getKind() == InitializationSequence::FailedSequence)
 | |
|       return false;
 | |
| 
 | |
|     ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
 | |
|     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Unknown type trait or not implemented");
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
 | |
|                                       SourceLocation KWLoc,
 | |
|                                       TypeSourceInfo *LhsTSInfo,
 | |
|                                       TypeSourceInfo *RhsTSInfo,
 | |
|                                       SourceLocation RParen) {
 | |
|   QualType LhsT = LhsTSInfo->getType();
 | |
|   QualType RhsT = RhsTSInfo->getType();
 | |
| 
 | |
|   if (BTT == BTT_TypeCompatible) {
 | |
|     if (getLangOptions().CPlusPlus) {
 | |
|       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
 | |
|         << SourceRange(KWLoc, RParen);
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Value = false;
 | |
|   if (!LhsT->isDependentType() && !RhsT->isDependentType())
 | |
|     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
 | |
| 
 | |
|   // Select trait result type.
 | |
|   QualType ResultType;
 | |
|   switch (BTT) {
 | |
|   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
 | |
|   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
 | |
|   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
 | |
|                                                  RhsTSInfo, Value, RParen,
 | |
|                                                  ResultType));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
 | |
|                                      SourceLocation KWLoc,
 | |
|                                      Expr* Queried,
 | |
|                                      SourceLocation RParen) {
 | |
|   // If error parsing the expression, ignore.
 | |
|   if (!Queried)
 | |
|       return ExprError();
 | |
| 
 | |
|   ExprResult Result
 | |
|     = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
 | |
| 
 | |
|   return move(Result);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
 | |
|                                      SourceLocation KWLoc,
 | |
|                                      Expr* Queried,
 | |
|                                      SourceLocation RParen) {
 | |
|   if (Queried->isTypeDependent()) {
 | |
|     // Delay type-checking for type-dependent expressions.
 | |
|   } else if (Queried->getType()->isPlaceholderType()) {
 | |
|     ExprResult PE = CheckPlaceholderExpr(Queried);
 | |
|     if (PE.isInvalid()) return ExprError();
 | |
|     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
 | |
|   }
 | |
| 
 | |
|   bool Value = false;
 | |
|   switch (ET) {
 | |
|   default: llvm_unreachable("Unknown or unimplemented expression trait");
 | |
|   case ET_IsLValueExpr:       Value = Queried->isLValue(); break;
 | |
|   case ET_IsRValueExpr:       Value = Queried->isRValue(); break;
 | |
|   }
 | |
|   
 | |
|   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
 | |
|   return Owned(
 | |
|       new (Context) ExpressionTraitExpr(
 | |
|           KWLoc, ET, Queried, Value, RParen, Context.BoolTy));
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
 | |
|                                             ExprValueKind &VK,
 | |
|                                             SourceLocation Loc,
 | |
|                                             bool isIndirect) {
 | |
|   const char *OpSpelling = isIndirect ? "->*" : ".*";
 | |
|   // C++ 5.5p2
 | |
|   //   The binary operator .* [p3: ->*] binds its second operand, which shall
 | |
|   //   be of type "pointer to member of T" (where T is a completely-defined
 | |
|   //   class type) [...]
 | |
|   QualType RType = rex.get()->getType();
 | |
|   const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
 | |
|   if (!MemPtr) {
 | |
|     Diag(Loc, diag::err_bad_memptr_rhs)
 | |
|       << OpSpelling << RType << rex.get()->getSourceRange();
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   QualType Class(MemPtr->getClass(), 0);
 | |
| 
 | |
|   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
 | |
|   // member pointer points must be completely-defined. However, there is no
 | |
|   // reason for this semantic distinction, and the rule is not enforced by
 | |
|   // other compilers. Therefore, we do not check this property, as it is
 | |
|   // likely to be considered a defect.
 | |
| 
 | |
|   // C++ 5.5p2
 | |
|   //   [...] to its first operand, which shall be of class T or of a class of
 | |
|   //   which T is an unambiguous and accessible base class. [p3: a pointer to
 | |
|   //   such a class]
 | |
|   QualType LType = lex.get()->getType();
 | |
|   if (isIndirect) {
 | |
|     if (const PointerType *Ptr = LType->getAs<PointerType>())
 | |
|       LType = Ptr->getPointeeType();
 | |
|     else {
 | |
|       Diag(Loc, diag::err_bad_memptr_lhs)
 | |
|         << OpSpelling << 1 << LType
 | |
|         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
 | |
|       return QualType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Context.hasSameUnqualifiedType(Class, LType)) {
 | |
|     // If we want to check the hierarchy, we need a complete type.
 | |
|     if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
 | |
|         << OpSpelling << (int)isIndirect)) {
 | |
|       return QualType();
 | |
|     }
 | |
|     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | |
|                        /*DetectVirtual=*/false);
 | |
|     // FIXME: Would it be useful to print full ambiguity paths, or is that
 | |
|     // overkill?
 | |
|     if (!IsDerivedFrom(LType, Class, Paths) ||
 | |
|         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
 | |
|       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
 | |
|         << (int)isIndirect << lex.get()->getType();
 | |
|       return QualType();
 | |
|     }
 | |
|     // Cast LHS to type of use.
 | |
|     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
 | |
|     ExprValueKind VK =
 | |
|         isIndirect ? VK_RValue : CastCategory(lex.get());
 | |
| 
 | |
|     CXXCastPath BasePath;
 | |
|     BuildBasePathArray(Paths, BasePath);
 | |
|     lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
 | |
|   }
 | |
| 
 | |
|   if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
 | |
|     // Diagnose use of pointer-to-member type which when used as
 | |
|     // the functional cast in a pointer-to-member expression.
 | |
|     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
 | |
|      return QualType();
 | |
|   }
 | |
| 
 | |
|   // C++ 5.5p2
 | |
|   //   The result is an object or a function of the type specified by the
 | |
|   //   second operand.
 | |
|   // The cv qualifiers are the union of those in the pointer and the left side,
 | |
|   // in accordance with 5.5p5 and 5.2.5.
 | |
|   // FIXME: This returns a dereferenced member function pointer as a normal
 | |
|   // function type. However, the only operation valid on such functions is
 | |
|   // calling them. There's also a GCC extension to get a function pointer to the
 | |
|   // thing, which is another complication, because this type - unlike the type
 | |
|   // that is the result of this expression - takes the class as the first
 | |
|   // argument.
 | |
|   // We probably need a "MemberFunctionClosureType" or something like that.
 | |
|   QualType Result = MemPtr->getPointeeType();
 | |
|   Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
 | |
| 
 | |
|   // C++0x [expr.mptr.oper]p6:
 | |
|   //   In a .* expression whose object expression is an rvalue, the program is
 | |
|   //   ill-formed if the second operand is a pointer to member function with
 | |
|   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
 | |
|   //   expression is an lvalue, the program is ill-formed if the second operand
 | |
|   //   is a pointer to member function with ref-qualifier &&.
 | |
|   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
 | |
|     switch (Proto->getRefQualifier()) {
 | |
|     case RQ_None:
 | |
|       // Do nothing
 | |
|       break;
 | |
| 
 | |
|     case RQ_LValue:
 | |
|       if (!isIndirect && !lex.get()->Classify(Context).isLValue())
 | |
|         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
 | |
|           << RType << 1 << lex.get()->getSourceRange();
 | |
|       break;
 | |
| 
 | |
|     case RQ_RValue:
 | |
|       if (isIndirect || !lex.get()->Classify(Context).isRValue())
 | |
|         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
 | |
|           << RType << 0 << lex.get()->getSourceRange();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.mptr.oper]p6:
 | |
|   //   The result of a .* expression whose second operand is a pointer
 | |
|   //   to a data member is of the same value category as its
 | |
|   //   first operand. The result of a .* expression whose second
 | |
|   //   operand is a pointer to a member function is a prvalue. The
 | |
|   //   result of an ->* expression is an lvalue if its second operand
 | |
|   //   is a pointer to data member and a prvalue otherwise.
 | |
|   if (Result->isFunctionType())
 | |
|     VK = VK_RValue;
 | |
|   else if (isIndirect)
 | |
|     VK = VK_LValue;
 | |
|   else
 | |
|     VK = lex.get()->getValueKind();
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// \brief Try to convert a type to another according to C++0x 5.16p3.
 | |
| ///
 | |
| /// This is part of the parameter validation for the ? operator. If either
 | |
| /// value operand is a class type, the two operands are attempted to be
 | |
| /// converted to each other. This function does the conversion in one direction.
 | |
| /// It returns true if the program is ill-formed and has already been diagnosed
 | |
| /// as such.
 | |
| static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
 | |
|                                 SourceLocation QuestionLoc,
 | |
|                                 bool &HaveConversion,
 | |
|                                 QualType &ToType) {
 | |
|   HaveConversion = false;
 | |
|   ToType = To->getType();
 | |
| 
 | |
|   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
 | |
|                                                            SourceLocation());
 | |
|   // C++0x 5.16p3
 | |
|   //   The process for determining whether an operand expression E1 of type T1
 | |
|   //   can be converted to match an operand expression E2 of type T2 is defined
 | |
|   //   as follows:
 | |
|   //   -- If E2 is an lvalue:
 | |
|   bool ToIsLvalue = To->isLValue();
 | |
|   if (ToIsLvalue) {
 | |
|     //   E1 can be converted to match E2 if E1 can be implicitly converted to
 | |
|     //   type "lvalue reference to T2", subject to the constraint that in the
 | |
|     //   conversion the reference must bind directly to E1.
 | |
|     QualType T = Self.Context.getLValueReferenceType(ToType);
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
 | |
| 
 | |
|     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
 | |
|     if (InitSeq.isDirectReferenceBinding()) {
 | |
|       ToType = T;
 | |
|       HaveConversion = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (InitSeq.isAmbiguous())
 | |
|       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
 | |
|   }
 | |
| 
 | |
|   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
 | |
|   //      -- if E1 and E2 have class type, and the underlying class types are
 | |
|   //         the same or one is a base class of the other:
 | |
|   QualType FTy = From->getType();
 | |
|   QualType TTy = To->getType();
 | |
|   const RecordType *FRec = FTy->getAs<RecordType>();
 | |
|   const RecordType *TRec = TTy->getAs<RecordType>();
 | |
|   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
 | |
|                        Self.IsDerivedFrom(FTy, TTy);
 | |
|   if (FRec && TRec &&
 | |
|       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
 | |
|     //         E1 can be converted to match E2 if the class of T2 is the
 | |
|     //         same type as, or a base class of, the class of T1, and
 | |
|     //         [cv2 > cv1].
 | |
|     if (FRec == TRec || FDerivedFromT) {
 | |
|       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
 | |
|         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
 | |
|         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
 | |
|         if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
 | |
|           HaveConversion = true;
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         if (InitSeq.isAmbiguous())
 | |
|           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
 | |
|   //        implicitly converted to the type that expression E2 would have
 | |
|   //        if E2 were converted to an rvalue (or the type it has, if E2 is
 | |
|   //        an rvalue).
 | |
|   //
 | |
|   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
 | |
|   // to the array-to-pointer or function-to-pointer conversions.
 | |
|   if (!TTy->getAs<TagType>())
 | |
|     TTy = TTy.getUnqualifiedType();
 | |
| 
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
 | |
|   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
 | |
|   HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
 | |
|   ToType = TTy;
 | |
|   if (InitSeq.isAmbiguous())
 | |
|     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Try to find a common type for two according to C++0x 5.16p5.
 | |
| ///
 | |
| /// This is part of the parameter validation for the ? operator. If either
 | |
| /// value operand is a class type, overload resolution is used to find a
 | |
| /// conversion to a common type.
 | |
| static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
 | |
|                                     SourceLocation QuestionLoc) {
 | |
|   Expr *Args[2] = { LHS.get(), RHS.get() };
 | |
|   OverloadCandidateSet CandidateSet(QuestionLoc);
 | |
|   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
 | |
|                                     CandidateSet);
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
 | |
|     case OR_Success: {
 | |
|       // We found a match. Perform the conversions on the arguments and move on.
 | |
|       ExprResult LHSRes =
 | |
|         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
 | |
|                                        Best->Conversions[0], Sema::AA_Converting);
 | |
|       if (LHSRes.isInvalid())
 | |
|         break;
 | |
|       LHS = move(LHSRes);
 | |
| 
 | |
|       ExprResult RHSRes =
 | |
|         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
 | |
|                                        Best->Conversions[1], Sema::AA_Converting);
 | |
|       if (RHSRes.isInvalid())
 | |
|         break;
 | |
|       RHS = move(RHSRes);
 | |
|       if (Best->Function)
 | |
|         Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     case OR_No_Viable_Function:
 | |
| 
 | |
|       // Emit a better diagnostic if one of the expressions is a null pointer
 | |
|       // constant and the other is a pointer type. In this case, the user most
 | |
|       // likely forgot to take the address of the other expression.
 | |
|       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | |
|         return true;
 | |
| 
 | |
|       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | |
|         << LHS.get()->getType() << RHS.get()->getType()
 | |
|         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       return true;
 | |
| 
 | |
|     case OR_Ambiguous:
 | |
|       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
 | |
|         << LHS.get()->getType() << RHS.get()->getType()
 | |
|         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       // FIXME: Print the possible common types by printing the return types of
 | |
|       // the viable candidates.
 | |
|       break;
 | |
| 
 | |
|     case OR_Deleted:
 | |
|       assert(false && "Conditional operator has only built-in overloads");
 | |
|       break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Perform an "extended" implicit conversion as returned by
 | |
| /// TryClassUnification.
 | |
| static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
 | |
|   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
 | |
|                                                            SourceLocation());
 | |
|   Expr *Arg = E.take();
 | |
|   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
 | |
|   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
 | |
|   if (Result.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   E = Result;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check the operands of ?: under C++ semantics.
 | |
| ///
 | |
| /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
 | |
| /// extension. In this case, LHS == Cond. (But they're not aliases.)
 | |
| QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
 | |
|                                            ExprValueKind &VK, ExprObjectKind &OK,
 | |
|                                            SourceLocation QuestionLoc) {
 | |
|   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
 | |
|   // interface pointers.
 | |
| 
 | |
|   // C++0x 5.16p1
 | |
|   //   The first expression is contextually converted to bool.
 | |
|   if (!Cond.get()->isTypeDependent()) {
 | |
|     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
 | |
|     if (CondRes.isInvalid())
 | |
|       return QualType();
 | |
|     Cond = move(CondRes);
 | |
|   }
 | |
| 
 | |
|   // Assume r-value.
 | |
|   VK = VK_RValue;
 | |
|   OK = OK_Ordinary;
 | |
| 
 | |
|   // Either of the arguments dependent?
 | |
|   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
 | |
|     return Context.DependentTy;
 | |
| 
 | |
|   // C++0x 5.16p2
 | |
|   //   If either the second or the third operand has type (cv) void, ...
 | |
|   QualType LTy = LHS.get()->getType();
 | |
|   QualType RTy = RHS.get()->getType();
 | |
|   bool LVoid = LTy->isVoidType();
 | |
|   bool RVoid = RTy->isVoidType();
 | |
|   if (LVoid || RVoid) {
 | |
|     //   ... then the [l2r] conversions are performed on the second and third
 | |
|     //   operands ...
 | |
|     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
 | |
|     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
 | |
|     if (LHS.isInvalid() || RHS.isInvalid())
 | |
|       return QualType();
 | |
|     LTy = LHS.get()->getType();
 | |
|     RTy = RHS.get()->getType();
 | |
| 
 | |
|     //   ... and one of the following shall hold:
 | |
|     //   -- The second or the third operand (but not both) is a throw-
 | |
|     //      expression; the result is of the type of the other and is an rvalue.
 | |
|     bool LThrow = isa<CXXThrowExpr>(LHS.get());
 | |
|     bool RThrow = isa<CXXThrowExpr>(RHS.get());
 | |
|     if (LThrow && !RThrow)
 | |
|       return RTy;
 | |
|     if (RThrow && !LThrow)
 | |
|       return LTy;
 | |
| 
 | |
|     //   -- Both the second and third operands have type void; the result is of
 | |
|     //      type void and is an rvalue.
 | |
|     if (LVoid && RVoid)
 | |
|       return Context.VoidTy;
 | |
| 
 | |
|     // Neither holds, error.
 | |
|     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
 | |
|       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
 | |
|       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Neither is void.
 | |
| 
 | |
|   // C++0x 5.16p3
 | |
|   //   Otherwise, if the second and third operand have different types, and
 | |
|   //   either has (cv) class type, and attempt is made to convert each of those
 | |
|   //   operands to the other.
 | |
|   if (!Context.hasSameType(LTy, RTy) &&
 | |
|       (LTy->isRecordType() || RTy->isRecordType())) {
 | |
|     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
 | |
|     // These return true if a single direction is already ambiguous.
 | |
|     QualType L2RType, R2LType;
 | |
|     bool HaveL2R, HaveR2L;
 | |
|     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
 | |
|       return QualType();
 | |
|     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
 | |
|       return QualType();
 | |
| 
 | |
|     //   If both can be converted, [...] the program is ill-formed.
 | |
|     if (HaveL2R && HaveR2L) {
 | |
|       Diag(QuestionLoc, diag::err_conditional_ambiguous)
 | |
|         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     //   If exactly one conversion is possible, that conversion is applied to
 | |
|     //   the chosen operand and the converted operands are used in place of the
 | |
|     //   original operands for the remainder of this section.
 | |
|     if (HaveL2R) {
 | |
|       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
 | |
|         return QualType();
 | |
|       LTy = LHS.get()->getType();
 | |
|     } else if (HaveR2L) {
 | |
|       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
 | |
|         return QualType();
 | |
|       RTy = RHS.get()->getType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++0x 5.16p4
 | |
|   //   If the second and third operands are glvalues of the same value
 | |
|   //   category and have the same type, the result is of that type and
 | |
|   //   value category and it is a bit-field if the second or the third
 | |
|   //   operand is a bit-field, or if both are bit-fields.
 | |
|   // We only extend this to bitfields, not to the crazy other kinds of
 | |
|   // l-values.
 | |
|   bool Same = Context.hasSameType(LTy, RTy);
 | |
|   if (Same &&
 | |
|       LHS.get()->isGLValue() &&
 | |
|       LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
 | |
|       LHS.get()->isOrdinaryOrBitFieldObject() &&
 | |
|       RHS.get()->isOrdinaryOrBitFieldObject()) {
 | |
|     VK = LHS.get()->getValueKind();
 | |
|     if (LHS.get()->getObjectKind() == OK_BitField ||
 | |
|         RHS.get()->getObjectKind() == OK_BitField)
 | |
|       OK = OK_BitField;
 | |
|     return LTy;
 | |
|   }
 | |
| 
 | |
|   // C++0x 5.16p5
 | |
|   //   Otherwise, the result is an rvalue. If the second and third operands
 | |
|   //   do not have the same type, and either has (cv) class type, ...
 | |
|   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
 | |
|     //   ... overload resolution is used to determine the conversions (if any)
 | |
|     //   to be applied to the operands. If the overload resolution fails, the
 | |
|     //   program is ill-formed.
 | |
|     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // C++0x 5.16p6
 | |
|   //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
 | |
|   //   conversions are performed on the second and third operands.
 | |
|   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
 | |
|   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
 | |
|   if (LHS.isInvalid() || RHS.isInvalid())
 | |
|     return QualType();
 | |
|   LTy = LHS.get()->getType();
 | |
|   RTy = RHS.get()->getType();
 | |
| 
 | |
|   //   After those conversions, one of the following shall hold:
 | |
|   //   -- The second and third operands have the same type; the result
 | |
|   //      is of that type. If the operands have class type, the result
 | |
|   //      is a prvalue temporary of the result type, which is
 | |
|   //      copy-initialized from either the second operand or the third
 | |
|   //      operand depending on the value of the first operand.
 | |
|   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
 | |
|     if (LTy->isRecordType()) {
 | |
|       // The operands have class type. Make a temporary copy.
 | |
|       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
 | |
|       ExprResult LHSCopy = PerformCopyInitialization(Entity,
 | |
|                                                      SourceLocation(),
 | |
|                                                      LHS);
 | |
|       if (LHSCopy.isInvalid())
 | |
|         return QualType();
 | |
| 
 | |
|       ExprResult RHSCopy = PerformCopyInitialization(Entity,
 | |
|                                                      SourceLocation(),
 | |
|                                                      RHS);
 | |
|       if (RHSCopy.isInvalid())
 | |
|         return QualType();
 | |
| 
 | |
|       LHS = LHSCopy;
 | |
|       RHS = RHSCopy;
 | |
|     }
 | |
| 
 | |
|     return LTy;
 | |
|   }
 | |
| 
 | |
|   // Extension: conditional operator involving vector types.
 | |
|   if (LTy->isVectorType() || RTy->isVectorType())
 | |
|     return CheckVectorOperands(QuestionLoc, LHS, RHS);
 | |
| 
 | |
|   //   -- The second and third operands have arithmetic or enumeration type;
 | |
|   //      the usual arithmetic conversions are performed to bring them to a
 | |
|   //      common type, and the result is of that type.
 | |
|   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
 | |
|     UsualArithmeticConversions(LHS, RHS);
 | |
|     if (LHS.isInvalid() || RHS.isInvalid())
 | |
|       return QualType();
 | |
|     return LHS.get()->getType();
 | |
|   }
 | |
| 
 | |
|   //   -- The second and third operands have pointer type, or one has pointer
 | |
|   //      type and the other is a null pointer constant; pointer conversions
 | |
|   //      and qualification conversions are performed to bring them to their
 | |
|   //      composite pointer type. The result is of the composite pointer type.
 | |
|   //   -- The second and third operands have pointer to member type, or one has
 | |
|   //      pointer to member type and the other is a null pointer constant;
 | |
|   //      pointer to member conversions and qualification conversions are
 | |
|   //      performed to bring them to a common type, whose cv-qualification
 | |
|   //      shall match the cv-qualification of either the second or the third
 | |
|   //      operand. The result is of the common type.
 | |
|   bool NonStandardCompositeType = false;
 | |
|   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
 | |
|                               isSFINAEContext()? 0 : &NonStandardCompositeType);
 | |
|   if (!Composite.isNull()) {
 | |
|     if (NonStandardCompositeType)
 | |
|       Diag(QuestionLoc,
 | |
|            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
 | |
|         << LTy << RTy << Composite
 | |
|         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
| 
 | |
|     return Composite;
 | |
|   }
 | |
| 
 | |
|   // Similarly, attempt to find composite type of two objective-c pointers.
 | |
|   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
 | |
|   if (!Composite.isNull())
 | |
|     return Composite;
 | |
| 
 | |
|   // Check if we are using a null with a non-pointer type.
 | |
|   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | |
|     return QualType();
 | |
| 
 | |
|   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | |
|     << LHS.get()->getType() << RHS.get()->getType()
 | |
|     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| /// \brief Find a merged pointer type and convert the two expressions to it.
 | |
| ///
 | |
| /// This finds the composite pointer type (or member pointer type) for @p E1
 | |
| /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
 | |
| /// type and returns it.
 | |
| /// It does not emit diagnostics.
 | |
| ///
 | |
| /// \param Loc The location of the operator requiring these two expressions to
 | |
| /// be converted to the composite pointer type.
 | |
| ///
 | |
| /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
 | |
| /// a non-standard (but still sane) composite type to which both expressions
 | |
| /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
 | |
| /// will be set true.
 | |
| QualType Sema::FindCompositePointerType(SourceLocation Loc,
 | |
|                                         Expr *&E1, Expr *&E2,
 | |
|                                         bool *NonStandardCompositeType) {
 | |
|   if (NonStandardCompositeType)
 | |
|     *NonStandardCompositeType = false;
 | |
| 
 | |
|   assert(getLangOptions().CPlusPlus && "This function assumes C++");
 | |
|   QualType T1 = E1->getType(), T2 = E2->getType();
 | |
| 
 | |
|   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
 | |
|       !T2->isAnyPointerType() && !T2->isMemberPointerType())
 | |
|    return QualType();
 | |
| 
 | |
|   // C++0x 5.9p2
 | |
|   //   Pointer conversions and qualification conversions are performed on
 | |
|   //   pointer operands to bring them to their composite pointer type. If
 | |
|   //   one operand is a null pointer constant, the composite pointer type is
 | |
|   //   the type of the other operand.
 | |
|   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|     if (T2->isMemberPointerType())
 | |
|       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
 | |
|     else
 | |
|       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
 | |
|     return T2;
 | |
|   }
 | |
|   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|     if (T1->isMemberPointerType())
 | |
|       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
 | |
|     else
 | |
|       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
 | |
|     return T1;
 | |
|   }
 | |
| 
 | |
|   // Now both have to be pointers or member pointers.
 | |
|   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
 | |
|       (!T2->isPointerType() && !T2->isMemberPointerType()))
 | |
|     return QualType();
 | |
| 
 | |
|   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
 | |
|   //   the other has type "pointer to cv2 T" and the composite pointer type is
 | |
|   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
 | |
|   //   Otherwise, the composite pointer type is a pointer type similar to the
 | |
|   //   type of one of the operands, with a cv-qualification signature that is
 | |
|   //   the union of the cv-qualification signatures of the operand types.
 | |
|   // In practice, the first part here is redundant; it's subsumed by the second.
 | |
|   // What we do here is, we build the two possible composite types, and try the
 | |
|   // conversions in both directions. If only one works, or if the two composite
 | |
|   // types are the same, we have succeeded.
 | |
|   // FIXME: extended qualifiers?
 | |
|   typedef llvm::SmallVector<unsigned, 4> QualifierVector;
 | |
|   QualifierVector QualifierUnion;
 | |
|   typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
 | |
|       ContainingClassVector;
 | |
|   ContainingClassVector MemberOfClass;
 | |
|   QualType Composite1 = Context.getCanonicalType(T1),
 | |
|            Composite2 = Context.getCanonicalType(T2);
 | |
|   unsigned NeedConstBefore = 0;
 | |
|   do {
 | |
|     const PointerType *Ptr1, *Ptr2;
 | |
|     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
 | |
|         (Ptr2 = Composite2->getAs<PointerType>())) {
 | |
|       Composite1 = Ptr1->getPointeeType();
 | |
|       Composite2 = Ptr2->getPointeeType();
 | |
| 
 | |
|       // If we're allowed to create a non-standard composite type, keep track
 | |
|       // of where we need to fill in additional 'const' qualifiers.
 | |
|       if (NonStandardCompositeType &&
 | |
|           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
 | |
|         NeedConstBefore = QualifierUnion.size();
 | |
| 
 | |
|       QualifierUnion.push_back(
 | |
|                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | |
|       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const MemberPointerType *MemPtr1, *MemPtr2;
 | |
|     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
 | |
|         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
 | |
|       Composite1 = MemPtr1->getPointeeType();
 | |
|       Composite2 = MemPtr2->getPointeeType();
 | |
| 
 | |
|       // If we're allowed to create a non-standard composite type, keep track
 | |
|       // of where we need to fill in additional 'const' qualifiers.
 | |
|       if (NonStandardCompositeType &&
 | |
|           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
 | |
|         NeedConstBefore = QualifierUnion.size();
 | |
| 
 | |
|       QualifierUnion.push_back(
 | |
|                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | |
|       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
 | |
|                                              MemPtr2->getClass()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // FIXME: block pointer types?
 | |
| 
 | |
|     // Cannot unwrap any more types.
 | |
|     break;
 | |
|   } while (true);
 | |
| 
 | |
|   if (NeedConstBefore && NonStandardCompositeType) {
 | |
|     // Extension: Add 'const' to qualifiers that come before the first qualifier
 | |
|     // mismatch, so that our (non-standard!) composite type meets the
 | |
|     // requirements of C++ [conv.qual]p4 bullet 3.
 | |
|     for (unsigned I = 0; I != NeedConstBefore; ++I) {
 | |
|       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
 | |
|         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
 | |
|         *NonStandardCompositeType = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewrap the composites as pointers or member pointers with the union CVRs.
 | |
|   ContainingClassVector::reverse_iterator MOC
 | |
|     = MemberOfClass.rbegin();
 | |
|   for (QualifierVector::reverse_iterator
 | |
|          I = QualifierUnion.rbegin(),
 | |
|          E = QualifierUnion.rend();
 | |
|        I != E; (void)++I, ++MOC) {
 | |
|     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
 | |
|     if (MOC->first && MOC->second) {
 | |
|       // Rebuild member pointer type
 | |
|       Composite1 = Context.getMemberPointerType(
 | |
|                                     Context.getQualifiedType(Composite1, Quals),
 | |
|                                     MOC->first);
 | |
|       Composite2 = Context.getMemberPointerType(
 | |
|                                     Context.getQualifiedType(Composite2, Quals),
 | |
|                                     MOC->second);
 | |
|     } else {
 | |
|       // Rebuild pointer type
 | |
|       Composite1
 | |
|         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
 | |
|       Composite2
 | |
|         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to convert to the first composite pointer type.
 | |
|   InitializedEntity Entity1
 | |
|     = InitializedEntity::InitializeTemporary(Composite1);
 | |
|   InitializationKind Kind
 | |
|     = InitializationKind::CreateCopy(Loc, SourceLocation());
 | |
|   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
 | |
|   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
 | |
| 
 | |
|   if (E1ToC1 && E2ToC1) {
 | |
|     // Conversion to Composite1 is viable.
 | |
|     if (!Context.hasSameType(Composite1, Composite2)) {
 | |
|       // Composite2 is a different type from Composite1. Check whether
 | |
|       // Composite2 is also viable.
 | |
|       InitializedEntity Entity2
 | |
|         = InitializedEntity::InitializeTemporary(Composite2);
 | |
|       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
 | |
|       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
 | |
|       if (E1ToC2 && E2ToC2) {
 | |
|         // Both Composite1 and Composite2 are viable and are different;
 | |
|         // this is an ambiguity.
 | |
|         return QualType();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Convert E1 to Composite1
 | |
|     ExprResult E1Result
 | |
|       = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
 | |
|     if (E1Result.isInvalid())
 | |
|       return QualType();
 | |
|     E1 = E1Result.takeAs<Expr>();
 | |
| 
 | |
|     // Convert E2 to Composite1
 | |
|     ExprResult E2Result
 | |
|       = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
 | |
|     if (E2Result.isInvalid())
 | |
|       return QualType();
 | |
|     E2 = E2Result.takeAs<Expr>();
 | |
| 
 | |
|     return Composite1;
 | |
|   }
 | |
| 
 | |
|   // Check whether Composite2 is viable.
 | |
|   InitializedEntity Entity2
 | |
|     = InitializedEntity::InitializeTemporary(Composite2);
 | |
|   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
 | |
|   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
 | |
|   if (!E1ToC2 || !E2ToC2)
 | |
|     return QualType();
 | |
| 
 | |
|   // Convert E1 to Composite2
 | |
|   ExprResult E1Result
 | |
|     = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
 | |
|   if (E1Result.isInvalid())
 | |
|     return QualType();
 | |
|   E1 = E1Result.takeAs<Expr>();
 | |
| 
 | |
|   // Convert E2 to Composite2
 | |
|   ExprResult E2Result
 | |
|     = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
 | |
|   if (E2Result.isInvalid())
 | |
|     return QualType();
 | |
|   E2 = E2Result.takeAs<Expr>();
 | |
| 
 | |
|   return Composite2;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::MaybeBindToTemporary(Expr *E) {
 | |
|   if (!E)
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!Context.getLangOptions().CPlusPlus)
 | |
|     return Owned(E);
 | |
| 
 | |
|   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
 | |
| 
 | |
|   const RecordType *RT = E->getType()->getAs<RecordType>();
 | |
|   if (!RT)
 | |
|     return Owned(E);
 | |
| 
 | |
|   // If the result is a glvalue, we shouldn't bind it.
 | |
|   if (E->Classify(Context).isGLValue())
 | |
|     return Owned(E);
 | |
| 
 | |
|   // That should be enough to guarantee that this type is complete.
 | |
|   // If it has a trivial destructor, we can avoid the extra copy.
 | |
|   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|   if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
 | |
|     return Owned(E);
 | |
| 
 | |
|   CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
 | |
|   ExprTemporaries.push_back(Temp);
 | |
|   if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
 | |
|     MarkDeclarationReferenced(E->getExprLoc(), Destructor);
 | |
|     CheckDestructorAccess(E->getExprLoc(), Destructor,
 | |
|                           PDiag(diag::err_access_dtor_temp)
 | |
|                             << E->getType());
 | |
|   }
 | |
|   // FIXME: Add the temporary to the temporaries vector.
 | |
|   return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
 | |
| }
 | |
| 
 | |
| Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
 | |
|   assert(SubExpr && "sub expression can't be null!");
 | |
| 
 | |
|   unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
 | |
|   assert(ExprTemporaries.size() >= FirstTemporary);
 | |
|   if (ExprTemporaries.size() == FirstTemporary)
 | |
|     return SubExpr;
 | |
| 
 | |
|   Expr *E = ExprWithCleanups::Create(Context, SubExpr,
 | |
|                                      &ExprTemporaries[FirstTemporary],
 | |
|                                      ExprTemporaries.size() - FirstTemporary);
 | |
|   ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
 | |
|                         ExprTemporaries.end());
 | |
| 
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
 | |
| }
 | |
| 
 | |
| Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
 | |
|   assert(SubStmt && "sub statement can't be null!");
 | |
| 
 | |
|   unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
 | |
|   assert(ExprTemporaries.size() >= FirstTemporary);
 | |
|   if (ExprTemporaries.size() == FirstTemporary)
 | |
|     return SubStmt;
 | |
| 
 | |
|   // FIXME: In order to attach the temporaries, wrap the statement into
 | |
|   // a StmtExpr; currently this is only used for asm statements.
 | |
|   // This is hacky, either create a new CXXStmtWithTemporaries statement or
 | |
|   // a new AsmStmtWithTemporaries.
 | |
|   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
 | |
|                                                       SourceLocation(),
 | |
|                                                       SourceLocation());
 | |
|   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
 | |
|                                    SourceLocation());
 | |
|   return MaybeCreateExprWithCleanups(E);
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
 | |
|                                    tok::TokenKind OpKind, ParsedType &ObjectType,
 | |
|                                    bool &MayBePseudoDestructor) {
 | |
|   // Since this might be a postfix expression, get rid of ParenListExprs.
 | |
|   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
|   Base = Result.get();
 | |
| 
 | |
|   QualType BaseType = Base->getType();
 | |
|   MayBePseudoDestructor = false;
 | |
|   if (BaseType->isDependentType()) {
 | |
|     // If we have a pointer to a dependent type and are using the -> operator,
 | |
|     // the object type is the type that the pointer points to. We might still
 | |
|     // have enough information about that type to do something useful.
 | |
|     if (OpKind == tok::arrow)
 | |
|       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
 | |
|         BaseType = Ptr->getPointeeType();
 | |
| 
 | |
|     ObjectType = ParsedType::make(BaseType);
 | |
|     MayBePseudoDestructor = true;
 | |
|     return Owned(Base);
 | |
|   }
 | |
| 
 | |
|   // C++ [over.match.oper]p8:
 | |
|   //   [...] When operator->returns, the operator-> is applied  to the value
 | |
|   //   returned, with the original second operand.
 | |
|   if (OpKind == tok::arrow) {
 | |
|     // The set of types we've considered so far.
 | |
|     llvm::SmallPtrSet<CanQualType,8> CTypes;
 | |
|     llvm::SmallVector<SourceLocation, 8> Locations;
 | |
|     CTypes.insert(Context.getCanonicalType(BaseType));
 | |
| 
 | |
|     while (BaseType->isRecordType()) {
 | |
|       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
 | |
|       if (Result.isInvalid())
 | |
|         return ExprError();
 | |
|       Base = Result.get();
 | |
|       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
 | |
|         Locations.push_back(OpCall->getDirectCallee()->getLocation());
 | |
|       BaseType = Base->getType();
 | |
|       CanQualType CBaseType = Context.getCanonicalType(BaseType);
 | |
|       if (!CTypes.insert(CBaseType)) {
 | |
|         Diag(OpLoc, diag::err_operator_arrow_circular);
 | |
|         for (unsigned i = 0; i < Locations.size(); i++)
 | |
|           Diag(Locations[i], diag::note_declared_at);
 | |
|         return ExprError();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BaseType->isPointerType())
 | |
|       BaseType = BaseType->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   // We could end up with various non-record types here, such as extended
 | |
|   // vector types or Objective-C interfaces. Just return early and let
 | |
|   // ActOnMemberReferenceExpr do the work.
 | |
|   if (!BaseType->isRecordType()) {
 | |
|     // C++ [basic.lookup.classref]p2:
 | |
|     //   [...] If the type of the object expression is of pointer to scalar
 | |
|     //   type, the unqualified-id is looked up in the context of the complete
 | |
|     //   postfix-expression.
 | |
|     //
 | |
|     // This also indicates that we should be parsing a
 | |
|     // pseudo-destructor-name.
 | |
|     ObjectType = ParsedType();
 | |
|     MayBePseudoDestructor = true;
 | |
|     return Owned(Base);
 | |
|   }
 | |
| 
 | |
|   // The object type must be complete (or dependent).
 | |
|   if (!BaseType->isDependentType() &&
 | |
|       RequireCompleteType(OpLoc, BaseType,
 | |
|                           PDiag(diag::err_incomplete_member_access)))
 | |
|     return ExprError();
 | |
| 
 | |
|   // C++ [basic.lookup.classref]p2:
 | |
|   //   If the id-expression in a class member access (5.2.5) is an
 | |
|   //   unqualified-id, and the type of the object expression is of a class
 | |
|   //   type C (or of pointer to a class type C), the unqualified-id is looked
 | |
|   //   up in the scope of class C. [...]
 | |
|   ObjectType = ParsedType::make(BaseType);
 | |
|   return move(Base);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
 | |
|                                                    Expr *MemExpr) {
 | |
|   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
 | |
|   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
 | |
|     << isa<CXXPseudoDestructorExpr>(MemExpr)
 | |
|     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
 | |
| 
 | |
|   return ActOnCallExpr(/*Scope*/ 0,
 | |
|                        MemExpr,
 | |
|                        /*LPLoc*/ ExpectedLParenLoc,
 | |
|                        MultiExprArg(),
 | |
|                        /*RPLoc*/ ExpectedLParenLoc);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
 | |
|                                            SourceLocation OpLoc,
 | |
|                                            tok::TokenKind OpKind,
 | |
|                                            const CXXScopeSpec &SS,
 | |
|                                            TypeSourceInfo *ScopeTypeInfo,
 | |
|                                            SourceLocation CCLoc,
 | |
|                                            SourceLocation TildeLoc,
 | |
|                                          PseudoDestructorTypeStorage Destructed,
 | |
|                                            bool HasTrailingLParen) {
 | |
|   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
 | |
| 
 | |
|   // C++ [expr.pseudo]p2:
 | |
|   //   The left-hand side of the dot operator shall be of scalar type. The
 | |
|   //   left-hand side of the arrow operator shall be of pointer to scalar type.
 | |
|   //   This scalar type is the object type.
 | |
|   QualType ObjectType = Base->getType();
 | |
|   if (OpKind == tok::arrow) {
 | |
|     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
 | |
|       ObjectType = Ptr->getPointeeType();
 | |
|     } else if (!Base->isTypeDependent()) {
 | |
|       // The user wrote "p->" when she probably meant "p."; fix it.
 | |
|       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|         << ObjectType << true
 | |
|         << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|       if (isSFINAEContext())
 | |
|         return ExprError();
 | |
| 
 | |
|       OpKind = tok::period;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
 | |
|     Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
 | |
|       << ObjectType << Base->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.pseudo]p2:
 | |
|   //   [...] The cv-unqualified versions of the object type and of the type
 | |
|   //   designated by the pseudo-destructor-name shall be the same type.
 | |
|   if (DestructedTypeInfo) {
 | |
|     QualType DestructedType = DestructedTypeInfo->getType();
 | |
|     SourceLocation DestructedTypeStart
 | |
|       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | |
|     if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
 | |
|         !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
 | |
|       Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
 | |
|         << ObjectType << DestructedType << Base->getSourceRange()
 | |
|         << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|       // Recover by setting the destructed type to the object type.
 | |
|       DestructedType = ObjectType;
 | |
|       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
 | |
|                                                            DestructedTypeStart);
 | |
|       Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.pseudo]p2:
 | |
|   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
 | |
|   //   form
 | |
|   //
 | |
|   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
 | |
|   //
 | |
|   //   shall designate the same scalar type.
 | |
|   if (ScopeTypeInfo) {
 | |
|     QualType ScopeType = ScopeTypeInfo->getType();
 | |
|     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
 | |
|         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
 | |
| 
 | |
|       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
 | |
|            diag::err_pseudo_dtor_type_mismatch)
 | |
|         << ObjectType << ScopeType << Base->getSourceRange()
 | |
|         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|       ScopeType = QualType();
 | |
|       ScopeTypeInfo = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Expr *Result
 | |
|     = new (Context) CXXPseudoDestructorExpr(Context, Base,
 | |
|                                             OpKind == tok::arrow, OpLoc,
 | |
|                                             SS.getWithLocInContext(Context),
 | |
|                                             ScopeTypeInfo,
 | |
|                                             CCLoc,
 | |
|                                             TildeLoc,
 | |
|                                             Destructed);
 | |
| 
 | |
|   if (HasTrailingLParen)
 | |
|     return Owned(Result);
 | |
| 
 | |
|   return DiagnoseDtorReference(Destructed.getLocation(), Result);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
 | |
|                                            SourceLocation OpLoc,
 | |
|                                            tok::TokenKind OpKind,
 | |
|                                            CXXScopeSpec &SS,
 | |
|                                            UnqualifiedId &FirstTypeName,
 | |
|                                            SourceLocation CCLoc,
 | |
|                                            SourceLocation TildeLoc,
 | |
|                                            UnqualifiedId &SecondTypeName,
 | |
|                                            bool HasTrailingLParen) {
 | |
|   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | |
|           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
 | |
|          "Invalid first type name in pseudo-destructor");
 | |
|   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | |
|           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
 | |
|          "Invalid second type name in pseudo-destructor");
 | |
| 
 | |
|   // C++ [expr.pseudo]p2:
 | |
|   //   The left-hand side of the dot operator shall be of scalar type. The
 | |
|   //   left-hand side of the arrow operator shall be of pointer to scalar type.
 | |
|   //   This scalar type is the object type.
 | |
|   QualType ObjectType = Base->getType();
 | |
|   if (OpKind == tok::arrow) {
 | |
|     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
 | |
|       ObjectType = Ptr->getPointeeType();
 | |
|     } else if (!ObjectType->isDependentType()) {
 | |
|       // The user wrote "p->" when she probably meant "p."; fix it.
 | |
|       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|         << ObjectType << true
 | |
|         << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|       if (isSFINAEContext())
 | |
|         return ExprError();
 | |
| 
 | |
|       OpKind = tok::period;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute the object type that we should use for name lookup purposes. Only
 | |
|   // record types and dependent types matter.
 | |
|   ParsedType ObjectTypePtrForLookup;
 | |
|   if (!SS.isSet()) {
 | |
|     if (ObjectType->isRecordType())
 | |
|       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
 | |
|     else if (ObjectType->isDependentType())
 | |
|       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
 | |
|   }
 | |
| 
 | |
|   // Convert the name of the type being destructed (following the ~) into a
 | |
|   // type (with source-location information).
 | |
|   QualType DestructedType;
 | |
|   TypeSourceInfo *DestructedTypeInfo = 0;
 | |
|   PseudoDestructorTypeStorage Destructed;
 | |
|   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
 | |
|     ParsedType T = getTypeName(*SecondTypeName.Identifier,
 | |
|                                SecondTypeName.StartLocation,
 | |
|                                S, &SS, true, false, ObjectTypePtrForLookup);
 | |
|     if (!T &&
 | |
|         ((SS.isSet() && !computeDeclContext(SS, false)) ||
 | |
|          (!SS.isSet() && ObjectType->isDependentType()))) {
 | |
|       // The name of the type being destroyed is a dependent name, and we
 | |
|       // couldn't find anything useful in scope. Just store the identifier and
 | |
|       // it's location, and we'll perform (qualified) name lookup again at
 | |
|       // template instantiation time.
 | |
|       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
 | |
|                                                SecondTypeName.StartLocation);
 | |
|     } else if (!T) {
 | |
|       Diag(SecondTypeName.StartLocation,
 | |
|            diag::err_pseudo_dtor_destructor_non_type)
 | |
|         << SecondTypeName.Identifier << ObjectType;
 | |
|       if (isSFINAEContext())
 | |
|         return ExprError();
 | |
| 
 | |
|       // Recover by assuming we had the right type all along.
 | |
|       DestructedType = ObjectType;
 | |
|     } else
 | |
|       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
 | |
|   } else {
 | |
|     // Resolve the template-id to a type.
 | |
|     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
 | |
|     ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | |
|                                        TemplateId->getTemplateArgs(),
 | |
|                                        TemplateId->NumArgs);
 | |
|     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
 | |
|                                        TemplateId->Template,
 | |
|                                        TemplateId->TemplateNameLoc,
 | |
|                                        TemplateId->LAngleLoc,
 | |
|                                        TemplateArgsPtr,
 | |
|                                        TemplateId->RAngleLoc);
 | |
|     if (T.isInvalid() || !T.get()) {
 | |
|       // Recover by assuming we had the right type all along.
 | |
|       DestructedType = ObjectType;
 | |
|     } else
 | |
|       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
 | |
|   }
 | |
| 
 | |
|   // If we've performed some kind of recovery, (re-)build the type source
 | |
|   // information.
 | |
|   if (!DestructedType.isNull()) {
 | |
|     if (!DestructedTypeInfo)
 | |
|       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
 | |
|                                                   SecondTypeName.StartLocation);
 | |
|     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
 | |
|   }
 | |
| 
 | |
|   // Convert the name of the scope type (the type prior to '::') into a type.
 | |
|   TypeSourceInfo *ScopeTypeInfo = 0;
 | |
|   QualType ScopeType;
 | |
|   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | |
|       FirstTypeName.Identifier) {
 | |
|     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
 | |
|       ParsedType T = getTypeName(*FirstTypeName.Identifier,
 | |
|                                  FirstTypeName.StartLocation,
 | |
|                                  S, &SS, true, false, ObjectTypePtrForLookup);
 | |
|       if (!T) {
 | |
|         Diag(FirstTypeName.StartLocation,
 | |
|              diag::err_pseudo_dtor_destructor_non_type)
 | |
|           << FirstTypeName.Identifier << ObjectType;
 | |
| 
 | |
|         if (isSFINAEContext())
 | |
|           return ExprError();
 | |
| 
 | |
|         // Just drop this type. It's unnecessary anyway.
 | |
|         ScopeType = QualType();
 | |
|       } else
 | |
|         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
 | |
|     } else {
 | |
|       // Resolve the template-id to a type.
 | |
|       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
 | |
|       ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | |
|                                          TemplateId->getTemplateArgs(),
 | |
|                                          TemplateId->NumArgs);
 | |
|       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
 | |
|                                          TemplateId->Template,
 | |
|                                          TemplateId->TemplateNameLoc,
 | |
|                                          TemplateId->LAngleLoc,
 | |
|                                          TemplateArgsPtr,
 | |
|                                          TemplateId->RAngleLoc);
 | |
|       if (T.isInvalid() || !T.get()) {
 | |
|         // Recover by dropping this type.
 | |
|         ScopeType = QualType();
 | |
|       } else
 | |
|         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ScopeType.isNull() && !ScopeTypeInfo)
 | |
|     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
 | |
|                                                   FirstTypeName.StartLocation);
 | |
| 
 | |
| 
 | |
|   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
 | |
|                                    ScopeTypeInfo, CCLoc, TildeLoc,
 | |
|                                    Destructed, HasTrailingLParen);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
 | |
|                                         CXXMethodDecl *Method) {
 | |
|   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
 | |
|                                           FoundDecl, Method);
 | |
|   if (Exp.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   MemberExpr *ME =
 | |
|       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
 | |
|                                SourceLocation(), Method->getType(),
 | |
|                                VK_RValue, OK_Ordinary);
 | |
|   QualType ResultType = Method->getResultType();
 | |
|   ExprValueKind VK = Expr::getValueKindForType(ResultType);
 | |
|   ResultType = ResultType.getNonLValueExprType(Context);
 | |
| 
 | |
|   MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
 | |
|   CXXMemberCallExpr *CE =
 | |
|     new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
 | |
|                                     Exp.get()->getLocEnd());
 | |
|   return CE;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
 | |
|                                       SourceLocation RParen) {
 | |
|   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
 | |
|                                              Operand->CanThrow(Context),
 | |
|                                              KeyLoc, RParen));
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
 | |
|                                    Expr *Operand, SourceLocation RParen) {
 | |
|   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
 | |
| }
 | |
| 
 | |
| /// Perform the conversions required for an expression used in a
 | |
| /// context that ignores the result.
 | |
| ExprResult Sema::IgnoredValueConversions(Expr *E) {
 | |
|   // C99 6.3.2.1:
 | |
|   //   [Except in specific positions,] an lvalue that does not have
 | |
|   //   array type is converted to the value stored in the
 | |
|   //   designated object (and is no longer an lvalue).
 | |
|   if (E->isRValue()) return Owned(E);
 | |
| 
 | |
|   // We always want to do this on ObjC property references.
 | |
|   if (E->getObjectKind() == OK_ObjCProperty) {
 | |
|     ExprResult Res = ConvertPropertyForRValue(E);
 | |
|     if (Res.isInvalid()) return Owned(E);
 | |
|     E = Res.take();
 | |
|     if (E->isRValue()) return Owned(E);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this rule does not apply in C++, at least not for the moment.
 | |
|   if (getLangOptions().CPlusPlus) return Owned(E);
 | |
| 
 | |
|   // GCC seems to also exclude expressions of incomplete enum type.
 | |
|   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
 | |
|     if (!T->getDecl()->isComplete()) {
 | |
|       // FIXME: stupid workaround for a codegen bug!
 | |
|       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
 | |
|       return Owned(E);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
 | |
|   if (Res.isInvalid())
 | |
|     return Owned(E);
 | |
|   E = Res.take();
 | |
| 
 | |
|   if (!E->getType()->isVoidType())
 | |
|     RequireCompleteType(E->getExprLoc(), E->getType(),
 | |
|                         diag::err_incomplete_type);
 | |
|   return Owned(E);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
 | |
|   ExprResult FullExpr = Owned(FE);
 | |
| 
 | |
|   if (!FullExpr.get())
 | |
|     return ExprError();
 | |
| 
 | |
|   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
 | |
|     return ExprError();
 | |
| 
 | |
|   FullExpr = CheckPlaceholderExpr(FullExpr.take());
 | |
|   if (FullExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   FullExpr = IgnoredValueConversions(FullExpr.take());
 | |
|   if (FullExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   CheckImplicitConversions(FullExpr.get());
 | |
|   return MaybeCreateExprWithCleanups(FullExpr);
 | |
| }
 | |
| 
 | |
| StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
 | |
|   if (!FullStmt) return StmtError();
 | |
| 
 | |
|   return MaybeCreateStmtWithCleanups(FullStmt);
 | |
| }
 |